1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for STM32 DMA controller 4 * 5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c 6 * 7 * Copyright (C) M'boumba Cedric Madianga 2015 8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> 9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/clk.h> 14 #include <linux/delay.h> 15 #include <linux/dmaengine.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/err.h> 18 #include <linux/init.h> 19 #include <linux/iopoll.h> 20 #include <linux/jiffies.h> 21 #include <linux/list.h> 22 #include <linux/module.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/reset.h> 28 #include <linux/sched.h> 29 #include <linux/slab.h> 30 31 #include "../virt-dma.h" 32 33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ 34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ 35 #define STM32_DMA_ISR(n) (((n) & 4) ? STM32_DMA_HISR : STM32_DMA_LISR) 36 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ 37 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ 38 #define STM32_DMA_IFCR(n) (((n) & 4) ? STM32_DMA_HIFCR : STM32_DMA_LIFCR) 39 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ 40 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ 41 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ 42 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ 43 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ 44 #define STM32_DMA_MASKI (STM32_DMA_TCI \ 45 | STM32_DMA_TEI \ 46 | STM32_DMA_DMEI \ 47 | STM32_DMA_FEI) 48 /* 49 * If (chan->id % 4) is 2 or 3, left shift the mask by 16 bits; 50 * if (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. 51 */ 52 #define STM32_DMA_FLAGS_SHIFT(n) ({ typeof(n) (_n) = (n); \ 53 (((_n) & 2) << 3) | (((_n) & 1) * 6); }) 54 55 /* DMA Stream x Configuration Register */ 56 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ 57 #define STM32_DMA_SCR_REQ_MASK GENMASK(27, 25) 58 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) 59 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) 60 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) 61 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) 62 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) 63 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) 64 #define STM32_DMA_SCR_TRBUFF BIT(20) /* Bufferable transfer for USART/UART */ 65 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ 66 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ 67 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ 68 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ 69 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ 70 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ 71 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ 72 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable 73 */ 74 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ 75 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ 76 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ 77 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ 78 | STM32_DMA_SCR_MINC \ 79 | STM32_DMA_SCR_PINCOS \ 80 | STM32_DMA_SCR_PL_MASK) 81 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ 82 | STM32_DMA_SCR_TEIE \ 83 | STM32_DMA_SCR_DMEIE) 84 85 /* DMA Stream x number of data register */ 86 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) 87 88 /* DMA stream peripheral address register */ 89 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) 90 91 /* DMA stream x memory 0 address register */ 92 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) 93 94 /* DMA stream x memory 1 address register */ 95 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) 96 97 /* DMA stream x FIFO control register */ 98 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) 99 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) 100 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ 101 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ 102 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ 103 | STM32_DMA_SFCR_DMDIS) 104 105 /* DMA direction */ 106 #define STM32_DMA_DEV_TO_MEM 0x00 107 #define STM32_DMA_MEM_TO_DEV 0x01 108 #define STM32_DMA_MEM_TO_MEM 0x02 109 110 /* DMA priority level */ 111 #define STM32_DMA_PRIORITY_LOW 0x00 112 #define STM32_DMA_PRIORITY_MEDIUM 0x01 113 #define STM32_DMA_PRIORITY_HIGH 0x02 114 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 115 116 /* DMA FIFO threshold selection */ 117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 120 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 121 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04 122 123 #define STM32_DMA_MAX_DATA_ITEMS 0xffff 124 /* 125 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter 126 * gather at boundary. Thus it's safer to round down this value on FIFO 127 * size (16 Bytes) 128 */ 129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ 130 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) 131 #define STM32_DMA_MAX_CHANNELS 0x08 132 #define STM32_DMA_MAX_REQUEST_ID 0x08 133 #define STM32_DMA_MAX_DATA_PARAM 0x03 134 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ 135 #define STM32_DMA_MIN_BURST 4 136 #define STM32_DMA_MAX_BURST 16 137 138 /* DMA Features */ 139 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) 140 #define STM32_DMA_DIRECT_MODE_MASK BIT(2) 141 #define STM32_DMA_ALT_ACK_MODE_MASK BIT(4) 142 #define STM32_DMA_MDMA_STREAM_ID_MASK GENMASK(19, 16) 143 144 enum stm32_dma_width { 145 STM32_DMA_BYTE, 146 STM32_DMA_HALF_WORD, 147 STM32_DMA_WORD, 148 }; 149 150 enum stm32_dma_burst_size { 151 STM32_DMA_BURST_SINGLE, 152 STM32_DMA_BURST_INCR4, 153 STM32_DMA_BURST_INCR8, 154 STM32_DMA_BURST_INCR16, 155 }; 156 157 /** 158 * struct stm32_dma_cfg - STM32 DMA custom configuration 159 * @channel_id: channel ID 160 * @request_line: DMA request 161 * @stream_config: 32bit mask specifying the DMA channel configuration 162 * @features: 32bit mask specifying the DMA Feature list 163 */ 164 struct stm32_dma_cfg { 165 u32 channel_id; 166 u32 request_line; 167 u32 stream_config; 168 u32 features; 169 }; 170 171 struct stm32_dma_chan_reg { 172 u32 dma_lisr; 173 u32 dma_hisr; 174 u32 dma_lifcr; 175 u32 dma_hifcr; 176 u32 dma_scr; 177 u32 dma_sndtr; 178 u32 dma_spar; 179 u32 dma_sm0ar; 180 u32 dma_sm1ar; 181 u32 dma_sfcr; 182 }; 183 184 struct stm32_dma_sg_req { 185 u32 len; 186 struct stm32_dma_chan_reg chan_reg; 187 }; 188 189 struct stm32_dma_desc { 190 struct virt_dma_desc vdesc; 191 bool cyclic; 192 u32 num_sgs; 193 struct stm32_dma_sg_req sg_req[] __counted_by(num_sgs); 194 }; 195 196 /** 197 * struct stm32_dma_mdma_config - STM32 DMA MDMA configuration 198 * @stream_id: DMA request to trigger STM32 MDMA transfer 199 * @ifcr: DMA interrupt flag clear register address, 200 * used by STM32 MDMA to clear DMA Transfer Complete flag 201 * @tcf: DMA Transfer Complete flag 202 */ 203 struct stm32_dma_mdma_config { 204 u32 stream_id; 205 u32 ifcr; 206 u32 tcf; 207 }; 208 209 struct stm32_dma_chan { 210 struct virt_dma_chan vchan; 211 bool config_init; 212 bool busy; 213 u32 id; 214 u32 irq; 215 struct stm32_dma_desc *desc; 216 u32 next_sg; 217 struct dma_slave_config dma_sconfig; 218 struct stm32_dma_chan_reg chan_reg; 219 u32 threshold; 220 u32 mem_burst; 221 u32 mem_width; 222 enum dma_status status; 223 bool trig_mdma; 224 struct stm32_dma_mdma_config mdma_config; 225 }; 226 227 struct stm32_dma_device { 228 struct dma_device ddev; 229 void __iomem *base; 230 struct clk *clk; 231 bool mem2mem; 232 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; 233 }; 234 235 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) 236 { 237 return container_of(chan->vchan.chan.device, struct stm32_dma_device, 238 ddev); 239 } 240 241 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) 242 { 243 return container_of(c, struct stm32_dma_chan, vchan.chan); 244 } 245 246 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) 247 { 248 return container_of(vdesc, struct stm32_dma_desc, vdesc); 249 } 250 251 static struct device *chan2dev(struct stm32_dma_chan *chan) 252 { 253 return &chan->vchan.chan.dev->device; 254 } 255 256 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) 257 { 258 return readl_relaxed(dmadev->base + reg); 259 } 260 261 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) 262 { 263 writel_relaxed(val, dmadev->base + reg); 264 } 265 266 static int stm32_dma_get_width(struct stm32_dma_chan *chan, 267 enum dma_slave_buswidth width) 268 { 269 switch (width) { 270 case DMA_SLAVE_BUSWIDTH_1_BYTE: 271 return STM32_DMA_BYTE; 272 case DMA_SLAVE_BUSWIDTH_2_BYTES: 273 return STM32_DMA_HALF_WORD; 274 case DMA_SLAVE_BUSWIDTH_4_BYTES: 275 return STM32_DMA_WORD; 276 default: 277 dev_err(chan2dev(chan), "Dma bus width not supported\n"); 278 return -EINVAL; 279 } 280 } 281 282 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, 283 dma_addr_t buf_addr, 284 u32 threshold) 285 { 286 enum dma_slave_buswidth max_width; 287 288 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) 289 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 290 else 291 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 292 293 while ((buf_len < max_width || buf_len % max_width) && 294 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) 295 max_width = max_width >> 1; 296 297 if (buf_addr & (max_width - 1)) 298 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 299 300 return max_width; 301 } 302 303 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, 304 enum dma_slave_buswidth width) 305 { 306 u32 remaining; 307 308 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 309 return false; 310 311 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { 312 if (burst != 0) { 313 /* 314 * If number of beats fit in several whole bursts 315 * this configuration is allowed. 316 */ 317 remaining = ((STM32_DMA_FIFO_SIZE / width) * 318 (threshold + 1) / 4) % burst; 319 320 if (remaining == 0) 321 return true; 322 } else { 323 return true; 324 } 325 } 326 327 return false; 328 } 329 330 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) 331 { 332 /* If FIFO direct mode, burst is not possible */ 333 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE) 334 return false; 335 336 /* 337 * Buffer or period length has to be aligned on FIFO depth. 338 * Otherwise bytes may be stuck within FIFO at buffer or period 339 * length. 340 */ 341 return ((buf_len % ((threshold + 1) * 4)) == 0); 342 } 343 344 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, 345 enum dma_slave_buswidth width) 346 { 347 u32 best_burst = max_burst; 348 349 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) 350 return 0; 351 352 while ((buf_len < best_burst * width && best_burst > 1) || 353 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, 354 width)) { 355 if (best_burst > STM32_DMA_MIN_BURST) 356 best_burst = best_burst >> 1; 357 else 358 best_burst = 0; 359 } 360 361 return best_burst; 362 } 363 364 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) 365 { 366 switch (maxburst) { 367 case 0: 368 case 1: 369 return STM32_DMA_BURST_SINGLE; 370 case 4: 371 return STM32_DMA_BURST_INCR4; 372 case 8: 373 return STM32_DMA_BURST_INCR8; 374 case 16: 375 return STM32_DMA_BURST_INCR16; 376 default: 377 dev_err(chan2dev(chan), "Dma burst size not supported\n"); 378 return -EINVAL; 379 } 380 } 381 382 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, 383 u32 src_burst, u32 dst_burst) 384 { 385 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; 386 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; 387 388 if (!src_burst && !dst_burst) { 389 /* Using direct mode */ 390 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; 391 } else { 392 /* Using FIFO mode */ 393 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 394 } 395 } 396 397 static int stm32_dma_slave_config(struct dma_chan *c, 398 struct dma_slave_config *config) 399 { 400 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 401 402 memcpy(&chan->dma_sconfig, config, sizeof(*config)); 403 404 /* Check if user is requesting DMA to trigger STM32 MDMA */ 405 if (config->peripheral_size) { 406 config->peripheral_config = &chan->mdma_config; 407 config->peripheral_size = sizeof(chan->mdma_config); 408 chan->trig_mdma = true; 409 } 410 411 chan->config_init = true; 412 413 return 0; 414 } 415 416 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) 417 { 418 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 419 u32 flags, dma_isr; 420 421 /* 422 * Read "flags" from DMA_xISR register corresponding to the selected 423 * DMA channel at the correct bit offset inside that register. 424 */ 425 426 dma_isr = stm32_dma_read(dmadev, STM32_DMA_ISR(chan->id)); 427 flags = dma_isr >> STM32_DMA_FLAGS_SHIFT(chan->id); 428 429 return flags & STM32_DMA_MASKI; 430 } 431 432 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) 433 { 434 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 435 u32 dma_ifcr; 436 437 /* 438 * Write "flags" to the DMA_xIFCR register corresponding to the selected 439 * DMA channel at the correct bit offset inside that register. 440 */ 441 flags &= STM32_DMA_MASKI; 442 dma_ifcr = flags << STM32_DMA_FLAGS_SHIFT(chan->id); 443 444 stm32_dma_write(dmadev, STM32_DMA_IFCR(chan->id), dma_ifcr); 445 } 446 447 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) 448 { 449 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 450 u32 dma_scr, id, reg; 451 452 id = chan->id; 453 reg = STM32_DMA_SCR(id); 454 dma_scr = stm32_dma_read(dmadev, reg); 455 456 if (dma_scr & STM32_DMA_SCR_EN) { 457 dma_scr &= ~STM32_DMA_SCR_EN; 458 stm32_dma_write(dmadev, reg, dma_scr); 459 460 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg, 461 dma_scr, !(dma_scr & STM32_DMA_SCR_EN), 462 10, 1000000); 463 } 464 465 return 0; 466 } 467 468 static void stm32_dma_stop(struct stm32_dma_chan *chan) 469 { 470 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 471 u32 dma_scr, dma_sfcr, status; 472 int ret; 473 474 /* Disable interrupts */ 475 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 476 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; 477 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 478 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 479 dma_sfcr &= ~STM32_DMA_SFCR_FEIE; 480 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); 481 482 /* Disable DMA */ 483 ret = stm32_dma_disable_chan(chan); 484 if (ret < 0) 485 return; 486 487 /* Clear interrupt status if it is there */ 488 status = stm32_dma_irq_status(chan); 489 if (status) { 490 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", 491 __func__, status); 492 stm32_dma_irq_clear(chan, status); 493 } 494 495 chan->busy = false; 496 chan->status = DMA_COMPLETE; 497 } 498 499 static int stm32_dma_terminate_all(struct dma_chan *c) 500 { 501 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 502 unsigned long flags; 503 LIST_HEAD(head); 504 505 spin_lock_irqsave(&chan->vchan.lock, flags); 506 507 if (chan->desc) { 508 dma_cookie_complete(&chan->desc->vdesc.tx); 509 vchan_terminate_vdesc(&chan->desc->vdesc); 510 if (chan->busy) 511 stm32_dma_stop(chan); 512 chan->desc = NULL; 513 } 514 515 vchan_get_all_descriptors(&chan->vchan, &head); 516 spin_unlock_irqrestore(&chan->vchan.lock, flags); 517 vchan_dma_desc_free_list(&chan->vchan, &head); 518 519 return 0; 520 } 521 522 static void stm32_dma_synchronize(struct dma_chan *c) 523 { 524 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 525 526 vchan_synchronize(&chan->vchan); 527 } 528 529 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) 530 { 531 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 532 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 533 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 534 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); 535 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); 536 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); 537 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 538 539 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); 540 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); 541 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); 542 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); 543 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); 544 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); 545 } 546 547 static void stm32_dma_sg_inc(struct stm32_dma_chan *chan) 548 { 549 chan->next_sg++; 550 if (chan->desc->cyclic && (chan->next_sg == chan->desc->num_sgs)) 551 chan->next_sg = 0; 552 } 553 554 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); 555 556 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) 557 { 558 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 559 struct virt_dma_desc *vdesc; 560 struct stm32_dma_sg_req *sg_req; 561 struct stm32_dma_chan_reg *reg; 562 u32 status; 563 int ret; 564 565 ret = stm32_dma_disable_chan(chan); 566 if (ret < 0) 567 return; 568 569 if (!chan->desc) { 570 vdesc = vchan_next_desc(&chan->vchan); 571 if (!vdesc) 572 return; 573 574 list_del(&vdesc->node); 575 576 chan->desc = to_stm32_dma_desc(vdesc); 577 chan->next_sg = 0; 578 } 579 580 if (chan->next_sg == chan->desc->num_sgs) 581 chan->next_sg = 0; 582 583 sg_req = &chan->desc->sg_req[chan->next_sg]; 584 reg = &sg_req->chan_reg; 585 586 /* When DMA triggers STM32 MDMA, DMA Transfer Complete is managed by STM32 MDMA */ 587 if (chan->trig_mdma && chan->dma_sconfig.direction != DMA_MEM_TO_DEV) 588 reg->dma_scr &= ~STM32_DMA_SCR_TCIE; 589 590 reg->dma_scr &= ~STM32_DMA_SCR_EN; 591 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 592 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); 593 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); 594 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); 595 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); 596 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); 597 598 stm32_dma_sg_inc(chan); 599 600 /* Clear interrupt status if it is there */ 601 status = stm32_dma_irq_status(chan); 602 if (status) 603 stm32_dma_irq_clear(chan, status); 604 605 if (chan->desc->cyclic) 606 stm32_dma_configure_next_sg(chan); 607 608 stm32_dma_dump_reg(chan); 609 610 /* Start DMA */ 611 chan->busy = true; 612 chan->status = DMA_IN_PROGRESS; 613 reg->dma_scr |= STM32_DMA_SCR_EN; 614 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); 615 616 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); 617 } 618 619 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) 620 { 621 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 622 struct stm32_dma_sg_req *sg_req; 623 u32 dma_scr, dma_sm0ar, dma_sm1ar, id; 624 625 id = chan->id; 626 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 627 628 sg_req = &chan->desc->sg_req[chan->next_sg]; 629 630 if (dma_scr & STM32_DMA_SCR_CT) { 631 dma_sm0ar = sg_req->chan_reg.dma_sm0ar; 632 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); 633 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", 634 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); 635 } else { 636 dma_sm1ar = sg_req->chan_reg.dma_sm1ar; 637 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); 638 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", 639 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); 640 } 641 } 642 643 static void stm32_dma_handle_chan_paused(struct stm32_dma_chan *chan) 644 { 645 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 646 u32 dma_scr; 647 648 /* 649 * Read and store current remaining data items and peripheral/memory addresses to be 650 * updated on resume 651 */ 652 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 653 /* 654 * Transfer can be paused while between a previous resume and reconfiguration on transfer 655 * complete. If transfer is cyclic and CIRC and DBM have been deactivated for resume, need 656 * to set it here in SCR backup to ensure a good reconfiguration on transfer complete. 657 */ 658 if (chan->desc && chan->desc->cyclic) { 659 if (chan->desc->num_sgs == 1) 660 dma_scr |= STM32_DMA_SCR_CIRC; 661 else 662 dma_scr |= STM32_DMA_SCR_DBM; 663 } 664 chan->chan_reg.dma_scr = dma_scr; 665 666 /* 667 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, otherwise 668 * on resume NDTR autoreload value will be wrong (lower than the initial period length) 669 */ 670 if (chan->desc && chan->desc->cyclic) { 671 dma_scr &= ~(STM32_DMA_SCR_DBM | STM32_DMA_SCR_CIRC); 672 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 673 } 674 675 chan->chan_reg.dma_sndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 676 677 chan->status = DMA_PAUSED; 678 679 dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan); 680 } 681 682 static void stm32_dma_post_resume_reconfigure(struct stm32_dma_chan *chan) 683 { 684 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 685 struct stm32_dma_sg_req *sg_req; 686 u32 dma_scr, status, id; 687 688 id = chan->id; 689 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 690 691 /* Clear interrupt status if it is there */ 692 status = stm32_dma_irq_status(chan); 693 if (status) 694 stm32_dma_irq_clear(chan, status); 695 696 if (!chan->next_sg) 697 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 698 else 699 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 700 701 /* Reconfigure NDTR with the initial value */ 702 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), sg_req->chan_reg.dma_sndtr); 703 704 /* Restore SPAR */ 705 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), sg_req->chan_reg.dma_spar); 706 707 /* Restore SM0AR/SM1AR whatever DBM/CT as they may have been modified */ 708 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sg_req->chan_reg.dma_sm0ar); 709 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sg_req->chan_reg.dma_sm1ar); 710 711 /* Reactivate CIRC/DBM if needed */ 712 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_DBM) { 713 dma_scr |= STM32_DMA_SCR_DBM; 714 /* Restore CT */ 715 if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CT) 716 dma_scr &= ~STM32_DMA_SCR_CT; 717 else 718 dma_scr |= STM32_DMA_SCR_CT; 719 } else if (chan->chan_reg.dma_scr & STM32_DMA_SCR_CIRC) { 720 dma_scr |= STM32_DMA_SCR_CIRC; 721 } 722 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 723 724 stm32_dma_configure_next_sg(chan); 725 726 stm32_dma_dump_reg(chan); 727 728 dma_scr |= STM32_DMA_SCR_EN; 729 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); 730 731 dev_dbg(chan2dev(chan), "vchan %pK: reconfigured after pause/resume\n", &chan->vchan); 732 } 733 734 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan, u32 scr) 735 { 736 if (!chan->desc) 737 return; 738 739 if (chan->desc->cyclic) { 740 vchan_cyclic_callback(&chan->desc->vdesc); 741 if (chan->trig_mdma) 742 return; 743 stm32_dma_sg_inc(chan); 744 /* cyclic while CIRC/DBM disable => post resume reconfiguration needed */ 745 if (!(scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM))) 746 stm32_dma_post_resume_reconfigure(chan); 747 else if (scr & STM32_DMA_SCR_DBM) 748 stm32_dma_configure_next_sg(chan); 749 } else { 750 chan->busy = false; 751 chan->status = DMA_COMPLETE; 752 if (chan->next_sg == chan->desc->num_sgs) { 753 vchan_cookie_complete(&chan->desc->vdesc); 754 chan->desc = NULL; 755 } 756 stm32_dma_start_transfer(chan); 757 } 758 } 759 760 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) 761 { 762 struct stm32_dma_chan *chan = devid; 763 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 764 u32 status, scr, sfcr; 765 766 spin_lock(&chan->vchan.lock); 767 768 status = stm32_dma_irq_status(chan); 769 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 770 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); 771 772 if (status & STM32_DMA_FEI) { 773 stm32_dma_irq_clear(chan, STM32_DMA_FEI); 774 status &= ~STM32_DMA_FEI; 775 if (sfcr & STM32_DMA_SFCR_FEIE) { 776 if (!(scr & STM32_DMA_SCR_EN) && 777 !(status & STM32_DMA_TCI)) 778 dev_err(chan2dev(chan), "FIFO Error\n"); 779 else 780 dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); 781 } 782 } 783 if (status & STM32_DMA_DMEI) { 784 stm32_dma_irq_clear(chan, STM32_DMA_DMEI); 785 status &= ~STM32_DMA_DMEI; 786 if (sfcr & STM32_DMA_SCR_DMEIE) 787 dev_dbg(chan2dev(chan), "Direct mode overrun\n"); 788 } 789 790 if (status & STM32_DMA_TCI) { 791 stm32_dma_irq_clear(chan, STM32_DMA_TCI); 792 if (scr & STM32_DMA_SCR_TCIE) { 793 if (chan->status != DMA_PAUSED) 794 stm32_dma_handle_chan_done(chan, scr); 795 } 796 status &= ~STM32_DMA_TCI; 797 } 798 799 if (status & STM32_DMA_HTI) { 800 stm32_dma_irq_clear(chan, STM32_DMA_HTI); 801 status &= ~STM32_DMA_HTI; 802 } 803 804 if (status) { 805 stm32_dma_irq_clear(chan, status); 806 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); 807 if (!(scr & STM32_DMA_SCR_EN)) 808 dev_err(chan2dev(chan), "chan disabled by HW\n"); 809 } 810 811 spin_unlock(&chan->vchan.lock); 812 813 return IRQ_HANDLED; 814 } 815 816 static void stm32_dma_issue_pending(struct dma_chan *c) 817 { 818 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 819 unsigned long flags; 820 821 spin_lock_irqsave(&chan->vchan.lock, flags); 822 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { 823 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); 824 stm32_dma_start_transfer(chan); 825 826 } 827 spin_unlock_irqrestore(&chan->vchan.lock, flags); 828 } 829 830 static int stm32_dma_pause(struct dma_chan *c) 831 { 832 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 833 unsigned long flags; 834 int ret; 835 836 if (chan->status != DMA_IN_PROGRESS) 837 return -EPERM; 838 839 spin_lock_irqsave(&chan->vchan.lock, flags); 840 841 ret = stm32_dma_disable_chan(chan); 842 if (!ret) 843 stm32_dma_handle_chan_paused(chan); 844 845 spin_unlock_irqrestore(&chan->vchan.lock, flags); 846 847 return ret; 848 } 849 850 static int stm32_dma_resume(struct dma_chan *c) 851 { 852 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 853 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 854 struct stm32_dma_chan_reg chan_reg = chan->chan_reg; 855 u32 id = chan->id, scr, ndtr, offset, spar, sm0ar, sm1ar; 856 struct stm32_dma_sg_req *sg_req; 857 unsigned long flags; 858 859 if (chan->status != DMA_PAUSED) 860 return -EPERM; 861 862 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 863 if (WARN_ON(scr & STM32_DMA_SCR_EN)) 864 return -EPERM; 865 866 spin_lock_irqsave(&chan->vchan.lock, flags); 867 868 /* sg_reg[prev_sg] contains original ndtr, sm0ar and sm1ar before pausing the transfer */ 869 if (!chan->next_sg) 870 sg_req = &chan->desc->sg_req[chan->desc->num_sgs - 1]; 871 else 872 sg_req = &chan->desc->sg_req[chan->next_sg - 1]; 873 874 ndtr = sg_req->chan_reg.dma_sndtr; 875 offset = (ndtr - chan_reg.dma_sndtr); 876 offset <<= FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, chan_reg.dma_scr); 877 spar = sg_req->chan_reg.dma_spar; 878 sm0ar = sg_req->chan_reg.dma_sm0ar; 879 sm1ar = sg_req->chan_reg.dma_sm1ar; 880 881 /* 882 * The peripheral and/or memory addresses have to be updated in order to adjust the 883 * address pointers. Need to check increment. 884 */ 885 if (chan_reg.dma_scr & STM32_DMA_SCR_PINC) 886 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar + offset); 887 else 888 stm32_dma_write(dmadev, STM32_DMA_SPAR(id), spar); 889 890 if (!(chan_reg.dma_scr & STM32_DMA_SCR_MINC)) 891 offset = 0; 892 893 /* 894 * In case of DBM, the current target could be SM1AR. 895 * Need to temporarily deactivate CIRC/DBM to finish the current transfer, so 896 * SM0AR becomes the current target and must be updated with SM1AR + offset if CT=1. 897 */ 898 if ((chan_reg.dma_scr & STM32_DMA_SCR_DBM) && (chan_reg.dma_scr & STM32_DMA_SCR_CT)) 899 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), sm1ar + offset); 900 else 901 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), sm0ar + offset); 902 903 /* NDTR must be restored otherwise internal HW counter won't be correctly reset */ 904 stm32_dma_write(dmadev, STM32_DMA_SNDTR(id), chan_reg.dma_sndtr); 905 906 /* 907 * Need to temporarily deactivate CIRC/DBM until next Transfer Complete interrupt, 908 * otherwise NDTR autoreload value will be wrong (lower than the initial period length) 909 */ 910 if (chan_reg.dma_scr & (STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM)) 911 chan_reg.dma_scr &= ~(STM32_DMA_SCR_CIRC | STM32_DMA_SCR_DBM); 912 913 if (chan_reg.dma_scr & STM32_DMA_SCR_DBM) 914 stm32_dma_configure_next_sg(chan); 915 916 stm32_dma_dump_reg(chan); 917 918 /* The stream may then be re-enabled to restart transfer from the point it was stopped */ 919 chan->status = DMA_IN_PROGRESS; 920 chan_reg.dma_scr |= STM32_DMA_SCR_EN; 921 stm32_dma_write(dmadev, STM32_DMA_SCR(id), chan_reg.dma_scr); 922 923 spin_unlock_irqrestore(&chan->vchan.lock, flags); 924 925 dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan); 926 927 return 0; 928 } 929 930 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, 931 enum dma_transfer_direction direction, 932 enum dma_slave_buswidth *buswidth, 933 u32 buf_len, dma_addr_t buf_addr) 934 { 935 enum dma_slave_buswidth src_addr_width, dst_addr_width; 936 int src_bus_width, dst_bus_width; 937 int src_burst_size, dst_burst_size; 938 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; 939 u32 dma_scr, fifoth; 940 941 src_addr_width = chan->dma_sconfig.src_addr_width; 942 dst_addr_width = chan->dma_sconfig.dst_addr_width; 943 src_maxburst = chan->dma_sconfig.src_maxburst; 944 dst_maxburst = chan->dma_sconfig.dst_maxburst; 945 fifoth = chan->threshold; 946 947 switch (direction) { 948 case DMA_MEM_TO_DEV: 949 /* Set device data size */ 950 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 951 if (dst_bus_width < 0) 952 return dst_bus_width; 953 954 /* Set device burst size */ 955 dst_best_burst = stm32_dma_get_best_burst(buf_len, 956 dst_maxburst, 957 fifoth, 958 dst_addr_width); 959 960 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 961 if (dst_burst_size < 0) 962 return dst_burst_size; 963 964 /* Set memory data size */ 965 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 966 fifoth); 967 chan->mem_width = src_addr_width; 968 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 969 if (src_bus_width < 0) 970 return src_bus_width; 971 972 /* 973 * Set memory burst size - burst not possible if address is not aligned on 974 * the address boundary equal to the size of the transfer 975 */ 976 if (buf_addr & (buf_len - 1)) 977 src_maxburst = 1; 978 else 979 src_maxburst = STM32_DMA_MAX_BURST; 980 src_best_burst = stm32_dma_get_best_burst(buf_len, 981 src_maxburst, 982 fifoth, 983 src_addr_width); 984 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 985 if (src_burst_size < 0) 986 return src_burst_size; 987 988 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_DEV) | 989 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, dst_bus_width) | 990 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, src_bus_width) | 991 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dst_burst_size) | 992 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, src_burst_size); 993 994 /* Set FIFO threshold */ 995 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 996 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 997 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth); 998 999 /* Set peripheral address */ 1000 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; 1001 *buswidth = dst_addr_width; 1002 break; 1003 1004 case DMA_DEV_TO_MEM: 1005 /* Set device data size */ 1006 src_bus_width = stm32_dma_get_width(chan, src_addr_width); 1007 if (src_bus_width < 0) 1008 return src_bus_width; 1009 1010 /* Set device burst size */ 1011 src_best_burst = stm32_dma_get_best_burst(buf_len, 1012 src_maxburst, 1013 fifoth, 1014 src_addr_width); 1015 chan->mem_burst = src_best_burst; 1016 src_burst_size = stm32_dma_get_burst(chan, src_best_burst); 1017 if (src_burst_size < 0) 1018 return src_burst_size; 1019 1020 /* Set memory data size */ 1021 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr, 1022 fifoth); 1023 chan->mem_width = dst_addr_width; 1024 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); 1025 if (dst_bus_width < 0) 1026 return dst_bus_width; 1027 1028 /* 1029 * Set memory burst size - burst not possible if address is not aligned on 1030 * the address boundary equal to the size of the transfer 1031 */ 1032 if (buf_addr & (buf_len - 1)) 1033 dst_maxburst = 1; 1034 else 1035 dst_maxburst = STM32_DMA_MAX_BURST; 1036 dst_best_burst = stm32_dma_get_best_burst(buf_len, 1037 dst_maxburst, 1038 fifoth, 1039 dst_addr_width); 1040 chan->mem_burst = dst_best_burst; 1041 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); 1042 if (dst_burst_size < 0) 1043 return dst_burst_size; 1044 1045 dma_scr = FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_DEV_TO_MEM) | 1046 FIELD_PREP(STM32_DMA_SCR_PSIZE_MASK, src_bus_width) | 1047 FIELD_PREP(STM32_DMA_SCR_MSIZE_MASK, dst_bus_width) | 1048 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, src_burst_size) | 1049 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dst_burst_size); 1050 1051 /* Set FIFO threshold */ 1052 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; 1053 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE) 1054 chan->chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, fifoth); 1055 1056 /* Set peripheral address */ 1057 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; 1058 *buswidth = chan->dma_sconfig.src_addr_width; 1059 break; 1060 1061 default: 1062 dev_err(chan2dev(chan), "Dma direction is not supported\n"); 1063 return -EINVAL; 1064 } 1065 1066 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); 1067 1068 /* Set DMA control register */ 1069 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | 1070 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | 1071 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); 1072 chan->chan_reg.dma_scr |= dma_scr; 1073 1074 return 0; 1075 } 1076 1077 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) 1078 { 1079 memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); 1080 } 1081 1082 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( 1083 struct dma_chan *c, struct scatterlist *sgl, 1084 u32 sg_len, enum dma_transfer_direction direction, 1085 unsigned long flags, void *context) 1086 { 1087 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1088 struct stm32_dma_desc *desc; 1089 struct scatterlist *sg; 1090 enum dma_slave_buswidth buswidth; 1091 u32 nb_data_items; 1092 int i, ret; 1093 1094 if (!chan->config_init) { 1095 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1096 return NULL; 1097 } 1098 1099 if (sg_len < 1) { 1100 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); 1101 return NULL; 1102 } 1103 1104 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT); 1105 if (!desc) 1106 return NULL; 1107 desc->num_sgs = sg_len; 1108 1109 /* Set peripheral flow controller */ 1110 if (chan->dma_sconfig.device_fc) 1111 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; 1112 else 1113 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1114 1115 /* Activate Double Buffer Mode if DMA triggers STM32 MDMA and more than 1 sg */ 1116 if (chan->trig_mdma && sg_len > 1) { 1117 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 1118 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT; 1119 } 1120 1121 for_each_sg(sgl, sg, sg_len, i) { 1122 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, 1123 sg_dma_len(sg), 1124 sg_dma_address(sg)); 1125 if (ret < 0) 1126 goto err; 1127 1128 desc->sg_req[i].len = sg_dma_len(sg); 1129 1130 nb_data_items = desc->sg_req[i].len / buswidth; 1131 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1132 dev_err(chan2dev(chan), "nb items not supported\n"); 1133 goto err; 1134 } 1135 1136 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1137 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1138 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1139 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1140 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); 1141 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); 1142 if (chan->trig_mdma) 1143 desc->sg_req[i].chan_reg.dma_sm1ar += sg_dma_len(sg); 1144 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1145 } 1146 desc->cyclic = false; 1147 1148 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1149 1150 err: 1151 kfree(desc); 1152 return NULL; 1153 } 1154 1155 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( 1156 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, 1157 size_t period_len, enum dma_transfer_direction direction, 1158 unsigned long flags) 1159 { 1160 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1161 struct stm32_dma_desc *desc; 1162 enum dma_slave_buswidth buswidth; 1163 u32 num_periods, nb_data_items; 1164 int i, ret; 1165 1166 if (!buf_len || !period_len) { 1167 dev_err(chan2dev(chan), "Invalid buffer/period len\n"); 1168 return NULL; 1169 } 1170 1171 if (!chan->config_init) { 1172 dev_err(chan2dev(chan), "dma channel is not configured\n"); 1173 return NULL; 1174 } 1175 1176 if (buf_len % period_len) { 1177 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); 1178 return NULL; 1179 } 1180 1181 /* 1182 * We allow to take more number of requests till DMA is 1183 * not started. The driver will loop over all requests. 1184 * Once DMA is started then new requests can be queued only after 1185 * terminating the DMA. 1186 */ 1187 if (chan->busy) { 1188 dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); 1189 return NULL; 1190 } 1191 1192 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len, 1193 buf_addr); 1194 if (ret < 0) 1195 return NULL; 1196 1197 nb_data_items = period_len / buswidth; 1198 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { 1199 dev_err(chan2dev(chan), "number of items not supported\n"); 1200 return NULL; 1201 } 1202 1203 /* Enable Circular mode or double buffer mode */ 1204 if (buf_len == period_len) { 1205 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; 1206 } else { 1207 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; 1208 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_CT; 1209 } 1210 1211 /* Clear periph ctrl if client set it */ 1212 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; 1213 1214 num_periods = buf_len / period_len; 1215 1216 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT); 1217 if (!desc) 1218 return NULL; 1219 desc->num_sgs = num_periods; 1220 1221 for (i = 0; i < num_periods; i++) { 1222 desc->sg_req[i].len = period_len; 1223 1224 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1225 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; 1226 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; 1227 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; 1228 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; 1229 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; 1230 if (chan->trig_mdma) 1231 desc->sg_req[i].chan_reg.dma_sm1ar += period_len; 1232 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; 1233 if (!chan->trig_mdma) 1234 buf_addr += period_len; 1235 } 1236 desc->cyclic = true; 1237 1238 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1239 } 1240 1241 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( 1242 struct dma_chan *c, dma_addr_t dest, 1243 dma_addr_t src, size_t len, unsigned long flags) 1244 { 1245 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1246 enum dma_slave_buswidth max_width; 1247 struct stm32_dma_desc *desc; 1248 size_t xfer_count, offset; 1249 u32 num_sgs, best_burst, threshold; 1250 int dma_burst, i; 1251 1252 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1253 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT); 1254 if (!desc) 1255 return NULL; 1256 desc->num_sgs = num_sgs; 1257 1258 threshold = chan->threshold; 1259 1260 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { 1261 xfer_count = min_t(size_t, len - offset, 1262 STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1263 1264 /* Compute best burst size */ 1265 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1266 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, 1267 threshold, max_width); 1268 dma_burst = stm32_dma_get_burst(chan, best_burst); 1269 if (dma_burst < 0) { 1270 kfree(desc); 1271 return NULL; 1272 } 1273 1274 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); 1275 desc->sg_req[i].chan_reg.dma_scr = 1276 FIELD_PREP(STM32_DMA_SCR_DIR_MASK, STM32_DMA_MEM_TO_MEM) | 1277 FIELD_PREP(STM32_DMA_SCR_PBURST_MASK, dma_burst) | 1278 FIELD_PREP(STM32_DMA_SCR_MBURST_MASK, dma_burst) | 1279 STM32_DMA_SCR_MINC | 1280 STM32_DMA_SCR_PINC | 1281 STM32_DMA_SCR_TCIE | 1282 STM32_DMA_SCR_TEIE; 1283 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; 1284 desc->sg_req[i].chan_reg.dma_sfcr |= FIELD_PREP(STM32_DMA_SFCR_FTH_MASK, threshold); 1285 desc->sg_req[i].chan_reg.dma_spar = src + offset; 1286 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; 1287 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; 1288 desc->sg_req[i].len = xfer_count; 1289 } 1290 desc->cyclic = false; 1291 1292 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); 1293 } 1294 1295 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) 1296 { 1297 u32 dma_scr, width, ndtr; 1298 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1299 1300 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); 1301 width = FIELD_GET(STM32_DMA_SCR_PSIZE_MASK, dma_scr); 1302 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); 1303 1304 return ndtr << width; 1305 } 1306 1307 /** 1308 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred 1309 * @chan: dma channel 1310 * 1311 * This function called when IRQ are disable, checks that the hardware has not 1312 * switched on the next transfer in double buffer mode. The test is done by 1313 * comparing the next_sg memory address with the hardware related register 1314 * (based on CT bit value). 1315 * 1316 * Returns true if expected current transfer is still running or double 1317 * buffer mode is not activated. 1318 */ 1319 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) 1320 { 1321 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1322 struct stm32_dma_sg_req *sg_req; 1323 u32 dma_scr, dma_smar, id, period_len; 1324 1325 id = chan->id; 1326 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1327 1328 /* In cyclic CIRC but not DBM, CT is not used */ 1329 if (!(dma_scr & STM32_DMA_SCR_DBM)) 1330 return true; 1331 1332 sg_req = &chan->desc->sg_req[chan->next_sg]; 1333 period_len = sg_req->len; 1334 1335 /* DBM - take care of a previous pause/resume not yet post reconfigured */ 1336 if (dma_scr & STM32_DMA_SCR_CT) { 1337 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); 1338 /* 1339 * If transfer has been pause/resumed, 1340 * SM0AR is in the range of [SM0AR:SM0AR+period_len] 1341 */ 1342 return (dma_smar >= sg_req->chan_reg.dma_sm0ar && 1343 dma_smar < sg_req->chan_reg.dma_sm0ar + period_len); 1344 } 1345 1346 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); 1347 /* 1348 * If transfer has been pause/resumed, 1349 * SM1AR is in the range of [SM1AR:SM1AR+period_len] 1350 */ 1351 return (dma_smar >= sg_req->chan_reg.dma_sm1ar && 1352 dma_smar < sg_req->chan_reg.dma_sm1ar + period_len); 1353 } 1354 1355 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, 1356 struct stm32_dma_desc *desc, 1357 u32 next_sg) 1358 { 1359 u32 modulo, burst_size; 1360 u32 residue; 1361 u32 n_sg = next_sg; 1362 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; 1363 int i; 1364 1365 /* 1366 * Calculate the residue means compute the descriptors 1367 * information: 1368 * - the sg_req currently transferred 1369 * - the Hardware remaining position in this sg (NDTR bits field). 1370 * 1371 * A race condition may occur if DMA is running in cyclic or double 1372 * buffer mode, since the DMA register are automatically reloaded at end 1373 * of period transfer. The hardware may have switched to the next 1374 * transfer (CT bit updated) just before the position (SxNDTR reg) is 1375 * read. 1376 * In this case the SxNDTR reg could (or not) correspond to the new 1377 * transfer position, and not the expected one. 1378 * The strategy implemented in the stm32 driver is to: 1379 * - read the SxNDTR register 1380 * - crosscheck that hardware is still in current transfer. 1381 * In case of switch, we can assume that the DMA is at the beginning of 1382 * the next transfer. So we approximate the residue in consequence, by 1383 * pointing on the beginning of next transfer. 1384 * 1385 * This race condition doesn't apply for none cyclic mode, as double 1386 * buffer is not used. In such situation registers are updated by the 1387 * software. 1388 */ 1389 1390 residue = stm32_dma_get_remaining_bytes(chan); 1391 1392 if ((chan->desc->cyclic || chan->trig_mdma) && !stm32_dma_is_current_sg(chan)) { 1393 n_sg++; 1394 if (n_sg == chan->desc->num_sgs) 1395 n_sg = 0; 1396 if (!chan->trig_mdma) 1397 residue = sg_req->len; 1398 } 1399 1400 /* 1401 * In cyclic mode, for the last period, residue = remaining bytes 1402 * from NDTR, 1403 * else for all other periods in cyclic mode, and in sg mode, 1404 * residue = remaining bytes from NDTR + remaining 1405 * periods/sg to be transferred 1406 */ 1407 if ((!chan->desc->cyclic && !chan->trig_mdma) || n_sg != 0) 1408 for (i = n_sg; i < desc->num_sgs; i++) 1409 residue += desc->sg_req[i].len; 1410 1411 if (!chan->mem_burst) 1412 return residue; 1413 1414 burst_size = chan->mem_burst * chan->mem_width; 1415 modulo = residue % burst_size; 1416 if (modulo) 1417 residue = residue - modulo + burst_size; 1418 1419 return residue; 1420 } 1421 1422 static enum dma_status stm32_dma_tx_status(struct dma_chan *c, 1423 dma_cookie_t cookie, 1424 struct dma_tx_state *state) 1425 { 1426 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1427 struct virt_dma_desc *vdesc; 1428 enum dma_status status; 1429 unsigned long flags; 1430 u32 residue = 0; 1431 1432 status = dma_cookie_status(c, cookie, state); 1433 if (status == DMA_COMPLETE) 1434 return status; 1435 1436 status = chan->status; 1437 1438 if (!state) 1439 return status; 1440 1441 spin_lock_irqsave(&chan->vchan.lock, flags); 1442 vdesc = vchan_find_desc(&chan->vchan, cookie); 1443 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) 1444 residue = stm32_dma_desc_residue(chan, chan->desc, 1445 chan->next_sg); 1446 else if (vdesc) 1447 residue = stm32_dma_desc_residue(chan, 1448 to_stm32_dma_desc(vdesc), 0); 1449 dma_set_residue(state, residue); 1450 1451 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1452 1453 return status; 1454 } 1455 1456 static int stm32_dma_alloc_chan_resources(struct dma_chan *c) 1457 { 1458 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1459 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1460 int ret; 1461 1462 chan->config_init = false; 1463 1464 ret = pm_runtime_resume_and_get(dmadev->ddev.dev); 1465 if (ret < 0) 1466 return ret; 1467 1468 ret = stm32_dma_disable_chan(chan); 1469 if (ret < 0) 1470 pm_runtime_put(dmadev->ddev.dev); 1471 1472 return ret; 1473 } 1474 1475 static void stm32_dma_free_chan_resources(struct dma_chan *c) 1476 { 1477 struct stm32_dma_chan *chan = to_stm32_dma_chan(c); 1478 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); 1479 unsigned long flags; 1480 1481 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); 1482 1483 if (chan->busy) { 1484 spin_lock_irqsave(&chan->vchan.lock, flags); 1485 stm32_dma_stop(chan); 1486 chan->desc = NULL; 1487 spin_unlock_irqrestore(&chan->vchan.lock, flags); 1488 } 1489 1490 pm_runtime_put(dmadev->ddev.dev); 1491 1492 vchan_free_chan_resources(to_virt_chan(c)); 1493 stm32_dma_clear_reg(&chan->chan_reg); 1494 chan->threshold = 0; 1495 } 1496 1497 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) 1498 { 1499 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); 1500 } 1501 1502 static void stm32_dma_set_config(struct stm32_dma_chan *chan, 1503 struct stm32_dma_cfg *cfg) 1504 { 1505 stm32_dma_clear_reg(&chan->chan_reg); 1506 1507 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; 1508 chan->chan_reg.dma_scr |= FIELD_PREP(STM32_DMA_SCR_REQ_MASK, cfg->request_line); 1509 1510 /* Enable Interrupts */ 1511 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; 1512 1513 chan->threshold = FIELD_GET(STM32_DMA_THRESHOLD_FTR_MASK, cfg->features); 1514 if (FIELD_GET(STM32_DMA_DIRECT_MODE_MASK, cfg->features)) 1515 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE; 1516 if (FIELD_GET(STM32_DMA_ALT_ACK_MODE_MASK, cfg->features)) 1517 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF; 1518 chan->mdma_config.stream_id = FIELD_GET(STM32_DMA_MDMA_STREAM_ID_MASK, cfg->features); 1519 } 1520 1521 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, 1522 struct of_dma *ofdma) 1523 { 1524 struct stm32_dma_device *dmadev = ofdma->of_dma_data; 1525 struct device *dev = dmadev->ddev.dev; 1526 struct stm32_dma_cfg cfg; 1527 struct stm32_dma_chan *chan; 1528 struct dma_chan *c; 1529 1530 if (dma_spec->args_count < 4) { 1531 dev_err(dev, "Bad number of cells\n"); 1532 return NULL; 1533 } 1534 1535 cfg.channel_id = dma_spec->args[0]; 1536 cfg.request_line = dma_spec->args[1]; 1537 cfg.stream_config = dma_spec->args[2]; 1538 cfg.features = dma_spec->args[3]; 1539 1540 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || 1541 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { 1542 dev_err(dev, "Bad channel and/or request id\n"); 1543 return NULL; 1544 } 1545 1546 chan = &dmadev->chan[cfg.channel_id]; 1547 1548 c = dma_get_slave_channel(&chan->vchan.chan); 1549 if (!c) { 1550 dev_err(dev, "No more channels available\n"); 1551 return NULL; 1552 } 1553 1554 stm32_dma_set_config(chan, &cfg); 1555 1556 return c; 1557 } 1558 1559 static const struct of_device_id stm32_dma_of_match[] = { 1560 { .compatible = "st,stm32-dma", }, 1561 { /* sentinel */ }, 1562 }; 1563 MODULE_DEVICE_TABLE(of, stm32_dma_of_match); 1564 1565 static int stm32_dma_probe(struct platform_device *pdev) 1566 { 1567 struct stm32_dma_chan *chan; 1568 struct stm32_dma_device *dmadev; 1569 struct dma_device *dd; 1570 struct resource *res; 1571 struct reset_control *rst; 1572 int i, ret; 1573 1574 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); 1575 if (!dmadev) 1576 return -ENOMEM; 1577 1578 dd = &dmadev->ddev; 1579 1580 dmadev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1581 if (IS_ERR(dmadev->base)) 1582 return PTR_ERR(dmadev->base); 1583 1584 dmadev->clk = devm_clk_get(&pdev->dev, NULL); 1585 if (IS_ERR(dmadev->clk)) 1586 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n"); 1587 1588 ret = clk_prepare_enable(dmadev->clk); 1589 if (ret < 0) { 1590 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); 1591 return ret; 1592 } 1593 1594 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, 1595 "st,mem2mem"); 1596 1597 rst = devm_reset_control_get(&pdev->dev, NULL); 1598 if (IS_ERR(rst)) { 1599 ret = PTR_ERR(rst); 1600 if (ret == -EPROBE_DEFER) 1601 goto clk_free; 1602 } else { 1603 reset_control_assert(rst); 1604 udelay(2); 1605 reset_control_deassert(rst); 1606 } 1607 1608 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); 1609 1610 dma_cap_set(DMA_SLAVE, dd->cap_mask); 1611 dma_cap_set(DMA_PRIVATE, dd->cap_mask); 1612 dma_cap_set(DMA_CYCLIC, dd->cap_mask); 1613 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; 1614 dd->device_free_chan_resources = stm32_dma_free_chan_resources; 1615 dd->device_tx_status = stm32_dma_tx_status; 1616 dd->device_issue_pending = stm32_dma_issue_pending; 1617 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; 1618 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; 1619 dd->device_config = stm32_dma_slave_config; 1620 dd->device_pause = stm32_dma_pause; 1621 dd->device_resume = stm32_dma_resume; 1622 dd->device_terminate_all = stm32_dma_terminate_all; 1623 dd->device_synchronize = stm32_dma_synchronize; 1624 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1625 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1626 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1627 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1628 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1629 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 1630 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1631 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1632 dd->copy_align = DMAENGINE_ALIGN_32_BYTES; 1633 dd->max_burst = STM32_DMA_MAX_BURST; 1634 dd->max_sg_burst = STM32_DMA_ALIGNED_MAX_DATA_ITEMS; 1635 dd->descriptor_reuse = true; 1636 dd->dev = &pdev->dev; 1637 INIT_LIST_HEAD(&dd->channels); 1638 1639 if (dmadev->mem2mem) { 1640 dma_cap_set(DMA_MEMCPY, dd->cap_mask); 1641 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; 1642 dd->directions |= BIT(DMA_MEM_TO_MEM); 1643 } 1644 1645 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1646 chan = &dmadev->chan[i]; 1647 chan->id = i; 1648 chan->vchan.desc_free = stm32_dma_desc_free; 1649 vchan_init(&chan->vchan, dd); 1650 1651 chan->mdma_config.ifcr = res->start; 1652 chan->mdma_config.ifcr += STM32_DMA_IFCR(chan->id); 1653 1654 chan->mdma_config.tcf = STM32_DMA_TCI; 1655 chan->mdma_config.tcf <<= STM32_DMA_FLAGS_SHIFT(chan->id); 1656 } 1657 1658 ret = dma_async_device_register(dd); 1659 if (ret) 1660 goto clk_free; 1661 1662 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { 1663 chan = &dmadev->chan[i]; 1664 ret = platform_get_irq(pdev, i); 1665 if (ret < 0) 1666 goto err_unregister; 1667 chan->irq = ret; 1668 1669 ret = devm_request_irq(&pdev->dev, chan->irq, 1670 stm32_dma_chan_irq, 0, 1671 dev_name(chan2dev(chan)), chan); 1672 if (ret) { 1673 dev_err(&pdev->dev, 1674 "request_irq failed with err %d channel %d\n", 1675 ret, i); 1676 goto err_unregister; 1677 } 1678 } 1679 1680 ret = of_dma_controller_register(pdev->dev.of_node, 1681 stm32_dma_of_xlate, dmadev); 1682 if (ret < 0) { 1683 dev_err(&pdev->dev, 1684 "STM32 DMA DMA OF registration failed %d\n", ret); 1685 goto err_unregister; 1686 } 1687 1688 platform_set_drvdata(pdev, dmadev); 1689 1690 pm_runtime_set_active(&pdev->dev); 1691 pm_runtime_enable(&pdev->dev); 1692 pm_runtime_get_noresume(&pdev->dev); 1693 pm_runtime_put(&pdev->dev); 1694 1695 dev_info(&pdev->dev, "STM32 DMA driver registered\n"); 1696 1697 return 0; 1698 1699 err_unregister: 1700 dma_async_device_unregister(dd); 1701 clk_free: 1702 clk_disable_unprepare(dmadev->clk); 1703 1704 return ret; 1705 } 1706 1707 #ifdef CONFIG_PM 1708 static int stm32_dma_runtime_suspend(struct device *dev) 1709 { 1710 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1711 1712 clk_disable_unprepare(dmadev->clk); 1713 1714 return 0; 1715 } 1716 1717 static int stm32_dma_runtime_resume(struct device *dev) 1718 { 1719 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1720 int ret; 1721 1722 ret = clk_prepare_enable(dmadev->clk); 1723 if (ret) { 1724 dev_err(dev, "failed to prepare_enable clock\n"); 1725 return ret; 1726 } 1727 1728 return 0; 1729 } 1730 #endif 1731 1732 #ifdef CONFIG_PM_SLEEP 1733 static int stm32_dma_pm_suspend(struct device *dev) 1734 { 1735 struct stm32_dma_device *dmadev = dev_get_drvdata(dev); 1736 int id, ret, scr; 1737 1738 ret = pm_runtime_resume_and_get(dev); 1739 if (ret < 0) 1740 return ret; 1741 1742 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) { 1743 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); 1744 if (scr & STM32_DMA_SCR_EN) { 1745 dev_warn(dev, "Suspend is prevented by Chan %i\n", id); 1746 return -EBUSY; 1747 } 1748 } 1749 1750 pm_runtime_put_sync(dev); 1751 1752 pm_runtime_force_suspend(dev); 1753 1754 return 0; 1755 } 1756 1757 static int stm32_dma_pm_resume(struct device *dev) 1758 { 1759 return pm_runtime_force_resume(dev); 1760 } 1761 #endif 1762 1763 static const struct dev_pm_ops stm32_dma_pm_ops = { 1764 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_pm_suspend, stm32_dma_pm_resume) 1765 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, 1766 stm32_dma_runtime_resume, NULL) 1767 }; 1768 1769 static struct platform_driver stm32_dma_driver = { 1770 .driver = { 1771 .name = "stm32-dma", 1772 .of_match_table = stm32_dma_of_match, 1773 .pm = &stm32_dma_pm_ops, 1774 }, 1775 .probe = stm32_dma_probe, 1776 }; 1777 1778 static int __init stm32_dma_init(void) 1779 { 1780 return platform_driver_register(&stm32_dma_driver); 1781 } 1782 subsys_initcall(stm32_dma_init); 1783