xref: /linux/drivers/dma/tegra20-apb-dma.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA driver for Nvidia's Tegra20 APB DMA controller.
4  *
5  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/slab.h>
26 #include <linux/wait.h>
27 
28 #include "dmaengine.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/tegra_apb_dma.h>
32 
33 #define TEGRA_APBDMA_GENERAL			0x0
34 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
35 
36 #define TEGRA_APBDMA_CONTROL			0x010
37 #define TEGRA_APBDMA_IRQ_MASK			0x01c
38 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
39 
40 /* CSR register */
41 #define TEGRA_APBDMA_CHAN_CSR			0x00
42 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
43 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
44 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
45 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
46 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
47 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK		0x1F
50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
51 
52 /* STATUS register */
53 #define TEGRA_APBDMA_CHAN_STATUS		0x004
54 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
55 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
56 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
57 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
59 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
60 
61 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		BIT(31)
63 
64 /* AHB memory address */
65 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
66 
67 /* AHB sequence register */
68 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
76 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
82 
83 /* APB address */
84 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
85 
86 /* APB sequence register */
87 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
95 
96 /* Tegra148 specific registers */
97 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
98 
99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
100 
101 /*
102  * If any burst is in flight and DMA paused then this is the time to complete
103  * on-flight burst and update DMA status register.
104  */
105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
106 
107 /* Channel base address offset from APBDMA base address */
108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
109 
110 #define TEGRA_APBDMA_SLAVE_ID_INVALID	(TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
111 
112 struct tegra_dma;
113 
114 /*
115  * tegra_dma_chip_data Tegra chip specific DMA data
116  * @nr_channels: Number of channels available in the controller.
117  * @channel_reg_size: Channel register size/stride.
118  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
119  * @support_channel_pause: Support channel wise pause of dma.
120  * @support_separate_wcount_reg: Support separate word count register.
121  */
122 struct tegra_dma_chip_data {
123 	unsigned int nr_channels;
124 	unsigned int channel_reg_size;
125 	unsigned int max_dma_count;
126 	bool support_channel_pause;
127 	bool support_separate_wcount_reg;
128 };
129 
130 /* DMA channel registers */
131 struct tegra_dma_channel_regs {
132 	u32 csr;
133 	u32 ahb_ptr;
134 	u32 apb_ptr;
135 	u32 ahb_seq;
136 	u32 apb_seq;
137 	u32 wcount;
138 };
139 
140 /*
141  * tegra_dma_sg_req: DMA request details to configure hardware. This
142  * contains the details for one transfer to configure DMA hw.
143  * The client's request for data transfer can be broken into multiple
144  * sub-transfer as per requester details and hw support.
145  * This sub transfer get added in the list of transfer and point to Tegra
146  * DMA descriptor which manages the transfer details.
147  */
148 struct tegra_dma_sg_req {
149 	struct tegra_dma_channel_regs	ch_regs;
150 	unsigned int			req_len;
151 	bool				configured;
152 	bool				last_sg;
153 	struct list_head		node;
154 	struct tegra_dma_desc		*dma_desc;
155 	unsigned int			words_xferred;
156 };
157 
158 /*
159  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
160  * This descriptor keep track of transfer status, callbacks and request
161  * counts etc.
162  */
163 struct tegra_dma_desc {
164 	struct dma_async_tx_descriptor	txd;
165 	unsigned int			bytes_requested;
166 	unsigned int			bytes_transferred;
167 	enum dma_status			dma_status;
168 	struct list_head		node;
169 	struct list_head		tx_list;
170 	struct list_head		cb_node;
171 	unsigned int			cb_count;
172 };
173 
174 struct tegra_dma_channel;
175 
176 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
177 				bool to_terminate);
178 
179 /* tegra_dma_channel: Channel specific information */
180 struct tegra_dma_channel {
181 	struct dma_chan		dma_chan;
182 	char			name[12];
183 	bool			config_init;
184 	unsigned int		id;
185 	void __iomem		*chan_addr;
186 	spinlock_t		lock;
187 	bool			busy;
188 	struct tegra_dma	*tdma;
189 	bool			cyclic;
190 
191 	/* Different lists for managing the requests */
192 	struct list_head	free_sg_req;
193 	struct list_head	pending_sg_req;
194 	struct list_head	free_dma_desc;
195 	struct list_head	cb_desc;
196 
197 	/* ISR handler and tasklet for bottom half of isr handling */
198 	dma_isr_handler		isr_handler;
199 	struct tasklet_struct	tasklet;
200 
201 	/* Channel-slave specific configuration */
202 	unsigned int slave_id;
203 	struct dma_slave_config dma_sconfig;
204 	struct tegra_dma_channel_regs channel_reg;
205 
206 	struct wait_queue_head wq;
207 };
208 
209 /* tegra_dma: Tegra DMA specific information */
210 struct tegra_dma {
211 	struct dma_device		dma_dev;
212 	struct device			*dev;
213 	struct clk			*dma_clk;
214 	struct reset_control		*rst;
215 	spinlock_t			global_lock;
216 	void __iomem			*base_addr;
217 	const struct tegra_dma_chip_data *chip_data;
218 
219 	/*
220 	 * Counter for managing global pausing of the DMA controller.
221 	 * Only applicable for devices that don't support individual
222 	 * channel pausing.
223 	 */
224 	u32				global_pause_count;
225 
226 	/* Last member of the structure */
227 	struct tegra_dma_channel channels[];
228 };
229 
230 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
231 {
232 	writel(val, tdma->base_addr + reg);
233 }
234 
235 static inline void tdc_write(struct tegra_dma_channel *tdc,
236 			     u32 reg, u32 val)
237 {
238 	writel(val, tdc->chan_addr + reg);
239 }
240 
241 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
242 {
243 	return readl(tdc->chan_addr + reg);
244 }
245 
246 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
247 {
248 	return container_of(dc, struct tegra_dma_channel, dma_chan);
249 }
250 
251 static inline struct tegra_dma_desc *
252 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
253 {
254 	return container_of(td, struct tegra_dma_desc, txd);
255 }
256 
257 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
258 {
259 	return &tdc->dma_chan.dev->device;
260 }
261 
262 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
263 
264 /* Get DMA desc from free list, if not there then allocate it.  */
265 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
266 {
267 	struct tegra_dma_desc *dma_desc;
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&tdc->lock, flags);
271 
272 	/* Do not allocate if desc are waiting for ack */
273 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
274 		if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
275 			list_del(&dma_desc->node);
276 			spin_unlock_irqrestore(&tdc->lock, flags);
277 			dma_desc->txd.flags = 0;
278 			return dma_desc;
279 		}
280 	}
281 
282 	spin_unlock_irqrestore(&tdc->lock, flags);
283 
284 	/* Allocate DMA desc */
285 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
286 	if (!dma_desc)
287 		return NULL;
288 
289 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
290 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
291 	dma_desc->txd.flags = 0;
292 
293 	return dma_desc;
294 }
295 
296 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
297 			       struct tegra_dma_desc *dma_desc)
298 {
299 	unsigned long flags;
300 
301 	spin_lock_irqsave(&tdc->lock, flags);
302 	if (!list_empty(&dma_desc->tx_list))
303 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
304 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
305 	spin_unlock_irqrestore(&tdc->lock, flags);
306 }
307 
308 static struct tegra_dma_sg_req *
309 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
310 {
311 	struct tegra_dma_sg_req *sg_req;
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&tdc->lock, flags);
315 	if (!list_empty(&tdc->free_sg_req)) {
316 		sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
317 					  node);
318 		list_del(&sg_req->node);
319 		spin_unlock_irqrestore(&tdc->lock, flags);
320 		return sg_req;
321 	}
322 	spin_unlock_irqrestore(&tdc->lock, flags);
323 
324 	sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
325 
326 	return sg_req;
327 }
328 
329 static int tegra_dma_slave_config(struct dma_chan *dc,
330 				  struct dma_slave_config *sconfig)
331 {
332 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
333 
334 	if (!list_empty(&tdc->pending_sg_req)) {
335 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
336 		return -EBUSY;
337 	}
338 
339 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
340 	tdc->config_init = true;
341 
342 	return 0;
343 }
344 
345 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
346 				   bool wait_for_burst_complete)
347 {
348 	struct tegra_dma *tdma = tdc->tdma;
349 
350 	spin_lock(&tdma->global_lock);
351 
352 	if (tdc->tdma->global_pause_count == 0) {
353 		tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
354 		if (wait_for_burst_complete)
355 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
356 	}
357 
358 	tdc->tdma->global_pause_count++;
359 
360 	spin_unlock(&tdma->global_lock);
361 }
362 
363 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
364 {
365 	struct tegra_dma *tdma = tdc->tdma;
366 
367 	spin_lock(&tdma->global_lock);
368 
369 	if (WARN_ON(tdc->tdma->global_pause_count == 0))
370 		goto out;
371 
372 	if (--tdc->tdma->global_pause_count == 0)
373 		tdma_write(tdma, TEGRA_APBDMA_GENERAL,
374 			   TEGRA_APBDMA_GENERAL_ENABLE);
375 
376 out:
377 	spin_unlock(&tdma->global_lock);
378 }
379 
380 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
381 			    bool wait_for_burst_complete)
382 {
383 	struct tegra_dma *tdma = tdc->tdma;
384 
385 	if (tdma->chip_data->support_channel_pause) {
386 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
387 			  TEGRA_APBDMA_CHAN_CSRE_PAUSE);
388 		if (wait_for_burst_complete)
389 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
390 	} else {
391 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
392 	}
393 }
394 
395 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
396 {
397 	struct tegra_dma *tdma = tdc->tdma;
398 
399 	if (tdma->chip_data->support_channel_pause)
400 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
401 	else
402 		tegra_dma_global_resume(tdc);
403 }
404 
405 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
406 {
407 	u32 csr, status;
408 
409 	/* Disable interrupts */
410 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
411 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
412 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
413 
414 	/* Disable DMA */
415 	csr &= ~TEGRA_APBDMA_CSR_ENB;
416 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
417 
418 	/* Clear interrupt status if it is there */
419 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
420 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
421 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
422 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
423 	}
424 	tdc->busy = false;
425 }
426 
427 static void tegra_dma_start(struct tegra_dma_channel *tdc,
428 			    struct tegra_dma_sg_req *sg_req)
429 {
430 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
431 
432 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
433 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
434 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
435 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
436 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
437 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
438 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
439 
440 	/* Start DMA */
441 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
442 		  ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
443 }
444 
445 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
446 					 struct tegra_dma_sg_req *nsg_req)
447 {
448 	unsigned long status;
449 
450 	/*
451 	 * The DMA controller reloads the new configuration for next transfer
452 	 * after last burst of current transfer completes.
453 	 * If there is no IEC status then this makes sure that last burst
454 	 * has not be completed. There may be case that last burst is on
455 	 * flight and so it can complete but because DMA is paused, it
456 	 * will not generates interrupt as well as not reload the new
457 	 * configuration.
458 	 * If there is already IEC status then interrupt handler need to
459 	 * load new configuration.
460 	 */
461 	tegra_dma_pause(tdc, false);
462 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
463 
464 	/*
465 	 * If interrupt is pending then do nothing as the ISR will handle
466 	 * the programing for new request.
467 	 */
468 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
469 		dev_err(tdc2dev(tdc),
470 			"Skipping new configuration as interrupt is pending\n");
471 		tegra_dma_resume(tdc);
472 		return;
473 	}
474 
475 	/* Safe to program new configuration */
476 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
477 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
478 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
479 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
480 			  nsg_req->ch_regs.wcount);
481 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
482 		  nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
483 	nsg_req->configured = true;
484 	nsg_req->words_xferred = 0;
485 
486 	tegra_dma_resume(tdc);
487 }
488 
489 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
490 {
491 	struct tegra_dma_sg_req *sg_req;
492 
493 	sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
494 	tegra_dma_start(tdc, sg_req);
495 	sg_req->configured = true;
496 	sg_req->words_xferred = 0;
497 	tdc->busy = true;
498 }
499 
500 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
501 {
502 	struct tegra_dma_sg_req *hsgreq, *hnsgreq;
503 
504 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
505 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
506 		hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
507 					   node);
508 		tegra_dma_configure_for_next(tdc, hnsgreq);
509 	}
510 }
511 
512 static inline unsigned int
513 get_current_xferred_count(struct tegra_dma_channel *tdc,
514 			  struct tegra_dma_sg_req *sg_req,
515 			  unsigned long status)
516 {
517 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
518 }
519 
520 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
521 {
522 	struct tegra_dma_desc *dma_desc;
523 	struct tegra_dma_sg_req *sgreq;
524 
525 	while (!list_empty(&tdc->pending_sg_req)) {
526 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
527 					 node);
528 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
529 		if (sgreq->last_sg) {
530 			dma_desc = sgreq->dma_desc;
531 			dma_desc->dma_status = DMA_ERROR;
532 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
533 
534 			/* Add in cb list if it is not there. */
535 			if (!dma_desc->cb_count)
536 				list_add_tail(&dma_desc->cb_node,
537 					      &tdc->cb_desc);
538 			dma_desc->cb_count++;
539 		}
540 	}
541 	tdc->isr_handler = NULL;
542 }
543 
544 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
545 					   bool to_terminate)
546 {
547 	struct tegra_dma_sg_req *hsgreq;
548 
549 	/*
550 	 * Check that head req on list should be in flight.
551 	 * If it is not in flight then abort transfer as
552 	 * looping of transfer can not continue.
553 	 */
554 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
555 	if (!hsgreq->configured) {
556 		tegra_dma_stop(tdc);
557 		pm_runtime_put(tdc->tdma->dev);
558 		dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
559 		tegra_dma_abort_all(tdc);
560 		return false;
561 	}
562 
563 	/* Configure next request */
564 	if (!to_terminate)
565 		tdc_configure_next_head_desc(tdc);
566 
567 	return true;
568 }
569 
570 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
571 				 bool to_terminate)
572 {
573 	struct tegra_dma_desc *dma_desc;
574 	struct tegra_dma_sg_req *sgreq;
575 
576 	tdc->busy = false;
577 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
578 	dma_desc = sgreq->dma_desc;
579 	dma_desc->bytes_transferred += sgreq->req_len;
580 
581 	list_del(&sgreq->node);
582 	if (sgreq->last_sg) {
583 		dma_desc->dma_status = DMA_COMPLETE;
584 		dma_cookie_complete(&dma_desc->txd);
585 		if (!dma_desc->cb_count)
586 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
587 		dma_desc->cb_count++;
588 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
589 	}
590 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
591 
592 	/* Do not start DMA if it is going to be terminate */
593 	if (to_terminate)
594 		return;
595 
596 	if (list_empty(&tdc->pending_sg_req)) {
597 		pm_runtime_put(tdc->tdma->dev);
598 		return;
599 	}
600 
601 	tdc_start_head_req(tdc);
602 }
603 
604 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
605 					    bool to_terminate)
606 {
607 	struct tegra_dma_desc *dma_desc;
608 	struct tegra_dma_sg_req *sgreq;
609 	bool st;
610 
611 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
612 	dma_desc = sgreq->dma_desc;
613 	/* if we dma for long enough the transfer count will wrap */
614 	dma_desc->bytes_transferred =
615 		(dma_desc->bytes_transferred + sgreq->req_len) %
616 		dma_desc->bytes_requested;
617 
618 	/* Callback need to be call */
619 	if (!dma_desc->cb_count)
620 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
621 	dma_desc->cb_count++;
622 
623 	sgreq->words_xferred = 0;
624 
625 	/* If not last req then put at end of pending list */
626 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
627 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
628 		sgreq->configured = false;
629 		st = handle_continuous_head_request(tdc, to_terminate);
630 		if (!st)
631 			dma_desc->dma_status = DMA_ERROR;
632 	}
633 }
634 
635 static void tegra_dma_tasklet(struct tasklet_struct *t)
636 {
637 	struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
638 	struct dmaengine_desc_callback cb;
639 	struct tegra_dma_desc *dma_desc;
640 	unsigned int cb_count;
641 	unsigned long flags;
642 
643 	spin_lock_irqsave(&tdc->lock, flags);
644 	while (!list_empty(&tdc->cb_desc)) {
645 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
646 					    cb_node);
647 		list_del(&dma_desc->cb_node);
648 		dmaengine_desc_get_callback(&dma_desc->txd, &cb);
649 		cb_count = dma_desc->cb_count;
650 		dma_desc->cb_count = 0;
651 		trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
652 					    cb.callback);
653 		spin_unlock_irqrestore(&tdc->lock, flags);
654 		while (cb_count--)
655 			dmaengine_desc_callback_invoke(&cb, NULL);
656 		spin_lock_irqsave(&tdc->lock, flags);
657 	}
658 	spin_unlock_irqrestore(&tdc->lock, flags);
659 }
660 
661 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
662 {
663 	struct tegra_dma_channel *tdc = dev_id;
664 	u32 status;
665 
666 	spin_lock(&tdc->lock);
667 
668 	trace_tegra_dma_isr(&tdc->dma_chan, irq);
669 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
670 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
671 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
672 		tdc->isr_handler(tdc, false);
673 		tasklet_schedule(&tdc->tasklet);
674 		wake_up_all(&tdc->wq);
675 		spin_unlock(&tdc->lock);
676 		return IRQ_HANDLED;
677 	}
678 
679 	spin_unlock(&tdc->lock);
680 	dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
681 		 status);
682 
683 	return IRQ_NONE;
684 }
685 
686 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
687 {
688 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
689 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
690 	unsigned long flags;
691 	dma_cookie_t cookie;
692 
693 	spin_lock_irqsave(&tdc->lock, flags);
694 	dma_desc->dma_status = DMA_IN_PROGRESS;
695 	cookie = dma_cookie_assign(&dma_desc->txd);
696 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
697 	spin_unlock_irqrestore(&tdc->lock, flags);
698 
699 	return cookie;
700 }
701 
702 static void tegra_dma_issue_pending(struct dma_chan *dc)
703 {
704 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
705 	unsigned long flags;
706 	int err;
707 
708 	spin_lock_irqsave(&tdc->lock, flags);
709 	if (list_empty(&tdc->pending_sg_req)) {
710 		dev_err(tdc2dev(tdc), "No DMA request\n");
711 		goto end;
712 	}
713 	if (!tdc->busy) {
714 		err = pm_runtime_resume_and_get(tdc->tdma->dev);
715 		if (err < 0) {
716 			dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
717 			goto end;
718 		}
719 
720 		tdc_start_head_req(tdc);
721 
722 		/* Continuous single mode: Configure next req */
723 		if (tdc->cyclic) {
724 			/*
725 			 * Wait for 1 burst time for configure DMA for
726 			 * next transfer.
727 			 */
728 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
729 			tdc_configure_next_head_desc(tdc);
730 		}
731 	}
732 end:
733 	spin_unlock_irqrestore(&tdc->lock, flags);
734 }
735 
736 static int tegra_dma_terminate_all(struct dma_chan *dc)
737 {
738 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
739 	struct tegra_dma_desc *dma_desc;
740 	struct tegra_dma_sg_req *sgreq;
741 	unsigned long flags;
742 	u32 status, wcount;
743 	bool was_busy;
744 
745 	spin_lock_irqsave(&tdc->lock, flags);
746 
747 	if (!tdc->busy)
748 		goto skip_dma_stop;
749 
750 	/* Pause DMA before checking the queue status */
751 	tegra_dma_pause(tdc, true);
752 
753 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
754 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
755 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
756 		tdc->isr_handler(tdc, true);
757 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
758 	}
759 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
760 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
761 	else
762 		wcount = status;
763 
764 	was_busy = tdc->busy;
765 	tegra_dma_stop(tdc);
766 
767 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
768 		sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
769 					 node);
770 		sgreq->dma_desc->bytes_transferred +=
771 				get_current_xferred_count(tdc, sgreq, wcount);
772 	}
773 	tegra_dma_resume(tdc);
774 
775 	pm_runtime_put(tdc->tdma->dev);
776 	wake_up_all(&tdc->wq);
777 
778 skip_dma_stop:
779 	tegra_dma_abort_all(tdc);
780 
781 	while (!list_empty(&tdc->cb_desc)) {
782 		dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
783 					    cb_node);
784 		list_del(&dma_desc->cb_node);
785 		dma_desc->cb_count = 0;
786 	}
787 	spin_unlock_irqrestore(&tdc->lock, flags);
788 
789 	return 0;
790 }
791 
792 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
793 {
794 	unsigned long flags;
795 	u32 status;
796 
797 	spin_lock_irqsave(&tdc->lock, flags);
798 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
799 	spin_unlock_irqrestore(&tdc->lock, flags);
800 
801 	return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
802 }
803 
804 static void tegra_dma_synchronize(struct dma_chan *dc)
805 {
806 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
807 	int err;
808 
809 	err = pm_runtime_resume_and_get(tdc->tdma->dev);
810 	if (err < 0) {
811 		dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
812 		return;
813 	}
814 
815 	/*
816 	 * CPU, which handles interrupt, could be busy in
817 	 * uninterruptible state, in this case sibling CPU
818 	 * should wait until interrupt is handled.
819 	 */
820 	wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
821 
822 	tasklet_kill(&tdc->tasklet);
823 
824 	pm_runtime_put(tdc->tdma->dev);
825 }
826 
827 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
828 					       struct tegra_dma_sg_req *sg_req)
829 {
830 	u32 status, wcount = 0;
831 
832 	if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
833 		return 0;
834 
835 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
836 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
837 
838 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
839 
840 	if (!tdc->tdma->chip_data->support_separate_wcount_reg)
841 		wcount = status;
842 
843 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
844 		return sg_req->req_len;
845 
846 	wcount = get_current_xferred_count(tdc, sg_req, wcount);
847 
848 	if (!wcount) {
849 		/*
850 		 * If wcount wasn't ever polled for this SG before, then
851 		 * simply assume that transfer hasn't started yet.
852 		 *
853 		 * Otherwise it's the end of the transfer.
854 		 *
855 		 * The alternative would be to poll the status register
856 		 * until EOC bit is set or wcount goes UP. That's so
857 		 * because EOC bit is getting set only after the last
858 		 * burst's completion and counter is less than the actual
859 		 * transfer size by 4 bytes. The counter value wraps around
860 		 * in a cyclic mode before EOC is set(!), so we can't easily
861 		 * distinguish start of transfer from its end.
862 		 */
863 		if (sg_req->words_xferred)
864 			wcount = sg_req->req_len - 4;
865 
866 	} else if (wcount < sg_req->words_xferred) {
867 		/*
868 		 * This case will never happen for a non-cyclic transfer.
869 		 *
870 		 * For a cyclic transfer, although it is possible for the
871 		 * next transfer to have already started (resetting the word
872 		 * count), this case should still not happen because we should
873 		 * have detected that the EOC bit is set and hence the transfer
874 		 * was completed.
875 		 */
876 		WARN_ON_ONCE(1);
877 
878 		wcount = sg_req->req_len - 4;
879 	} else {
880 		sg_req->words_xferred = wcount;
881 	}
882 
883 	return wcount;
884 }
885 
886 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
887 					   dma_cookie_t cookie,
888 					   struct dma_tx_state *txstate)
889 {
890 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
891 	struct tegra_dma_desc *dma_desc;
892 	struct tegra_dma_sg_req *sg_req;
893 	enum dma_status ret;
894 	unsigned long flags;
895 	unsigned int residual;
896 	unsigned int bytes = 0;
897 
898 	ret = dma_cookie_status(dc, cookie, txstate);
899 	if (ret == DMA_COMPLETE)
900 		return ret;
901 
902 	spin_lock_irqsave(&tdc->lock, flags);
903 
904 	/* Check on wait_ack desc status */
905 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
906 		if (dma_desc->txd.cookie == cookie) {
907 			ret = dma_desc->dma_status;
908 			goto found;
909 		}
910 	}
911 
912 	/* Check in pending list */
913 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
914 		dma_desc = sg_req->dma_desc;
915 		if (dma_desc->txd.cookie == cookie) {
916 			bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
917 			ret = dma_desc->dma_status;
918 			goto found;
919 		}
920 	}
921 
922 	dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
923 	dma_desc = NULL;
924 
925 found:
926 	if (dma_desc && txstate) {
927 		residual = dma_desc->bytes_requested -
928 			   ((dma_desc->bytes_transferred + bytes) %
929 			    dma_desc->bytes_requested);
930 		dma_set_residue(txstate, residual);
931 	}
932 
933 	trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
934 	spin_unlock_irqrestore(&tdc->lock, flags);
935 
936 	return ret;
937 }
938 
939 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
940 					 enum dma_slave_buswidth slave_bw)
941 {
942 	switch (slave_bw) {
943 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
944 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
945 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
946 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
947 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
948 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
949 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
950 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
951 	default:
952 		dev_warn(tdc2dev(tdc),
953 			 "slave bw is not supported, using 32bits\n");
954 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
955 	}
956 }
957 
958 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
959 					  u32 burst_size,
960 					  enum dma_slave_buswidth slave_bw,
961 					  u32 len)
962 {
963 	unsigned int burst_byte, burst_ahb_width;
964 
965 	/*
966 	 * burst_size from client is in terms of the bus_width.
967 	 * convert them into AHB memory width which is 4 byte.
968 	 */
969 	burst_byte = burst_size * slave_bw;
970 	burst_ahb_width = burst_byte / 4;
971 
972 	/* If burst size is 0 then calculate the burst size based on length */
973 	if (!burst_ahb_width) {
974 		if (len & 0xF)
975 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
976 		else if ((len >> 4) & 0x1)
977 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
978 		else
979 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
980 	}
981 	if (burst_ahb_width < 4)
982 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
983 	else if (burst_ahb_width < 8)
984 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
985 	else
986 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
987 }
988 
989 static int get_transfer_param(struct tegra_dma_channel *tdc,
990 			      enum dma_transfer_direction direction,
991 			      u32 *apb_addr,
992 			      u32 *apb_seq,
993 			      u32 *csr,
994 			      unsigned int *burst_size,
995 			      enum dma_slave_buswidth *slave_bw)
996 {
997 	switch (direction) {
998 	case DMA_MEM_TO_DEV:
999 		*apb_addr = tdc->dma_sconfig.dst_addr;
1000 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1001 		*burst_size = tdc->dma_sconfig.dst_maxburst;
1002 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
1003 		*csr = TEGRA_APBDMA_CSR_DIR;
1004 		return 0;
1005 
1006 	case DMA_DEV_TO_MEM:
1007 		*apb_addr = tdc->dma_sconfig.src_addr;
1008 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1009 		*burst_size = tdc->dma_sconfig.src_maxburst;
1010 		*slave_bw = tdc->dma_sconfig.src_addr_width;
1011 		*csr = 0;
1012 		return 0;
1013 
1014 	default:
1015 		dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1016 		break;
1017 	}
1018 
1019 	return -EINVAL;
1020 }
1021 
1022 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1023 				  struct tegra_dma_channel_regs *ch_regs,
1024 				  u32 len)
1025 {
1026 	u32 len_field = (len - 4) & 0xFFFC;
1027 
1028 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
1029 		ch_regs->wcount = len_field;
1030 	else
1031 		ch_regs->csr |= len_field;
1032 }
1033 
1034 static struct dma_async_tx_descriptor *
1035 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1036 			struct scatterlist *sgl,
1037 			unsigned int sg_len,
1038 			enum dma_transfer_direction direction,
1039 			unsigned long flags,
1040 			void *context)
1041 {
1042 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043 	struct tegra_dma_sg_req *sg_req = NULL;
1044 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1045 	enum dma_slave_buswidth slave_bw;
1046 	struct tegra_dma_desc *dma_desc;
1047 	struct list_head req_list;
1048 	struct scatterlist *sg;
1049 	unsigned int burst_size;
1050 	unsigned int i;
1051 
1052 	if (!tdc->config_init) {
1053 		dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1054 		return NULL;
1055 	}
1056 	if (sg_len < 1) {
1057 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1058 		return NULL;
1059 	}
1060 
1061 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1062 			       &burst_size, &slave_bw) < 0)
1063 		return NULL;
1064 
1065 	INIT_LIST_HEAD(&req_list);
1066 
1067 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1068 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1069 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1070 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1071 
1072 	csr |= TEGRA_APBDMA_CSR_ONCE;
1073 
1074 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1075 		csr |= TEGRA_APBDMA_CSR_FLOW;
1076 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1077 	}
1078 
1079 	if (flags & DMA_PREP_INTERRUPT) {
1080 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1081 	} else {
1082 		WARN_ON_ONCE(1);
1083 		return NULL;
1084 	}
1085 
1086 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1087 
1088 	dma_desc = tegra_dma_desc_get(tdc);
1089 	if (!dma_desc) {
1090 		dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1091 		return NULL;
1092 	}
1093 	INIT_LIST_HEAD(&dma_desc->tx_list);
1094 	INIT_LIST_HEAD(&dma_desc->cb_node);
1095 	dma_desc->cb_count = 0;
1096 	dma_desc->bytes_requested = 0;
1097 	dma_desc->bytes_transferred = 0;
1098 	dma_desc->dma_status = DMA_IN_PROGRESS;
1099 
1100 	/* Make transfer requests */
1101 	for_each_sg(sgl, sg, sg_len, i) {
1102 		u32 len, mem;
1103 
1104 		mem = sg_dma_address(sg);
1105 		len = sg_dma_len(sg);
1106 
1107 		if ((len & 3) || (mem & 3) ||
1108 		    len > tdc->tdma->chip_data->max_dma_count) {
1109 			dev_err(tdc2dev(tdc),
1110 				"DMA length/memory address is not supported\n");
1111 			tegra_dma_desc_put(tdc, dma_desc);
1112 			return NULL;
1113 		}
1114 
1115 		sg_req = tegra_dma_sg_req_get(tdc);
1116 		if (!sg_req) {
1117 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1118 			tegra_dma_desc_put(tdc, dma_desc);
1119 			return NULL;
1120 		}
1121 
1122 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1123 		dma_desc->bytes_requested += len;
1124 
1125 		sg_req->ch_regs.apb_ptr = apb_ptr;
1126 		sg_req->ch_regs.ahb_ptr = mem;
1127 		sg_req->ch_regs.csr = csr;
1128 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1129 		sg_req->ch_regs.apb_seq = apb_seq;
1130 		sg_req->ch_regs.ahb_seq = ahb_seq;
1131 		sg_req->configured = false;
1132 		sg_req->last_sg = false;
1133 		sg_req->dma_desc = dma_desc;
1134 		sg_req->req_len = len;
1135 
1136 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1137 	}
1138 	sg_req->last_sg = true;
1139 	if (flags & DMA_CTRL_ACK)
1140 		dma_desc->txd.flags = DMA_CTRL_ACK;
1141 
1142 	/*
1143 	 * Make sure that mode should not be conflicting with currently
1144 	 * configured mode.
1145 	 */
1146 	if (!tdc->isr_handler) {
1147 		tdc->isr_handler = handle_once_dma_done;
1148 		tdc->cyclic = false;
1149 	} else {
1150 		if (tdc->cyclic) {
1151 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1152 			tegra_dma_desc_put(tdc, dma_desc);
1153 			return NULL;
1154 		}
1155 	}
1156 
1157 	return &dma_desc->txd;
1158 }
1159 
1160 static struct dma_async_tx_descriptor *
1161 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1162 			  size_t buf_len,
1163 			  size_t period_len,
1164 			  enum dma_transfer_direction direction,
1165 			  unsigned long flags)
1166 {
1167 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1168 	struct tegra_dma_sg_req *sg_req = NULL;
1169 	u32 csr, ahb_seq, apb_ptr, apb_seq;
1170 	enum dma_slave_buswidth slave_bw;
1171 	struct tegra_dma_desc *dma_desc;
1172 	dma_addr_t mem = buf_addr;
1173 	unsigned int burst_size;
1174 	size_t len, remain_len;
1175 
1176 	if (!buf_len || !period_len) {
1177 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1178 		return NULL;
1179 	}
1180 
1181 	if (!tdc->config_init) {
1182 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1183 		return NULL;
1184 	}
1185 
1186 	/*
1187 	 * We allow to take more number of requests till DMA is
1188 	 * not started. The driver will loop over all requests.
1189 	 * Once DMA is started then new requests can be queued only after
1190 	 * terminating the DMA.
1191 	 */
1192 	if (tdc->busy) {
1193 		dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1194 		return NULL;
1195 	}
1196 
1197 	/*
1198 	 * We only support cycle transfer when buf_len is multiple of
1199 	 * period_len.
1200 	 */
1201 	if (buf_len % period_len) {
1202 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1203 		return NULL;
1204 	}
1205 
1206 	len = period_len;
1207 	if ((len & 3) || (buf_addr & 3) ||
1208 	    len > tdc->tdma->chip_data->max_dma_count) {
1209 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1210 		return NULL;
1211 	}
1212 
1213 	if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1214 			       &burst_size, &slave_bw) < 0)
1215 		return NULL;
1216 
1217 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1218 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1219 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1220 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1221 
1222 	if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1223 		csr |= TEGRA_APBDMA_CSR_FLOW;
1224 		csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1225 	}
1226 
1227 	if (flags & DMA_PREP_INTERRUPT) {
1228 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1229 	} else {
1230 		WARN_ON_ONCE(1);
1231 		return NULL;
1232 	}
1233 
1234 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1235 
1236 	dma_desc = tegra_dma_desc_get(tdc);
1237 	if (!dma_desc) {
1238 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1239 		return NULL;
1240 	}
1241 
1242 	INIT_LIST_HEAD(&dma_desc->tx_list);
1243 	INIT_LIST_HEAD(&dma_desc->cb_node);
1244 	dma_desc->cb_count = 0;
1245 
1246 	dma_desc->bytes_transferred = 0;
1247 	dma_desc->bytes_requested = buf_len;
1248 	remain_len = buf_len;
1249 
1250 	/* Split transfer equal to period size */
1251 	while (remain_len) {
1252 		sg_req = tegra_dma_sg_req_get(tdc);
1253 		if (!sg_req) {
1254 			dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1255 			tegra_dma_desc_put(tdc, dma_desc);
1256 			return NULL;
1257 		}
1258 
1259 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1260 		sg_req->ch_regs.apb_ptr = apb_ptr;
1261 		sg_req->ch_regs.ahb_ptr = mem;
1262 		sg_req->ch_regs.csr = csr;
1263 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1264 		sg_req->ch_regs.apb_seq = apb_seq;
1265 		sg_req->ch_regs.ahb_seq = ahb_seq;
1266 		sg_req->configured = false;
1267 		sg_req->last_sg = false;
1268 		sg_req->dma_desc = dma_desc;
1269 		sg_req->req_len = len;
1270 
1271 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1272 		remain_len -= len;
1273 		mem += len;
1274 	}
1275 	sg_req->last_sg = true;
1276 	if (flags & DMA_CTRL_ACK)
1277 		dma_desc->txd.flags = DMA_CTRL_ACK;
1278 
1279 	/*
1280 	 * Make sure that mode should not be conflicting with currently
1281 	 * configured mode.
1282 	 */
1283 	if (!tdc->isr_handler) {
1284 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1285 		tdc->cyclic = true;
1286 	} else {
1287 		if (!tdc->cyclic) {
1288 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1289 			tegra_dma_desc_put(tdc, dma_desc);
1290 			return NULL;
1291 		}
1292 	}
1293 
1294 	return &dma_desc->txd;
1295 }
1296 
1297 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1298 {
1299 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1300 
1301 	dma_cookie_init(&tdc->dma_chan);
1302 
1303 	return 0;
1304 }
1305 
1306 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1307 {
1308 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1309 	struct tegra_dma_desc *dma_desc;
1310 	struct tegra_dma_sg_req *sg_req;
1311 	struct list_head dma_desc_list;
1312 	struct list_head sg_req_list;
1313 
1314 	INIT_LIST_HEAD(&dma_desc_list);
1315 	INIT_LIST_HEAD(&sg_req_list);
1316 
1317 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1318 
1319 	tegra_dma_terminate_all(dc);
1320 	tasklet_kill(&tdc->tasklet);
1321 
1322 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1323 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1324 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1325 	INIT_LIST_HEAD(&tdc->cb_desc);
1326 	tdc->config_init = false;
1327 	tdc->isr_handler = NULL;
1328 
1329 	while (!list_empty(&dma_desc_list)) {
1330 		dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1331 					    node);
1332 		list_del(&dma_desc->node);
1333 		kfree(dma_desc);
1334 	}
1335 
1336 	while (!list_empty(&sg_req_list)) {
1337 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1338 		list_del(&sg_req->node);
1339 		kfree(sg_req);
1340 	}
1341 
1342 	tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1343 }
1344 
1345 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1346 					   struct of_dma *ofdma)
1347 {
1348 	struct tegra_dma *tdma = ofdma->of_dma_data;
1349 	struct tegra_dma_channel *tdc;
1350 	struct dma_chan *chan;
1351 
1352 	if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1353 		dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1354 		return NULL;
1355 	}
1356 
1357 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1358 	if (!chan)
1359 		return NULL;
1360 
1361 	tdc = to_tegra_dma_chan(chan);
1362 	tdc->slave_id = dma_spec->args[0];
1363 
1364 	return chan;
1365 }
1366 
1367 /* Tegra20 specific DMA controller information */
1368 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1369 	.nr_channels		= 16,
1370 	.channel_reg_size	= 0x20,
1371 	.max_dma_count		= 1024UL * 64,
1372 	.support_channel_pause	= false,
1373 	.support_separate_wcount_reg = false,
1374 };
1375 
1376 /* Tegra30 specific DMA controller information */
1377 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1378 	.nr_channels		= 32,
1379 	.channel_reg_size	= 0x20,
1380 	.max_dma_count		= 1024UL * 64,
1381 	.support_channel_pause	= false,
1382 	.support_separate_wcount_reg = false,
1383 };
1384 
1385 /* Tegra114 specific DMA controller information */
1386 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1387 	.nr_channels		= 32,
1388 	.channel_reg_size	= 0x20,
1389 	.max_dma_count		= 1024UL * 64,
1390 	.support_channel_pause	= true,
1391 	.support_separate_wcount_reg = false,
1392 };
1393 
1394 /* Tegra148 specific DMA controller information */
1395 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1396 	.nr_channels		= 32,
1397 	.channel_reg_size	= 0x40,
1398 	.max_dma_count		= 1024UL * 64,
1399 	.support_channel_pause	= true,
1400 	.support_separate_wcount_reg = true,
1401 };
1402 
1403 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1404 {
1405 	int err;
1406 
1407 	err = reset_control_assert(tdma->rst);
1408 	if (err) {
1409 		dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1410 		return err;
1411 	}
1412 
1413 	err = clk_enable(tdma->dma_clk);
1414 	if (err) {
1415 		dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1416 		return err;
1417 	}
1418 
1419 	/* reset DMA controller */
1420 	udelay(2);
1421 	reset_control_deassert(tdma->rst);
1422 
1423 	/* enable global DMA registers */
1424 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1425 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1426 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1427 
1428 	clk_disable(tdma->dma_clk);
1429 
1430 	return 0;
1431 }
1432 
1433 static int tegra_dma_probe(struct platform_device *pdev)
1434 {
1435 	const struct tegra_dma_chip_data *cdata;
1436 	struct tegra_dma *tdma;
1437 	unsigned int i;
1438 	size_t size;
1439 	int ret;
1440 
1441 	cdata = of_device_get_match_data(&pdev->dev);
1442 	size = struct_size(tdma, channels, cdata->nr_channels);
1443 
1444 	tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1445 	if (!tdma)
1446 		return -ENOMEM;
1447 
1448 	tdma->dev = &pdev->dev;
1449 	tdma->chip_data = cdata;
1450 	platform_set_drvdata(pdev, tdma);
1451 
1452 	tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1453 	if (IS_ERR(tdma->base_addr))
1454 		return PTR_ERR(tdma->base_addr);
1455 
1456 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1457 	if (IS_ERR(tdma->dma_clk)) {
1458 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1459 		return PTR_ERR(tdma->dma_clk);
1460 	}
1461 
1462 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1463 	if (IS_ERR(tdma->rst)) {
1464 		dev_err(&pdev->dev, "Error: Missing reset\n");
1465 		return PTR_ERR(tdma->rst);
1466 	}
1467 
1468 	spin_lock_init(&tdma->global_lock);
1469 
1470 	ret = clk_prepare(tdma->dma_clk);
1471 	if (ret)
1472 		return ret;
1473 
1474 	ret = tegra_dma_init_hw(tdma);
1475 	if (ret)
1476 		goto err_clk_unprepare;
1477 
1478 	pm_runtime_irq_safe(&pdev->dev);
1479 	pm_runtime_enable(&pdev->dev);
1480 
1481 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1482 	for (i = 0; i < cdata->nr_channels; i++) {
1483 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1484 		int irq;
1485 
1486 		tdc->chan_addr = tdma->base_addr +
1487 				 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1488 				 (i * cdata->channel_reg_size);
1489 
1490 		irq = platform_get_irq(pdev, i);
1491 		if (irq < 0) {
1492 			ret = irq;
1493 			goto err_pm_disable;
1494 		}
1495 
1496 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1497 		ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1498 				       tdc->name, tdc);
1499 		if (ret) {
1500 			dev_err(&pdev->dev,
1501 				"request_irq failed with err %d channel %d\n",
1502 				ret, i);
1503 			goto err_pm_disable;
1504 		}
1505 
1506 		tdc->dma_chan.device = &tdma->dma_dev;
1507 		dma_cookie_init(&tdc->dma_chan);
1508 		list_add_tail(&tdc->dma_chan.device_node,
1509 			      &tdma->dma_dev.channels);
1510 		tdc->tdma = tdma;
1511 		tdc->id = i;
1512 		tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1513 
1514 		tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1515 		spin_lock_init(&tdc->lock);
1516 		init_waitqueue_head(&tdc->wq);
1517 
1518 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1519 		INIT_LIST_HEAD(&tdc->free_sg_req);
1520 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1521 		INIT_LIST_HEAD(&tdc->cb_desc);
1522 	}
1523 
1524 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1525 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1526 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1527 
1528 	tdma->global_pause_count = 0;
1529 	tdma->dma_dev.dev = &pdev->dev;
1530 	tdma->dma_dev.device_alloc_chan_resources =
1531 					tegra_dma_alloc_chan_resources;
1532 	tdma->dma_dev.device_free_chan_resources =
1533 					tegra_dma_free_chan_resources;
1534 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1535 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1536 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1537 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1538 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1539 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1540 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1541 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1542 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1543 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1544 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1545 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1546 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1547 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1548 	tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1549 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1550 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1551 
1552 	ret = dma_async_device_register(&tdma->dma_dev);
1553 	if (ret < 0) {
1554 		dev_err(&pdev->dev,
1555 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1556 		goto err_pm_disable;
1557 	}
1558 
1559 	ret = of_dma_controller_register(pdev->dev.of_node,
1560 					 tegra_dma_of_xlate, tdma);
1561 	if (ret < 0) {
1562 		dev_err(&pdev->dev,
1563 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1564 		goto err_unregister_dma_dev;
1565 	}
1566 
1567 	dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1568 		 cdata->nr_channels);
1569 
1570 	return 0;
1571 
1572 err_unregister_dma_dev:
1573 	dma_async_device_unregister(&tdma->dma_dev);
1574 
1575 err_pm_disable:
1576 	pm_runtime_disable(&pdev->dev);
1577 
1578 err_clk_unprepare:
1579 	clk_unprepare(tdma->dma_clk);
1580 
1581 	return ret;
1582 }
1583 
1584 static void tegra_dma_remove(struct platform_device *pdev)
1585 {
1586 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1587 
1588 	of_dma_controller_free(pdev->dev.of_node);
1589 	dma_async_device_unregister(&tdma->dma_dev);
1590 	pm_runtime_disable(&pdev->dev);
1591 	clk_unprepare(tdma->dma_clk);
1592 }
1593 
1594 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1595 {
1596 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1597 
1598 	clk_disable(tdma->dma_clk);
1599 
1600 	return 0;
1601 }
1602 
1603 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1604 {
1605 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1606 
1607 	return clk_enable(tdma->dma_clk);
1608 }
1609 
1610 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1611 {
1612 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1613 	unsigned long flags;
1614 	unsigned int i;
1615 	bool busy;
1616 
1617 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1618 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1619 
1620 		tasklet_kill(&tdc->tasklet);
1621 
1622 		spin_lock_irqsave(&tdc->lock, flags);
1623 		busy = tdc->busy;
1624 		spin_unlock_irqrestore(&tdc->lock, flags);
1625 
1626 		if (busy) {
1627 			dev_err(tdma->dev, "channel %u busy\n", i);
1628 			return -EBUSY;
1629 		}
1630 	}
1631 
1632 	return pm_runtime_force_suspend(dev);
1633 }
1634 
1635 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1636 {
1637 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1638 	int err;
1639 
1640 	err = tegra_dma_init_hw(tdma);
1641 	if (err)
1642 		return err;
1643 
1644 	return pm_runtime_force_resume(dev);
1645 }
1646 
1647 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1648 	SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1649 			   NULL)
1650 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1651 };
1652 
1653 static const struct of_device_id tegra_dma_of_match[] = {
1654 	{
1655 		.compatible = "nvidia,tegra148-apbdma",
1656 		.data = &tegra148_dma_chip_data,
1657 	}, {
1658 		.compatible = "nvidia,tegra114-apbdma",
1659 		.data = &tegra114_dma_chip_data,
1660 	}, {
1661 		.compatible = "nvidia,tegra30-apbdma",
1662 		.data = &tegra30_dma_chip_data,
1663 	}, {
1664 		.compatible = "nvidia,tegra20-apbdma",
1665 		.data = &tegra20_dma_chip_data,
1666 	}, {
1667 	},
1668 };
1669 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1670 
1671 static struct platform_driver tegra_dmac_driver = {
1672 	.driver = {
1673 		.name	= "tegra-apbdma",
1674 		.pm	= &tegra_dma_dev_pm_ops,
1675 		.of_match_table = tegra_dma_of_match,
1676 	},
1677 	.probe		= tegra_dma_probe,
1678 	.remove_new	= tegra_dma_remove,
1679 };
1680 
1681 module_platform_driver(tegra_dmac_driver);
1682 
1683 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1684 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1685 MODULE_LICENSE("GPL v2");
1686