xref: /linux/drivers/dma/tegra20-apb-dma.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28 
29 #include "dmaengine.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
33 
34 #define TEGRA_APBDMA_GENERAL			0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
36 
37 #define TEGRA_APBDMA_CONTROL			0x010
38 #define TEGRA_APBDMA_IRQ_MASK			0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
40 
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR			0x00
43 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
52 
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS		0x004
55 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
61 
62 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
64 
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
67 
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
83 
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
86 
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
96 
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
99 
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
101 
102 /*
103  * If any burst is in flight and DMA paused then this is the time to complete
104  * on-flight burst and update DMA status register.
105  */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
107 
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
110 
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112 
113 struct tegra_dma;
114 
115 /*
116  * tegra_dma_chip_data Tegra chip specific DMA data
117  * @nr_channels: Number of channels available in the controller.
118  * @channel_reg_size: Channel register size/stride.
119  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120  * @support_channel_pause: Support channel wise pause of dma.
121  * @support_separate_wcount_reg: Support separate word count register.
122  */
123 struct tegra_dma_chip_data {
124 	unsigned int nr_channels;
125 	unsigned int channel_reg_size;
126 	unsigned int max_dma_count;
127 	bool support_channel_pause;
128 	bool support_separate_wcount_reg;
129 };
130 
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133 	u32 csr;
134 	u32 ahb_ptr;
135 	u32 apb_ptr;
136 	u32 ahb_seq;
137 	u32 apb_seq;
138 	u32 wcount;
139 };
140 
141 /*
142  * tegra_dma_sg_req: DMA request details to configure hardware. This
143  * contains the details for one transfer to configure DMA hw.
144  * The client's request for data transfer can be broken into multiple
145  * sub-transfer as per requester details and hw support.
146  * This sub transfer get added in the list of transfer and point to Tegra
147  * DMA descriptor which manages the transfer details.
148  */
149 struct tegra_dma_sg_req {
150 	struct tegra_dma_channel_regs	ch_regs;
151 	unsigned int			req_len;
152 	bool				configured;
153 	bool				last_sg;
154 	struct list_head		node;
155 	struct tegra_dma_desc		*dma_desc;
156 	unsigned int			words_xferred;
157 };
158 
159 /*
160  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161  * This descriptor keep track of transfer status, callbacks and request
162  * counts etc.
163  */
164 struct tegra_dma_desc {
165 	struct dma_async_tx_descriptor	txd;
166 	unsigned int			bytes_requested;
167 	unsigned int			bytes_transferred;
168 	enum dma_status			dma_status;
169 	struct list_head		node;
170 	struct list_head		tx_list;
171 	struct list_head		cb_node;
172 	unsigned int			cb_count;
173 };
174 
175 struct tegra_dma_channel;
176 
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178 				bool to_terminate);
179 
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182 	struct dma_chan		dma_chan;
183 	char			name[12];
184 	bool			config_init;
185 	unsigned int		id;
186 	void __iomem		*chan_addr;
187 	spinlock_t		lock;
188 	bool			busy;
189 	struct tegra_dma	*tdma;
190 	bool			cyclic;
191 
192 	/* Different lists for managing the requests */
193 	struct list_head	free_sg_req;
194 	struct list_head	pending_sg_req;
195 	struct list_head	free_dma_desc;
196 	struct list_head	cb_desc;
197 
198 	/* ISR handler and tasklet for bottom half of isr handling */
199 	dma_isr_handler		isr_handler;
200 	struct tasklet_struct	tasklet;
201 
202 	/* Channel-slave specific configuration */
203 	unsigned int slave_id;
204 	struct dma_slave_config dma_sconfig;
205 	struct tegra_dma_channel_regs channel_reg;
206 
207 	struct wait_queue_head wq;
208 };
209 
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212 	struct dma_device		dma_dev;
213 	struct device			*dev;
214 	struct clk			*dma_clk;
215 	struct reset_control		*rst;
216 	spinlock_t			global_lock;
217 	void __iomem			*base_addr;
218 	const struct tegra_dma_chip_data *chip_data;
219 
220 	/*
221 	 * Counter for managing global pausing of the DMA controller.
222 	 * Only applicable for devices that don't support individual
223 	 * channel pausing.
224 	 */
225 	u32				global_pause_count;
226 
227 	/* Last member of the structure */
228 	struct tegra_dma_channel channels[];
229 };
230 
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233 	writel(val, tdma->base_addr + reg);
234 }
235 
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237 {
238 	return readl(tdma->base_addr + reg);
239 }
240 
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242 			     u32 reg, u32 val)
243 {
244 	writel(val, tdc->chan_addr + reg);
245 }
246 
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248 {
249 	return readl(tdc->chan_addr + reg);
250 }
251 
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253 {
254 	return container_of(dc, struct tegra_dma_channel, dma_chan);
255 }
256 
257 static inline struct tegra_dma_desc *
258 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
259 {
260 	return container_of(td, struct tegra_dma_desc, txd);
261 }
262 
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264 {
265 	return &tdc->dma_chan.dev->device;
266 }
267 
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269 
270 /* Get DMA desc from free list, if not there then allocate it.  */
271 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
272 {
273 	struct tegra_dma_desc *dma_desc;
274 	unsigned long flags;
275 
276 	spin_lock_irqsave(&tdc->lock, flags);
277 
278 	/* Do not allocate if desc are waiting for ack */
279 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280 		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281 			list_del(&dma_desc->node);
282 			spin_unlock_irqrestore(&tdc->lock, flags);
283 			dma_desc->txd.flags = 0;
284 			return dma_desc;
285 		}
286 	}
287 
288 	spin_unlock_irqrestore(&tdc->lock, flags);
289 
290 	/* Allocate DMA desc */
291 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292 	if (!dma_desc)
293 		return NULL;
294 
295 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297 	dma_desc->txd.flags = 0;
298 
299 	return dma_desc;
300 }
301 
302 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303 			       struct tegra_dma_desc *dma_desc)
304 {
305 	unsigned long flags;
306 
307 	spin_lock_irqsave(&tdc->lock, flags);
308 	if (!list_empty(&dma_desc->tx_list))
309 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311 	spin_unlock_irqrestore(&tdc->lock, flags);
312 }
313 
314 static struct tegra_dma_sg_req *
315 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
316 {
317 	struct tegra_dma_sg_req *sg_req;
318 	unsigned long flags;
319 
320 	spin_lock_irqsave(&tdc->lock, flags);
321 	if (!list_empty(&tdc->free_sg_req)) {
322 		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323 					  node);
324 		list_del(&sg_req->node);
325 		spin_unlock_irqrestore(&tdc->lock, flags);
326 		return sg_req;
327 	}
328 	spin_unlock_irqrestore(&tdc->lock, flags);
329 
330 	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
331 
332 	return sg_req;
333 }
334 
335 static int tegra_dma_slave_config(struct dma_chan *dc,
336 				  struct dma_slave_config *sconfig)
337 {
338 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
339 
340 	if (!list_empty(&tdc->pending_sg_req)) {
341 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342 		return -EBUSY;
343 	}
344 
345 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346 	tdc->config_init = true;
347 
348 	return 0;
349 }
350 
351 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
352 				   bool wait_for_burst_complete)
353 {
354 	struct tegra_dma *tdma = tdc->tdma;
355 
356 	spin_lock(&tdma->global_lock);
357 
358 	if (tdc->tdma->global_pause_count == 0) {
359 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
360 		if (wait_for_burst_complete)
361 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
362 	}
363 
364 	tdc->tdma->global_pause_count++;
365 
366 	spin_unlock(&tdma->global_lock);
367 }
368 
369 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
370 {
371 	struct tegra_dma *tdma = tdc->tdma;
372 
373 	spin_lock(&tdma->global_lock);
374 
375 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
376 		goto out;
377 
378 	if (--tdc->tdma->global_pause_count == 0)
379 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
380 			   TEGRA_APBDMA_GENERAL_ENABLE);
381 
382 out:
383 	spin_unlock(&tdma->global_lock);
384 }
385 
386 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
387 			    bool wait_for_burst_complete)
388 {
389 	struct tegra_dma *tdma = tdc->tdma;
390 
391 	if (tdma->chip_data->support_channel_pause) {
392 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
393 			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
394 		if (wait_for_burst_complete)
395 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
396 	} else {
397 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
398 	}
399 }
400 
401 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
402 {
403 	struct tegra_dma *tdma = tdc->tdma;
404 
405 	if (tdma->chip_data->support_channel_pause)
406 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
407 	else
408 		tegra_dma_global_resume(tdc);
409 }
410 
411 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
412 {
413 	u32 csr, status;
414 
415 	/* Disable interrupts */
416 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
417 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
418 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
419 
420 	/* Disable DMA */
421 	csr &= ~TEGRA_APBDMA_CSR_ENB;
422 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
423 
424 	/* Clear interrupt status if it is there */
425 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
426 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
427 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
428 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
429 	}
430 	tdc->busy = false;
431 }
432 
433 static void tegra_dma_start(struct tegra_dma_channel *tdc,
434 			    struct tegra_dma_sg_req *sg_req)
435 {
436 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
437 
438 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
439 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
440 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
441 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
442 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
443 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
444 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
445 
446 	/* Start DMA */
447 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
448 		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
449 }
450 
451 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
452 					 struct tegra_dma_sg_req *nsg_req)
453 {
454 	unsigned long status;
455 
456 	/*
457 	 * The DMA controller reloads the new configuration for next transfer
458 	 * after last burst of current transfer completes.
459 	 * If there is no IEC status then this makes sure that last burst
460 	 * has not be completed. There may be case that last burst is on
461 	 * flight and so it can complete but because DMA is paused, it
462 	 * will not generates interrupt as well as not reload the new
463 	 * configuration.
464 	 * If there is already IEC status then interrupt handler need to
465 	 * load new configuration.
466 	 */
467 	tegra_dma_pause(tdc, false);
468 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
469 
470 	/*
471 	 * If interrupt is pending then do nothing as the ISR will handle
472 	 * the programing for new request.
473 	 */
474 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
475 		dev_err(tdc2dev(tdc),
476 			"Skipping new configuration as interrupt is pending\n");
477 		tegra_dma_resume(tdc);
478 		return;
479 	}
480 
481 	/* Safe to program new configuration */
482 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
483 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
484 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
485 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
486 			  nsg_req->ch_regs.wcount);
487 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
488 		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
489 	nsg_req->configured = true;
490 	nsg_req->words_xferred = 0;
491 
492 	tegra_dma_resume(tdc);
493 }
494 
495 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
496 {
497 	struct tegra_dma_sg_req *sg_req;
498 
499 	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
500 	tegra_dma_start(tdc, sg_req);
501 	sg_req->configured = true;
502 	sg_req->words_xferred = 0;
503 	tdc->busy = true;
504 }
505 
506 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
507 {
508 	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
509 
510 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
511 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
512 		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
513 					   node);
514 		tegra_dma_configure_for_next(tdc, hnsgreq);
515 	}
516 }
517 
518 static inline unsigned int
519 get_current_xferred_count(struct tegra_dma_channel *tdc,
520 			  struct tegra_dma_sg_req *sg_req,
521 			  unsigned long status)
522 {
523 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
524 }
525 
526 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
527 {
528 	struct tegra_dma_desc *dma_desc;
529 	struct tegra_dma_sg_req *sgreq;
530 
531 	while (!list_empty(&tdc->pending_sg_req)) {
532 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
533 					 node);
534 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
535 		if (sgreq->last_sg) {
536 			dma_desc = sgreq->dma_desc;
537 			dma_desc->dma_status = DMA_ERROR;
538 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
539 
540 			/* Add in cb list if it is not there. */
541 			if (!dma_desc->cb_count)
542 				list_add_tail(&dma_desc->cb_node,
543 					      &tdc->cb_desc);
544 			dma_desc->cb_count++;
545 		}
546 	}
547 	tdc->isr_handler = NULL;
548 }
549 
550 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
551 					   bool to_terminate)
552 {
553 	struct tegra_dma_sg_req *hsgreq;
554 
555 	/*
556 	 * Check that head req on list should be in flight.
557 	 * If it is not in flight then abort transfer as
558 	 * looping of transfer can not continue.
559 	 */
560 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
561 	if (!hsgreq->configured) {
562 		tegra_dma_stop(tdc);
563 		pm_runtime_put(tdc->tdma->dev);
564 		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
565 		tegra_dma_abort_all(tdc);
566 		return false;
567 	}
568 
569 	/* Configure next request */
570 	if (!to_terminate)
571 		tdc_configure_next_head_desc(tdc);
572 
573 	return true;
574 }
575 
576 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
577 				 bool to_terminate)
578 {
579 	struct tegra_dma_desc *dma_desc;
580 	struct tegra_dma_sg_req *sgreq;
581 
582 	tdc->busy = false;
583 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
584 	dma_desc = sgreq->dma_desc;
585 	dma_desc->bytes_transferred += sgreq->req_len;
586 
587 	list_del(&sgreq->node);
588 	if (sgreq->last_sg) {
589 		dma_desc->dma_status = DMA_COMPLETE;
590 		dma_cookie_complete(&dma_desc->txd);
591 		if (!dma_desc->cb_count)
592 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
593 		dma_desc->cb_count++;
594 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
595 	}
596 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
597 
598 	/* Do not start DMA if it is going to be terminate */
599 	if (to_terminate)
600 		return;
601 
602 	if (list_empty(&tdc->pending_sg_req)) {
603 		pm_runtime_put(tdc->tdma->dev);
604 		return;
605 	}
606 
607 	tdc_start_head_req(tdc);
608 }
609 
610 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
611 					    bool to_terminate)
612 {
613 	struct tegra_dma_desc *dma_desc;
614 	struct tegra_dma_sg_req *sgreq;
615 	bool st;
616 
617 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
618 	dma_desc = sgreq->dma_desc;
619 	/* if we dma for long enough the transfer count will wrap */
620 	dma_desc->bytes_transferred =
621 		(dma_desc->bytes_transferred + sgreq->req_len) %
622 		dma_desc->bytes_requested;
623 
624 	/* Callback need to be call */
625 	if (!dma_desc->cb_count)
626 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
627 	dma_desc->cb_count++;
628 
629 	sgreq->words_xferred = 0;
630 
631 	/* If not last req then put at end of pending list */
632 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
633 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
634 		sgreq->configured = false;
635 		st = handle_continuous_head_request(tdc, to_terminate);
636 		if (!st)
637 			dma_desc->dma_status = DMA_ERROR;
638 	}
639 }
640 
641 static void tegra_dma_tasklet(struct tasklet_struct *t)
642 {
643 	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
644 	struct dmaengine_desc_callback cb;
645 	struct tegra_dma_desc *dma_desc;
646 	unsigned int cb_count;
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&tdc->lock, flags);
650 	while (!list_empty(&tdc->cb_desc)) {
651 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
652 					    cb_node);
653 		list_del(&dma_desc->cb_node);
654 		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
655 		cb_count = dma_desc->cb_count;
656 		dma_desc->cb_count = 0;
657 		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
658 					    cb.callback);
659 		spin_unlock_irqrestore(&tdc->lock, flags);
660 		while (cb_count--)
661 			dmaengine_desc_callback_invoke(&cb, NULL);
662 		spin_lock_irqsave(&tdc->lock, flags);
663 	}
664 	spin_unlock_irqrestore(&tdc->lock, flags);
665 }
666 
667 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
668 {
669 	struct tegra_dma_channel *tdc = dev_id;
670 	u32 status;
671 
672 	spin_lock(&tdc->lock);
673 
674 	trace_tegra_dma_isr(&tdc->dma_chan, irq);
675 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
676 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
677 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
678 		tdc->isr_handler(tdc, false);
679 		tasklet_schedule(&tdc->tasklet);
680 		wake_up_all(&tdc->wq);
681 		spin_unlock(&tdc->lock);
682 		return IRQ_HANDLED;
683 	}
684 
685 	spin_unlock(&tdc->lock);
686 	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
687 		 status);
688 
689 	return IRQ_NONE;
690 }
691 
692 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
693 {
694 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
695 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
696 	unsigned long flags;
697 	dma_cookie_t cookie;
698 
699 	spin_lock_irqsave(&tdc->lock, flags);
700 	dma_desc->dma_status = DMA_IN_PROGRESS;
701 	cookie = dma_cookie_assign(&dma_desc->txd);
702 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
703 	spin_unlock_irqrestore(&tdc->lock, flags);
704 
705 	return cookie;
706 }
707 
708 static void tegra_dma_issue_pending(struct dma_chan *dc)
709 {
710 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
711 	unsigned long flags;
712 	int err;
713 
714 	spin_lock_irqsave(&tdc->lock, flags);
715 	if (list_empty(&tdc->pending_sg_req)) {
716 		dev_err(tdc2dev(tdc), "No DMA request\n");
717 		goto end;
718 	}
719 	if (!tdc->busy) {
720 		err = pm_runtime_resume_and_get(tdc->tdma->dev);
721 		if (err < 0) {
722 			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
723 			goto end;
724 		}
725 
726 		tdc_start_head_req(tdc);
727 
728 		/* Continuous single mode: Configure next req */
729 		if (tdc->cyclic) {
730 			/*
731 			 * Wait for 1 burst time for configure DMA for
732 			 * next transfer.
733 			 */
734 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
735 			tdc_configure_next_head_desc(tdc);
736 		}
737 	}
738 end:
739 	spin_unlock_irqrestore(&tdc->lock, flags);
740 }
741 
742 static int tegra_dma_terminate_all(struct dma_chan *dc)
743 {
744 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
745 	struct tegra_dma_desc *dma_desc;
746 	struct tegra_dma_sg_req *sgreq;
747 	unsigned long flags;
748 	u32 status, wcount;
749 	bool was_busy;
750 
751 	spin_lock_irqsave(&tdc->lock, flags);
752 
753 	if (!tdc->busy)
754 		goto skip_dma_stop;
755 
756 	/* Pause DMA before checking the queue status */
757 	tegra_dma_pause(tdc, true);
758 
759 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
760 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
761 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
762 		tdc->isr_handler(tdc, true);
763 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
764 	}
765 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
766 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
767 	else
768 		wcount = status;
769 
770 	was_busy = tdc->busy;
771 	tegra_dma_stop(tdc);
772 
773 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
774 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
775 					 node);
776 		sgreq->dma_desc->bytes_transferred +=
777 				get_current_xferred_count(tdc, sgreq, wcount);
778 	}
779 	tegra_dma_resume(tdc);
780 
781 	pm_runtime_put(tdc->tdma->dev);
782 	wake_up_all(&tdc->wq);
783 
784 skip_dma_stop:
785 	tegra_dma_abort_all(tdc);
786 
787 	while (!list_empty(&tdc->cb_desc)) {
788 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
789 					    cb_node);
790 		list_del(&dma_desc->cb_node);
791 		dma_desc->cb_count = 0;
792 	}
793 	spin_unlock_irqrestore(&tdc->lock, flags);
794 
795 	return 0;
796 }
797 
798 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
799 {
800 	unsigned long flags;
801 	u32 status;
802 
803 	spin_lock_irqsave(&tdc->lock, flags);
804 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
805 	spin_unlock_irqrestore(&tdc->lock, flags);
806 
807 	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
808 }
809 
810 static void tegra_dma_synchronize(struct dma_chan *dc)
811 {
812 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
813 	int err;
814 
815 	err = pm_runtime_resume_and_get(tdc->tdma->dev);
816 	if (err < 0) {
817 		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
818 		return;
819 	}
820 
821 	/*
822 	 * CPU, which handles interrupt, could be busy in
823 	 * uninterruptible state, in this case sibling CPU
824 	 * should wait until interrupt is handled.
825 	 */
826 	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
827 
828 	tasklet_kill(&tdc->tasklet);
829 
830 	pm_runtime_put(tdc->tdma->dev);
831 }
832 
833 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
834 					       struct tegra_dma_sg_req *sg_req)
835 {
836 	u32 status, wcount = 0;
837 
838 	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
839 		return 0;
840 
841 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
842 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
843 
844 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
845 
846 	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
847 		wcount = status;
848 
849 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
850 		return sg_req->req_len;
851 
852 	wcount = get_current_xferred_count(tdc, sg_req, wcount);
853 
854 	if (!wcount) {
855 		/*
856 		 * If wcount wasn't ever polled for this SG before, then
857 		 * simply assume that transfer hasn't started yet.
858 		 *
859 		 * Otherwise it's the end of the transfer.
860 		 *
861 		 * The alternative would be to poll the status register
862 		 * until EOC bit is set or wcount goes UP. That's so
863 		 * because EOC bit is getting set only after the last
864 		 * burst's completion and counter is less than the actual
865 		 * transfer size by 4 bytes. The counter value wraps around
866 		 * in a cyclic mode before EOC is set(!), so we can't easily
867 		 * distinguish start of transfer from its end.
868 		 */
869 		if (sg_req->words_xferred)
870 			wcount = sg_req->req_len - 4;
871 
872 	} else if (wcount < sg_req->words_xferred) {
873 		/*
874 		 * This case will never happen for a non-cyclic transfer.
875 		 *
876 		 * For a cyclic transfer, although it is possible for the
877 		 * next transfer to have already started (resetting the word
878 		 * count), this case should still not happen because we should
879 		 * have detected that the EOC bit is set and hence the transfer
880 		 * was completed.
881 		 */
882 		WARN_ON_ONCE(1);
883 
884 		wcount = sg_req->req_len - 4;
885 	} else {
886 		sg_req->words_xferred = wcount;
887 	}
888 
889 	return wcount;
890 }
891 
892 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
893 					   dma_cookie_t cookie,
894 					   struct dma_tx_state *txstate)
895 {
896 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
897 	struct tegra_dma_desc *dma_desc;
898 	struct tegra_dma_sg_req *sg_req;
899 	enum dma_status ret;
900 	unsigned long flags;
901 	unsigned int residual;
902 	unsigned int bytes = 0;
903 
904 	ret = dma_cookie_status(dc, cookie, txstate);
905 	if (ret == DMA_COMPLETE)
906 		return ret;
907 
908 	spin_lock_irqsave(&tdc->lock, flags);
909 
910 	/* Check on wait_ack desc status */
911 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
912 		if (dma_desc->txd.cookie == cookie) {
913 			ret = dma_desc->dma_status;
914 			goto found;
915 		}
916 	}
917 
918 	/* Check in pending list */
919 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
920 		dma_desc = sg_req->dma_desc;
921 		if (dma_desc->txd.cookie == cookie) {
922 			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
923 			ret = dma_desc->dma_status;
924 			goto found;
925 		}
926 	}
927 
928 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
929 	dma_desc = NULL;
930 
931 found:
932 	if (dma_desc && txstate) {
933 		residual = dma_desc->bytes_requested -
934 			   ((dma_desc->bytes_transferred + bytes) %
935 			    dma_desc->bytes_requested);
936 		dma_set_residue(txstate, residual);
937 	}
938 
939 	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
940 	spin_unlock_irqrestore(&tdc->lock, flags);
941 
942 	return ret;
943 }
944 
945 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
946 					 enum dma_slave_buswidth slave_bw)
947 {
948 	switch (slave_bw) {
949 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
950 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
951 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
952 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
953 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
954 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
955 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
956 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
957 	default:
958 		dev_warn(tdc2dev(tdc),
959 			 "slave bw is not supported, using 32bits\n");
960 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961 	}
962 }
963 
964 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
965 					  u32 burst_size,
966 					  enum dma_slave_buswidth slave_bw,
967 					  u32 len)
968 {
969 	unsigned int burst_byte, burst_ahb_width;
970 
971 	/*
972 	 * burst_size from client is in terms of the bus_width.
973 	 * convert them into AHB memory width which is 4 byte.
974 	 */
975 	burst_byte = burst_size * slave_bw;
976 	burst_ahb_width = burst_byte / 4;
977 
978 	/* If burst size is 0 then calculate the burst size based on length */
979 	if (!burst_ahb_width) {
980 		if (len & 0xF)
981 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
982 		else if ((len >> 4) & 0x1)
983 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
984 		else
985 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
986 	}
987 	if (burst_ahb_width < 4)
988 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
989 	else if (burst_ahb_width < 8)
990 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
991 	else
992 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
993 }
994 
995 static int get_transfer_param(struct tegra_dma_channel *tdc,
996 			      enum dma_transfer_direction direction,
997 			      u32 *apb_addr,
998 			      u32 *apb_seq,
999 			      u32 *csr,
1000 			      unsigned int *burst_size,
1001 			      enum dma_slave_buswidth *slave_bw)
1002 {
1003 	switch (direction) {
1004 	case DMA_MEM_TO_DEV:
1005 		*apb_addr = tdc->dma_sconfig.dst_addr;
1006 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1007 		*burst_size = tdc->dma_sconfig.dst_maxburst;
1008 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1009 		*csr = TEGRA_APBDMA_CSR_DIR;
1010 		return 0;
1011 
1012 	case DMA_DEV_TO_MEM:
1013 		*apb_addr = tdc->dma_sconfig.src_addr;
1014 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1015 		*burst_size = tdc->dma_sconfig.src_maxburst;
1016 		*slave_bw = tdc->dma_sconfig.src_addr_width;
1017 		*csr = 0;
1018 		return 0;
1019 
1020 	default:
1021 		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1022 		break;
1023 	}
1024 
1025 	return -EINVAL;
1026 }
1027 
1028 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1029 				  struct tegra_dma_channel_regs *ch_regs,
1030 				  u32 len)
1031 {
1032 	u32 len_field = (len - 4) & 0xFFFC;
1033 
1034 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1035 		ch_regs->wcount = len_field;
1036 	else
1037 		ch_regs->csr |= len_field;
1038 }
1039 
1040 static struct dma_async_tx_descriptor *
1041 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1042 			struct scatterlist *sgl,
1043 			unsigned int sg_len,
1044 			enum dma_transfer_direction direction,
1045 			unsigned long flags,
1046 			void *context)
1047 {
1048 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1049 	struct tegra_dma_sg_req *sg_req = NULL;
1050 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1051 	enum dma_slave_buswidth slave_bw;
1052 	struct tegra_dma_desc *dma_desc;
1053 	struct list_head req_list;
1054 	struct scatterlist *sg;
1055 	unsigned int burst_size;
1056 	unsigned int i;
1057 
1058 	if (!tdc->config_init) {
1059 		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1060 		return NULL;
1061 	}
1062 	if (sg_len < 1) {
1063 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1064 		return NULL;
1065 	}
1066 
1067 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1068 			       &burst_size, &slave_bw) < 0)
1069 		return NULL;
1070 
1071 	INIT_LIST_HEAD(&req_list);
1072 
1073 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1074 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1075 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1076 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1077 
1078 	csr |= TEGRA_APBDMA_CSR_ONCE;
1079 
1080 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1081 		csr |= TEGRA_APBDMA_CSR_FLOW;
1082 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1083 	}
1084 
1085 	if (flags & DMA_PREP_INTERRUPT) {
1086 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1087 	} else {
1088 		WARN_ON_ONCE(1);
1089 		return NULL;
1090 	}
1091 
1092 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1093 
1094 	dma_desc = tegra_dma_desc_get(tdc);
1095 	if (!dma_desc) {
1096 		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1097 		return NULL;
1098 	}
1099 	INIT_LIST_HEAD(&dma_desc->tx_list);
1100 	INIT_LIST_HEAD(&dma_desc->cb_node);
1101 	dma_desc->cb_count = 0;
1102 	dma_desc->bytes_requested = 0;
1103 	dma_desc->bytes_transferred = 0;
1104 	dma_desc->dma_status = DMA_IN_PROGRESS;
1105 
1106 	/* Make transfer requests */
1107 	for_each_sg(sgl, sg, sg_len, i) {
1108 		u32 len, mem;
1109 
1110 		mem = sg_dma_address(sg);
1111 		len = sg_dma_len(sg);
1112 
1113 		if ((len & 3) || (mem & 3) ||
1114 		    len > tdc->tdma->chip_data->max_dma_count) {
1115 			dev_err(tdc2dev(tdc),
1116 				"DMA length/memory address is not supported\n");
1117 			tegra_dma_desc_put(tdc, dma_desc);
1118 			return NULL;
1119 		}
1120 
1121 		sg_req = tegra_dma_sg_req_get(tdc);
1122 		if (!sg_req) {
1123 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1124 			tegra_dma_desc_put(tdc, dma_desc);
1125 			return NULL;
1126 		}
1127 
1128 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1129 		dma_desc->bytes_requested += len;
1130 
1131 		sg_req->ch_regs.apb_ptr = apb_ptr;
1132 		sg_req->ch_regs.ahb_ptr = mem;
1133 		sg_req->ch_regs.csr = csr;
1134 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1135 		sg_req->ch_regs.apb_seq = apb_seq;
1136 		sg_req->ch_regs.ahb_seq = ahb_seq;
1137 		sg_req->configured = false;
1138 		sg_req->last_sg = false;
1139 		sg_req->dma_desc = dma_desc;
1140 		sg_req->req_len = len;
1141 
1142 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1143 	}
1144 	sg_req->last_sg = true;
1145 	if (flags & DMA_CTRL_ACK)
1146 		dma_desc->txd.flags = DMA_CTRL_ACK;
1147 
1148 	/*
1149 	 * Make sure that mode should not be conflicting with currently
1150 	 * configured mode.
1151 	 */
1152 	if (!tdc->isr_handler) {
1153 		tdc->isr_handler = handle_once_dma_done;
1154 		tdc->cyclic = false;
1155 	} else {
1156 		if (tdc->cyclic) {
1157 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1158 			tegra_dma_desc_put(tdc, dma_desc);
1159 			return NULL;
1160 		}
1161 	}
1162 
1163 	return &dma_desc->txd;
1164 }
1165 
1166 static struct dma_async_tx_descriptor *
1167 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1168 			  size_t buf_len,
1169 			  size_t period_len,
1170 			  enum dma_transfer_direction direction,
1171 			  unsigned long flags)
1172 {
1173 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1174 	struct tegra_dma_sg_req *sg_req = NULL;
1175 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1176 	enum dma_slave_buswidth slave_bw;
1177 	struct tegra_dma_desc *dma_desc;
1178 	dma_addr_t mem = buf_addr;
1179 	unsigned int burst_size;
1180 	size_t len, remain_len;
1181 
1182 	if (!buf_len || !period_len) {
1183 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1184 		return NULL;
1185 	}
1186 
1187 	if (!tdc->config_init) {
1188 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1189 		return NULL;
1190 	}
1191 
1192 	/*
1193 	 * We allow to take more number of requests till DMA is
1194 	 * not started. The driver will loop over all requests.
1195 	 * Once DMA is started then new requests can be queued only after
1196 	 * terminating the DMA.
1197 	 */
1198 	if (tdc->busy) {
1199 		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1200 		return NULL;
1201 	}
1202 
1203 	/*
1204 	 * We only support cycle transfer when buf_len is multiple of
1205 	 * period_len.
1206 	 */
1207 	if (buf_len % period_len) {
1208 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1209 		return NULL;
1210 	}
1211 
1212 	len = period_len;
1213 	if ((len & 3) || (buf_addr & 3) ||
1214 	    len > tdc->tdma->chip_data->max_dma_count) {
1215 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1216 		return NULL;
1217 	}
1218 
1219 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1220 			       &burst_size, &slave_bw) < 0)
1221 		return NULL;
1222 
1223 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1224 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1225 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1226 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1227 
1228 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1229 		csr |= TEGRA_APBDMA_CSR_FLOW;
1230 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1231 	}
1232 
1233 	if (flags & DMA_PREP_INTERRUPT) {
1234 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1235 	} else {
1236 		WARN_ON_ONCE(1);
1237 		return NULL;
1238 	}
1239 
1240 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1241 
1242 	dma_desc = tegra_dma_desc_get(tdc);
1243 	if (!dma_desc) {
1244 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1245 		return NULL;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&dma_desc->tx_list);
1249 	INIT_LIST_HEAD(&dma_desc->cb_node);
1250 	dma_desc->cb_count = 0;
1251 
1252 	dma_desc->bytes_transferred = 0;
1253 	dma_desc->bytes_requested = buf_len;
1254 	remain_len = buf_len;
1255 
1256 	/* Split transfer equal to period size */
1257 	while (remain_len) {
1258 		sg_req = tegra_dma_sg_req_get(tdc);
1259 		if (!sg_req) {
1260 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1261 			tegra_dma_desc_put(tdc, dma_desc);
1262 			return NULL;
1263 		}
1264 
1265 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1266 		sg_req->ch_regs.apb_ptr = apb_ptr;
1267 		sg_req->ch_regs.ahb_ptr = mem;
1268 		sg_req->ch_regs.csr = csr;
1269 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1270 		sg_req->ch_regs.apb_seq = apb_seq;
1271 		sg_req->ch_regs.ahb_seq = ahb_seq;
1272 		sg_req->configured = false;
1273 		sg_req->last_sg = false;
1274 		sg_req->dma_desc = dma_desc;
1275 		sg_req->req_len = len;
1276 
1277 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1278 		remain_len -= len;
1279 		mem += len;
1280 	}
1281 	sg_req->last_sg = true;
1282 	if (flags & DMA_CTRL_ACK)
1283 		dma_desc->txd.flags = DMA_CTRL_ACK;
1284 
1285 	/*
1286 	 * Make sure that mode should not be conflicting with currently
1287 	 * configured mode.
1288 	 */
1289 	if (!tdc->isr_handler) {
1290 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1291 		tdc->cyclic = true;
1292 	} else {
1293 		if (!tdc->cyclic) {
1294 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1295 			tegra_dma_desc_put(tdc, dma_desc);
1296 			return NULL;
1297 		}
1298 	}
1299 
1300 	return &dma_desc->txd;
1301 }
1302 
1303 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1304 {
1305 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1306 
1307 	dma_cookie_init(&tdc->dma_chan);
1308 
1309 	return 0;
1310 }
1311 
1312 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1313 {
1314 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1315 	struct tegra_dma_desc *dma_desc;
1316 	struct tegra_dma_sg_req *sg_req;
1317 	struct list_head dma_desc_list;
1318 	struct list_head sg_req_list;
1319 
1320 	INIT_LIST_HEAD(&dma_desc_list);
1321 	INIT_LIST_HEAD(&sg_req_list);
1322 
1323 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1324 
1325 	tegra_dma_terminate_all(dc);
1326 	tasklet_kill(&tdc->tasklet);
1327 
1328 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1329 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1330 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1331 	INIT_LIST_HEAD(&tdc->cb_desc);
1332 	tdc->config_init = false;
1333 	tdc->isr_handler = NULL;
1334 
1335 	while (!list_empty(&dma_desc_list)) {
1336 		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1337 					    node);
1338 		list_del(&dma_desc->node);
1339 		kfree(dma_desc);
1340 	}
1341 
1342 	while (!list_empty(&sg_req_list)) {
1343 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1344 		list_del(&sg_req->node);
1345 		kfree(sg_req);
1346 	}
1347 
1348 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1349 }
1350 
1351 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1352 					   struct of_dma *ofdma)
1353 {
1354 	struct tegra_dma *tdma = ofdma->of_dma_data;
1355 	struct tegra_dma_channel *tdc;
1356 	struct dma_chan *chan;
1357 
1358 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1359 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1360 		return NULL;
1361 	}
1362 
1363 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1364 	if (!chan)
1365 		return NULL;
1366 
1367 	tdc = to_tegra_dma_chan(chan);
1368 	tdc->slave_id = dma_spec->args[0];
1369 
1370 	return chan;
1371 }
1372 
1373 /* Tegra20 specific DMA controller information */
1374 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1375 	.nr_channels		= 16,
1376 	.channel_reg_size	= 0x20,
1377 	.max_dma_count		= 1024UL * 64,
1378 	.support_channel_pause	= false,
1379 	.support_separate_wcount_reg = false,
1380 };
1381 
1382 /* Tegra30 specific DMA controller information */
1383 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1384 	.nr_channels		= 32,
1385 	.channel_reg_size	= 0x20,
1386 	.max_dma_count		= 1024UL * 64,
1387 	.support_channel_pause	= false,
1388 	.support_separate_wcount_reg = false,
1389 };
1390 
1391 /* Tegra114 specific DMA controller information */
1392 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1393 	.nr_channels		= 32,
1394 	.channel_reg_size	= 0x20,
1395 	.max_dma_count		= 1024UL * 64,
1396 	.support_channel_pause	= true,
1397 	.support_separate_wcount_reg = false,
1398 };
1399 
1400 /* Tegra148 specific DMA controller information */
1401 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1402 	.nr_channels		= 32,
1403 	.channel_reg_size	= 0x40,
1404 	.max_dma_count		= 1024UL * 64,
1405 	.support_channel_pause	= true,
1406 	.support_separate_wcount_reg = true,
1407 };
1408 
1409 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1410 {
1411 	int err;
1412 
1413 	err = reset_control_assert(tdma->rst);
1414 	if (err) {
1415 		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1416 		return err;
1417 	}
1418 
1419 	err = clk_enable(tdma->dma_clk);
1420 	if (err) {
1421 		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1422 		return err;
1423 	}
1424 
1425 	/* reset DMA controller */
1426 	udelay(2);
1427 	reset_control_deassert(tdma->rst);
1428 
1429 	/* enable global DMA registers */
1430 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1431 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1432 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1433 
1434 	clk_disable(tdma->dma_clk);
1435 
1436 	return 0;
1437 }
1438 
1439 static int tegra_dma_probe(struct platform_device *pdev)
1440 {
1441 	const struct tegra_dma_chip_data *cdata;
1442 	struct tegra_dma *tdma;
1443 	unsigned int i;
1444 	size_t size;
1445 	int ret;
1446 
1447 	cdata = of_device_get_match_data(&pdev->dev);
1448 	size = struct_size(tdma, channels, cdata->nr_channels);
1449 
1450 	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1451 	if (!tdma)
1452 		return -ENOMEM;
1453 
1454 	tdma->dev = &pdev->dev;
1455 	tdma->chip_data = cdata;
1456 	platform_set_drvdata(pdev, tdma);
1457 
1458 	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1459 	if (IS_ERR(tdma->base_addr))
1460 		return PTR_ERR(tdma->base_addr);
1461 
1462 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1463 	if (IS_ERR(tdma->dma_clk)) {
1464 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1465 		return PTR_ERR(tdma->dma_clk);
1466 	}
1467 
1468 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1469 	if (IS_ERR(tdma->rst)) {
1470 		dev_err(&pdev->dev, "Error: Missing reset\n");
1471 		return PTR_ERR(tdma->rst);
1472 	}
1473 
1474 	spin_lock_init(&tdma->global_lock);
1475 
1476 	ret = clk_prepare(tdma->dma_clk);
1477 	if (ret)
1478 		return ret;
1479 
1480 	ret = tegra_dma_init_hw(tdma);
1481 	if (ret)
1482 		goto err_clk_unprepare;
1483 
1484 	pm_runtime_irq_safe(&pdev->dev);
1485 	pm_runtime_enable(&pdev->dev);
1486 
1487 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1488 	for (i = 0; i < cdata->nr_channels; i++) {
1489 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1490 		int irq;
1491 
1492 		tdc->chan_addr = tdma->base_addr +
1493 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1494 				 (i * cdata->channel_reg_size);
1495 
1496 		irq = platform_get_irq(pdev, i);
1497 		if (irq < 0) {
1498 			ret = irq;
1499 			goto err_pm_disable;
1500 		}
1501 
1502 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1503 		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1504 				       tdc->name, tdc);
1505 		if (ret) {
1506 			dev_err(&pdev->dev,
1507 				"request_irq failed with err %d channel %d\n",
1508 				ret, i);
1509 			goto err_pm_disable;
1510 		}
1511 
1512 		tdc->dma_chan.device = &tdma->dma_dev;
1513 		dma_cookie_init(&tdc->dma_chan);
1514 		list_add_tail(&tdc->dma_chan.device_node,
1515 			      &tdma->dma_dev.channels);
1516 		tdc->tdma = tdma;
1517 		tdc->id = i;
1518 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1519 
1520 		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1521 		spin_lock_init(&tdc->lock);
1522 		init_waitqueue_head(&tdc->wq);
1523 
1524 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1525 		INIT_LIST_HEAD(&tdc->free_sg_req);
1526 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1527 		INIT_LIST_HEAD(&tdc->cb_desc);
1528 	}
1529 
1530 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1531 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1532 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1533 
1534 	tdma->global_pause_count = 0;
1535 	tdma->dma_dev.dev = &pdev->dev;
1536 	tdma->dma_dev.device_alloc_chan_resources =
1537 					tegra_dma_alloc_chan_resources;
1538 	tdma->dma_dev.device_free_chan_resources =
1539 					tegra_dma_free_chan_resources;
1540 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1541 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1542 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1543 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1544 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1545 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1546 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1547 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1548 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1549 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1550 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1551 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1552 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1553 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1554 	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1555 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1556 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1557 
1558 	ret = dma_async_device_register(&tdma->dma_dev);
1559 	if (ret < 0) {
1560 		dev_err(&pdev->dev,
1561 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1562 		goto err_pm_disable;
1563 	}
1564 
1565 	ret = of_dma_controller_register(pdev->dev.of_node,
1566 					 tegra_dma_of_xlate, tdma);
1567 	if (ret < 0) {
1568 		dev_err(&pdev->dev,
1569 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1570 		goto err_unregister_dma_dev;
1571 	}
1572 
1573 	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1574 		 cdata->nr_channels);
1575 
1576 	return 0;
1577 
1578 err_unregister_dma_dev:
1579 	dma_async_device_unregister(&tdma->dma_dev);
1580 
1581 err_pm_disable:
1582 	pm_runtime_disable(&pdev->dev);
1583 
1584 err_clk_unprepare:
1585 	clk_unprepare(tdma->dma_clk);
1586 
1587 	return ret;
1588 }
1589 
1590 static int tegra_dma_remove(struct platform_device *pdev)
1591 {
1592 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1593 
1594 	of_dma_controller_free(pdev->dev.of_node);
1595 	dma_async_device_unregister(&tdma->dma_dev);
1596 	pm_runtime_disable(&pdev->dev);
1597 	clk_unprepare(tdma->dma_clk);
1598 
1599 	return 0;
1600 }
1601 
1602 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1603 {
1604 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1605 
1606 	clk_disable(tdma->dma_clk);
1607 
1608 	return 0;
1609 }
1610 
1611 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1612 {
1613 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1614 
1615 	return clk_enable(tdma->dma_clk);
1616 }
1617 
1618 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1619 {
1620 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1621 	unsigned long flags;
1622 	unsigned int i;
1623 	bool busy;
1624 
1625 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1626 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1627 
1628 		tasklet_kill(&tdc->tasklet);
1629 
1630 		spin_lock_irqsave(&tdc->lock, flags);
1631 		busy = tdc->busy;
1632 		spin_unlock_irqrestore(&tdc->lock, flags);
1633 
1634 		if (busy) {
1635 			dev_err(tdma->dev, "channel %u busy\n", i);
1636 			return -EBUSY;
1637 		}
1638 	}
1639 
1640 	return pm_runtime_force_suspend(dev);
1641 }
1642 
1643 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1644 {
1645 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1646 	int err;
1647 
1648 	err = tegra_dma_init_hw(tdma);
1649 	if (err)
1650 		return err;
1651 
1652 	return pm_runtime_force_resume(dev);
1653 }
1654 
1655 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1656 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1657 			   NULL)
1658 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1659 };
1660 
1661 static const struct of_device_id tegra_dma_of_match[] = {
1662 	{
1663 		.compatible = "nvidia,tegra148-apbdma",
1664 		.data = &tegra148_dma_chip_data,
1665 	}, {
1666 		.compatible = "nvidia,tegra114-apbdma",
1667 		.data = &tegra114_dma_chip_data,
1668 	}, {
1669 		.compatible = "nvidia,tegra30-apbdma",
1670 		.data = &tegra30_dma_chip_data,
1671 	}, {
1672 		.compatible = "nvidia,tegra20-apbdma",
1673 		.data = &tegra20_dma_chip_data,
1674 	}, {
1675 	},
1676 };
1677 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1678 
1679 static struct platform_driver tegra_dmac_driver = {
1680 	.driver = {
1681 		.name	= "tegra-apbdma",
1682 		.pm	= &tegra_dma_dev_pm_ops,
1683 		.of_match_table = tegra_dma_of_match,
1684 	},
1685 	.probe		= tegra_dma_probe,
1686 	.remove		= tegra_dma_remove,
1687 };
1688 
1689 module_platform_driver(tegra_dmac_driver);
1690 
1691 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1692 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1693 MODULE_LICENSE("GPL v2");
1694