xref: /linux/drivers/dma/stm32/stm32-dma.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "../virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_ISR(n)		(((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR)
36 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
37 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
38 #define STM32_DMA_IFCR(n)		(((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR)
39 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
40 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
41 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
42 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
43 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
44 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
45 					 | STM32_DMA_TEI \
46 					 | STM32_DMA_DMEI \
47 					 | STM32_DMA_FEI)
48 /*
49  * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits;
50  * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
51  */
52 #define STM32_DMA_FLAGS_SHIFT(n)	({ typeof(n) (_n) = (n); \
53 					   (((_n) & 2) << 3) | (((_n) & 1) * 6); })
54 
55 /* DMA Stream x Configuration Register */
56 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
57 #define STM32_DMA_SCR_REQ_MASK		GENMASK(27, 25)
58 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
59 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
60 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
61 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
62 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
63 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
64 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
65 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
66 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
67 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
68 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
69 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
70 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
71 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
72 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
73 						*/
74 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
75 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
76 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
77 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
78 					| STM32_DMA_SCR_MINC \
79 					| STM32_DMA_SCR_PINCOS \
80 					| STM32_DMA_SCR_PL_MASK)
81 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
82 					| STM32_DMA_SCR_TEIE \
83 					| STM32_DMA_SCR_DMEIE)
84 
85 /* DMA Stream x number of data register */
86 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
87 
88 /* DMA stream peripheral address register */
89 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
90 
91 /* DMA stream x memory 0 address register */
92 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
93 
94 /* DMA stream x memory 1 address register */
95 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
96 
97 /* DMA stream x FIFO control register */
98 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
99 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
100 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
103 					| STM32_DMA_SFCR_DMDIS)
104 
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM		0x00
107 #define	STM32_DMA_MEM_TO_DEV		0x01
108 #define	STM32_DMA_MEM_TO_MEM		0x02
109 
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW		0x00
112 #define STM32_DMA_PRIORITY_MEDIUM	0x01
113 #define STM32_DMA_PRIORITY_HIGH		0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
115 
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
122 
123 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
130 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS		0x08
132 #define STM32_DMA_MAX_REQUEST_ID	0x08
133 #define STM32_DMA_MAX_DATA_PARAM	0x03
134 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST		4
136 #define STM32_DMA_MAX_BURST		16
137 
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
140 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
141 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
142 #define STM32_DMA_MDMA_STREAM_ID_MASK	GENMASK(19, 16)
143 
144 enum stm32_dma_width {
145 	STM32_DMA_BYTE,
146 	STM32_DMA_HALF_WORD,
147 	STM32_DMA_WORD,
148 };
149 
150 enum stm32_dma_burst_size {
151 	STM32_DMA_BURST_SINGLE,
152 	STM32_DMA_BURST_INCR4,
153 	STM32_DMA_BURST_INCR8,
154 	STM32_DMA_BURST_INCR16,
155 };
156 
157 /**
158  * struct stm32_dma_cfg - STM32 DMA custom configuration
159  * @channel_id: channel ID
160  * @request_line: DMA request
161  * @stream_config: 32bit mask specifying the DMA channel configuration
162  * @features: 32bit mask specifying the DMA Feature list
163  */
164 struct stm32_dma_cfg {
165 	u32 channel_id;
166 	u32 request_line;
167 	u32 stream_config;
168 	u32 features;
169 };
170 
171 struct stm32_dma_chan_reg {
172 	u32 dma_lisr;
173 	u32 dma_hisr;
174 	u32 dma_lifcr;
175 	u32 dma_hifcr;
176 	u32 dma_scr;
177 	u32 dma_sndtr;
178 	u32 dma_spar;
179 	u32 dma_sm0ar;
180 	u32 dma_sm1ar;
181 	u32 dma_sfcr;
182 };
183 
184 struct stm32_dma_sg_req {
185 	u32 len;
186 	struct stm32_dma_chan_reg chan_reg;
187 };
188 
189 struct stm32_dma_desc {
190 	struct virt_dma_desc vdesc;
191 	bool cyclic;
192 	u32 num_sgs;
193 	struct stm32_dma_sg_req sg_req[] __counted_by(num_sgs);
194 };
195 
196 /**
197  * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration
198  * @stream_id: DMA request to trigger STM32 MDMA transfer
199  * @ifcr: DMA interrupt flag clear register address,
200  *        used by STM32 MDMA to clear DMA Transfer Complete flag
201  * @tcf: DMA Transfer Complete flag
202  */
203 struct stm32_dma_mdma_config {
204 	u32 stream_id;
205 	u32 ifcr;
206 	u32 tcf;
207 };
208 
209 struct stm32_dma_chan {
210 	struct virt_dma_chan vchan;
211 	bool config_init;
212 	bool busy;
213 	u32 id;
214 	u32 irq;
215 	struct stm32_dma_desc *desc;
216 	u32 next_sg;
217 	struct dma_slave_config	dma_sconfig;
218 	struct stm32_dma_chan_reg chan_reg;
219 	u32 threshold;
220 	u32 mem_burst;
221 	u32 mem_width;
222 	enum dma_status status;
223 	bool trig_mdma;
224 	struct stm32_dma_mdma_config mdma_config;
225 };
226 
227 struct stm32_dma_device {
228 	struct dma_device ddev;
229 	void __iomem *base;
230 	struct clk *clk;
231 	bool mem2mem;
232 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
233 };
234 
235 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
236 {
237 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
238 			    ddev);
239 }
240 
241 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
242 {
243 	return container_of(c, struct stm32_dma_chan, vchan.chan);
244 }
245 
246 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
247 {
248 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
249 }
250 
251 static struct device *chan2dev(struct stm32_dma_chan *chan)
252 {
253 	return &chan->vchan.chan.dev->device;
254 }
255 
256 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
257 {
258 	return readl_relaxed(dmadev->base + reg);
259 }
260 
261 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
262 {
263 	writel_relaxed(val, dmadev->base + reg);
264 }
265 
266 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
267 			       enum dma_slave_buswidth width)
268 {
269 	switch (width) {
270 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
271 		return STM32_DMA_BYTE;
272 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
273 		return STM32_DMA_HALF_WORD;
274 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
275 		return STM32_DMA_WORD;
276 	default:
277 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
278 		return -EINVAL;
279 	}
280 }
281 
282 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
283 						       dma_addr_t buf_addr,
284 						       u32 threshold)
285 {
286 	enum dma_slave_buswidth max_width;
287 
288 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
289 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
290 	else
291 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
292 
293 	while ((buf_len < max_width  || buf_len % max_width) &&
294 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
295 		max_width = max_width >> 1;
296 
297 	if (buf_addr & (max_width - 1))
298 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
299 
300 	return max_width;
301 }
302 
303 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
304 						enum dma_slave_buswidth width)
305 {
306 	u32 remaining;
307 
308 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
309 		return false;
310 
311 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
312 		if (burst != 0) {
313 			/*
314 			 * If number of beats fit in several whole bursts
315 			 * this configuration is allowed.
316 			 */
317 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
318 				     (threshold + 1) / 4) % burst;
319 
320 			if (remaining == 0)
321 				return true;
322 		} else {
323 			return true;
324 		}
325 	}
326 
327 	return false;
328 }
329 
330 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
331 {
332 	/* If FIFO direct mode, burst is not possible */
333 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
334 		return false;
335 
336 	/*
337 	 * Buffer or period length has to be aligned on FIFO depth.
338 	 * Otherwise bytes may be stuck within FIFO at buffer or period
339 	 * length.
340 	 */
341 	return ((buf_len % ((threshold + 1) * 4)) == 0);
342 }
343 
344 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
345 				    enum dma_slave_buswidth width)
346 {
347 	u32 best_burst = max_burst;
348 
349 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
350 		return 0;
351 
352 	while ((buf_len < best_burst * width && best_burst > 1) ||
353 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
354 						    width)) {
355 		if (best_burst > STM32_DMA_MIN_BURST)
356 			best_burst = best_burst >> 1;
357 		else
358 			best_burst = 0;
359 	}
360 
361 	return best_burst;
362 }
363 
364 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
365 {
366 	switch (maxburst) {
367 	case 0:
368 	case 1:
369 		return STM32_DMA_BURST_SINGLE;
370 	case 4:
371 		return STM32_DMA_BURST_INCR4;
372 	case 8:
373 		return STM32_DMA_BURST_INCR8;
374 	case 16:
375 		return STM32_DMA_BURST_INCR16;
376 	default:
377 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
378 		return -EINVAL;
379 	}
380 }
381 
382 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
383 				      u32 src_burst, u32 dst_burst)
384 {
385 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
386 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
387 
388 	if (!src_burst && !dst_burst) {
389 		/* Using direct mode */
390 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
391 	} else {
392 		/* Using FIFO mode */
393 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
394 	}
395 }
396 
397 static int stm32_dma_slave_config(struct dma_chan *c,
398 				  struct dma_slave_config *config)
399 {
400 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
401 
402 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
403 
404 	/* Check if user is requesting DMA to trigger STM32 MDMA */
405 	if (config->peripheral_size) {
406 		config->peripheral_config = &chan->mdma_config;
407 		config->peripheral_size = sizeof(chan->mdma_config);
408 		chan->trig_mdma = true;
409 	}
410 
411 	chan->config_init = true;
412 
413 	return 0;
414 }
415 
416 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
417 {
418 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
419 	u32 flags, dma_isr;
420 
421 	/*
422 	 * Read "flags" from DMA_xISR register corresponding to the selected
423 	 * DMA channel at the correct bit offset inside that register.
424 	 */
425 
426 	dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id));
427 	flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id);
428 
429 	return flags & STM32_DMA_MASKI;
430 }
431 
432 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
433 {
434 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
435 	u32 dma_ifcr;
436 
437 	/*
438 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
439 	 * DMA channel at the correct bit offset inside that register.
440 	 */
441 	flags &= STM32_DMA_MASKI;
442 	dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id);
443 
444 	stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr);
445 }
446 
447 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
448 {
449 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
450 	u32 dma_scr, id, reg;
451 
452 	id = chan->id;
453 	reg = STM32_DMA_SCR(id);
454 	dma_scr = stm32_dma_read(dmadev, reg);
455 
456 	if (dma_scr & STM32_DMA_SCR_EN) {
457 		dma_scr &= ~STM32_DMA_SCR_EN;
458 		stm32_dma_write(dmadev, reg, dma_scr);
459 
460 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
461 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
462 					10, 1000000);
463 	}
464 
465 	return 0;
466 }
467 
468 static void stm32_dma_stop(struct stm32_dma_chan *chan)
469 {
470 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
471 	u32 dma_scr, dma_sfcr, status;
472 	int ret;
473 
474 	/* Disable interrupts */
475 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
476 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
477 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
478 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
479 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
480 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
481 
482 	/* Disable DMA */
483 	ret = stm32_dma_disable_chan(chan);
484 	if (ret < 0)
485 		return;
486 
487 	/* Clear interrupt status if it is there */
488 	status = stm32_dma_irq_status(chan);
489 	if (status) {
490 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
491 			__func__, status);
492 		stm32_dma_irq_clear(chan, status);
493 	}
494 
495 	chan->busy = false;
496 	chan->status = DMA_COMPLETE;
497 }
498 
499 static int stm32_dma_terminate_all(struct dma_chan *c)
500 {
501 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
502 	unsigned long flags;
503 	LIST_HEAD(head);
504 
505 	spin_lock_irqsave(&chan->vchan.lock, flags);
506 
507 	if (chan->desc) {
508 		dma_cookie_complete(&chan->desc->vdesc.tx);
509 		vchan_terminate_vdesc(&chan->desc->vdesc);
510 		if (chan->busy)
511 			stm32_dma_stop(chan);
512 		chan->desc = NULL;
513 	}
514 
515 	vchan_get_all_descriptors(&chan->vchan, &head);
516 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
517 	vchan_dma_desc_free_list(&chan->vchan, &head);
518 
519 	return 0;
520 }
521 
522 static void stm32_dma_synchronize(struct dma_chan *c)
523 {
524 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
525 
526 	vchan_synchronize(&chan->vchan);
527 }
528 
529 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
530 {
531 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
532 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
533 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
534 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
535 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
536 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
537 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
538 
539 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
540 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
541 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
542 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
543 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
544 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
545 }
546 
547 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan)
548 {
549 	chan->next_sg++;
550 	if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs))
551 		chan->next_sg = 0;
552 }
553 
554 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
555 
556 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
557 {
558 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
559 	struct virt_dma_desc *vdesc;
560 	struct stm32_dma_sg_req *sg_req;
561 	struct stm32_dma_chan_reg *reg;
562 	u32 status;
563 	int ret;
564 
565 	ret = stm32_dma_disable_chan(chan);
566 	if (ret < 0)
567 		return;
568 
569 	if (!chan->desc) {
570 		vdesc = vchan_next_desc(&chan->vchan);
571 		if (!vdesc)
572 			return;
573 
574 		list_del(&vdesc->node);
575 
576 		chan->desc = to_stm32_dma_desc(vdesc);
577 		chan->next_sg = 0;
578 	}
579 
580 	if (chan->next_sg == chan->desc->num_sgs)
581 		chan->next_sg = 0;
582 
583 	sg_req = &chan->desc->sg_req[chan->next_sg];
584 	reg = &sg_req->chan_reg;
585 
586 	/* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */
587 	if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV)
588 		reg->dma_scr &= ~STM32_DMA_SCR_TCIE;
589 
590 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
591 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
592 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
593 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
594 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
595 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
596 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
597 
598 	stm32_dma_sg_inc(chan);
599 
600 	/* Clear interrupt status if it is there */
601 	status = stm32_dma_irq_status(chan);
602 	if (status)
603 		stm32_dma_irq_clear(chan, status);
604 
605 	if (chan->desc->cyclic)
606 		stm32_dma_configure_next_sg(chan);
607 
608 	stm32_dma_dump_reg(chan);
609 
610 	/* Start DMA */
611 	chan->busy = true;
612 	chan->status = DMA_IN_PROGRESS;
613 	reg->dma_scr |= STM32_DMA_SCR_EN;
614 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
615 
616 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
617 }
618 
619 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
620 {
621 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
622 	struct stm32_dma_sg_req *sg_req;
623 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
624 
625 	id = chan->id;
626 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
627 
628 	sg_req = &chan->desc->sg_req[chan->next_sg];
629 
630 	if (dma_scr & STM32_DMA_SCR_CT) {
631 		dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
632 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
633 		dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
634 			stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
635 	} else {
636 		dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
637 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
638 		dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
639 			stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
640 	}
641 }
642 
643 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan)
644 {
645 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
646 	u32 dma_scr;
647 
648 	/*
649 	 * Read and store current remaining data items and peripheral/memory addresses to be
650 	 * updated on resume
651 	 */
652 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
653 	/*
654 	 * Transfer can be paused while between a previous resume and reconfiguration on transfer
655 	 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need
656 	 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete.
657 	 */
658 	if (chan->desc && chan->desc->cyclic) {
659 		if (chan->desc->num_sgs == 1)
660 			dma_scr |= STM32_DMA_SCR_CIRC;
661 		else
662 			dma_scr |= STM32_DMA_SCR_DBM;
663 	}
664 	chan->chan_reg.dma_scr = dma_scr;
665 
666 	/*
667 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise
668 	 * on resume NDTR autoreload value will be wrong (lower than the initial period length)
669 	 */
670 	if (chan->desc && chan->desc->cyclic) {
671 		dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC);
672 		stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
673 	}
674 
675 	chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
676 
677 	chan->status = DMA_PAUSED;
678 
679 	dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
680 }
681 
682 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan)
683 {
684 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
685 	struct stm32_dma_sg_req *sg_req;
686 	u32 dma_scr, status, id;
687 
688 	id = chan->id;
689 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
690 
691 	/* Clear interrupt status if it is there */
692 	status = stm32_dma_irq_status(chan);
693 	if (status)
694 		stm32_dma_irq_clear(chan, status);
695 
696 	if (!chan->next_sg)
697 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
698 	else
699 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
700 
701 	/* Reconfigure NDTR with the initial value */
702 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr);
703 
704 	/* Restore SPAR */
705 	stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar);
706 
707 	/* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */
708 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar);
709 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar);
710 
711 	/* Reactivate CIRC/DBM if needed */
712 	if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) {
713 		dma_scr |= STM32_DMA_SCR_DBM;
714 		/* Restore CT */
715 		if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT)
716 			dma_scr &= ~STM32_DMA_SCR_CT;
717 		else
718 			dma_scr |= STM32_DMA_SCR_CT;
719 	} else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) {
720 		dma_scr |= STM32_DMA_SCR_CIRC;
721 	}
722 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
723 
724 	stm32_dma_configure_next_sg(chan);
725 
726 	stm32_dma_dump_reg(chan);
727 
728 	dma_scr |= STM32_DMA_SCR_EN;
729 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
730 
731 	dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan);
732 }
733 
734 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr)
735 {
736 	if (!chan->desc)
737 		return;
738 
739 	if (chan->desc->cyclic) {
740 		vchan_cyclic_callback(&chan->desc->vdesc);
741 		if (chan->trig_mdma)
742 			return;
743 		stm32_dma_sg_inc(chan);
744 		/* cyclic while CIRC/DBM disable => post resume reconfiguration needed */
745 		if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)))
746 			stm32_dma_post_resume_reconfigure(chan);
747 		else if (scr & STM32_DMA_SCR_DBM)
748 			stm32_dma_configure_next_sg(chan);
749 	} else {
750 		chan->busy = false;
751 		chan->status = DMA_COMPLETE;
752 		if (chan->next_sg == chan->desc->num_sgs) {
753 			vchan_cookie_complete(&chan->desc->vdesc);
754 			chan->desc = NULL;
755 		}
756 		stm32_dma_start_transfer(chan);
757 	}
758 }
759 
760 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
761 {
762 	struct stm32_dma_chan *chan = devid;
763 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
764 	u32 status, scr, sfcr;
765 
766 	spin_lock(&chan->vchan.lock);
767 
768 	status = stm32_dma_irq_status(chan);
769 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
770 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
771 
772 	if (status & STM32_DMA_FEI) {
773 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
774 		status &= ~STM32_DMA_FEI;
775 		if (sfcr & STM32_DMA_SFCR_FEIE) {
776 			if (!(scr & STM32_DMA_SCR_EN) &&
777 			    !(status & STM32_DMA_TCI))
778 				dev_err(chan2dev(chan), "FIFO Error\n");
779 			else
780 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
781 		}
782 	}
783 	if (status & STM32_DMA_DMEI) {
784 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
785 		status &= ~STM32_DMA_DMEI;
786 		if (sfcr & STM32_DMA_SCR_DMEIE)
787 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
788 	}
789 
790 	if (status & STM32_DMA_TCI) {
791 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
792 		if (scr & STM32_DMA_SCR_TCIE) {
793 			if (chan->status != DMA_PAUSED)
794 				stm32_dma_handle_chan_done(chan, scr);
795 		}
796 		status &= ~STM32_DMA_TCI;
797 	}
798 
799 	if (status & STM32_DMA_HTI) {
800 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
801 		status &= ~STM32_DMA_HTI;
802 	}
803 
804 	if (status) {
805 		stm32_dma_irq_clear(chan, status);
806 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
807 		if (!(scr & STM32_DMA_SCR_EN))
808 			dev_err(chan2dev(chan), "chan disabled by HW\n");
809 	}
810 
811 	spin_unlock(&chan->vchan.lock);
812 
813 	return IRQ_HANDLED;
814 }
815 
816 static void stm32_dma_issue_pending(struct dma_chan *c)
817 {
818 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
819 	unsigned long flags;
820 
821 	spin_lock_irqsave(&chan->vchan.lock, flags);
822 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
823 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
824 		stm32_dma_start_transfer(chan);
825 
826 	}
827 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
828 }
829 
830 static int stm32_dma_pause(struct dma_chan *c)
831 {
832 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
833 	unsigned long flags;
834 	int ret;
835 
836 	if (chan->status != DMA_IN_PROGRESS)
837 		return -EPERM;
838 
839 	spin_lock_irqsave(&chan->vchan.lock, flags);
840 
841 	ret = stm32_dma_disable_chan(chan);
842 	if (!ret)
843 		stm32_dma_handle_chan_paused(chan);
844 
845 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
846 
847 	return ret;
848 }
849 
850 static int stm32_dma_resume(struct dma_chan *c)
851 {
852 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
853 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
854 	struct stm32_dma_chan_reg chan_reg = chan->chan_reg;
855 	u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar;
856 	struct stm32_dma_sg_req *sg_req;
857 	unsigned long flags;
858 
859 	if (chan->status != DMA_PAUSED)
860 		return -EPERM;
861 
862 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
863 	if (WARN_ON(scr & STM32_DMA_SCR_EN))
864 		return -EPERM;
865 
866 	spin_lock_irqsave(&chan->vchan.lock, flags);
867 
868 	/* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */
869 	if (!chan->next_sg)
870 		sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1];
871 	else
872 		sg_req = &chan->desc->sg_req[chan->next_sg - 1];
873 
874 	ndtr = sg_req->chan_reg.dma_sndtr;
875 	offset = (ndtr - chan_reg.dma_sndtr);
876 	offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr);
877 	spar = sg_req->chan_reg.dma_spar;
878 	sm0ar = sg_req->chan_reg.dma_sm0ar;
879 	sm1ar = sg_req->chan_reg.dma_sm1ar;
880 
881 	/*
882 	 * The peripheral and/or memory addresses have to be updated in order to adjust the
883 	 * address pointers. Need to check increment.
884 	 */
885 	if (chan_reg.dma_scr & STM32_DMA_SCR_PINC)
886 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset);
887 	else
888 		stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar);
889 
890 	if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC))
891 		offset = 0;
892 
893 	/*
894 	 * In case of DBM, the current target could be SM1AR.
895 	 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so
896 	 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1.
897 	 */
898 	if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT))
899 		stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset);
900 	else
901 		stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset);
902 
903 	/* NDTR must be restored otherwise internal HW counter won't be correctly reset */
904 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr);
905 
906 	/*
907 	 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt,
908 	 * otherwise NDTR autoreload value will be wrong (lower than the initial period length)
909 	 */
910 	if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))
911 		chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM);
912 
913 	if (chan_reg.dma_scr & STM32_DMA_SCR_DBM)
914 		stm32_dma_configure_next_sg(chan);
915 
916 	stm32_dma_dump_reg(chan);
917 
918 	/* The stream may then be re-enabled to restart transfer from the point it was stopped */
919 	chan->status = DMA_IN_PROGRESS;
920 	chan_reg.dma_scr |= STM32_DMA_SCR_EN;
921 	stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr);
922 
923 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
924 
925 	dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
926 
927 	return 0;
928 }
929 
930 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
931 				    enum dma_transfer_direction direction,
932 				    enum dma_slave_buswidth *buswidth,
933 				    u32 buf_len, dma_addr_t buf_addr)
934 {
935 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
936 	int src_bus_width, dst_bus_width;
937 	int src_burst_size, dst_burst_size;
938 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
939 	u32 dma_scr, fifoth;
940 
941 	src_addr_width = chan->dma_sconfig.src_addr_width;
942 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
943 	src_maxburst = chan->dma_sconfig.src_maxburst;
944 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
945 	fifoth = chan->threshold;
946 
947 	switch (direction) {
948 	case DMA_MEM_TO_DEV:
949 		/* Set device data size */
950 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
951 		if (dst_bus_width < 0)
952 			return dst_bus_width;
953 
954 		/* Set device burst size */
955 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
956 							  dst_maxburst,
957 							  fifoth,
958 							  dst_addr_width);
959 
960 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
961 		if (dst_burst_size < 0)
962 			return dst_burst_size;
963 
964 		/* Set memory data size */
965 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
966 							 fifoth);
967 		chan->mem_width = src_addr_width;
968 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
969 		if (src_bus_width < 0)
970 			return src_bus_width;
971 
972 		/*
973 		 * Set memory burst size - burst not possible if address is not aligned on
974 		 * the address boundary equal to the size of the transfer
975 		 */
976 		if (buf_addr & (buf_len - 1))
977 			src_maxburst = 1;
978 		else
979 			src_maxburst = STM32_DMA_MAX_BURST;
980 		src_best_burst = stm32_dma_get_best_burst(buf_len,
981 							  src_maxburst,
982 							  fifoth,
983 							  src_addr_width);
984 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
985 		if (src_burst_size < 0)
986 			return src_burst_size;
987 
988 		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) |
989 			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) |
990 			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) |
991 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) |
992 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size);
993 
994 		/* Set FIFO threshold */
995 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
996 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
997 			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
998 
999 		/* Set peripheral address */
1000 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
1001 		*buswidth = dst_addr_width;
1002 		break;
1003 
1004 	case DMA_DEV_TO_MEM:
1005 		/* Set device data size */
1006 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
1007 		if (src_bus_width < 0)
1008 			return src_bus_width;
1009 
1010 		/* Set device burst size */
1011 		src_best_burst = stm32_dma_get_best_burst(buf_len,
1012 							  src_maxburst,
1013 							  fifoth,
1014 							  src_addr_width);
1015 		chan->mem_burst = src_best_burst;
1016 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
1017 		if (src_burst_size < 0)
1018 			return src_burst_size;
1019 
1020 		/* Set memory data size */
1021 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
1022 							 fifoth);
1023 		chan->mem_width = dst_addr_width;
1024 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
1025 		if (dst_bus_width < 0)
1026 			return dst_bus_width;
1027 
1028 		/*
1029 		 * Set memory burst size - burst not possible if address is not aligned on
1030 		 * the address boundary equal to the size of the transfer
1031 		 */
1032 		if (buf_addr & (buf_len - 1))
1033 			dst_maxburst = 1;
1034 		else
1035 			dst_maxburst = STM32_DMA_MAX_BURST;
1036 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
1037 							  dst_maxburst,
1038 							  fifoth,
1039 							  dst_addr_width);
1040 		chan->mem_burst = dst_best_burst;
1041 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
1042 		if (dst_burst_size < 0)
1043 			return dst_burst_size;
1044 
1045 		dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) |
1046 			FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) |
1047 			FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) |
1048 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) |
1049 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size);
1050 
1051 		/* Set FIFO threshold */
1052 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
1053 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
1054 			chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth);
1055 
1056 		/* Set peripheral address */
1057 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
1058 		*buswidth = chan->dma_sconfig.src_addr_width;
1059 		break;
1060 
1061 	default:
1062 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
1063 		return -EINVAL;
1064 	}
1065 
1066 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
1067 
1068 	/* Set DMA control register */
1069 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
1070 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
1071 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
1072 	chan->chan_reg.dma_scr |= dma_scr;
1073 
1074 	return 0;
1075 }
1076 
1077 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
1078 {
1079 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
1080 }
1081 
1082 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
1083 	struct dma_chan *c, struct scatterlist *sgl,
1084 	u32 sg_len, enum dma_transfer_direction direction,
1085 	unsigned long flags, void *context)
1086 {
1087 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1088 	struct stm32_dma_desc *desc;
1089 	struct scatterlist *sg;
1090 	enum dma_slave_buswidth buswidth;
1091 	u32 nb_data_items;
1092 	int i, ret;
1093 
1094 	if (!chan->config_init) {
1095 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1096 		return NULL;
1097 	}
1098 
1099 	if (sg_len < 1) {
1100 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
1101 		return NULL;
1102 	}
1103 
1104 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
1105 	if (!desc)
1106 		return NULL;
1107 	desc->num_sgs = sg_len;
1108 
1109 	/* Set peripheral flow controller */
1110 	if (chan->dma_sconfig.device_fc)
1111 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
1112 	else
1113 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1114 
1115 	/* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */
1116 	if (chan->trig_mdma && sg_len > 1) {
1117 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1118 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1119 	}
1120 
1121 	for_each_sg(sgl, sg, sg_len, i) {
1122 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
1123 					       sg_dma_len(sg),
1124 					       sg_dma_address(sg));
1125 		if (ret < 0)
1126 			goto err;
1127 
1128 		desc->sg_req[i].len = sg_dma_len(sg);
1129 
1130 		nb_data_items = desc->sg_req[i].len / buswidth;
1131 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1132 			dev_err(chan2dev(chan), "nb items not supported\n");
1133 			goto err;
1134 		}
1135 
1136 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1137 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1138 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1139 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1140 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
1141 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
1142 		if (chan->trig_mdma)
1143 			desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg);
1144 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1145 	}
1146 	desc->cyclic = false;
1147 
1148 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1149 
1150 err:
1151 	kfree(desc);
1152 	return NULL;
1153 }
1154 
1155 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
1156 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
1157 	size_t period_len, enum dma_transfer_direction direction,
1158 	unsigned long flags)
1159 {
1160 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1161 	struct stm32_dma_desc *desc;
1162 	enum dma_slave_buswidth buswidth;
1163 	u32 num_periods, nb_data_items;
1164 	int i, ret;
1165 
1166 	if (!buf_len || !period_len) {
1167 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
1168 		return NULL;
1169 	}
1170 
1171 	if (!chan->config_init) {
1172 		dev_err(chan2dev(chan), "dma channel is not configured\n");
1173 		return NULL;
1174 	}
1175 
1176 	if (buf_len % period_len) {
1177 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
1178 		return NULL;
1179 	}
1180 
1181 	/*
1182 	 * We allow to take more number of requests till DMA is
1183 	 * not started. The driver will loop over all requests.
1184 	 * Once DMA is started then new requests can be queued only after
1185 	 * terminating the DMA.
1186 	 */
1187 	if (chan->busy) {
1188 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
1189 		return NULL;
1190 	}
1191 
1192 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
1193 				       buf_addr);
1194 	if (ret < 0)
1195 		return NULL;
1196 
1197 	nb_data_items = period_len / buswidth;
1198 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
1199 		dev_err(chan2dev(chan), "number of items not supported\n");
1200 		return NULL;
1201 	}
1202 
1203 	/*  Enable Circular mode or double buffer mode */
1204 	if (buf_len == period_len) {
1205 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
1206 	} else {
1207 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
1208 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT;
1209 	}
1210 
1211 	/* Clear periph ctrl if client set it */
1212 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
1213 
1214 	num_periods = buf_len / period_len;
1215 
1216 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
1217 	if (!desc)
1218 		return NULL;
1219 	desc->num_sgs = num_periods;
1220 
1221 	for (i = 0; i < num_periods; i++) {
1222 		desc->sg_req[i].len = period_len;
1223 
1224 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1225 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
1226 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1227 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1228 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1229 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1230 		if (chan->trig_mdma)
1231 			desc->sg_req[i].chan_reg.dma_sm1ar += period_len;
1232 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1233 		if (!chan->trig_mdma)
1234 			buf_addr += period_len;
1235 	}
1236 	desc->cyclic = true;
1237 
1238 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1239 }
1240 
1241 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1242 	struct dma_chan *c, dma_addr_t dest,
1243 	dma_addr_t src, size_t len, unsigned long flags)
1244 {
1245 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1246 	enum dma_slave_buswidth max_width;
1247 	struct stm32_dma_desc *desc;
1248 	size_t xfer_count, offset;
1249 	u32 num_sgs, best_burst, threshold;
1250 	int dma_burst, i;
1251 
1252 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1253 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1254 	if (!desc)
1255 		return NULL;
1256 	desc->num_sgs = num_sgs;
1257 
1258 	threshold = chan->threshold;
1259 
1260 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1261 		xfer_count = min_t(size_t, len - offset,
1262 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1263 
1264 		/* Compute best burst size */
1265 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1266 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1267 						      threshold, max_width);
1268 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1269 		if (dma_burst < 0) {
1270 			kfree(desc);
1271 			return NULL;
1272 		}
1273 
1274 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1275 		desc->sg_req[i].chan_reg.dma_scr =
1276 			FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) |
1277 			FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) |
1278 			FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) |
1279 			STM32_DMA_SCR_MINC |
1280 			STM32_DMA_SCR_PINC |
1281 			STM32_DMA_SCR_TCIE |
1282 			STM32_DMA_SCR_TEIE;
1283 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1284 		desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold);
1285 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1286 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1287 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1288 		desc->sg_req[i].len = xfer_count;
1289 	}
1290 	desc->cyclic = false;
1291 
1292 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1293 }
1294 
1295 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1296 {
1297 	u32 dma_scr, width, ndtr;
1298 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1299 
1300 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1301 	width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr);
1302 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1303 
1304 	return ndtr << width;
1305 }
1306 
1307 /**
1308  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1309  * @chan: dma channel
1310  *
1311  * This function called when IRQ are disable, checks that the hardware has not
1312  * switched on the next transfer in double buffer mode. The test is done by
1313  * comparing the next_sg memory address with the hardware related register
1314  * (based on CT bit value).
1315  *
1316  * Returns true if expected current transfer is still running or double
1317  * buffer mode is not activated.
1318  */
1319 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1320 {
1321 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1322 	struct stm32_dma_sg_req *sg_req;
1323 	u32 dma_scr, dma_smar, id, period_len;
1324 
1325 	id = chan->id;
1326 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1327 
1328 	/* In cyclic CIRC but not DBM, CT is not used */
1329 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1330 		return true;
1331 
1332 	sg_req = &chan->desc->sg_req[chan->next_sg];
1333 	period_len = sg_req->len;
1334 
1335 	/* DBM - take care of a previous pause/resume not yet post reconfigured */
1336 	if (dma_scr & STM32_DMA_SCR_CT) {
1337 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1338 		/*
1339 		 * If transfer has been pause/resumed,
1340 		 * SM0AR is in the range of [SM0AR:SM0AR+period_len]
1341 		 */
1342 		return (dma_smar >= sg_req->chan_reg.dma_sm0ar &&
1343 			dma_smar < sg_req->chan_reg.dma_sm0ar + period_len);
1344 	}
1345 
1346 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1347 	/*
1348 	 * If transfer has been pause/resumed,
1349 	 * SM1AR is in the range of [SM1AR:SM1AR+period_len]
1350 	 */
1351 	return (dma_smar >= sg_req->chan_reg.dma_sm1ar &&
1352 		dma_smar < sg_req->chan_reg.dma_sm1ar + period_len);
1353 }
1354 
1355 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1356 				     struct stm32_dma_desc *desc,
1357 				     u32 next_sg)
1358 {
1359 	u32 modulo, burst_size;
1360 	u32 residue;
1361 	u32 n_sg = next_sg;
1362 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1363 	int i;
1364 
1365 	/*
1366 	 * Calculate the residue means compute the descriptors
1367 	 * information:
1368 	 * - the sg_req currently transferred
1369 	 * - the Hardware remaining position in this sg (NDTR bits field).
1370 	 *
1371 	 * A race condition may occur if DMA is running in cyclic or double
1372 	 * buffer mode, since the DMA register are automatically reloaded at end
1373 	 * of period transfer. The hardware may have switched to the next
1374 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1375 	 * read.
1376 	 * In this case the SxNDTR reg could (or not) correspond to the new
1377 	 * transfer position, and not the expected one.
1378 	 * The strategy implemented in the stm32 driver is to:
1379 	 *  - read the SxNDTR register
1380 	 *  - crosscheck that hardware is still in current transfer.
1381 	 * In case of switch, we can assume that the DMA is at the beginning of
1382 	 * the next transfer. So we approximate the residue in consequence, by
1383 	 * pointing on the beginning of next transfer.
1384 	 *
1385 	 * This race condition doesn't apply for none cyclic mode, as double
1386 	 * buffer is not used. In such situation registers are updated by the
1387 	 * software.
1388 	 */
1389 
1390 	residue = stm32_dma_get_remaining_bytes(chan);
1391 
1392 	if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) {
1393 		n_sg++;
1394 		if (n_sg == chan->desc->num_sgs)
1395 			n_sg = 0;
1396 		if (!chan->trig_mdma)
1397 			residue = sg_req->len;
1398 	}
1399 
1400 	/*
1401 	 * In cyclic mode, for the last period, residue = remaining bytes
1402 	 * from NDTR,
1403 	 * else for all other periods in cyclic mode, and in sg mode,
1404 	 * residue = remaining bytes from NDTR + remaining
1405 	 * periods/sg to be transferred
1406 	 */
1407 	if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0)
1408 		for (i = n_sg; i < desc->num_sgs; i++)
1409 			residue += desc->sg_req[i].len;
1410 
1411 	if (!chan->mem_burst)
1412 		return residue;
1413 
1414 	burst_size = chan->mem_burst * chan->mem_width;
1415 	modulo = residue % burst_size;
1416 	if (modulo)
1417 		residue = residue - modulo + burst_size;
1418 
1419 	return residue;
1420 }
1421 
1422 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1423 					   dma_cookie_t cookie,
1424 					   struct dma_tx_state *state)
1425 {
1426 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1427 	struct virt_dma_desc *vdesc;
1428 	enum dma_status status;
1429 	unsigned long flags;
1430 	u32 residue = 0;
1431 
1432 	status = dma_cookie_status(c, cookie, state);
1433 	if (status == DMA_COMPLETE)
1434 		return status;
1435 
1436 	status = chan->status;
1437 
1438 	if (!state)
1439 		return status;
1440 
1441 	spin_lock_irqsave(&chan->vchan.lock, flags);
1442 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1443 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1444 		residue = stm32_dma_desc_residue(chan, chan->desc,
1445 						 chan->next_sg);
1446 	else if (vdesc)
1447 		residue = stm32_dma_desc_residue(chan,
1448 						 to_stm32_dma_desc(vdesc), 0);
1449 	dma_set_residue(state, residue);
1450 
1451 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1452 
1453 	return status;
1454 }
1455 
1456 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1457 {
1458 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1459 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1460 	int ret;
1461 
1462 	chan->config_init = false;
1463 
1464 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1465 	if (ret < 0)
1466 		return ret;
1467 
1468 	ret = stm32_dma_disable_chan(chan);
1469 	if (ret < 0)
1470 		pm_runtime_put(dmadev->ddev.dev);
1471 
1472 	return ret;
1473 }
1474 
1475 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1476 {
1477 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1478 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1479 	unsigned long flags;
1480 
1481 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1482 
1483 	if (chan->busy) {
1484 		spin_lock_irqsave(&chan->vchan.lock, flags);
1485 		stm32_dma_stop(chan);
1486 		chan->desc = NULL;
1487 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1488 	}
1489 
1490 	pm_runtime_put(dmadev->ddev.dev);
1491 
1492 	vchan_free_chan_resources(to_virt_chan(c));
1493 	stm32_dma_clear_reg(&chan->chan_reg);
1494 	chan->threshold = 0;
1495 }
1496 
1497 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1498 {
1499 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1500 }
1501 
1502 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1503 				 struct stm32_dma_cfg *cfg)
1504 {
1505 	stm32_dma_clear_reg(&chan->chan_reg);
1506 
1507 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1508 	chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line);
1509 
1510 	/* Enable Interrupts  */
1511 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1512 
1513 	chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features);
1514 	if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features))
1515 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1516 	if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features))
1517 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1518 	chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features);
1519 }
1520 
1521 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1522 					   struct of_dma *ofdma)
1523 {
1524 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1525 	struct device *dev = dmadev->ddev.dev;
1526 	struct stm32_dma_cfg cfg;
1527 	struct stm32_dma_chan *chan;
1528 	struct dma_chan *c;
1529 
1530 	if (dma_spec->args_count < 4) {
1531 		dev_err(dev, "Bad number of cells\n");
1532 		return NULL;
1533 	}
1534 
1535 	cfg.channel_id = dma_spec->args[0];
1536 	cfg.request_line = dma_spec->args[1];
1537 	cfg.stream_config = dma_spec->args[2];
1538 	cfg.features = dma_spec->args[3];
1539 
1540 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1541 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1542 		dev_err(dev, "Bad channel and/or request id\n");
1543 		return NULL;
1544 	}
1545 
1546 	chan = &dmadev->chan[cfg.channel_id];
1547 
1548 	c = dma_get_slave_channel(&chan->vchan.chan);
1549 	if (!c) {
1550 		dev_err(dev, "No more channels available\n");
1551 		return NULL;
1552 	}
1553 
1554 	stm32_dma_set_config(chan, &cfg);
1555 
1556 	return c;
1557 }
1558 
1559 static const struct of_device_id stm32_dma_of_match[] = {
1560 	{ .compatible = "st,stm32-dma", },
1561 	{ /* sentinel */ },
1562 };
1563 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1564 
1565 static int stm32_dma_probe(struct platform_device *pdev)
1566 {
1567 	struct stm32_dma_chan *chan;
1568 	struct stm32_dma_device *dmadev;
1569 	struct dma_device *dd;
1570 	struct resource *res;
1571 	struct reset_control *rst;
1572 	int i, ret;
1573 
1574 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1575 	if (!dmadev)
1576 		return -ENOMEM;
1577 
1578 	dd = &dmadev->ddev;
1579 
1580 	dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1581 	if (IS_ERR(dmadev->base))
1582 		return PTR_ERR(dmadev->base);
1583 
1584 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1585 	if (IS_ERR(dmadev->clk))
1586 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1587 
1588 	ret = clk_prepare_enable(dmadev->clk);
1589 	if (ret < 0) {
1590 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1591 		return ret;
1592 	}
1593 
1594 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1595 						"st,mem2mem");
1596 
1597 	rst = devm_reset_control_get(&pdev->dev, NULL);
1598 	if (IS_ERR(rst)) {
1599 		ret = PTR_ERR(rst);
1600 		if (ret == -EPROBE_DEFER)
1601 			goto clk_free;
1602 	} else {
1603 		reset_control_assert(rst);
1604 		udelay(2);
1605 		reset_control_deassert(rst);
1606 	}
1607 
1608 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1609 
1610 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1611 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1612 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1613 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1614 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1615 	dd->device_tx_status = stm32_dma_tx_status;
1616 	dd->device_issue_pending = stm32_dma_issue_pending;
1617 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1618 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1619 	dd->device_config = stm32_dma_slave_config;
1620 	dd->device_pause = stm32_dma_pause;
1621 	dd->device_resume = stm32_dma_resume;
1622 	dd->device_terminate_all = stm32_dma_terminate_all;
1623 	dd->device_synchronize = stm32_dma_synchronize;
1624 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1625 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1626 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1627 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1628 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1629 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1630 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1631 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1632 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1633 	dd->max_burst = STM32_DMA_MAX_BURST;
1634 	dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS;
1635 	dd->descriptor_reuse = true;
1636 	dd->dev = &pdev->dev;
1637 	INIT_LIST_HEAD(&dd->channels);
1638 
1639 	if (dmadev->mem2mem) {
1640 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1641 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1642 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1643 	}
1644 
1645 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1646 		chan = &dmadev->chan[i];
1647 		chan->id = i;
1648 		chan->vchan.desc_free = stm32_dma_desc_free;
1649 		vchan_init(&chan->vchan, dd);
1650 
1651 		chan->mdma_config.ifcr = res->start;
1652 		chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id);
1653 
1654 		chan->mdma_config.tcf = STM32_DMA_TCI;
1655 		chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id);
1656 	}
1657 
1658 	ret = dma_async_device_register(dd);
1659 	if (ret)
1660 		goto clk_free;
1661 
1662 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1663 		chan = &dmadev->chan[i];
1664 		ret = platform_get_irq(pdev, i);
1665 		if (ret < 0)
1666 			goto err_unregister;
1667 		chan->irq = ret;
1668 
1669 		ret = devm_request_irq(&pdev->dev, chan->irq,
1670 				       stm32_dma_chan_irq, 0,
1671 				       dev_name(chan2dev(chan)), chan);
1672 		if (ret) {
1673 			dev_err(&pdev->dev,
1674 				"request_irq failed with err %d channel %d\n",
1675 				ret, i);
1676 			goto err_unregister;
1677 		}
1678 	}
1679 
1680 	ret = of_dma_controller_register(pdev->dev.of_node,
1681 					 stm32_dma_of_xlate, dmadev);
1682 	if (ret < 0) {
1683 		dev_err(&pdev->dev,
1684 			"STM32 DMA DMA OF registration failed %d\n", ret);
1685 		goto err_unregister;
1686 	}
1687 
1688 	platform_set_drvdata(pdev, dmadev);
1689 
1690 	pm_runtime_set_active(&pdev->dev);
1691 	pm_runtime_enable(&pdev->dev);
1692 	pm_runtime_get_noresume(&pdev->dev);
1693 	pm_runtime_put(&pdev->dev);
1694 
1695 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1696 
1697 	return 0;
1698 
1699 err_unregister:
1700 	dma_async_device_unregister(dd);
1701 clk_free:
1702 	clk_disable_unprepare(dmadev->clk);
1703 
1704 	return ret;
1705 }
1706 
1707 #ifdef CONFIG_PM
1708 static int stm32_dma_runtime_suspend(struct device *dev)
1709 {
1710 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1711 
1712 	clk_disable_unprepare(dmadev->clk);
1713 
1714 	return 0;
1715 }
1716 
1717 static int stm32_dma_runtime_resume(struct device *dev)
1718 {
1719 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1720 	int ret;
1721 
1722 	ret = clk_prepare_enable(dmadev->clk);
1723 	if (ret) {
1724 		dev_err(dev, "failed to prepare_enable clock\n");
1725 		return ret;
1726 	}
1727 
1728 	return 0;
1729 }
1730 #endif
1731 
1732 #ifdef CONFIG_PM_SLEEP
1733 static int stm32_dma_pm_suspend(struct device *dev)
1734 {
1735 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1736 	int id, ret, scr;
1737 
1738 	ret = pm_runtime_resume_and_get(dev);
1739 	if (ret < 0)
1740 		return ret;
1741 
1742 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1743 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1744 		if (scr & STM32_DMA_SCR_EN) {
1745 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1746 			return -EBUSY;
1747 		}
1748 	}
1749 
1750 	pm_runtime_put_sync(dev);
1751 
1752 	pm_runtime_force_suspend(dev);
1753 
1754 	return 0;
1755 }
1756 
1757 static int stm32_dma_pm_resume(struct device *dev)
1758 {
1759 	return pm_runtime_force_resume(dev);
1760 }
1761 #endif
1762 
1763 static const struct dev_pm_ops stm32_dma_pm_ops = {
1764 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume)
1765 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1766 			   stm32_dma_runtime_resume, NULL)
1767 };
1768 
1769 static struct platform_driver stm32_dma_driver = {
1770 	.driver = {
1771 		.name = "stm32-dma",
1772 		.of_match_table = stm32_dma_of_match,
1773 		.pm = &stm32_dma_pm_ops,
1774 	},
1775 	.probe = stm32_dma_probe,
1776 };
1777 
1778 static int __init stm32_dma_init(void)
1779 {
1780 	return platform_driver_register(&stm32_dma_driver);
1781 }
1782 subsys_initcall(stm32_dma_init);
1783