1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Copyright (C) STMicroelectronics SA 2017 5 * Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com> 6 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 7 * 8 * Driver for STM32 MDMA controller 9 * 10 * Inspired by stm32-dma.c and dma-jz4780.c 11 */ 12 13 #include <linux/bitfield.h> 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmapool.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/iopoll.h> 22 #include <linux/jiffies.h> 23 #include <linux/list.h> 24 #include <linux/log2.h> 25 #include <linux/module.h> 26 #include <linux/of.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/reset.h> 31 #include <linux/slab.h> 32 33 #include "../virt-dma.h" 34 35 #define STM32_MDMA_GISR0 0x0000 /* MDMA Int Status Reg 1 */ 36 37 /* MDMA Channel x interrupt/status register */ 38 #define STM32_MDMA_CISR(x) (0x40 + 0x40 * (x)) /* x = 0..62 */ 39 #define STM32_MDMA_CISR_CRQA BIT(16) 40 #define STM32_MDMA_CISR_TCIF BIT(4) 41 #define STM32_MDMA_CISR_BTIF BIT(3) 42 #define STM32_MDMA_CISR_BRTIF BIT(2) 43 #define STM32_MDMA_CISR_CTCIF BIT(1) 44 #define STM32_MDMA_CISR_TEIF BIT(0) 45 46 /* MDMA Channel x interrupt flag clear register */ 47 #define STM32_MDMA_CIFCR(x) (0x44 + 0x40 * (x)) 48 #define STM32_MDMA_CIFCR_CLTCIF BIT(4) 49 #define STM32_MDMA_CIFCR_CBTIF BIT(3) 50 #define STM32_MDMA_CIFCR_CBRTIF BIT(2) 51 #define STM32_MDMA_CIFCR_CCTCIF BIT(1) 52 #define STM32_MDMA_CIFCR_CTEIF BIT(0) 53 #define STM32_MDMA_CIFCR_CLEAR_ALL (STM32_MDMA_CIFCR_CLTCIF \ 54 | STM32_MDMA_CIFCR_CBTIF \ 55 | STM32_MDMA_CIFCR_CBRTIF \ 56 | STM32_MDMA_CIFCR_CCTCIF \ 57 | STM32_MDMA_CIFCR_CTEIF) 58 59 /* MDMA Channel x error status register */ 60 #define STM32_MDMA_CESR(x) (0x48 + 0x40 * (x)) 61 #define STM32_MDMA_CESR_BSE BIT(11) 62 #define STM32_MDMA_CESR_ASR BIT(10) 63 #define STM32_MDMA_CESR_TEMD BIT(9) 64 #define STM32_MDMA_CESR_TELD BIT(8) 65 #define STM32_MDMA_CESR_TED BIT(7) 66 #define STM32_MDMA_CESR_TEA_MASK GENMASK(6, 0) 67 68 /* MDMA Channel x control register */ 69 #define STM32_MDMA_CCR(x) (0x4C + 0x40 * (x)) 70 #define STM32_MDMA_CCR_SWRQ BIT(16) 71 #define STM32_MDMA_CCR_WEX BIT(14) 72 #define STM32_MDMA_CCR_HEX BIT(13) 73 #define STM32_MDMA_CCR_BEX BIT(12) 74 #define STM32_MDMA_CCR_SM BIT(8) 75 #define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6) 76 #define STM32_MDMA_CCR_PL(n) FIELD_PREP(STM32_MDMA_CCR_PL_MASK, (n)) 77 #define STM32_MDMA_CCR_TCIE BIT(5) 78 #define STM32_MDMA_CCR_BTIE BIT(4) 79 #define STM32_MDMA_CCR_BRTIE BIT(3) 80 #define STM32_MDMA_CCR_CTCIE BIT(2) 81 #define STM32_MDMA_CCR_TEIE BIT(1) 82 #define STM32_MDMA_CCR_EN BIT(0) 83 #define STM32_MDMA_CCR_IRQ_MASK (STM32_MDMA_CCR_TCIE \ 84 | STM32_MDMA_CCR_BTIE \ 85 | STM32_MDMA_CCR_BRTIE \ 86 | STM32_MDMA_CCR_CTCIE \ 87 | STM32_MDMA_CCR_TEIE) 88 89 /* MDMA Channel x transfer configuration register */ 90 #define STM32_MDMA_CTCR(x) (0x50 + 0x40 * (x)) 91 #define STM32_MDMA_CTCR_BWM BIT(31) 92 #define STM32_MDMA_CTCR_SWRM BIT(30) 93 #define STM32_MDMA_CTCR_TRGM_MSK GENMASK(29, 28) 94 #define STM32_MDMA_CTCR_TRGM(n) FIELD_PREP(STM32_MDMA_CTCR_TRGM_MSK, (n)) 95 #define STM32_MDMA_CTCR_TRGM_GET(n) FIELD_GET(STM32_MDMA_CTCR_TRGM_MSK, (n)) 96 #define STM32_MDMA_CTCR_PAM_MASK GENMASK(27, 26) 97 #define STM32_MDMA_CTCR_PAM(n) FIELD_PREP(STM32_MDMA_CTCR_PAM_MASK, (n)) 98 #define STM32_MDMA_CTCR_PKE BIT(25) 99 #define STM32_MDMA_CTCR_TLEN_MSK GENMASK(24, 18) 100 #define STM32_MDMA_CTCR_TLEN(n) FIELD_PREP(STM32_MDMA_CTCR_TLEN_MSK, (n)) 101 #define STM32_MDMA_CTCR_TLEN_GET(n) FIELD_GET(STM32_MDMA_CTCR_TLEN_MSK, (n)) 102 #define STM32_MDMA_CTCR_LEN2_MSK GENMASK(25, 18) 103 #define STM32_MDMA_CTCR_LEN2(n) FIELD_PREP(STM32_MDMA_CTCR_LEN2_MSK, (n)) 104 #define STM32_MDMA_CTCR_LEN2_GET(n) FIELD_GET(STM32_MDMA_CTCR_LEN2_MSK, (n)) 105 #define STM32_MDMA_CTCR_DBURST_MASK GENMASK(17, 15) 106 #define STM32_MDMA_CTCR_DBURST(n) FIELD_PREP(STM32_MDMA_CTCR_DBURST_MASK, (n)) 107 #define STM32_MDMA_CTCR_SBURST_MASK GENMASK(14, 12) 108 #define STM32_MDMA_CTCR_SBURST(n) FIELD_PREP(STM32_MDMA_CTCR_SBURST_MASK, (n)) 109 #define STM32_MDMA_CTCR_DINCOS_MASK GENMASK(11, 10) 110 #define STM32_MDMA_CTCR_DINCOS(n) FIELD_PREP(STM32_MDMA_CTCR_DINCOS_MASK, (n)) 111 #define STM32_MDMA_CTCR_SINCOS_MASK GENMASK(9, 8) 112 #define STM32_MDMA_CTCR_SINCOS(n) FIELD_PREP(STM32_MDMA_CTCR_SINCOS_MASK, (n)) 113 #define STM32_MDMA_CTCR_DSIZE_MASK GENMASK(7, 6) 114 #define STM32_MDMA_CTCR_DSIZE(n) FIELD_PREP(STM32_MDMA_CTCR_DSIZE_MASK, (n)) 115 #define STM32_MDMA_CTCR_SSIZE_MASK GENMASK(5, 4) 116 #define STM32_MDMA_CTCR_SSIZE(n) FIELD_PREP(STM32_MDMA_CTCR_SSIZE_MASK, (n)) 117 #define STM32_MDMA_CTCR_DINC_MASK GENMASK(3, 2) 118 #define STM32_MDMA_CTCR_DINC(n) FIELD_PREP(STM32_MDMA_CTCR_DINC_MASK, (n)) 119 #define STM32_MDMA_CTCR_SINC_MASK GENMASK(1, 0) 120 #define STM32_MDMA_CTCR_SINC(n) FIELD_PREP(STM32_MDMA_CTCR_SINC_MASK, (n)) 121 #define STM32_MDMA_CTCR_CFG_MASK (STM32_MDMA_CTCR_SINC_MASK \ 122 | STM32_MDMA_CTCR_DINC_MASK \ 123 | STM32_MDMA_CTCR_SINCOS_MASK \ 124 | STM32_MDMA_CTCR_DINCOS_MASK \ 125 | STM32_MDMA_CTCR_LEN2_MSK \ 126 | STM32_MDMA_CTCR_TRGM_MSK) 127 128 /* MDMA Channel x block number of data register */ 129 #define STM32_MDMA_CBNDTR(x) (0x54 + 0x40 * (x)) 130 #define STM32_MDMA_CBNDTR_BRC_MK GENMASK(31, 20) 131 #define STM32_MDMA_CBNDTR_BRC(n) FIELD_PREP(STM32_MDMA_CBNDTR_BRC_MK, (n)) 132 #define STM32_MDMA_CBNDTR_BRC_GET(n) FIELD_GET(STM32_MDMA_CBNDTR_BRC_MK, (n)) 133 134 #define STM32_MDMA_CBNDTR_BRDUM BIT(19) 135 #define STM32_MDMA_CBNDTR_BRSUM BIT(18) 136 #define STM32_MDMA_CBNDTR_BNDT_MASK GENMASK(16, 0) 137 #define STM32_MDMA_CBNDTR_BNDT(n) FIELD_PREP(STM32_MDMA_CBNDTR_BNDT_MASK, (n)) 138 139 /* MDMA Channel x source address register */ 140 #define STM32_MDMA_CSAR(x) (0x58 + 0x40 * (x)) 141 142 /* MDMA Channel x destination address register */ 143 #define STM32_MDMA_CDAR(x) (0x5C + 0x40 * (x)) 144 145 /* MDMA Channel x block repeat address update register */ 146 #define STM32_MDMA_CBRUR(x) (0x60 + 0x40 * (x)) 147 #define STM32_MDMA_CBRUR_DUV_MASK GENMASK(31, 16) 148 #define STM32_MDMA_CBRUR_DUV(n) FIELD_PREP(STM32_MDMA_CBRUR_DUV_MASK, (n)) 149 #define STM32_MDMA_CBRUR_SUV_MASK GENMASK(15, 0) 150 #define STM32_MDMA_CBRUR_SUV(n) FIELD_PREP(STM32_MDMA_CBRUR_SUV_MASK, (n)) 151 152 /* MDMA Channel x link address register */ 153 #define STM32_MDMA_CLAR(x) (0x64 + 0x40 * (x)) 154 155 /* MDMA Channel x trigger and bus selection register */ 156 #define STM32_MDMA_CTBR(x) (0x68 + 0x40 * (x)) 157 #define STM32_MDMA_CTBR_DBUS BIT(17) 158 #define STM32_MDMA_CTBR_SBUS BIT(16) 159 #define STM32_MDMA_CTBR_TSEL_MASK GENMASK(5, 0) 160 #define STM32_MDMA_CTBR_TSEL(n) FIELD_PREP(STM32_MDMA_CTBR_TSEL_MASK, (n)) 161 162 /* MDMA Channel x mask address register */ 163 #define STM32_MDMA_CMAR(x) (0x70 + 0x40 * (x)) 164 165 /* MDMA Channel x mask data register */ 166 #define STM32_MDMA_CMDR(x) (0x74 + 0x40 * (x)) 167 168 #define STM32_MDMA_MAX_BUF_LEN 128 169 #define STM32_MDMA_MAX_BLOCK_LEN 65536 170 #define STM32_MDMA_MAX_CHANNELS 32 171 #define STM32_MDMA_MAX_REQUESTS 256 172 #define STM32_MDMA_MAX_BURST 128 173 #define STM32_MDMA_VERY_HIGH_PRIORITY 0x3 174 175 enum stm32_mdma_trigger_mode { 176 STM32_MDMA_BUFFER, 177 STM32_MDMA_BLOCK, 178 STM32_MDMA_BLOCK_REP, 179 STM32_MDMA_LINKED_LIST, 180 }; 181 182 enum stm32_mdma_width { 183 STM32_MDMA_BYTE, 184 STM32_MDMA_HALF_WORD, 185 STM32_MDMA_WORD, 186 STM32_MDMA_DOUBLE_WORD, 187 }; 188 189 enum stm32_mdma_inc_mode { 190 STM32_MDMA_FIXED = 0, 191 STM32_MDMA_INC = 2, 192 STM32_MDMA_DEC = 3, 193 }; 194 195 struct stm32_mdma_chan_config { 196 u32 request; 197 u32 priority_level; 198 u32 transfer_config; 199 u32 mask_addr; 200 u32 mask_data; 201 bool m2m_hw; /* True when MDMA is triggered by STM32 DMA */ 202 }; 203 204 struct stm32_mdma_hwdesc { 205 u32 ctcr; 206 u32 cbndtr; 207 u32 csar; 208 u32 cdar; 209 u32 cbrur; 210 u32 clar; 211 u32 ctbr; 212 u32 dummy; 213 u32 cmar; 214 u32 cmdr; 215 } __aligned(64); 216 217 struct stm32_mdma_desc_node { 218 struct stm32_mdma_hwdesc *hwdesc; 219 dma_addr_t hwdesc_phys; 220 }; 221 222 struct stm32_mdma_desc { 223 struct virt_dma_desc vdesc; 224 u32 ccr; 225 bool cyclic; 226 u32 count; 227 struct stm32_mdma_desc_node node[] __counted_by(count); 228 }; 229 230 struct stm32_mdma_dma_config { 231 u32 request; /* STM32 DMA channel stream id, triggering MDMA */ 232 u32 cmar; /* STM32 DMA interrupt flag clear register address */ 233 u32 cmdr; /* STM32 DMA Transfer Complete flag */ 234 }; 235 236 struct stm32_mdma_chan { 237 struct virt_dma_chan vchan; 238 struct dma_pool *desc_pool; 239 u32 id; 240 struct stm32_mdma_desc *desc; 241 u32 curr_hwdesc; 242 struct dma_slave_config dma_config; 243 struct stm32_mdma_chan_config chan_config; 244 bool busy; 245 u32 mem_burst; 246 u32 mem_width; 247 }; 248 249 struct stm32_mdma_device { 250 struct dma_device ddev; 251 void __iomem *base; 252 struct clk *clk; 253 int irq; 254 u32 nr_channels; 255 u32 nr_requests; 256 u32 nr_ahb_addr_masks; 257 u32 chan_reserved; 258 struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS]; 259 u32 ahb_addr_masks[] __counted_by(nr_ahb_addr_masks); 260 }; 261 262 static struct stm32_mdma_device *stm32_mdma_get_dev( 263 struct stm32_mdma_chan *chan) 264 { 265 return container_of(chan->vchan.chan.device, struct stm32_mdma_device, 266 ddev); 267 } 268 269 static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c) 270 { 271 return container_of(c, struct stm32_mdma_chan, vchan.chan); 272 } 273 274 static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc) 275 { 276 return container_of(vdesc, struct stm32_mdma_desc, vdesc); 277 } 278 279 static struct device *chan2dev(struct stm32_mdma_chan *chan) 280 { 281 return &chan->vchan.chan.dev->device; 282 } 283 284 static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev) 285 { 286 return mdma_dev->ddev.dev; 287 } 288 289 static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg) 290 { 291 return readl_relaxed(dmadev->base + reg); 292 } 293 294 static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val) 295 { 296 writel_relaxed(val, dmadev->base + reg); 297 } 298 299 static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg, 300 u32 mask) 301 { 302 void __iomem *addr = dmadev->base + reg; 303 304 writel_relaxed(readl_relaxed(addr) | mask, addr); 305 } 306 307 static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg, 308 u32 mask) 309 { 310 void __iomem *addr = dmadev->base + reg; 311 312 writel_relaxed(readl_relaxed(addr) & ~mask, addr); 313 } 314 315 static struct stm32_mdma_desc *stm32_mdma_alloc_desc( 316 struct stm32_mdma_chan *chan, u32 count) 317 { 318 struct stm32_mdma_desc *desc; 319 int i; 320 321 desc = kzalloc(struct_size(desc, node, count), GFP_NOWAIT); 322 if (!desc) 323 return NULL; 324 desc->count = count; 325 326 for (i = 0; i < count; i++) { 327 desc->node[i].hwdesc = 328 dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, 329 &desc->node[i].hwdesc_phys); 330 if (!desc->node[i].hwdesc) 331 goto err; 332 } 333 334 return desc; 335 336 err: 337 dev_err(chan2dev(chan), "Failed to allocate descriptor\n"); 338 while (--i >= 0) 339 dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, 340 desc->node[i].hwdesc_phys); 341 kfree(desc); 342 return NULL; 343 } 344 345 static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc) 346 { 347 struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc); 348 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan); 349 int i; 350 351 for (i = 0; i < desc->count; i++) 352 dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, 353 desc->node[i].hwdesc_phys); 354 kfree(desc); 355 } 356 357 static int stm32_mdma_get_width(struct stm32_mdma_chan *chan, 358 enum dma_slave_buswidth width) 359 { 360 switch (width) { 361 case DMA_SLAVE_BUSWIDTH_1_BYTE: 362 case DMA_SLAVE_BUSWIDTH_2_BYTES: 363 case DMA_SLAVE_BUSWIDTH_4_BYTES: 364 case DMA_SLAVE_BUSWIDTH_8_BYTES: 365 return ffs(width) - 1; 366 default: 367 dev_err(chan2dev(chan), "Dma bus width %i not supported\n", 368 width); 369 return -EINVAL; 370 } 371 } 372 373 static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr, 374 u32 buf_len, u32 tlen) 375 { 376 enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES; 377 378 for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES; 379 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE; 380 max_width >>= 1) { 381 /* 382 * Address and buffer length both have to be aligned on 383 * bus width 384 */ 385 if ((((buf_len | addr) & (max_width - 1)) == 0) && 386 tlen >= max_width) 387 break; 388 } 389 390 return max_width; 391 } 392 393 static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst, 394 enum dma_slave_buswidth width) 395 { 396 u32 best_burst; 397 398 best_burst = min((u32)1 << __ffs(tlen | buf_len), 399 max_burst * width) / width; 400 401 return (best_burst > 0) ? best_burst : 1; 402 } 403 404 static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan) 405 { 406 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 407 u32 ccr, cisr, id, reg; 408 int ret; 409 410 id = chan->id; 411 reg = STM32_MDMA_CCR(id); 412 413 /* Disable interrupts */ 414 stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK); 415 416 ccr = stm32_mdma_read(dmadev, reg); 417 if (ccr & STM32_MDMA_CCR_EN) { 418 stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN); 419 420 /* Ensure that any ongoing transfer has been completed */ 421 ret = readl_relaxed_poll_timeout_atomic( 422 dmadev->base + STM32_MDMA_CISR(id), cisr, 423 (cisr & STM32_MDMA_CISR_CTCIF), 10, 1000); 424 if (ret) { 425 dev_err(chan2dev(chan), "%s: timeout!\n", __func__); 426 return -EBUSY; 427 } 428 } 429 430 return 0; 431 } 432 433 static void stm32_mdma_stop(struct stm32_mdma_chan *chan) 434 { 435 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 436 u32 status; 437 int ret; 438 439 /* Disable DMA */ 440 ret = stm32_mdma_disable_chan(chan); 441 if (ret < 0) 442 return; 443 444 /* Clear interrupt status if it is there */ 445 status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id)); 446 if (status) { 447 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 448 __func__, status); 449 stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status); 450 } 451 452 chan->busy = false; 453 } 454 455 static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr, 456 u32 ctbr_mask, u32 src_addr) 457 { 458 u32 mask; 459 int i; 460 461 /* Check if memory device is on AHB or AXI */ 462 *ctbr &= ~ctbr_mask; 463 mask = src_addr & 0xF0000000; 464 for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) { 465 if (mask == dmadev->ahb_addr_masks[i]) { 466 *ctbr |= ctbr_mask; 467 break; 468 } 469 } 470 } 471 472 static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan, 473 enum dma_transfer_direction direction, 474 u32 *mdma_ccr, u32 *mdma_ctcr, 475 u32 *mdma_ctbr, dma_addr_t addr, 476 u32 buf_len) 477 { 478 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 479 struct stm32_mdma_chan_config *chan_config = &chan->chan_config; 480 enum dma_slave_buswidth src_addr_width, dst_addr_width; 481 phys_addr_t src_addr, dst_addr; 482 int src_bus_width, dst_bus_width; 483 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 484 u32 ccr, ctcr, ctbr, tlen; 485 486 src_addr_width = chan->dma_config.src_addr_width; 487 dst_addr_width = chan->dma_config.dst_addr_width; 488 src_maxburst = chan->dma_config.src_maxburst; 489 dst_maxburst = chan->dma_config.dst_maxburst; 490 491 ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)) & ~STM32_MDMA_CCR_EN; 492 ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)); 493 ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)); 494 495 /* Enable HW request mode */ 496 ctcr &= ~STM32_MDMA_CTCR_SWRM; 497 498 /* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */ 499 ctcr &= ~STM32_MDMA_CTCR_CFG_MASK; 500 ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK; 501 502 /* 503 * For buffer transfer length (TLEN) we have to set 504 * the number of bytes - 1 in CTCR register 505 */ 506 tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr); 507 ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK; 508 ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1)); 509 510 /* Disable Pack Enable */ 511 ctcr &= ~STM32_MDMA_CTCR_PKE; 512 513 /* Check burst size constraints */ 514 if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST || 515 dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) { 516 dev_err(chan2dev(chan), 517 "burst size * bus width higher than %d bytes\n", 518 STM32_MDMA_MAX_BURST); 519 return -EINVAL; 520 } 521 522 if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) || 523 (!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) { 524 dev_err(chan2dev(chan), "burst size must be a power of 2\n"); 525 return -EINVAL; 526 } 527 528 /* 529 * Configure channel control: 530 * - Clear SW request as in this case this is a HW one 531 * - Clear WEX, HEX and BEX bits 532 * - Set priority level 533 */ 534 ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX | 535 STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK); 536 ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level); 537 538 /* Configure Trigger selection */ 539 ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK; 540 ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request); 541 542 switch (direction) { 543 case DMA_MEM_TO_DEV: 544 dst_addr = chan->dma_config.dst_addr; 545 546 /* Set device data size */ 547 if (chan_config->m2m_hw) 548 dst_addr_width = stm32_mdma_get_max_width(dst_addr, buf_len, 549 STM32_MDMA_MAX_BUF_LEN); 550 dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width); 551 if (dst_bus_width < 0) 552 return dst_bus_width; 553 ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK; 554 ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width); 555 if (chan_config->m2m_hw) { 556 ctcr &= ~STM32_MDMA_CTCR_DINCOS_MASK; 557 ctcr |= STM32_MDMA_CTCR_DINCOS(dst_bus_width); 558 } 559 560 /* Set device burst value */ 561 if (chan_config->m2m_hw) 562 dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width; 563 564 dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, 565 dst_maxburst, 566 dst_addr_width); 567 chan->mem_burst = dst_best_burst; 568 ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK; 569 ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst))); 570 571 /* Set memory data size */ 572 src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen); 573 chan->mem_width = src_addr_width; 574 src_bus_width = stm32_mdma_get_width(chan, src_addr_width); 575 if (src_bus_width < 0) 576 return src_bus_width; 577 ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK | 578 STM32_MDMA_CTCR_SINCOS_MASK; 579 ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) | 580 STM32_MDMA_CTCR_SINCOS(src_bus_width); 581 582 /* Set memory burst value */ 583 src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width; 584 src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, 585 src_maxburst, 586 src_addr_width); 587 chan->mem_burst = src_best_burst; 588 ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK; 589 ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst))); 590 591 /* Select bus */ 592 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, 593 dst_addr); 594 595 if (dst_bus_width != src_bus_width) 596 ctcr |= STM32_MDMA_CTCR_PKE; 597 598 /* Set destination address */ 599 stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr); 600 break; 601 602 case DMA_DEV_TO_MEM: 603 src_addr = chan->dma_config.src_addr; 604 605 /* Set device data size */ 606 if (chan_config->m2m_hw) 607 src_addr_width = stm32_mdma_get_max_width(src_addr, buf_len, 608 STM32_MDMA_MAX_BUF_LEN); 609 610 src_bus_width = stm32_mdma_get_width(chan, src_addr_width); 611 if (src_bus_width < 0) 612 return src_bus_width; 613 ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK; 614 ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width); 615 if (chan_config->m2m_hw) { 616 ctcr &= ~STM32_MDMA_CTCR_SINCOS_MASK; 617 ctcr |= STM32_MDMA_CTCR_SINCOS(src_bus_width); 618 } 619 620 /* Set device burst value */ 621 if (chan_config->m2m_hw) 622 src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width; 623 624 src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, 625 src_maxburst, 626 src_addr_width); 627 ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK; 628 ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst))); 629 630 /* Set memory data size */ 631 dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen); 632 chan->mem_width = dst_addr_width; 633 dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width); 634 if (dst_bus_width < 0) 635 return dst_bus_width; 636 ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK | 637 STM32_MDMA_CTCR_DINCOS_MASK); 638 ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) | 639 STM32_MDMA_CTCR_DINCOS(dst_bus_width); 640 641 /* Set memory burst value */ 642 dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width; 643 dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen, 644 dst_maxburst, 645 dst_addr_width); 646 ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK; 647 ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst))); 648 649 /* Select bus */ 650 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, 651 src_addr); 652 653 if (dst_bus_width != src_bus_width) 654 ctcr |= STM32_MDMA_CTCR_PKE; 655 656 /* Set source address */ 657 stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr); 658 break; 659 660 default: 661 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 662 return -EINVAL; 663 } 664 665 *mdma_ccr = ccr; 666 *mdma_ctcr = ctcr; 667 *mdma_ctbr = ctbr; 668 669 return 0; 670 } 671 672 static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan, 673 struct stm32_mdma_desc_node *node) 674 { 675 dev_dbg(chan2dev(chan), "hwdesc: %pad\n", &node->hwdesc_phys); 676 dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", node->hwdesc->ctcr); 677 dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", node->hwdesc->cbndtr); 678 dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", node->hwdesc->csar); 679 dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", node->hwdesc->cdar); 680 dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", node->hwdesc->cbrur); 681 dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", node->hwdesc->clar); 682 dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", node->hwdesc->ctbr); 683 dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", node->hwdesc->cmar); 684 dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n\n", node->hwdesc->cmdr); 685 } 686 687 static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan, 688 struct stm32_mdma_desc *desc, 689 enum dma_transfer_direction dir, u32 count, 690 dma_addr_t src_addr, dma_addr_t dst_addr, 691 u32 len, u32 ctcr, u32 ctbr, bool is_last, 692 bool is_first, bool is_cyclic) 693 { 694 struct stm32_mdma_chan_config *config = &chan->chan_config; 695 struct stm32_mdma_hwdesc *hwdesc; 696 u32 next = count + 1; 697 698 hwdesc = desc->node[count].hwdesc; 699 hwdesc->ctcr = ctcr; 700 hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | 701 STM32_MDMA_CBNDTR_BRDUM | 702 STM32_MDMA_CBNDTR_BRSUM | 703 STM32_MDMA_CBNDTR_BNDT_MASK); 704 hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len); 705 hwdesc->csar = src_addr; 706 hwdesc->cdar = dst_addr; 707 hwdesc->cbrur = 0; 708 hwdesc->ctbr = ctbr; 709 hwdesc->cmar = config->mask_addr; 710 hwdesc->cmdr = config->mask_data; 711 712 if (is_last) { 713 if (is_cyclic) 714 hwdesc->clar = desc->node[0].hwdesc_phys; 715 else 716 hwdesc->clar = 0; 717 } else { 718 hwdesc->clar = desc->node[next].hwdesc_phys; 719 } 720 721 stm32_mdma_dump_hwdesc(chan, &desc->node[count]); 722 } 723 724 static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan, 725 struct stm32_mdma_desc *desc, 726 struct scatterlist *sgl, u32 sg_len, 727 enum dma_transfer_direction direction) 728 { 729 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 730 struct dma_slave_config *dma_config = &chan->dma_config; 731 struct stm32_mdma_chan_config *chan_config = &chan->chan_config; 732 struct scatterlist *sg; 733 dma_addr_t src_addr, dst_addr; 734 u32 m2m_hw_period, ccr, ctcr, ctbr; 735 int i, ret = 0; 736 737 if (chan_config->m2m_hw) 738 m2m_hw_period = sg_dma_len(sgl); 739 740 for_each_sg(sgl, sg, sg_len, i) { 741 if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) { 742 dev_err(chan2dev(chan), "Invalid block len\n"); 743 return -EINVAL; 744 } 745 746 if (direction == DMA_MEM_TO_DEV) { 747 src_addr = sg_dma_address(sg); 748 dst_addr = dma_config->dst_addr; 749 if (chan_config->m2m_hw && (i & 1)) 750 dst_addr += m2m_hw_period; 751 ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, 752 &ctcr, &ctbr, src_addr, 753 sg_dma_len(sg)); 754 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, 755 src_addr); 756 } else { 757 src_addr = dma_config->src_addr; 758 if (chan_config->m2m_hw && (i & 1)) 759 src_addr += m2m_hw_period; 760 dst_addr = sg_dma_address(sg); 761 ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, 762 &ctcr, &ctbr, dst_addr, 763 sg_dma_len(sg)); 764 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, 765 dst_addr); 766 } 767 768 if (ret < 0) 769 return ret; 770 771 stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr, 772 dst_addr, sg_dma_len(sg), ctcr, ctbr, 773 i == sg_len - 1, i == 0, false); 774 } 775 776 /* Enable interrupts */ 777 ccr &= ~STM32_MDMA_CCR_IRQ_MASK; 778 ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE; 779 desc->ccr = ccr; 780 781 return 0; 782 } 783 784 static struct dma_async_tx_descriptor * 785 stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl, 786 u32 sg_len, enum dma_transfer_direction direction, 787 unsigned long flags, void *context) 788 { 789 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 790 struct stm32_mdma_chan_config *chan_config = &chan->chan_config; 791 struct stm32_mdma_desc *desc; 792 int i, ret; 793 794 /* 795 * Once DMA is in setup cyclic mode the channel we cannot assign this 796 * channel anymore. The DMA channel needs to be aborted or terminated 797 * for allowing another request. 798 */ 799 if (chan->desc && chan->desc->cyclic) { 800 dev_err(chan2dev(chan), 801 "Request not allowed when dma in cyclic mode\n"); 802 return NULL; 803 } 804 805 desc = stm32_mdma_alloc_desc(chan, sg_len); 806 if (!desc) 807 return NULL; 808 809 ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction); 810 if (ret < 0) 811 goto xfer_setup_err; 812 813 /* 814 * In case of M2M HW transfer triggered by STM32 DMA, we do not have to clear the 815 * transfer complete flag by hardware in order to let the CPU rearm the STM32 DMA 816 * with the next sg element and update some data in dmaengine framework. 817 */ 818 if (chan_config->m2m_hw && direction == DMA_MEM_TO_DEV) { 819 struct stm32_mdma_hwdesc *hwdesc; 820 821 for (i = 0; i < sg_len; i++) { 822 hwdesc = desc->node[i].hwdesc; 823 hwdesc->cmar = 0; 824 hwdesc->cmdr = 0; 825 } 826 } 827 828 desc->cyclic = false; 829 830 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 831 832 xfer_setup_err: 833 for (i = 0; i < desc->count; i++) 834 dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, 835 desc->node[i].hwdesc_phys); 836 kfree(desc); 837 return NULL; 838 } 839 840 static struct dma_async_tx_descriptor * 841 stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr, 842 size_t buf_len, size_t period_len, 843 enum dma_transfer_direction direction, 844 unsigned long flags) 845 { 846 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 847 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 848 struct dma_slave_config *dma_config = &chan->dma_config; 849 struct stm32_mdma_chan_config *chan_config = &chan->chan_config; 850 struct stm32_mdma_desc *desc; 851 dma_addr_t src_addr, dst_addr; 852 u32 ccr, ctcr, ctbr, count; 853 int i, ret; 854 855 /* 856 * Once DMA is in setup cyclic mode the channel we cannot assign this 857 * channel anymore. The DMA channel needs to be aborted or terminated 858 * for allowing another request. 859 */ 860 if (chan->desc && chan->desc->cyclic) { 861 dev_err(chan2dev(chan), 862 "Request not allowed when dma in cyclic mode\n"); 863 return NULL; 864 } 865 866 if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) { 867 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 868 return NULL; 869 } 870 871 if (buf_len % period_len) { 872 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 873 return NULL; 874 } 875 876 count = buf_len / period_len; 877 878 desc = stm32_mdma_alloc_desc(chan, count); 879 if (!desc) 880 return NULL; 881 882 /* Select bus */ 883 if (direction == DMA_MEM_TO_DEV) { 884 src_addr = buf_addr; 885 ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, 886 &ctbr, src_addr, period_len); 887 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, 888 src_addr); 889 } else { 890 dst_addr = buf_addr; 891 ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr, 892 &ctbr, dst_addr, period_len); 893 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, 894 dst_addr); 895 } 896 897 if (ret < 0) 898 goto xfer_setup_err; 899 900 /* Enable interrupts */ 901 ccr &= ~STM32_MDMA_CCR_IRQ_MASK; 902 ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE; 903 desc->ccr = ccr; 904 905 /* Configure hwdesc list */ 906 for (i = 0; i < count; i++) { 907 if (direction == DMA_MEM_TO_DEV) { 908 src_addr = buf_addr + i * period_len; 909 dst_addr = dma_config->dst_addr; 910 if (chan_config->m2m_hw && (i & 1)) 911 dst_addr += period_len; 912 } else { 913 src_addr = dma_config->src_addr; 914 if (chan_config->m2m_hw && (i & 1)) 915 src_addr += period_len; 916 dst_addr = buf_addr + i * period_len; 917 } 918 919 stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr, 920 dst_addr, period_len, ctcr, ctbr, 921 i == count - 1, i == 0, true); 922 } 923 924 desc->cyclic = true; 925 926 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 927 928 xfer_setup_err: 929 for (i = 0; i < desc->count; i++) 930 dma_pool_free(chan->desc_pool, desc->node[i].hwdesc, 931 desc->node[i].hwdesc_phys); 932 kfree(desc); 933 return NULL; 934 } 935 936 static struct dma_async_tx_descriptor * 937 stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src, 938 size_t len, unsigned long flags) 939 { 940 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 941 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 942 enum dma_slave_buswidth max_width; 943 struct stm32_mdma_desc *desc; 944 struct stm32_mdma_hwdesc *hwdesc; 945 u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst; 946 u32 best_burst, tlen; 947 size_t xfer_count, offset; 948 int src_bus_width, dst_bus_width; 949 int i; 950 951 /* 952 * Once DMA is in setup cyclic mode the channel we cannot assign this 953 * channel anymore. The DMA channel needs to be aborted or terminated 954 * to allow another request 955 */ 956 if (chan->desc && chan->desc->cyclic) { 957 dev_err(chan2dev(chan), 958 "Request not allowed when dma in cyclic mode\n"); 959 return NULL; 960 } 961 962 count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN); 963 desc = stm32_mdma_alloc_desc(chan, count); 964 if (!desc) 965 return NULL; 966 967 ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)) & ~STM32_MDMA_CCR_EN; 968 ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)); 969 ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)); 970 cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)); 971 972 /* Enable sw req, some interrupts and clear other bits */ 973 ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX | 974 STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK | 975 STM32_MDMA_CCR_IRQ_MASK); 976 ccr |= STM32_MDMA_CCR_TEIE; 977 978 /* Enable SW request mode, dest/src inc and clear other bits */ 979 ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK | 980 STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE | 981 STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK | 982 STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK | 983 STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK | 984 STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK | 985 STM32_MDMA_CTCR_SINC_MASK); 986 ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) | 987 STM32_MDMA_CTCR_DINC(STM32_MDMA_INC); 988 989 /* Reset HW request */ 990 ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK; 991 992 /* Select bus */ 993 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src); 994 stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest); 995 996 /* Clear CBNDTR registers */ 997 cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM | 998 STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK); 999 1000 if (len <= STM32_MDMA_MAX_BLOCK_LEN) { 1001 cbndtr |= STM32_MDMA_CBNDTR_BNDT(len); 1002 if (len <= STM32_MDMA_MAX_BUF_LEN) { 1003 /* Setup a buffer transfer */ 1004 ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE; 1005 ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER); 1006 } else { 1007 /* Setup a block transfer */ 1008 ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE; 1009 ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK); 1010 } 1011 1012 tlen = STM32_MDMA_MAX_BUF_LEN; 1013 ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1)); 1014 1015 /* Set source best burst size */ 1016 max_width = stm32_mdma_get_max_width(src, len, tlen); 1017 src_bus_width = stm32_mdma_get_width(chan, max_width); 1018 1019 max_burst = tlen / max_width; 1020 best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, 1021 max_width); 1022 mdma_burst = ilog2(best_burst); 1023 1024 ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) | 1025 STM32_MDMA_CTCR_SSIZE(src_bus_width) | 1026 STM32_MDMA_CTCR_SINCOS(src_bus_width); 1027 1028 /* Set destination best burst size */ 1029 max_width = stm32_mdma_get_max_width(dest, len, tlen); 1030 dst_bus_width = stm32_mdma_get_width(chan, max_width); 1031 1032 max_burst = tlen / max_width; 1033 best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst, 1034 max_width); 1035 mdma_burst = ilog2(best_burst); 1036 1037 ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) | 1038 STM32_MDMA_CTCR_DSIZE(dst_bus_width) | 1039 STM32_MDMA_CTCR_DINCOS(dst_bus_width); 1040 1041 if (dst_bus_width != src_bus_width) 1042 ctcr |= STM32_MDMA_CTCR_PKE; 1043 1044 /* Prepare hardware descriptor */ 1045 hwdesc = desc->node[0].hwdesc; 1046 hwdesc->ctcr = ctcr; 1047 hwdesc->cbndtr = cbndtr; 1048 hwdesc->csar = src; 1049 hwdesc->cdar = dest; 1050 hwdesc->cbrur = 0; 1051 hwdesc->clar = 0; 1052 hwdesc->ctbr = ctbr; 1053 hwdesc->cmar = 0; 1054 hwdesc->cmdr = 0; 1055 1056 stm32_mdma_dump_hwdesc(chan, &desc->node[0]); 1057 } else { 1058 /* Setup a LLI transfer */ 1059 ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) | 1060 STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1)); 1061 ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE; 1062 tlen = STM32_MDMA_MAX_BUF_LEN; 1063 1064 for (i = 0, offset = 0; offset < len; 1065 i++, offset += xfer_count) { 1066 xfer_count = min_t(size_t, len - offset, 1067 STM32_MDMA_MAX_BLOCK_LEN); 1068 1069 /* Set source best burst size */ 1070 max_width = stm32_mdma_get_max_width(src, len, tlen); 1071 src_bus_width = stm32_mdma_get_width(chan, max_width); 1072 1073 max_burst = tlen / max_width; 1074 best_burst = stm32_mdma_get_best_burst(len, tlen, 1075 max_burst, 1076 max_width); 1077 mdma_burst = ilog2(best_burst); 1078 1079 ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) | 1080 STM32_MDMA_CTCR_SSIZE(src_bus_width) | 1081 STM32_MDMA_CTCR_SINCOS(src_bus_width); 1082 1083 /* Set destination best burst size */ 1084 max_width = stm32_mdma_get_max_width(dest, len, tlen); 1085 dst_bus_width = stm32_mdma_get_width(chan, max_width); 1086 1087 max_burst = tlen / max_width; 1088 best_burst = stm32_mdma_get_best_burst(len, tlen, 1089 max_burst, 1090 max_width); 1091 mdma_burst = ilog2(best_burst); 1092 1093 ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) | 1094 STM32_MDMA_CTCR_DSIZE(dst_bus_width) | 1095 STM32_MDMA_CTCR_DINCOS(dst_bus_width); 1096 1097 if (dst_bus_width != src_bus_width) 1098 ctcr |= STM32_MDMA_CTCR_PKE; 1099 1100 /* Prepare hardware descriptor */ 1101 stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i, 1102 src + offset, dest + offset, 1103 xfer_count, ctcr, ctbr, 1104 i == count - 1, i == 0, false); 1105 } 1106 } 1107 1108 desc->ccr = ccr; 1109 1110 desc->cyclic = false; 1111 1112 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1113 } 1114 1115 static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan) 1116 { 1117 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1118 1119 dev_dbg(chan2dev(chan), "CCR: 0x%08x\n", 1120 stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id))); 1121 dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", 1122 stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id))); 1123 dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", 1124 stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id))); 1125 dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", 1126 stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id))); 1127 dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", 1128 stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id))); 1129 dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", 1130 stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id))); 1131 dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", 1132 stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id))); 1133 dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", 1134 stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id))); 1135 dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", 1136 stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id))); 1137 dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n", 1138 stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id))); 1139 } 1140 1141 static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan) 1142 { 1143 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1144 struct virt_dma_desc *vdesc; 1145 struct stm32_mdma_hwdesc *hwdesc; 1146 u32 id = chan->id; 1147 u32 status, reg; 1148 1149 vdesc = vchan_next_desc(&chan->vchan); 1150 if (!vdesc) { 1151 chan->desc = NULL; 1152 return; 1153 } 1154 1155 list_del(&vdesc->node); 1156 1157 chan->desc = to_stm32_mdma_desc(vdesc); 1158 hwdesc = chan->desc->node[0].hwdesc; 1159 chan->curr_hwdesc = 0; 1160 1161 stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr); 1162 stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr); 1163 stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr); 1164 stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar); 1165 stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar); 1166 stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur); 1167 stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar); 1168 stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr); 1169 stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar); 1170 stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr); 1171 1172 /* Clear interrupt status if it is there */ 1173 status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id)); 1174 if (status) 1175 stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status); 1176 1177 stm32_mdma_dump_reg(chan); 1178 1179 /* Start DMA */ 1180 stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN); 1181 1182 /* Set SW request in case of MEM2MEM transfer */ 1183 if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) { 1184 reg = STM32_MDMA_CCR(id); 1185 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ); 1186 } 1187 1188 chan->busy = true; 1189 1190 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 1191 } 1192 1193 static void stm32_mdma_issue_pending(struct dma_chan *c) 1194 { 1195 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1196 unsigned long flags; 1197 1198 spin_lock_irqsave(&chan->vchan.lock, flags); 1199 1200 if (!vchan_issue_pending(&chan->vchan)) 1201 goto end; 1202 1203 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 1204 1205 if (!chan->desc && !chan->busy) 1206 stm32_mdma_start_transfer(chan); 1207 1208 end: 1209 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1210 } 1211 1212 static int stm32_mdma_pause(struct dma_chan *c) 1213 { 1214 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1215 unsigned long flags; 1216 int ret; 1217 1218 spin_lock_irqsave(&chan->vchan.lock, flags); 1219 ret = stm32_mdma_disable_chan(chan); 1220 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1221 1222 if (!ret) 1223 dev_dbg(chan2dev(chan), "vchan %pK: pause\n", &chan->vchan); 1224 1225 return ret; 1226 } 1227 1228 static int stm32_mdma_resume(struct dma_chan *c) 1229 { 1230 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1231 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1232 struct stm32_mdma_hwdesc *hwdesc; 1233 unsigned long flags; 1234 u32 status, reg; 1235 1236 /* Transfer can be terminated */ 1237 if (!chan->desc || (stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)) & STM32_MDMA_CCR_EN)) 1238 return -EPERM; 1239 1240 hwdesc = chan->desc->node[chan->curr_hwdesc].hwdesc; 1241 1242 spin_lock_irqsave(&chan->vchan.lock, flags); 1243 1244 /* Re-configure control register */ 1245 stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr); 1246 1247 /* Clear interrupt status if it is there */ 1248 status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id)); 1249 if (status) 1250 stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status); 1251 1252 stm32_mdma_dump_reg(chan); 1253 1254 /* Re-start DMA */ 1255 reg = STM32_MDMA_CCR(chan->id); 1256 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN); 1257 1258 /* Set SW request in case of MEM2MEM transfer */ 1259 if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) 1260 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ); 1261 1262 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1263 1264 dev_dbg(chan2dev(chan), "vchan %pK: resume\n", &chan->vchan); 1265 1266 return 0; 1267 } 1268 1269 static int stm32_mdma_terminate_all(struct dma_chan *c) 1270 { 1271 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1272 unsigned long flags; 1273 LIST_HEAD(head); 1274 1275 spin_lock_irqsave(&chan->vchan.lock, flags); 1276 if (chan->desc) { 1277 vchan_terminate_vdesc(&chan->desc->vdesc); 1278 if (chan->busy) 1279 stm32_mdma_stop(chan); 1280 chan->desc = NULL; 1281 } 1282 vchan_get_all_descriptors(&chan->vchan, &head); 1283 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1284 1285 vchan_dma_desc_free_list(&chan->vchan, &head); 1286 1287 return 0; 1288 } 1289 1290 static void stm32_mdma_synchronize(struct dma_chan *c) 1291 { 1292 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1293 1294 vchan_synchronize(&chan->vchan); 1295 } 1296 1297 static int stm32_mdma_slave_config(struct dma_chan *c, 1298 struct dma_slave_config *config) 1299 { 1300 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1301 1302 memcpy(&chan->dma_config, config, sizeof(*config)); 1303 1304 /* Check if user is requesting STM32 DMA to trigger MDMA */ 1305 if (config->peripheral_size) { 1306 struct stm32_mdma_dma_config *mdma_config; 1307 1308 mdma_config = (struct stm32_mdma_dma_config *)chan->dma_config.peripheral_config; 1309 chan->chan_config.request = mdma_config->request; 1310 chan->chan_config.mask_addr = mdma_config->cmar; 1311 chan->chan_config.mask_data = mdma_config->cmdr; 1312 chan->chan_config.m2m_hw = true; 1313 } 1314 1315 return 0; 1316 } 1317 1318 static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan, 1319 struct stm32_mdma_desc *desc, 1320 u32 curr_hwdesc, 1321 struct dma_tx_state *state) 1322 { 1323 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1324 struct stm32_mdma_hwdesc *hwdesc; 1325 u32 cisr, clar, cbndtr, residue, modulo, burst_size; 1326 int i; 1327 1328 cisr = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id)); 1329 1330 residue = 0; 1331 /* Get the next hw descriptor to process from current transfer */ 1332 clar = stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id)); 1333 for (i = desc->count - 1; i >= 0; i--) { 1334 hwdesc = desc->node[i].hwdesc; 1335 1336 if (hwdesc->clar == clar) 1337 break;/* Current transfer found, stop cumulating */ 1338 1339 /* Cumulate residue of unprocessed hw descriptors */ 1340 residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr); 1341 } 1342 cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)); 1343 residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK; 1344 1345 state->in_flight_bytes = 0; 1346 if (chan->chan_config.m2m_hw && (cisr & STM32_MDMA_CISR_CRQA)) 1347 state->in_flight_bytes = cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK; 1348 1349 if (!chan->mem_burst) 1350 return residue; 1351 1352 burst_size = chan->mem_burst * chan->mem_width; 1353 modulo = residue % burst_size; 1354 if (modulo) 1355 residue = residue - modulo + burst_size; 1356 1357 return residue; 1358 } 1359 1360 static enum dma_status stm32_mdma_tx_status(struct dma_chan *c, 1361 dma_cookie_t cookie, 1362 struct dma_tx_state *state) 1363 { 1364 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1365 struct virt_dma_desc *vdesc; 1366 enum dma_status status; 1367 unsigned long flags; 1368 u32 residue = 0; 1369 1370 status = dma_cookie_status(c, cookie, state); 1371 if ((status == DMA_COMPLETE) || (!state)) 1372 return status; 1373 1374 spin_lock_irqsave(&chan->vchan.lock, flags); 1375 1376 vdesc = vchan_find_desc(&chan->vchan, cookie); 1377 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1378 residue = stm32_mdma_desc_residue(chan, chan->desc, chan->curr_hwdesc, state); 1379 else if (vdesc) 1380 residue = stm32_mdma_desc_residue(chan, to_stm32_mdma_desc(vdesc), 0, state); 1381 1382 dma_set_residue(state, residue); 1383 1384 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1385 1386 return status; 1387 } 1388 1389 static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan) 1390 { 1391 vchan_cookie_complete(&chan->desc->vdesc); 1392 chan->desc = NULL; 1393 chan->busy = false; 1394 1395 /* Start the next transfer if this driver has a next desc */ 1396 stm32_mdma_start_transfer(chan); 1397 } 1398 1399 static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid) 1400 { 1401 struct stm32_mdma_device *dmadev = devid; 1402 struct stm32_mdma_chan *chan; 1403 u32 reg, id, ccr, ien, status; 1404 1405 /* Find out which channel generates the interrupt */ 1406 status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0); 1407 if (!status) { 1408 dev_dbg(mdma2dev(dmadev), "spurious it\n"); 1409 return IRQ_NONE; 1410 } 1411 id = __ffs(status); 1412 chan = &dmadev->chan[id]; 1413 1414 /* Handle interrupt for the channel */ 1415 spin_lock(&chan->vchan.lock); 1416 status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id)); 1417 /* Mask Channel ReQuest Active bit which can be set in case of MEM2MEM */ 1418 status &= ~STM32_MDMA_CISR_CRQA; 1419 ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(id)); 1420 ien = (ccr & STM32_MDMA_CCR_IRQ_MASK) >> 1; 1421 1422 if (!(status & ien)) { 1423 spin_unlock(&chan->vchan.lock); 1424 if (chan->busy) 1425 dev_warn(chan2dev(chan), 1426 "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien); 1427 else 1428 dev_dbg(chan2dev(chan), 1429 "spurious it (status=0x%04x, ien=0x%04x)\n", status, ien); 1430 return IRQ_NONE; 1431 } 1432 1433 reg = STM32_MDMA_CIFCR(id); 1434 1435 if (status & STM32_MDMA_CISR_TEIF) { 1436 dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", 1437 readl_relaxed(dmadev->base + STM32_MDMA_CESR(id))); 1438 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF); 1439 status &= ~STM32_MDMA_CISR_TEIF; 1440 } 1441 1442 if (status & STM32_MDMA_CISR_CTCIF) { 1443 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF); 1444 status &= ~STM32_MDMA_CISR_CTCIF; 1445 stm32_mdma_xfer_end(chan); 1446 } 1447 1448 if (status & STM32_MDMA_CISR_BRTIF) { 1449 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF); 1450 status &= ~STM32_MDMA_CISR_BRTIF; 1451 } 1452 1453 if (status & STM32_MDMA_CISR_BTIF) { 1454 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF); 1455 status &= ~STM32_MDMA_CISR_BTIF; 1456 chan->curr_hwdesc++; 1457 if (chan->desc && chan->desc->cyclic) { 1458 if (chan->curr_hwdesc == chan->desc->count) 1459 chan->curr_hwdesc = 0; 1460 vchan_cyclic_callback(&chan->desc->vdesc); 1461 } 1462 } 1463 1464 if (status & STM32_MDMA_CISR_TCIF) { 1465 stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF); 1466 status &= ~STM32_MDMA_CISR_TCIF; 1467 } 1468 1469 if (status) { 1470 stm32_mdma_set_bits(dmadev, reg, status); 1471 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 1472 if (!(ccr & STM32_MDMA_CCR_EN)) 1473 dev_err(chan2dev(chan), "chan disabled by HW\n"); 1474 } 1475 1476 spin_unlock(&chan->vchan.lock); 1477 1478 return IRQ_HANDLED; 1479 } 1480 1481 static int stm32_mdma_alloc_chan_resources(struct dma_chan *c) 1482 { 1483 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1484 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1485 int ret; 1486 1487 chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device), 1488 c->device->dev, 1489 sizeof(struct stm32_mdma_hwdesc), 1490 __alignof__(struct stm32_mdma_hwdesc), 1491 0); 1492 if (!chan->desc_pool) { 1493 dev_err(chan2dev(chan), "failed to allocate descriptor pool\n"); 1494 return -ENOMEM; 1495 } 1496 1497 ret = pm_runtime_resume_and_get(dmadev->ddev.dev); 1498 if (ret < 0) 1499 return ret; 1500 1501 ret = stm32_mdma_disable_chan(chan); 1502 if (ret < 0) 1503 pm_runtime_put(dmadev->ddev.dev); 1504 1505 return ret; 1506 } 1507 1508 static void stm32_mdma_free_chan_resources(struct dma_chan *c) 1509 { 1510 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1511 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1512 unsigned long flags; 1513 1514 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1515 1516 if (chan->busy) { 1517 spin_lock_irqsave(&chan->vchan.lock, flags); 1518 stm32_mdma_stop(chan); 1519 chan->desc = NULL; 1520 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1521 } 1522 1523 pm_runtime_put(dmadev->ddev.dev); 1524 vchan_free_chan_resources(to_virt_chan(c)); 1525 dmam_pool_destroy(chan->desc_pool); 1526 chan->desc_pool = NULL; 1527 } 1528 1529 static bool stm32_mdma_filter_fn(struct dma_chan *c, void *fn_param) 1530 { 1531 struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c); 1532 struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan); 1533 1534 /* Check if chan is marked Secure */ 1535 if (dmadev->chan_reserved & BIT(chan->id)) 1536 return false; 1537 1538 return true; 1539 } 1540 1541 static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec, 1542 struct of_dma *ofdma) 1543 { 1544 struct stm32_mdma_device *dmadev = ofdma->of_dma_data; 1545 dma_cap_mask_t mask = dmadev->ddev.cap_mask; 1546 struct stm32_mdma_chan *chan; 1547 struct dma_chan *c; 1548 struct stm32_mdma_chan_config config; 1549 1550 if (dma_spec->args_count < 5) { 1551 dev_err(mdma2dev(dmadev), "Bad number of args\n"); 1552 return NULL; 1553 } 1554 1555 memset(&config, 0, sizeof(config)); 1556 config.request = dma_spec->args[0]; 1557 config.priority_level = dma_spec->args[1]; 1558 config.transfer_config = dma_spec->args[2]; 1559 config.mask_addr = dma_spec->args[3]; 1560 config.mask_data = dma_spec->args[4]; 1561 1562 if (config.request >= dmadev->nr_requests) { 1563 dev_err(mdma2dev(dmadev), "Bad request line\n"); 1564 return NULL; 1565 } 1566 1567 if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) { 1568 dev_err(mdma2dev(dmadev), "Priority level not supported\n"); 1569 return NULL; 1570 } 1571 1572 c = __dma_request_channel(&mask, stm32_mdma_filter_fn, &config, ofdma->of_node); 1573 if (!c) { 1574 dev_err(mdma2dev(dmadev), "No more channels available\n"); 1575 return NULL; 1576 } 1577 1578 chan = to_stm32_mdma_chan(c); 1579 chan->chan_config = config; 1580 1581 return c; 1582 } 1583 1584 static const struct of_device_id stm32_mdma_of_match[] = { 1585 { .compatible = "st,stm32h7-mdma", }, 1586 { /* sentinel */ }, 1587 }; 1588 MODULE_DEVICE_TABLE(of, stm32_mdma_of_match); 1589 1590 static int stm32_mdma_probe(struct platform_device *pdev) 1591 { 1592 struct stm32_mdma_chan *chan; 1593 struct stm32_mdma_device *dmadev; 1594 struct dma_device *dd; 1595 struct device_node *of_node; 1596 struct reset_control *rst; 1597 u32 nr_channels, nr_requests; 1598 int i, count, ret; 1599 1600 of_node = pdev->dev.of_node; 1601 if (!of_node) 1602 return -ENODEV; 1603 1604 ret = device_property_read_u32(&pdev->dev, "dma-channels", 1605 &nr_channels); 1606 if (ret) { 1607 nr_channels = STM32_MDMA_MAX_CHANNELS; 1608 dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n", 1609 nr_channels); 1610 } 1611 1612 ret = device_property_read_u32(&pdev->dev, "dma-requests", 1613 &nr_requests); 1614 if (ret) { 1615 nr_requests = STM32_MDMA_MAX_REQUESTS; 1616 dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n", 1617 nr_requests); 1618 } 1619 1620 count = device_property_count_u32(&pdev->dev, "st,ahb-addr-masks"); 1621 if (count < 0) 1622 count = 0; 1623 1624 dmadev = devm_kzalloc(&pdev->dev, 1625 struct_size(dmadev, ahb_addr_masks, count), 1626 GFP_KERNEL); 1627 if (!dmadev) 1628 return -ENOMEM; 1629 dmadev->nr_ahb_addr_masks = count; 1630 1631 dmadev->nr_channels = nr_channels; 1632 dmadev->nr_requests = nr_requests; 1633 device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks", 1634 dmadev->ahb_addr_masks, 1635 count); 1636 1637 dmadev->base = devm_platform_ioremap_resource(pdev, 0); 1638 if (IS_ERR(dmadev->base)) 1639 return PTR_ERR(dmadev->base); 1640 1641 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1642 if (IS_ERR(dmadev->clk)) 1643 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), 1644 "Missing clock controller\n"); 1645 1646 ret = clk_prepare_enable(dmadev->clk); 1647 if (ret < 0) { 1648 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1649 return ret; 1650 } 1651 1652 rst = devm_reset_control_get(&pdev->dev, NULL); 1653 if (IS_ERR(rst)) { 1654 ret = PTR_ERR(rst); 1655 if (ret == -EPROBE_DEFER) 1656 goto err_clk; 1657 } else { 1658 reset_control_assert(rst); 1659 udelay(2); 1660 reset_control_deassert(rst); 1661 } 1662 1663 dd = &dmadev->ddev; 1664 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1665 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1666 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1667 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1668 dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources; 1669 dd->device_free_chan_resources = stm32_mdma_free_chan_resources; 1670 dd->device_tx_status = stm32_mdma_tx_status; 1671 dd->device_issue_pending = stm32_mdma_issue_pending; 1672 dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg; 1673 dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic; 1674 dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy; 1675 dd->device_config = stm32_mdma_slave_config; 1676 dd->device_pause = stm32_mdma_pause; 1677 dd->device_resume = stm32_mdma_resume; 1678 dd->device_terminate_all = stm32_mdma_terminate_all; 1679 dd->device_synchronize = stm32_mdma_synchronize; 1680 dd->descriptor_reuse = true; 1681 1682 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1683 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1684 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 1685 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); 1686 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1687 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1688 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 1689 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); 1690 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | 1691 BIT(DMA_MEM_TO_MEM); 1692 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1693 dd->max_burst = STM32_MDMA_MAX_BURST; 1694 dd->dev = &pdev->dev; 1695 INIT_LIST_HEAD(&dd->channels); 1696 1697 for (i = 0; i < dmadev->nr_channels; i++) { 1698 chan = &dmadev->chan[i]; 1699 chan->id = i; 1700 1701 if (stm32_mdma_read(dmadev, STM32_MDMA_CCR(i)) & STM32_MDMA_CCR_SM) 1702 dmadev->chan_reserved |= BIT(i); 1703 1704 chan->vchan.desc_free = stm32_mdma_desc_free; 1705 vchan_init(&chan->vchan, dd); 1706 } 1707 1708 dmadev->irq = platform_get_irq(pdev, 0); 1709 if (dmadev->irq < 0) { 1710 ret = dmadev->irq; 1711 goto err_clk; 1712 } 1713 1714 ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler, 1715 0, dev_name(&pdev->dev), dmadev); 1716 if (ret) { 1717 dev_err(&pdev->dev, "failed to request IRQ\n"); 1718 goto err_clk; 1719 } 1720 1721 ret = dmaenginem_async_device_register(dd); 1722 if (ret) 1723 goto err_clk; 1724 1725 ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev); 1726 if (ret < 0) { 1727 dev_err(&pdev->dev, 1728 "STM32 MDMA DMA OF registration failed %d\n", ret); 1729 goto err_clk; 1730 } 1731 1732 platform_set_drvdata(pdev, dmadev); 1733 pm_runtime_set_active(&pdev->dev); 1734 pm_runtime_enable(&pdev->dev); 1735 pm_runtime_get_noresume(&pdev->dev); 1736 pm_runtime_put(&pdev->dev); 1737 1738 dev_info(&pdev->dev, "STM32 MDMA driver registered\n"); 1739 1740 return 0; 1741 1742 err_clk: 1743 clk_disable_unprepare(dmadev->clk); 1744 1745 return ret; 1746 } 1747 1748 #ifdef CONFIG_PM 1749 static int stm32_mdma_runtime_suspend(struct device *dev) 1750 { 1751 struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); 1752 1753 clk_disable_unprepare(dmadev->clk); 1754 1755 return 0; 1756 } 1757 1758 static int stm32_mdma_runtime_resume(struct device *dev) 1759 { 1760 struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); 1761 int ret; 1762 1763 ret = clk_prepare_enable(dmadev->clk); 1764 if (ret) { 1765 dev_err(dev, "failed to prepare_enable clock\n"); 1766 return ret; 1767 } 1768 1769 return 0; 1770 } 1771 #endif 1772 1773 #ifdef CONFIG_PM_SLEEP 1774 static int stm32_mdma_pm_suspend(struct device *dev) 1775 { 1776 struct stm32_mdma_device *dmadev = dev_get_drvdata(dev); 1777 u32 ccr, id; 1778 int ret; 1779 1780 ret = pm_runtime_resume_and_get(dev); 1781 if (ret < 0) 1782 return ret; 1783 1784 for (id = 0; id < dmadev->nr_channels; id++) { 1785 ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(id)); 1786 if (ccr & STM32_MDMA_CCR_EN) { 1787 dev_warn(dev, "Suspend is prevented by Chan %i\n", id); 1788 return -EBUSY; 1789 } 1790 } 1791 1792 pm_runtime_put_sync(dev); 1793 1794 pm_runtime_force_suspend(dev); 1795 1796 return 0; 1797 } 1798 1799 static int stm32_mdma_pm_resume(struct device *dev) 1800 { 1801 return pm_runtime_force_resume(dev); 1802 } 1803 #endif 1804 1805 static const struct dev_pm_ops stm32_mdma_pm_ops = { 1806 SET_SYSTEM_SLEEP_PM_OPS(stm32_mdma_pm_suspend, stm32_mdma_pm_resume) 1807 SET_RUNTIME_PM_OPS(stm32_mdma_runtime_suspend, 1808 stm32_mdma_runtime_resume, NULL) 1809 }; 1810 1811 static struct platform_driver stm32_mdma_driver = { 1812 .probe = stm32_mdma_probe, 1813 .driver = { 1814 .name = "stm32-mdma", 1815 .of_match_table = stm32_mdma_of_match, 1816 .pm = &stm32_mdma_pm_ops, 1817 }, 1818 }; 1819 1820 static int __init stm32_mdma_init(void) 1821 { 1822 return platform_driver_register(&stm32_mdma_driver); 1823 } 1824 1825 subsys_initcall(stm32_mdma_init); 1826 1827 MODULE_DESCRIPTION("Driver for STM32 MDMA controller"); 1828 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>"); 1829 MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>"); 1830