xref: /linux/drivers/dma/ste_dma40.c (revision fea88a0c02822fbb91a0b8301bf9af04377876a3)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/pm.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/err.h>
20 #include <linux/amba/bus.h>
21 
22 #include <plat/ste_dma40.h>
23 
24 #include "dmaengine.h"
25 #include "ste_dma40_ll.h"
26 
27 #define D40_NAME "dma40"
28 
29 #define D40_PHY_CHAN -1
30 
31 /* For masking out/in 2 bit channel positions */
32 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
34 
35 /* Maximum iterations taken before giving up suspending a channel */
36 #define D40_SUSPEND_MAX_IT 500
37 
38 /* Milliseconds */
39 #define DMA40_AUTOSUSPEND_DELAY	100
40 
41 /* Hardware requirement on LCLA alignment */
42 #define LCLA_ALIGNMENT 0x40000
43 
44 /* Max number of links per event group */
45 #define D40_LCLA_LINK_PER_EVENT_GRP 128
46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
47 
48 /* Attempts before giving up to trying to get pages that are aligned */
49 #define MAX_LCLA_ALLOC_ATTEMPTS 256
50 
51 /* Bit markings for allocation map */
52 #define D40_ALLOC_FREE		(1 << 31)
53 #define D40_ALLOC_PHY		(1 << 30)
54 #define D40_ALLOC_LOG_FREE	0
55 
56 /**
57  * enum 40_command - The different commands and/or statuses.
58  *
59  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
60  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
61  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
62  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
63  */
64 enum d40_command {
65 	D40_DMA_STOP		= 0,
66 	D40_DMA_RUN		= 1,
67 	D40_DMA_SUSPEND_REQ	= 2,
68 	D40_DMA_SUSPENDED	= 3
69 };
70 
71 /*
72  * These are the registers that has to be saved and later restored
73  * when the DMA hw is powered off.
74  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
75  */
76 static u32 d40_backup_regs[] = {
77 	D40_DREG_LCPA,
78 	D40_DREG_LCLA,
79 	D40_DREG_PRMSE,
80 	D40_DREG_PRMSO,
81 	D40_DREG_PRMOE,
82 	D40_DREG_PRMOO,
83 };
84 
85 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
86 
87 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
88 static u32 d40_backup_regs_v3[] = {
89 	D40_DREG_PSEG1,
90 	D40_DREG_PSEG2,
91 	D40_DREG_PSEG3,
92 	D40_DREG_PSEG4,
93 	D40_DREG_PCEG1,
94 	D40_DREG_PCEG2,
95 	D40_DREG_PCEG3,
96 	D40_DREG_PCEG4,
97 	D40_DREG_RSEG1,
98 	D40_DREG_RSEG2,
99 	D40_DREG_RSEG3,
100 	D40_DREG_RSEG4,
101 	D40_DREG_RCEG1,
102 	D40_DREG_RCEG2,
103 	D40_DREG_RCEG3,
104 	D40_DREG_RCEG4,
105 };
106 
107 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
108 
109 static u32 d40_backup_regs_chan[] = {
110 	D40_CHAN_REG_SSCFG,
111 	D40_CHAN_REG_SSELT,
112 	D40_CHAN_REG_SSPTR,
113 	D40_CHAN_REG_SSLNK,
114 	D40_CHAN_REG_SDCFG,
115 	D40_CHAN_REG_SDELT,
116 	D40_CHAN_REG_SDPTR,
117 	D40_CHAN_REG_SDLNK,
118 };
119 
120 /**
121  * struct d40_lli_pool - Structure for keeping LLIs in memory
122  *
123  * @base: Pointer to memory area when the pre_alloc_lli's are not large
124  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
125  * pre_alloc_lli is used.
126  * @dma_addr: DMA address, if mapped
127  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
128  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
129  * one buffer to one buffer.
130  */
131 struct d40_lli_pool {
132 	void	*base;
133 	int	 size;
134 	dma_addr_t	dma_addr;
135 	/* Space for dst and src, plus an extra for padding */
136 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
137 };
138 
139 /**
140  * struct d40_desc - A descriptor is one DMA job.
141  *
142  * @lli_phy: LLI settings for physical channel. Both src and dst=
143  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
144  * lli_len equals one.
145  * @lli_log: Same as above but for logical channels.
146  * @lli_pool: The pool with two entries pre-allocated.
147  * @lli_len: Number of llis of current descriptor.
148  * @lli_current: Number of transferred llis.
149  * @lcla_alloc: Number of LCLA entries allocated.
150  * @txd: DMA engine struct. Used for among other things for communication
151  * during a transfer.
152  * @node: List entry.
153  * @is_in_client_list: true if the client owns this descriptor.
154  * @cyclic: true if this is a cyclic job
155  *
156  * This descriptor is used for both logical and physical transfers.
157  */
158 struct d40_desc {
159 	/* LLI physical */
160 	struct d40_phy_lli_bidir	 lli_phy;
161 	/* LLI logical */
162 	struct d40_log_lli_bidir	 lli_log;
163 
164 	struct d40_lli_pool		 lli_pool;
165 	int				 lli_len;
166 	int				 lli_current;
167 	int				 lcla_alloc;
168 
169 	struct dma_async_tx_descriptor	 txd;
170 	struct list_head		 node;
171 
172 	bool				 is_in_client_list;
173 	bool				 cyclic;
174 };
175 
176 /**
177  * struct d40_lcla_pool - LCLA pool settings and data.
178  *
179  * @base: The virtual address of LCLA. 18 bit aligned.
180  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
181  * This pointer is only there for clean-up on error.
182  * @pages: The number of pages needed for all physical channels.
183  * Only used later for clean-up on error
184  * @lock: Lock to protect the content in this struct.
185  * @alloc_map: big map over which LCLA entry is own by which job.
186  */
187 struct d40_lcla_pool {
188 	void		*base;
189 	dma_addr_t	dma_addr;
190 	void		*base_unaligned;
191 	int		 pages;
192 	spinlock_t	 lock;
193 	struct d40_desc	**alloc_map;
194 };
195 
196 /**
197  * struct d40_phy_res - struct for handling eventlines mapped to physical
198  * channels.
199  *
200  * @lock: A lock protection this entity.
201  * @reserved: True if used by secure world or otherwise.
202  * @num: The physical channel number of this entity.
203  * @allocated_src: Bit mapped to show which src event line's are mapped to
204  * this physical channel. Can also be free or physically allocated.
205  * @allocated_dst: Same as for src but is dst.
206  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
207  * event line number.
208  */
209 struct d40_phy_res {
210 	spinlock_t lock;
211 	bool	   reserved;
212 	int	   num;
213 	u32	   allocated_src;
214 	u32	   allocated_dst;
215 };
216 
217 struct d40_base;
218 
219 /**
220  * struct d40_chan - Struct that describes a channel.
221  *
222  * @lock: A spinlock to protect this struct.
223  * @log_num: The logical number, if any of this channel.
224  * @pending_tx: The number of pending transfers. Used between interrupt handler
225  * and tasklet.
226  * @busy: Set to true when transfer is ongoing on this channel.
227  * @phy_chan: Pointer to physical channel which this instance runs on. If this
228  * point is NULL, then the channel is not allocated.
229  * @chan: DMA engine handle.
230  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
231  * transfer and call client callback.
232  * @client: Cliented owned descriptor list.
233  * @pending_queue: Submitted jobs, to be issued by issue_pending()
234  * @active: Active descriptor.
235  * @queue: Queued jobs.
236  * @prepare_queue: Prepared jobs.
237  * @dma_cfg: The client configuration of this dma channel.
238  * @configured: whether the dma_cfg configuration is valid
239  * @base: Pointer to the device instance struct.
240  * @src_def_cfg: Default cfg register setting for src.
241  * @dst_def_cfg: Default cfg register setting for dst.
242  * @log_def: Default logical channel settings.
243  * @lcpa: Pointer to dst and src lcpa settings.
244  * @runtime_addr: runtime configured address.
245  * @runtime_direction: runtime configured direction.
246  *
247  * This struct can either "be" a logical or a physical channel.
248  */
249 struct d40_chan {
250 	spinlock_t			 lock;
251 	int				 log_num;
252 	int				 pending_tx;
253 	bool				 busy;
254 	struct d40_phy_res		*phy_chan;
255 	struct dma_chan			 chan;
256 	struct tasklet_struct		 tasklet;
257 	struct list_head		 client;
258 	struct list_head		 pending_queue;
259 	struct list_head		 active;
260 	struct list_head		 queue;
261 	struct list_head		 prepare_queue;
262 	struct stedma40_chan_cfg	 dma_cfg;
263 	bool				 configured;
264 	struct d40_base			*base;
265 	/* Default register configurations */
266 	u32				 src_def_cfg;
267 	u32				 dst_def_cfg;
268 	struct d40_def_lcsp		 log_def;
269 	struct d40_log_lli_full		*lcpa;
270 	/* Runtime reconfiguration */
271 	dma_addr_t			runtime_addr;
272 	enum dma_transfer_direction	runtime_direction;
273 };
274 
275 /**
276  * struct d40_base - The big global struct, one for each probe'd instance.
277  *
278  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
279  * @execmd_lock: Lock for execute command usage since several channels share
280  * the same physical register.
281  * @dev: The device structure.
282  * @virtbase: The virtual base address of the DMA's register.
283  * @rev: silicon revision detected.
284  * @clk: Pointer to the DMA clock structure.
285  * @phy_start: Physical memory start of the DMA registers.
286  * @phy_size: Size of the DMA register map.
287  * @irq: The IRQ number.
288  * @num_phy_chans: The number of physical channels. Read from HW. This
289  * is the number of available channels for this driver, not counting "Secure
290  * mode" allocated physical channels.
291  * @num_log_chans: The number of logical channels. Calculated from
292  * num_phy_chans.
293  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
294  * @dma_slave: dma_device channels that can do only do slave transfers.
295  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
296  * @phy_chans: Room for all possible physical channels in system.
297  * @log_chans: Room for all possible logical channels in system.
298  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
299  * to log_chans entries.
300  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
301  * to phy_chans entries.
302  * @plat_data: Pointer to provided platform_data which is the driver
303  * configuration.
304  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
305  * @phy_res: Vector containing all physical channels.
306  * @lcla_pool: lcla pool settings and data.
307  * @lcpa_base: The virtual mapped address of LCPA.
308  * @phy_lcpa: The physical address of the LCPA.
309  * @lcpa_size: The size of the LCPA area.
310  * @desc_slab: cache for descriptors.
311  * @reg_val_backup: Here the values of some hardware registers are stored
312  * before the DMA is powered off. They are restored when the power is back on.
313  * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
314  * later.
315  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
316  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
317  * @initialized: true if the dma has been initialized
318  */
319 struct d40_base {
320 	spinlock_t			 interrupt_lock;
321 	spinlock_t			 execmd_lock;
322 	struct device			 *dev;
323 	void __iomem			 *virtbase;
324 	u8				  rev:4;
325 	struct clk			 *clk;
326 	phys_addr_t			  phy_start;
327 	resource_size_t			  phy_size;
328 	int				  irq;
329 	int				  num_phy_chans;
330 	int				  num_log_chans;
331 	struct dma_device		  dma_both;
332 	struct dma_device		  dma_slave;
333 	struct dma_device		  dma_memcpy;
334 	struct d40_chan			 *phy_chans;
335 	struct d40_chan			 *log_chans;
336 	struct d40_chan			**lookup_log_chans;
337 	struct d40_chan			**lookup_phy_chans;
338 	struct stedma40_platform_data	 *plat_data;
339 	struct regulator		 *lcpa_regulator;
340 	/* Physical half channels */
341 	struct d40_phy_res		 *phy_res;
342 	struct d40_lcla_pool		  lcla_pool;
343 	void				 *lcpa_base;
344 	dma_addr_t			  phy_lcpa;
345 	resource_size_t			  lcpa_size;
346 	struct kmem_cache		 *desc_slab;
347 	u32				  reg_val_backup[BACKUP_REGS_SZ];
348 	u32				  reg_val_backup_v3[BACKUP_REGS_SZ_V3];
349 	u32				 *reg_val_backup_chan;
350 	u16				  gcc_pwr_off_mask;
351 	bool				  initialized;
352 };
353 
354 /**
355  * struct d40_interrupt_lookup - lookup table for interrupt handler
356  *
357  * @src: Interrupt mask register.
358  * @clr: Interrupt clear register.
359  * @is_error: true if this is an error interrupt.
360  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
361  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
362  */
363 struct d40_interrupt_lookup {
364 	u32 src;
365 	u32 clr;
366 	bool is_error;
367 	int offset;
368 };
369 
370 /**
371  * struct d40_reg_val - simple lookup struct
372  *
373  * @reg: The register.
374  * @val: The value that belongs to the register in reg.
375  */
376 struct d40_reg_val {
377 	unsigned int reg;
378 	unsigned int val;
379 };
380 
381 static struct device *chan2dev(struct d40_chan *d40c)
382 {
383 	return &d40c->chan.dev->device;
384 }
385 
386 static bool chan_is_physical(struct d40_chan *chan)
387 {
388 	return chan->log_num == D40_PHY_CHAN;
389 }
390 
391 static bool chan_is_logical(struct d40_chan *chan)
392 {
393 	return !chan_is_physical(chan);
394 }
395 
396 static void __iomem *chan_base(struct d40_chan *chan)
397 {
398 	return chan->base->virtbase + D40_DREG_PCBASE +
399 	       chan->phy_chan->num * D40_DREG_PCDELTA;
400 }
401 
402 #define d40_err(dev, format, arg...)		\
403 	dev_err(dev, "[%s] " format, __func__, ## arg)
404 
405 #define chan_err(d40c, format, arg...)		\
406 	d40_err(chan2dev(d40c), format, ## arg)
407 
408 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
409 			      int lli_len)
410 {
411 	bool is_log = chan_is_logical(d40c);
412 	u32 align;
413 	void *base;
414 
415 	if (is_log)
416 		align = sizeof(struct d40_log_lli);
417 	else
418 		align = sizeof(struct d40_phy_lli);
419 
420 	if (lli_len == 1) {
421 		base = d40d->lli_pool.pre_alloc_lli;
422 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
423 		d40d->lli_pool.base = NULL;
424 	} else {
425 		d40d->lli_pool.size = lli_len * 2 * align;
426 
427 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
428 		d40d->lli_pool.base = base;
429 
430 		if (d40d->lli_pool.base == NULL)
431 			return -ENOMEM;
432 	}
433 
434 	if (is_log) {
435 		d40d->lli_log.src = PTR_ALIGN(base, align);
436 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
437 
438 		d40d->lli_pool.dma_addr = 0;
439 	} else {
440 		d40d->lli_phy.src = PTR_ALIGN(base, align);
441 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
442 
443 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
444 							 d40d->lli_phy.src,
445 							 d40d->lli_pool.size,
446 							 DMA_TO_DEVICE);
447 
448 		if (dma_mapping_error(d40c->base->dev,
449 				      d40d->lli_pool.dma_addr)) {
450 			kfree(d40d->lli_pool.base);
451 			d40d->lli_pool.base = NULL;
452 			d40d->lli_pool.dma_addr = 0;
453 			return -ENOMEM;
454 		}
455 	}
456 
457 	return 0;
458 }
459 
460 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
461 {
462 	if (d40d->lli_pool.dma_addr)
463 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
464 				 d40d->lli_pool.size, DMA_TO_DEVICE);
465 
466 	kfree(d40d->lli_pool.base);
467 	d40d->lli_pool.base = NULL;
468 	d40d->lli_pool.size = 0;
469 	d40d->lli_log.src = NULL;
470 	d40d->lli_log.dst = NULL;
471 	d40d->lli_phy.src = NULL;
472 	d40d->lli_phy.dst = NULL;
473 }
474 
475 static int d40_lcla_alloc_one(struct d40_chan *d40c,
476 			      struct d40_desc *d40d)
477 {
478 	unsigned long flags;
479 	int i;
480 	int ret = -EINVAL;
481 	int p;
482 
483 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
484 
485 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
486 
487 	/*
488 	 * Allocate both src and dst at the same time, therefore the half
489 	 * start on 1 since 0 can't be used since zero is used as end marker.
490 	 */
491 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
492 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
493 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
494 			d40d->lcla_alloc++;
495 			ret = i;
496 			break;
497 		}
498 	}
499 
500 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
501 
502 	return ret;
503 }
504 
505 static int d40_lcla_free_all(struct d40_chan *d40c,
506 			     struct d40_desc *d40d)
507 {
508 	unsigned long flags;
509 	int i;
510 	int ret = -EINVAL;
511 
512 	if (chan_is_physical(d40c))
513 		return 0;
514 
515 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
516 
517 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
518 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
519 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
520 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
521 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
522 			d40d->lcla_alloc--;
523 			if (d40d->lcla_alloc == 0) {
524 				ret = 0;
525 				break;
526 			}
527 		}
528 	}
529 
530 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
531 
532 	return ret;
533 
534 }
535 
536 static void d40_desc_remove(struct d40_desc *d40d)
537 {
538 	list_del(&d40d->node);
539 }
540 
541 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
542 {
543 	struct d40_desc *desc = NULL;
544 
545 	if (!list_empty(&d40c->client)) {
546 		struct d40_desc *d;
547 		struct d40_desc *_d;
548 
549 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
550 			if (async_tx_test_ack(&d->txd)) {
551 				d40_desc_remove(d);
552 				desc = d;
553 				memset(desc, 0, sizeof(*desc));
554 				break;
555 			}
556 		}
557 	}
558 
559 	if (!desc)
560 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
561 
562 	if (desc)
563 		INIT_LIST_HEAD(&desc->node);
564 
565 	return desc;
566 }
567 
568 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
569 {
570 
571 	d40_pool_lli_free(d40c, d40d);
572 	d40_lcla_free_all(d40c, d40d);
573 	kmem_cache_free(d40c->base->desc_slab, d40d);
574 }
575 
576 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
577 {
578 	list_add_tail(&desc->node, &d40c->active);
579 }
580 
581 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
582 {
583 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
584 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
585 	void __iomem *base = chan_base(chan);
586 
587 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
588 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
589 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
590 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
591 
592 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
593 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
594 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
595 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
596 }
597 
598 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
599 {
600 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
601 	struct d40_log_lli_bidir *lli = &desc->lli_log;
602 	int lli_current = desc->lli_current;
603 	int lli_len = desc->lli_len;
604 	bool cyclic = desc->cyclic;
605 	int curr_lcla = -EINVAL;
606 	int first_lcla = 0;
607 	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
608 	bool linkback;
609 
610 	/*
611 	 * We may have partially running cyclic transfers, in case we did't get
612 	 * enough LCLA entries.
613 	 */
614 	linkback = cyclic && lli_current == 0;
615 
616 	/*
617 	 * For linkback, we need one LCLA even with only one link, because we
618 	 * can't link back to the one in LCPA space
619 	 */
620 	if (linkback || (lli_len - lli_current > 1)) {
621 		curr_lcla = d40_lcla_alloc_one(chan, desc);
622 		first_lcla = curr_lcla;
623 	}
624 
625 	/*
626 	 * For linkback, we normally load the LCPA in the loop since we need to
627 	 * link it to the second LCLA and not the first.  However, if we
628 	 * couldn't even get a first LCLA, then we have to run in LCPA and
629 	 * reload manually.
630 	 */
631 	if (!linkback || curr_lcla == -EINVAL) {
632 		unsigned int flags = 0;
633 
634 		if (curr_lcla == -EINVAL)
635 			flags |= LLI_TERM_INT;
636 
637 		d40_log_lli_lcpa_write(chan->lcpa,
638 				       &lli->dst[lli_current],
639 				       &lli->src[lli_current],
640 				       curr_lcla,
641 				       flags);
642 		lli_current++;
643 	}
644 
645 	if (curr_lcla < 0)
646 		goto out;
647 
648 	for (; lli_current < lli_len; lli_current++) {
649 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
650 					   8 * curr_lcla * 2;
651 		struct d40_log_lli *lcla = pool->base + lcla_offset;
652 		unsigned int flags = 0;
653 		int next_lcla;
654 
655 		if (lli_current + 1 < lli_len)
656 			next_lcla = d40_lcla_alloc_one(chan, desc);
657 		else
658 			next_lcla = linkback ? first_lcla : -EINVAL;
659 
660 		if (cyclic || next_lcla == -EINVAL)
661 			flags |= LLI_TERM_INT;
662 
663 		if (linkback && curr_lcla == first_lcla) {
664 			/* First link goes in both LCPA and LCLA */
665 			d40_log_lli_lcpa_write(chan->lcpa,
666 					       &lli->dst[lli_current],
667 					       &lli->src[lli_current],
668 					       next_lcla, flags);
669 		}
670 
671 		/*
672 		 * One unused LCLA in the cyclic case if the very first
673 		 * next_lcla fails...
674 		 */
675 		d40_log_lli_lcla_write(lcla,
676 				       &lli->dst[lli_current],
677 				       &lli->src[lli_current],
678 				       next_lcla, flags);
679 
680 		/*
681 		 * Cache maintenance is not needed if lcla is
682 		 * mapped in esram
683 		 */
684 		if (!use_esram_lcla) {
685 			dma_sync_single_range_for_device(chan->base->dev,
686 						pool->dma_addr, lcla_offset,
687 						2 * sizeof(struct d40_log_lli),
688 						DMA_TO_DEVICE);
689 		}
690 		curr_lcla = next_lcla;
691 
692 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
693 			lli_current++;
694 			break;
695 		}
696 	}
697 
698 out:
699 	desc->lli_current = lli_current;
700 }
701 
702 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
703 {
704 	if (chan_is_physical(d40c)) {
705 		d40_phy_lli_load(d40c, d40d);
706 		d40d->lli_current = d40d->lli_len;
707 	} else
708 		d40_log_lli_to_lcxa(d40c, d40d);
709 }
710 
711 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
712 {
713 	struct d40_desc *d;
714 
715 	if (list_empty(&d40c->active))
716 		return NULL;
717 
718 	d = list_first_entry(&d40c->active,
719 			     struct d40_desc,
720 			     node);
721 	return d;
722 }
723 
724 /* remove desc from current queue and add it to the pending_queue */
725 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
726 {
727 	d40_desc_remove(desc);
728 	desc->is_in_client_list = false;
729 	list_add_tail(&desc->node, &d40c->pending_queue);
730 }
731 
732 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
733 {
734 	struct d40_desc *d;
735 
736 	if (list_empty(&d40c->pending_queue))
737 		return NULL;
738 
739 	d = list_first_entry(&d40c->pending_queue,
740 			     struct d40_desc,
741 			     node);
742 	return d;
743 }
744 
745 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
746 {
747 	struct d40_desc *d;
748 
749 	if (list_empty(&d40c->queue))
750 		return NULL;
751 
752 	d = list_first_entry(&d40c->queue,
753 			     struct d40_desc,
754 			     node);
755 	return d;
756 }
757 
758 static int d40_psize_2_burst_size(bool is_log, int psize)
759 {
760 	if (is_log) {
761 		if (psize == STEDMA40_PSIZE_LOG_1)
762 			return 1;
763 	} else {
764 		if (psize == STEDMA40_PSIZE_PHY_1)
765 			return 1;
766 	}
767 
768 	return 2 << psize;
769 }
770 
771 /*
772  * The dma only supports transmitting packages up to
773  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
774  * dma elements required to send the entire sg list
775  */
776 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
777 {
778 	int dmalen;
779 	u32 max_w = max(data_width1, data_width2);
780 	u32 min_w = min(data_width1, data_width2);
781 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
782 
783 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
784 		seg_max -= (1 << max_w);
785 
786 	if (!IS_ALIGNED(size, 1 << max_w))
787 		return -EINVAL;
788 
789 	if (size <= seg_max)
790 		dmalen = 1;
791 	else {
792 		dmalen = size / seg_max;
793 		if (dmalen * seg_max < size)
794 			dmalen++;
795 	}
796 	return dmalen;
797 }
798 
799 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
800 			   u32 data_width1, u32 data_width2)
801 {
802 	struct scatterlist *sg;
803 	int i;
804 	int len = 0;
805 	int ret;
806 
807 	for_each_sg(sgl, sg, sg_len, i) {
808 		ret = d40_size_2_dmalen(sg_dma_len(sg),
809 					data_width1, data_width2);
810 		if (ret < 0)
811 			return ret;
812 		len += ret;
813 	}
814 	return len;
815 }
816 
817 
818 #ifdef CONFIG_PM
819 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
820 			 u32 *regaddr, int num, bool save)
821 {
822 	int i;
823 
824 	for (i = 0; i < num; i++) {
825 		void __iomem *addr = baseaddr + regaddr[i];
826 
827 		if (save)
828 			backup[i] = readl_relaxed(addr);
829 		else
830 			writel_relaxed(backup[i], addr);
831 	}
832 }
833 
834 static void d40_save_restore_registers(struct d40_base *base, bool save)
835 {
836 	int i;
837 
838 	/* Save/Restore channel specific registers */
839 	for (i = 0; i < base->num_phy_chans; i++) {
840 		void __iomem *addr;
841 		int idx;
842 
843 		if (base->phy_res[i].reserved)
844 			continue;
845 
846 		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
847 		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
848 
849 		dma40_backup(addr, &base->reg_val_backup_chan[idx],
850 			     d40_backup_regs_chan,
851 			     ARRAY_SIZE(d40_backup_regs_chan),
852 			     save);
853 	}
854 
855 	/* Save/Restore global registers */
856 	dma40_backup(base->virtbase, base->reg_val_backup,
857 		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
858 		     save);
859 
860 	/* Save/Restore registers only existing on dma40 v3 and later */
861 	if (base->rev >= 3)
862 		dma40_backup(base->virtbase, base->reg_val_backup_v3,
863 			     d40_backup_regs_v3,
864 			     ARRAY_SIZE(d40_backup_regs_v3),
865 			     save);
866 }
867 #else
868 static void d40_save_restore_registers(struct d40_base *base, bool save)
869 {
870 }
871 #endif
872 
873 static int d40_channel_execute_command(struct d40_chan *d40c,
874 				       enum d40_command command)
875 {
876 	u32 status;
877 	int i;
878 	void __iomem *active_reg;
879 	int ret = 0;
880 	unsigned long flags;
881 	u32 wmask;
882 
883 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
884 
885 	if (d40c->phy_chan->num % 2 == 0)
886 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
887 	else
888 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
889 
890 	if (command == D40_DMA_SUSPEND_REQ) {
891 		status = (readl(active_reg) &
892 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
893 			D40_CHAN_POS(d40c->phy_chan->num);
894 
895 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
896 			goto done;
897 	}
898 
899 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
900 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
901 	       active_reg);
902 
903 	if (command == D40_DMA_SUSPEND_REQ) {
904 
905 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
906 			status = (readl(active_reg) &
907 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
908 				D40_CHAN_POS(d40c->phy_chan->num);
909 
910 			cpu_relax();
911 			/*
912 			 * Reduce the number of bus accesses while
913 			 * waiting for the DMA to suspend.
914 			 */
915 			udelay(3);
916 
917 			if (status == D40_DMA_STOP ||
918 			    status == D40_DMA_SUSPENDED)
919 				break;
920 		}
921 
922 		if (i == D40_SUSPEND_MAX_IT) {
923 			chan_err(d40c,
924 				"unable to suspend the chl %d (log: %d) status %x\n",
925 				d40c->phy_chan->num, d40c->log_num,
926 				status);
927 			dump_stack();
928 			ret = -EBUSY;
929 		}
930 
931 	}
932 done:
933 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
934 	return ret;
935 }
936 
937 static void d40_term_all(struct d40_chan *d40c)
938 {
939 	struct d40_desc *d40d;
940 	struct d40_desc *_d;
941 
942 	/* Release active descriptors */
943 	while ((d40d = d40_first_active_get(d40c))) {
944 		d40_desc_remove(d40d);
945 		d40_desc_free(d40c, d40d);
946 	}
947 
948 	/* Release queued descriptors waiting for transfer */
949 	while ((d40d = d40_first_queued(d40c))) {
950 		d40_desc_remove(d40d);
951 		d40_desc_free(d40c, d40d);
952 	}
953 
954 	/* Release pending descriptors */
955 	while ((d40d = d40_first_pending(d40c))) {
956 		d40_desc_remove(d40d);
957 		d40_desc_free(d40c, d40d);
958 	}
959 
960 	/* Release client owned descriptors */
961 	if (!list_empty(&d40c->client))
962 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
963 			d40_desc_remove(d40d);
964 			d40_desc_free(d40c, d40d);
965 		}
966 
967 	/* Release descriptors in prepare queue */
968 	if (!list_empty(&d40c->prepare_queue))
969 		list_for_each_entry_safe(d40d, _d,
970 					 &d40c->prepare_queue, node) {
971 			d40_desc_remove(d40d);
972 			d40_desc_free(d40c, d40d);
973 		}
974 
975 	d40c->pending_tx = 0;
976 	d40c->busy = false;
977 }
978 
979 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
980 				   u32 event, int reg)
981 {
982 	void __iomem *addr = chan_base(d40c) + reg;
983 	int tries;
984 
985 	if (!enable) {
986 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
987 		       | ~D40_EVENTLINE_MASK(event), addr);
988 		return;
989 	}
990 
991 	/*
992 	 * The hardware sometimes doesn't register the enable when src and dst
993 	 * event lines are active on the same logical channel.  Retry to ensure
994 	 * it does.  Usually only one retry is sufficient.
995 	 */
996 	tries = 100;
997 	while (--tries) {
998 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
999 		       | ~D40_EVENTLINE_MASK(event), addr);
1000 
1001 		if (readl(addr) & D40_EVENTLINE_MASK(event))
1002 			break;
1003 	}
1004 
1005 	if (tries != 99)
1006 		dev_dbg(chan2dev(d40c),
1007 			"[%s] workaround enable S%cLNK (%d tries)\n",
1008 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1009 			100 - tries);
1010 
1011 	WARN_ON(!tries);
1012 }
1013 
1014 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
1015 {
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1019 
1020 	/* Enable event line connected to device (or memcpy) */
1021 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1022 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
1023 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1024 
1025 		__d40_config_set_event(d40c, do_enable, event,
1026 				       D40_CHAN_REG_SSLNK);
1027 	}
1028 
1029 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
1030 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1031 
1032 		__d40_config_set_event(d40c, do_enable, event,
1033 				       D40_CHAN_REG_SDLNK);
1034 	}
1035 
1036 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1037 }
1038 
1039 static u32 d40_chan_has_events(struct d40_chan *d40c)
1040 {
1041 	void __iomem *chanbase = chan_base(d40c);
1042 	u32 val;
1043 
1044 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1045 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1046 
1047 	return val;
1048 }
1049 
1050 static u32 d40_get_prmo(struct d40_chan *d40c)
1051 {
1052 	static const unsigned int phy_map[] = {
1053 		[STEDMA40_PCHAN_BASIC_MODE]
1054 			= D40_DREG_PRMO_PCHAN_BASIC,
1055 		[STEDMA40_PCHAN_MODULO_MODE]
1056 			= D40_DREG_PRMO_PCHAN_MODULO,
1057 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1058 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1059 	};
1060 	static const unsigned int log_map[] = {
1061 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1062 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1063 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1064 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1065 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1066 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1067 	};
1068 
1069 	if (chan_is_physical(d40c))
1070 		return phy_map[d40c->dma_cfg.mode_opt];
1071 	else
1072 		return log_map[d40c->dma_cfg.mode_opt];
1073 }
1074 
1075 static void d40_config_write(struct d40_chan *d40c)
1076 {
1077 	u32 addr_base;
1078 	u32 var;
1079 
1080 	/* Odd addresses are even addresses + 4 */
1081 	addr_base = (d40c->phy_chan->num % 2) * 4;
1082 	/* Setup channel mode to logical or physical */
1083 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1084 		D40_CHAN_POS(d40c->phy_chan->num);
1085 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1086 
1087 	/* Setup operational mode option register */
1088 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1089 
1090 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1091 
1092 	if (chan_is_logical(d40c)) {
1093 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1094 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1095 		void __iomem *chanbase = chan_base(d40c);
1096 
1097 		/* Set default config for CFG reg */
1098 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1099 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1100 
1101 		/* Set LIDX for lcla */
1102 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1103 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1104 
1105 		/* Clear LNK which will be used by d40_chan_has_events() */
1106 		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1107 		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1108 	}
1109 }
1110 
1111 static u32 d40_residue(struct d40_chan *d40c)
1112 {
1113 	u32 num_elt;
1114 
1115 	if (chan_is_logical(d40c))
1116 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1117 			>> D40_MEM_LCSP2_ECNT_POS;
1118 	else {
1119 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1120 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1121 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1122 	}
1123 
1124 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1125 }
1126 
1127 static bool d40_tx_is_linked(struct d40_chan *d40c)
1128 {
1129 	bool is_link;
1130 
1131 	if (chan_is_logical(d40c))
1132 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1133 	else
1134 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1135 			  & D40_SREG_LNK_PHYS_LNK_MASK;
1136 
1137 	return is_link;
1138 }
1139 
1140 static int d40_pause(struct d40_chan *d40c)
1141 {
1142 	int res = 0;
1143 	unsigned long flags;
1144 
1145 	if (!d40c->busy)
1146 		return 0;
1147 
1148 	pm_runtime_get_sync(d40c->base->dev);
1149 	spin_lock_irqsave(&d40c->lock, flags);
1150 
1151 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1152 	if (res == 0) {
1153 		if (chan_is_logical(d40c)) {
1154 			d40_config_set_event(d40c, false);
1155 			/* Resume the other logical channels if any */
1156 			if (d40_chan_has_events(d40c))
1157 				res = d40_channel_execute_command(d40c,
1158 								  D40_DMA_RUN);
1159 		}
1160 	}
1161 	pm_runtime_mark_last_busy(d40c->base->dev);
1162 	pm_runtime_put_autosuspend(d40c->base->dev);
1163 	spin_unlock_irqrestore(&d40c->lock, flags);
1164 	return res;
1165 }
1166 
1167 static int d40_resume(struct d40_chan *d40c)
1168 {
1169 	int res = 0;
1170 	unsigned long flags;
1171 
1172 	if (!d40c->busy)
1173 		return 0;
1174 
1175 	spin_lock_irqsave(&d40c->lock, flags);
1176 	pm_runtime_get_sync(d40c->base->dev);
1177 	if (d40c->base->rev == 0)
1178 		if (chan_is_logical(d40c)) {
1179 			res = d40_channel_execute_command(d40c,
1180 							  D40_DMA_SUSPEND_REQ);
1181 			goto no_suspend;
1182 		}
1183 
1184 	/* If bytes left to transfer or linked tx resume job */
1185 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1186 
1187 		if (chan_is_logical(d40c))
1188 			d40_config_set_event(d40c, true);
1189 
1190 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1191 	}
1192 
1193 no_suspend:
1194 	pm_runtime_mark_last_busy(d40c->base->dev);
1195 	pm_runtime_put_autosuspend(d40c->base->dev);
1196 	spin_unlock_irqrestore(&d40c->lock, flags);
1197 	return res;
1198 }
1199 
1200 static int d40_terminate_all(struct d40_chan *chan)
1201 {
1202 	unsigned long flags;
1203 	int ret = 0;
1204 
1205 	ret = d40_pause(chan);
1206 	if (!ret && chan_is_physical(chan))
1207 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1208 
1209 	spin_lock_irqsave(&chan->lock, flags);
1210 	d40_term_all(chan);
1211 	spin_unlock_irqrestore(&chan->lock, flags);
1212 
1213 	return ret;
1214 }
1215 
1216 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1217 {
1218 	struct d40_chan *d40c = container_of(tx->chan,
1219 					     struct d40_chan,
1220 					     chan);
1221 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1222 	unsigned long flags;
1223 	dma_cookie_t cookie;
1224 
1225 	spin_lock_irqsave(&d40c->lock, flags);
1226 	cookie = dma_cookie_assign(tx);
1227 	d40_desc_queue(d40c, d40d);
1228 	spin_unlock_irqrestore(&d40c->lock, flags);
1229 
1230 	return cookie;
1231 }
1232 
1233 static int d40_start(struct d40_chan *d40c)
1234 {
1235 	if (d40c->base->rev == 0) {
1236 		int err;
1237 
1238 		if (chan_is_logical(d40c)) {
1239 			err = d40_channel_execute_command(d40c,
1240 							  D40_DMA_SUSPEND_REQ);
1241 			if (err)
1242 				return err;
1243 		}
1244 	}
1245 
1246 	if (chan_is_logical(d40c))
1247 		d40_config_set_event(d40c, true);
1248 
1249 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1250 }
1251 
1252 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1253 {
1254 	struct d40_desc *d40d;
1255 	int err;
1256 
1257 	/* Start queued jobs, if any */
1258 	d40d = d40_first_queued(d40c);
1259 
1260 	if (d40d != NULL) {
1261 		if (!d40c->busy)
1262 			d40c->busy = true;
1263 
1264 		pm_runtime_get_sync(d40c->base->dev);
1265 
1266 		/* Remove from queue */
1267 		d40_desc_remove(d40d);
1268 
1269 		/* Add to active queue */
1270 		d40_desc_submit(d40c, d40d);
1271 
1272 		/* Initiate DMA job */
1273 		d40_desc_load(d40c, d40d);
1274 
1275 		/* Start dma job */
1276 		err = d40_start(d40c);
1277 
1278 		if (err)
1279 			return NULL;
1280 	}
1281 
1282 	return d40d;
1283 }
1284 
1285 /* called from interrupt context */
1286 static void dma_tc_handle(struct d40_chan *d40c)
1287 {
1288 	struct d40_desc *d40d;
1289 
1290 	/* Get first active entry from list */
1291 	d40d = d40_first_active_get(d40c);
1292 
1293 	if (d40d == NULL)
1294 		return;
1295 
1296 	if (d40d->cyclic) {
1297 		/*
1298 		 * If this was a paritially loaded list, we need to reloaded
1299 		 * it, and only when the list is completed.  We need to check
1300 		 * for done because the interrupt will hit for every link, and
1301 		 * not just the last one.
1302 		 */
1303 		if (d40d->lli_current < d40d->lli_len
1304 		    && !d40_tx_is_linked(d40c)
1305 		    && !d40_residue(d40c)) {
1306 			d40_lcla_free_all(d40c, d40d);
1307 			d40_desc_load(d40c, d40d);
1308 			(void) d40_start(d40c);
1309 
1310 			if (d40d->lli_current == d40d->lli_len)
1311 				d40d->lli_current = 0;
1312 		}
1313 	} else {
1314 		d40_lcla_free_all(d40c, d40d);
1315 
1316 		if (d40d->lli_current < d40d->lli_len) {
1317 			d40_desc_load(d40c, d40d);
1318 			/* Start dma job */
1319 			(void) d40_start(d40c);
1320 			return;
1321 		}
1322 
1323 		if (d40_queue_start(d40c) == NULL)
1324 			d40c->busy = false;
1325 		pm_runtime_mark_last_busy(d40c->base->dev);
1326 		pm_runtime_put_autosuspend(d40c->base->dev);
1327 	}
1328 
1329 	d40c->pending_tx++;
1330 	tasklet_schedule(&d40c->tasklet);
1331 
1332 }
1333 
1334 static void dma_tasklet(unsigned long data)
1335 {
1336 	struct d40_chan *d40c = (struct d40_chan *) data;
1337 	struct d40_desc *d40d;
1338 	unsigned long flags;
1339 	dma_async_tx_callback callback;
1340 	void *callback_param;
1341 
1342 	spin_lock_irqsave(&d40c->lock, flags);
1343 
1344 	/* Get first active entry from list */
1345 	d40d = d40_first_active_get(d40c);
1346 	if (d40d == NULL)
1347 		goto err;
1348 
1349 	if (!d40d->cyclic)
1350 		dma_cookie_complete(&d40d->txd);
1351 
1352 	/*
1353 	 * If terminating a channel pending_tx is set to zero.
1354 	 * This prevents any finished active jobs to return to the client.
1355 	 */
1356 	if (d40c->pending_tx == 0) {
1357 		spin_unlock_irqrestore(&d40c->lock, flags);
1358 		return;
1359 	}
1360 
1361 	/* Callback to client */
1362 	callback = d40d->txd.callback;
1363 	callback_param = d40d->txd.callback_param;
1364 
1365 	if (!d40d->cyclic) {
1366 		if (async_tx_test_ack(&d40d->txd)) {
1367 			d40_desc_remove(d40d);
1368 			d40_desc_free(d40c, d40d);
1369 		} else {
1370 			if (!d40d->is_in_client_list) {
1371 				d40_desc_remove(d40d);
1372 				d40_lcla_free_all(d40c, d40d);
1373 				list_add_tail(&d40d->node, &d40c->client);
1374 				d40d->is_in_client_list = true;
1375 			}
1376 		}
1377 	}
1378 
1379 	d40c->pending_tx--;
1380 
1381 	if (d40c->pending_tx)
1382 		tasklet_schedule(&d40c->tasklet);
1383 
1384 	spin_unlock_irqrestore(&d40c->lock, flags);
1385 
1386 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1387 		callback(callback_param);
1388 
1389 	return;
1390 
1391  err:
1392 	/* Rescue manoeuvre if receiving double interrupts */
1393 	if (d40c->pending_tx > 0)
1394 		d40c->pending_tx--;
1395 	spin_unlock_irqrestore(&d40c->lock, flags);
1396 }
1397 
1398 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1399 {
1400 	static const struct d40_interrupt_lookup il[] = {
1401 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1402 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1403 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1404 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1405 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1406 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1407 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1408 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1409 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1410 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1411 	};
1412 
1413 	int i;
1414 	u32 regs[ARRAY_SIZE(il)];
1415 	u32 idx;
1416 	u32 row;
1417 	long chan = -1;
1418 	struct d40_chan *d40c;
1419 	unsigned long flags;
1420 	struct d40_base *base = data;
1421 
1422 	spin_lock_irqsave(&base->interrupt_lock, flags);
1423 
1424 	/* Read interrupt status of both logical and physical channels */
1425 	for (i = 0; i < ARRAY_SIZE(il); i++)
1426 		regs[i] = readl(base->virtbase + il[i].src);
1427 
1428 	for (;;) {
1429 
1430 		chan = find_next_bit((unsigned long *)regs,
1431 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1432 
1433 		/* No more set bits found? */
1434 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1435 			break;
1436 
1437 		row = chan / BITS_PER_LONG;
1438 		idx = chan & (BITS_PER_LONG - 1);
1439 
1440 		/* ACK interrupt */
1441 		writel(1 << idx, base->virtbase + il[row].clr);
1442 
1443 		if (il[row].offset == D40_PHY_CHAN)
1444 			d40c = base->lookup_phy_chans[idx];
1445 		else
1446 			d40c = base->lookup_log_chans[il[row].offset + idx];
1447 		spin_lock(&d40c->lock);
1448 
1449 		if (!il[row].is_error)
1450 			dma_tc_handle(d40c);
1451 		else
1452 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1453 				chan, il[row].offset, idx);
1454 
1455 		spin_unlock(&d40c->lock);
1456 	}
1457 
1458 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1459 
1460 	return IRQ_HANDLED;
1461 }
1462 
1463 static int d40_validate_conf(struct d40_chan *d40c,
1464 			     struct stedma40_chan_cfg *conf)
1465 {
1466 	int res = 0;
1467 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1468 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1469 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1470 
1471 	if (!conf->dir) {
1472 		chan_err(d40c, "Invalid direction.\n");
1473 		res = -EINVAL;
1474 	}
1475 
1476 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1477 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1478 	    d40c->runtime_addr == 0) {
1479 
1480 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1481 			 conf->dst_dev_type);
1482 		res = -EINVAL;
1483 	}
1484 
1485 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1486 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1487 	    d40c->runtime_addr == 0) {
1488 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1489 			conf->src_dev_type);
1490 		res = -EINVAL;
1491 	}
1492 
1493 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1494 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1495 		chan_err(d40c, "Invalid dst\n");
1496 		res = -EINVAL;
1497 	}
1498 
1499 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1500 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1501 		chan_err(d40c, "Invalid src\n");
1502 		res = -EINVAL;
1503 	}
1504 
1505 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1506 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1507 		chan_err(d40c, "No event line\n");
1508 		res = -EINVAL;
1509 	}
1510 
1511 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1512 	    (src_event_group != dst_event_group)) {
1513 		chan_err(d40c, "Invalid event group\n");
1514 		res = -EINVAL;
1515 	}
1516 
1517 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1518 		/*
1519 		 * DMAC HW supports it. Will be added to this driver,
1520 		 * in case any dma client requires it.
1521 		 */
1522 		chan_err(d40c, "periph to periph not supported\n");
1523 		res = -EINVAL;
1524 	}
1525 
1526 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1527 	    (1 << conf->src_info.data_width) !=
1528 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1529 	    (1 << conf->dst_info.data_width)) {
1530 		/*
1531 		 * The DMAC hardware only supports
1532 		 * src (burst x width) == dst (burst x width)
1533 		 */
1534 
1535 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1536 		res = -EINVAL;
1537 	}
1538 
1539 	return res;
1540 }
1541 
1542 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1543 			       bool is_src, int log_event_line, bool is_log,
1544 			       bool *first_user)
1545 {
1546 	unsigned long flags;
1547 	spin_lock_irqsave(&phy->lock, flags);
1548 
1549 	*first_user = ((phy->allocated_src | phy->allocated_dst)
1550 			== D40_ALLOC_FREE);
1551 
1552 	if (!is_log) {
1553 		/* Physical interrupts are masked per physical full channel */
1554 		if (phy->allocated_src == D40_ALLOC_FREE &&
1555 		    phy->allocated_dst == D40_ALLOC_FREE) {
1556 			phy->allocated_dst = D40_ALLOC_PHY;
1557 			phy->allocated_src = D40_ALLOC_PHY;
1558 			goto found;
1559 		} else
1560 			goto not_found;
1561 	}
1562 
1563 	/* Logical channel */
1564 	if (is_src) {
1565 		if (phy->allocated_src == D40_ALLOC_PHY)
1566 			goto not_found;
1567 
1568 		if (phy->allocated_src == D40_ALLOC_FREE)
1569 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1570 
1571 		if (!(phy->allocated_src & (1 << log_event_line))) {
1572 			phy->allocated_src |= 1 << log_event_line;
1573 			goto found;
1574 		} else
1575 			goto not_found;
1576 	} else {
1577 		if (phy->allocated_dst == D40_ALLOC_PHY)
1578 			goto not_found;
1579 
1580 		if (phy->allocated_dst == D40_ALLOC_FREE)
1581 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1582 
1583 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1584 			phy->allocated_dst |= 1 << log_event_line;
1585 			goto found;
1586 		} else
1587 			goto not_found;
1588 	}
1589 
1590 not_found:
1591 	spin_unlock_irqrestore(&phy->lock, flags);
1592 	return false;
1593 found:
1594 	spin_unlock_irqrestore(&phy->lock, flags);
1595 	return true;
1596 }
1597 
1598 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1599 			       int log_event_line)
1600 {
1601 	unsigned long flags;
1602 	bool is_free = false;
1603 
1604 	spin_lock_irqsave(&phy->lock, flags);
1605 	if (!log_event_line) {
1606 		phy->allocated_dst = D40_ALLOC_FREE;
1607 		phy->allocated_src = D40_ALLOC_FREE;
1608 		is_free = true;
1609 		goto out;
1610 	}
1611 
1612 	/* Logical channel */
1613 	if (is_src) {
1614 		phy->allocated_src &= ~(1 << log_event_line);
1615 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1616 			phy->allocated_src = D40_ALLOC_FREE;
1617 	} else {
1618 		phy->allocated_dst &= ~(1 << log_event_line);
1619 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1620 			phy->allocated_dst = D40_ALLOC_FREE;
1621 	}
1622 
1623 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1624 		   D40_ALLOC_FREE);
1625 
1626 out:
1627 	spin_unlock_irqrestore(&phy->lock, flags);
1628 
1629 	return is_free;
1630 }
1631 
1632 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1633 {
1634 	int dev_type;
1635 	int event_group;
1636 	int event_line;
1637 	struct d40_phy_res *phys;
1638 	int i;
1639 	int j;
1640 	int log_num;
1641 	bool is_src;
1642 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1643 
1644 	phys = d40c->base->phy_res;
1645 
1646 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1647 		dev_type = d40c->dma_cfg.src_dev_type;
1648 		log_num = 2 * dev_type;
1649 		is_src = true;
1650 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1651 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1652 		/* dst event lines are used for logical memcpy */
1653 		dev_type = d40c->dma_cfg.dst_dev_type;
1654 		log_num = 2 * dev_type + 1;
1655 		is_src = false;
1656 	} else
1657 		return -EINVAL;
1658 
1659 	event_group = D40_TYPE_TO_GROUP(dev_type);
1660 	event_line = D40_TYPE_TO_EVENT(dev_type);
1661 
1662 	if (!is_log) {
1663 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1664 			/* Find physical half channel */
1665 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1666 
1667 				if (d40_alloc_mask_set(&phys[i], is_src,
1668 						       0, is_log,
1669 						       first_phy_user))
1670 					goto found_phy;
1671 			}
1672 		} else
1673 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1674 				int phy_num = j  + event_group * 2;
1675 				for (i = phy_num; i < phy_num + 2; i++) {
1676 					if (d40_alloc_mask_set(&phys[i],
1677 							       is_src,
1678 							       0,
1679 							       is_log,
1680 							       first_phy_user))
1681 						goto found_phy;
1682 				}
1683 			}
1684 		return -EINVAL;
1685 found_phy:
1686 		d40c->phy_chan = &phys[i];
1687 		d40c->log_num = D40_PHY_CHAN;
1688 		goto out;
1689 	}
1690 	if (dev_type == -1)
1691 		return -EINVAL;
1692 
1693 	/* Find logical channel */
1694 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1695 		int phy_num = j + event_group * 2;
1696 
1697 		if (d40c->dma_cfg.use_fixed_channel) {
1698 			i = d40c->dma_cfg.phy_channel;
1699 
1700 			if ((i != phy_num) && (i != phy_num + 1)) {
1701 				dev_err(chan2dev(d40c),
1702 					"invalid fixed phy channel %d\n", i);
1703 				return -EINVAL;
1704 			}
1705 
1706 			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1707 					       is_log, first_phy_user))
1708 				goto found_log;
1709 
1710 			dev_err(chan2dev(d40c),
1711 				"could not allocate fixed phy channel %d\n", i);
1712 			return -EINVAL;
1713 		}
1714 
1715 		/*
1716 		 * Spread logical channels across all available physical rather
1717 		 * than pack every logical channel at the first available phy
1718 		 * channels.
1719 		 */
1720 		if (is_src) {
1721 			for (i = phy_num; i < phy_num + 2; i++) {
1722 				if (d40_alloc_mask_set(&phys[i], is_src,
1723 						       event_line, is_log,
1724 						       first_phy_user))
1725 					goto found_log;
1726 			}
1727 		} else {
1728 			for (i = phy_num + 1; i >= phy_num; i--) {
1729 				if (d40_alloc_mask_set(&phys[i], is_src,
1730 						       event_line, is_log,
1731 						       first_phy_user))
1732 					goto found_log;
1733 			}
1734 		}
1735 	}
1736 	return -EINVAL;
1737 
1738 found_log:
1739 	d40c->phy_chan = &phys[i];
1740 	d40c->log_num = log_num;
1741 out:
1742 
1743 	if (is_log)
1744 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1745 	else
1746 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1747 
1748 	return 0;
1749 
1750 }
1751 
1752 static int d40_config_memcpy(struct d40_chan *d40c)
1753 {
1754 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1755 
1756 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1757 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1758 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1759 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1760 			memcpy[d40c->chan.chan_id];
1761 
1762 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1763 		   dma_has_cap(DMA_SLAVE, cap)) {
1764 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1765 	} else {
1766 		chan_err(d40c, "No memcpy\n");
1767 		return -EINVAL;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 
1774 static int d40_free_dma(struct d40_chan *d40c)
1775 {
1776 
1777 	int res = 0;
1778 	u32 event;
1779 	struct d40_phy_res *phy = d40c->phy_chan;
1780 	bool is_src;
1781 
1782 	/* Terminate all queued and active transfers */
1783 	d40_term_all(d40c);
1784 
1785 	if (phy == NULL) {
1786 		chan_err(d40c, "phy == null\n");
1787 		return -EINVAL;
1788 	}
1789 
1790 	if (phy->allocated_src == D40_ALLOC_FREE &&
1791 	    phy->allocated_dst == D40_ALLOC_FREE) {
1792 		chan_err(d40c, "channel already free\n");
1793 		return -EINVAL;
1794 	}
1795 
1796 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1797 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1798 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1799 		is_src = false;
1800 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1801 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1802 		is_src = true;
1803 	} else {
1804 		chan_err(d40c, "Unknown direction\n");
1805 		return -EINVAL;
1806 	}
1807 
1808 	pm_runtime_get_sync(d40c->base->dev);
1809 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1810 	if (res) {
1811 		chan_err(d40c, "suspend failed\n");
1812 		goto out;
1813 	}
1814 
1815 	if (chan_is_logical(d40c)) {
1816 		/* Release logical channel, deactivate the event line */
1817 
1818 		d40_config_set_event(d40c, false);
1819 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1820 
1821 		/*
1822 		 * Check if there are more logical allocation
1823 		 * on this phy channel.
1824 		 */
1825 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1826 			/* Resume the other logical channels if any */
1827 			if (d40_chan_has_events(d40c)) {
1828 				res = d40_channel_execute_command(d40c,
1829 								  D40_DMA_RUN);
1830 				if (res)
1831 					chan_err(d40c,
1832 						"Executing RUN command\n");
1833 			}
1834 			goto out;
1835 		}
1836 	} else {
1837 		(void) d40_alloc_mask_free(phy, is_src, 0);
1838 	}
1839 
1840 	/* Release physical channel */
1841 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1842 	if (res) {
1843 		chan_err(d40c, "Failed to stop channel\n");
1844 		goto out;
1845 	}
1846 
1847 	if (d40c->busy) {
1848 		pm_runtime_mark_last_busy(d40c->base->dev);
1849 		pm_runtime_put_autosuspend(d40c->base->dev);
1850 	}
1851 
1852 	d40c->busy = false;
1853 	d40c->phy_chan = NULL;
1854 	d40c->configured = false;
1855 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1856 out:
1857 
1858 	pm_runtime_mark_last_busy(d40c->base->dev);
1859 	pm_runtime_put_autosuspend(d40c->base->dev);
1860 	return res;
1861 }
1862 
1863 static bool d40_is_paused(struct d40_chan *d40c)
1864 {
1865 	void __iomem *chanbase = chan_base(d40c);
1866 	bool is_paused = false;
1867 	unsigned long flags;
1868 	void __iomem *active_reg;
1869 	u32 status;
1870 	u32 event;
1871 
1872 	spin_lock_irqsave(&d40c->lock, flags);
1873 
1874 	if (chan_is_physical(d40c)) {
1875 		if (d40c->phy_chan->num % 2 == 0)
1876 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1877 		else
1878 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1879 
1880 		status = (readl(active_reg) &
1881 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1882 			D40_CHAN_POS(d40c->phy_chan->num);
1883 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1884 			is_paused = true;
1885 
1886 		goto _exit;
1887 	}
1888 
1889 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1890 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1891 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1892 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1893 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1894 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1895 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1896 	} else {
1897 		chan_err(d40c, "Unknown direction\n");
1898 		goto _exit;
1899 	}
1900 
1901 	status = (status & D40_EVENTLINE_MASK(event)) >>
1902 		D40_EVENTLINE_POS(event);
1903 
1904 	if (status != D40_DMA_RUN)
1905 		is_paused = true;
1906 _exit:
1907 	spin_unlock_irqrestore(&d40c->lock, flags);
1908 	return is_paused;
1909 
1910 }
1911 
1912 
1913 static u32 stedma40_residue(struct dma_chan *chan)
1914 {
1915 	struct d40_chan *d40c =
1916 		container_of(chan, struct d40_chan, chan);
1917 	u32 bytes_left;
1918 	unsigned long flags;
1919 
1920 	spin_lock_irqsave(&d40c->lock, flags);
1921 	bytes_left = d40_residue(d40c);
1922 	spin_unlock_irqrestore(&d40c->lock, flags);
1923 
1924 	return bytes_left;
1925 }
1926 
1927 static int
1928 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1929 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1930 		unsigned int sg_len, dma_addr_t src_dev_addr,
1931 		dma_addr_t dst_dev_addr)
1932 {
1933 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1934 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1935 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1936 	int ret;
1937 
1938 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1939 				src_dev_addr,
1940 				desc->lli_log.src,
1941 				chan->log_def.lcsp1,
1942 				src_info->data_width,
1943 				dst_info->data_width);
1944 
1945 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1946 				dst_dev_addr,
1947 				desc->lli_log.dst,
1948 				chan->log_def.lcsp3,
1949 				dst_info->data_width,
1950 				src_info->data_width);
1951 
1952 	return ret < 0 ? ret : 0;
1953 }
1954 
1955 static int
1956 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1957 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1958 		unsigned int sg_len, dma_addr_t src_dev_addr,
1959 		dma_addr_t dst_dev_addr)
1960 {
1961 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1962 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1963 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1964 	unsigned long flags = 0;
1965 	int ret;
1966 
1967 	if (desc->cyclic)
1968 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1969 
1970 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1971 				desc->lli_phy.src,
1972 				virt_to_phys(desc->lli_phy.src),
1973 				chan->src_def_cfg,
1974 				src_info, dst_info, flags);
1975 
1976 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1977 				desc->lli_phy.dst,
1978 				virt_to_phys(desc->lli_phy.dst),
1979 				chan->dst_def_cfg,
1980 				dst_info, src_info, flags);
1981 
1982 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1983 				   desc->lli_pool.size, DMA_TO_DEVICE);
1984 
1985 	return ret < 0 ? ret : 0;
1986 }
1987 
1988 
1989 static struct d40_desc *
1990 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1991 	      unsigned int sg_len, unsigned long dma_flags)
1992 {
1993 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1994 	struct d40_desc *desc;
1995 	int ret;
1996 
1997 	desc = d40_desc_get(chan);
1998 	if (!desc)
1999 		return NULL;
2000 
2001 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2002 					cfg->dst_info.data_width);
2003 	if (desc->lli_len < 0) {
2004 		chan_err(chan, "Unaligned size\n");
2005 		goto err;
2006 	}
2007 
2008 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2009 	if (ret < 0) {
2010 		chan_err(chan, "Could not allocate lli\n");
2011 		goto err;
2012 	}
2013 
2014 
2015 	desc->lli_current = 0;
2016 	desc->txd.flags = dma_flags;
2017 	desc->txd.tx_submit = d40_tx_submit;
2018 
2019 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2020 
2021 	return desc;
2022 
2023 err:
2024 	d40_desc_free(chan, desc);
2025 	return NULL;
2026 }
2027 
2028 static dma_addr_t
2029 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
2030 {
2031 	struct stedma40_platform_data *plat = chan->base->plat_data;
2032 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2033 	dma_addr_t addr = 0;
2034 
2035 	if (chan->runtime_addr)
2036 		return chan->runtime_addr;
2037 
2038 	if (direction == DMA_DEV_TO_MEM)
2039 		addr = plat->dev_rx[cfg->src_dev_type];
2040 	else if (direction == DMA_MEM_TO_DEV)
2041 		addr = plat->dev_tx[cfg->dst_dev_type];
2042 
2043 	return addr;
2044 }
2045 
2046 static struct dma_async_tx_descriptor *
2047 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2048 	    struct scatterlist *sg_dst, unsigned int sg_len,
2049 	    enum dma_transfer_direction direction, unsigned long dma_flags)
2050 {
2051 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2052 	dma_addr_t src_dev_addr = 0;
2053 	dma_addr_t dst_dev_addr = 0;
2054 	struct d40_desc *desc;
2055 	unsigned long flags;
2056 	int ret;
2057 
2058 	if (!chan->phy_chan) {
2059 		chan_err(chan, "Cannot prepare unallocated channel\n");
2060 		return NULL;
2061 	}
2062 
2063 
2064 	spin_lock_irqsave(&chan->lock, flags);
2065 
2066 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2067 	if (desc == NULL)
2068 		goto err;
2069 
2070 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2071 		desc->cyclic = true;
2072 
2073 	if (direction != DMA_NONE) {
2074 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
2075 
2076 		if (direction == DMA_DEV_TO_MEM)
2077 			src_dev_addr = dev_addr;
2078 		else if (direction == DMA_MEM_TO_DEV)
2079 			dst_dev_addr = dev_addr;
2080 	}
2081 
2082 	if (chan_is_logical(chan))
2083 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2084 				      sg_len, src_dev_addr, dst_dev_addr);
2085 	else
2086 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2087 				      sg_len, src_dev_addr, dst_dev_addr);
2088 
2089 	if (ret) {
2090 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2091 			 chan_is_logical(chan) ? "log" : "phy", ret);
2092 		goto err;
2093 	}
2094 
2095 	/*
2096 	 * add descriptor to the prepare queue in order to be able
2097 	 * to free them later in terminate_all
2098 	 */
2099 	list_add_tail(&desc->node, &chan->prepare_queue);
2100 
2101 	spin_unlock_irqrestore(&chan->lock, flags);
2102 
2103 	return &desc->txd;
2104 
2105 err:
2106 	if (desc)
2107 		d40_desc_free(chan, desc);
2108 	spin_unlock_irqrestore(&chan->lock, flags);
2109 	return NULL;
2110 }
2111 
2112 bool stedma40_filter(struct dma_chan *chan, void *data)
2113 {
2114 	struct stedma40_chan_cfg *info = data;
2115 	struct d40_chan *d40c =
2116 		container_of(chan, struct d40_chan, chan);
2117 	int err;
2118 
2119 	if (data) {
2120 		err = d40_validate_conf(d40c, info);
2121 		if (!err)
2122 			d40c->dma_cfg = *info;
2123 	} else
2124 		err = d40_config_memcpy(d40c);
2125 
2126 	if (!err)
2127 		d40c->configured = true;
2128 
2129 	return err == 0;
2130 }
2131 EXPORT_SYMBOL(stedma40_filter);
2132 
2133 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2134 {
2135 	bool realtime = d40c->dma_cfg.realtime;
2136 	bool highprio = d40c->dma_cfg.high_priority;
2137 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
2138 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
2139 	u32 event = D40_TYPE_TO_EVENT(dev_type);
2140 	u32 group = D40_TYPE_TO_GROUP(dev_type);
2141 	u32 bit = 1 << event;
2142 
2143 	/* Destination event lines are stored in the upper halfword */
2144 	if (!src)
2145 		bit <<= 16;
2146 
2147 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2148 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2149 }
2150 
2151 static void d40_set_prio_realtime(struct d40_chan *d40c)
2152 {
2153 	if (d40c->base->rev < 3)
2154 		return;
2155 
2156 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
2157 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2158 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
2159 
2160 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
2161 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
2162 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
2163 }
2164 
2165 /* DMA ENGINE functions */
2166 static int d40_alloc_chan_resources(struct dma_chan *chan)
2167 {
2168 	int err;
2169 	unsigned long flags;
2170 	struct d40_chan *d40c =
2171 		container_of(chan, struct d40_chan, chan);
2172 	bool is_free_phy;
2173 	spin_lock_irqsave(&d40c->lock, flags);
2174 
2175 	dma_cookie_init(chan);
2176 
2177 	/* If no dma configuration is set use default configuration (memcpy) */
2178 	if (!d40c->configured) {
2179 		err = d40_config_memcpy(d40c);
2180 		if (err) {
2181 			chan_err(d40c, "Failed to configure memcpy channel\n");
2182 			goto fail;
2183 		}
2184 	}
2185 
2186 	err = d40_allocate_channel(d40c, &is_free_phy);
2187 	if (err) {
2188 		chan_err(d40c, "Failed to allocate channel\n");
2189 		d40c->configured = false;
2190 		goto fail;
2191 	}
2192 
2193 	pm_runtime_get_sync(d40c->base->dev);
2194 	/* Fill in basic CFG register values */
2195 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2196 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2197 
2198 	d40_set_prio_realtime(d40c);
2199 
2200 	if (chan_is_logical(d40c)) {
2201 		d40_log_cfg(&d40c->dma_cfg,
2202 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2203 
2204 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2205 			d40c->lcpa = d40c->base->lcpa_base +
2206 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2207 		else
2208 			d40c->lcpa = d40c->base->lcpa_base +
2209 			  d40c->dma_cfg.dst_dev_type *
2210 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2211 	}
2212 
2213 	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2214 		 chan_is_logical(d40c) ? "logical" : "physical",
2215 		 d40c->phy_chan->num,
2216 		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2217 
2218 
2219 	/*
2220 	 * Only write channel configuration to the DMA if the physical
2221 	 * resource is free. In case of multiple logical channels
2222 	 * on the same physical resource, only the first write is necessary.
2223 	 */
2224 	if (is_free_phy)
2225 		d40_config_write(d40c);
2226 fail:
2227 	pm_runtime_mark_last_busy(d40c->base->dev);
2228 	pm_runtime_put_autosuspend(d40c->base->dev);
2229 	spin_unlock_irqrestore(&d40c->lock, flags);
2230 	return err;
2231 }
2232 
2233 static void d40_free_chan_resources(struct dma_chan *chan)
2234 {
2235 	struct d40_chan *d40c =
2236 		container_of(chan, struct d40_chan, chan);
2237 	int err;
2238 	unsigned long flags;
2239 
2240 	if (d40c->phy_chan == NULL) {
2241 		chan_err(d40c, "Cannot free unallocated channel\n");
2242 		return;
2243 	}
2244 
2245 
2246 	spin_lock_irqsave(&d40c->lock, flags);
2247 
2248 	err = d40_free_dma(d40c);
2249 
2250 	if (err)
2251 		chan_err(d40c, "Failed to free channel\n");
2252 	spin_unlock_irqrestore(&d40c->lock, flags);
2253 }
2254 
2255 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2256 						       dma_addr_t dst,
2257 						       dma_addr_t src,
2258 						       size_t size,
2259 						       unsigned long dma_flags)
2260 {
2261 	struct scatterlist dst_sg;
2262 	struct scatterlist src_sg;
2263 
2264 	sg_init_table(&dst_sg, 1);
2265 	sg_init_table(&src_sg, 1);
2266 
2267 	sg_dma_address(&dst_sg) = dst;
2268 	sg_dma_address(&src_sg) = src;
2269 
2270 	sg_dma_len(&dst_sg) = size;
2271 	sg_dma_len(&src_sg) = size;
2272 
2273 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2274 }
2275 
2276 static struct dma_async_tx_descriptor *
2277 d40_prep_memcpy_sg(struct dma_chan *chan,
2278 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2279 		   struct scatterlist *src_sg, unsigned int src_nents,
2280 		   unsigned long dma_flags)
2281 {
2282 	if (dst_nents != src_nents)
2283 		return NULL;
2284 
2285 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2286 }
2287 
2288 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2289 							 struct scatterlist *sgl,
2290 							 unsigned int sg_len,
2291 							 enum dma_transfer_direction direction,
2292 							 unsigned long dma_flags,
2293 							 void *context)
2294 {
2295 	if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
2296 		return NULL;
2297 
2298 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2299 }
2300 
2301 static struct dma_async_tx_descriptor *
2302 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2303 		     size_t buf_len, size_t period_len,
2304 		     enum dma_transfer_direction direction, void *context)
2305 {
2306 	unsigned int periods = buf_len / period_len;
2307 	struct dma_async_tx_descriptor *txd;
2308 	struct scatterlist *sg;
2309 	int i;
2310 
2311 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2312 	for (i = 0; i < periods; i++) {
2313 		sg_dma_address(&sg[i]) = dma_addr;
2314 		sg_dma_len(&sg[i]) = period_len;
2315 		dma_addr += period_len;
2316 	}
2317 
2318 	sg[periods].offset = 0;
2319 	sg[periods].length = 0;
2320 	sg[periods].page_link =
2321 		((unsigned long)sg | 0x01) & ~0x02;
2322 
2323 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2324 			  DMA_PREP_INTERRUPT);
2325 
2326 	kfree(sg);
2327 
2328 	return txd;
2329 }
2330 
2331 static enum dma_status d40_tx_status(struct dma_chan *chan,
2332 				     dma_cookie_t cookie,
2333 				     struct dma_tx_state *txstate)
2334 {
2335 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2336 	enum dma_status ret;
2337 
2338 	if (d40c->phy_chan == NULL) {
2339 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2340 		return -EINVAL;
2341 	}
2342 
2343 	ret = dma_cookie_status(chan, cookie, txstate);
2344 	if (ret != DMA_SUCCESS)
2345 		dma_set_residue(txstate, stedma40_residue(chan));
2346 
2347 	if (d40_is_paused(d40c))
2348 		ret = DMA_PAUSED;
2349 
2350 	return ret;
2351 }
2352 
2353 static void d40_issue_pending(struct dma_chan *chan)
2354 {
2355 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2356 	unsigned long flags;
2357 
2358 	if (d40c->phy_chan == NULL) {
2359 		chan_err(d40c, "Channel is not allocated!\n");
2360 		return;
2361 	}
2362 
2363 	spin_lock_irqsave(&d40c->lock, flags);
2364 
2365 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2366 
2367 	/* Busy means that queued jobs are already being processed */
2368 	if (!d40c->busy)
2369 		(void) d40_queue_start(d40c);
2370 
2371 	spin_unlock_irqrestore(&d40c->lock, flags);
2372 }
2373 
2374 static int
2375 dma40_config_to_halfchannel(struct d40_chan *d40c,
2376 			    struct stedma40_half_channel_info *info,
2377 			    enum dma_slave_buswidth width,
2378 			    u32 maxburst)
2379 {
2380 	enum stedma40_periph_data_width addr_width;
2381 	int psize;
2382 
2383 	switch (width) {
2384 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2385 		addr_width = STEDMA40_BYTE_WIDTH;
2386 		break;
2387 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2388 		addr_width = STEDMA40_HALFWORD_WIDTH;
2389 		break;
2390 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2391 		addr_width = STEDMA40_WORD_WIDTH;
2392 		break;
2393 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2394 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2395 		break;
2396 	default:
2397 		dev_err(d40c->base->dev,
2398 			"illegal peripheral address width "
2399 			"requested (%d)\n",
2400 			width);
2401 		return -EINVAL;
2402 	}
2403 
2404 	if (chan_is_logical(d40c)) {
2405 		if (maxburst >= 16)
2406 			psize = STEDMA40_PSIZE_LOG_16;
2407 		else if (maxburst >= 8)
2408 			psize = STEDMA40_PSIZE_LOG_8;
2409 		else if (maxburst >= 4)
2410 			psize = STEDMA40_PSIZE_LOG_4;
2411 		else
2412 			psize = STEDMA40_PSIZE_LOG_1;
2413 	} else {
2414 		if (maxburst >= 16)
2415 			psize = STEDMA40_PSIZE_PHY_16;
2416 		else if (maxburst >= 8)
2417 			psize = STEDMA40_PSIZE_PHY_8;
2418 		else if (maxburst >= 4)
2419 			psize = STEDMA40_PSIZE_PHY_4;
2420 		else
2421 			psize = STEDMA40_PSIZE_PHY_1;
2422 	}
2423 
2424 	info->data_width = addr_width;
2425 	info->psize = psize;
2426 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2427 
2428 	return 0;
2429 }
2430 
2431 /* Runtime reconfiguration extension */
2432 static int d40_set_runtime_config(struct dma_chan *chan,
2433 				  struct dma_slave_config *config)
2434 {
2435 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2436 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2437 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2438 	dma_addr_t config_addr;
2439 	u32 src_maxburst, dst_maxburst;
2440 	int ret;
2441 
2442 	src_addr_width = config->src_addr_width;
2443 	src_maxburst = config->src_maxburst;
2444 	dst_addr_width = config->dst_addr_width;
2445 	dst_maxburst = config->dst_maxburst;
2446 
2447 	if (config->direction == DMA_DEV_TO_MEM) {
2448 		dma_addr_t dev_addr_rx =
2449 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2450 
2451 		config_addr = config->src_addr;
2452 		if (dev_addr_rx)
2453 			dev_dbg(d40c->base->dev,
2454 				"channel has a pre-wired RX address %08x "
2455 				"overriding with %08x\n",
2456 				dev_addr_rx, config_addr);
2457 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2458 			dev_dbg(d40c->base->dev,
2459 				"channel was not configured for peripheral "
2460 				"to memory transfer (%d) overriding\n",
2461 				cfg->dir);
2462 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2463 
2464 		/* Configure the memory side */
2465 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2466 			dst_addr_width = src_addr_width;
2467 		if (dst_maxburst == 0)
2468 			dst_maxburst = src_maxburst;
2469 
2470 	} else if (config->direction == DMA_MEM_TO_DEV) {
2471 		dma_addr_t dev_addr_tx =
2472 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2473 
2474 		config_addr = config->dst_addr;
2475 		if (dev_addr_tx)
2476 			dev_dbg(d40c->base->dev,
2477 				"channel has a pre-wired TX address %08x "
2478 				"overriding with %08x\n",
2479 				dev_addr_tx, config_addr);
2480 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2481 			dev_dbg(d40c->base->dev,
2482 				"channel was not configured for memory "
2483 				"to peripheral transfer (%d) overriding\n",
2484 				cfg->dir);
2485 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2486 
2487 		/* Configure the memory side */
2488 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2489 			src_addr_width = dst_addr_width;
2490 		if (src_maxburst == 0)
2491 			src_maxburst = dst_maxburst;
2492 	} else {
2493 		dev_err(d40c->base->dev,
2494 			"unrecognized channel direction %d\n",
2495 			config->direction);
2496 		return -EINVAL;
2497 	}
2498 
2499 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2500 		dev_err(d40c->base->dev,
2501 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2502 			src_maxburst,
2503 			src_addr_width,
2504 			dst_maxburst,
2505 			dst_addr_width);
2506 		return -EINVAL;
2507 	}
2508 
2509 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2510 					  src_addr_width,
2511 					  src_maxburst);
2512 	if (ret)
2513 		return ret;
2514 
2515 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2516 					  dst_addr_width,
2517 					  dst_maxburst);
2518 	if (ret)
2519 		return ret;
2520 
2521 	/* Fill in register values */
2522 	if (chan_is_logical(d40c))
2523 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2524 	else
2525 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2526 			    &d40c->dst_def_cfg, false);
2527 
2528 	/* These settings will take precedence later */
2529 	d40c->runtime_addr = config_addr;
2530 	d40c->runtime_direction = config->direction;
2531 	dev_dbg(d40c->base->dev,
2532 		"configured channel %s for %s, data width %d/%d, "
2533 		"maxburst %d/%d elements, LE, no flow control\n",
2534 		dma_chan_name(chan),
2535 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2536 		src_addr_width, dst_addr_width,
2537 		src_maxburst, dst_maxburst);
2538 
2539 	return 0;
2540 }
2541 
2542 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2543 		       unsigned long arg)
2544 {
2545 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2546 
2547 	if (d40c->phy_chan == NULL) {
2548 		chan_err(d40c, "Channel is not allocated!\n");
2549 		return -EINVAL;
2550 	}
2551 
2552 	switch (cmd) {
2553 	case DMA_TERMINATE_ALL:
2554 		return d40_terminate_all(d40c);
2555 	case DMA_PAUSE:
2556 		return d40_pause(d40c);
2557 	case DMA_RESUME:
2558 		return d40_resume(d40c);
2559 	case DMA_SLAVE_CONFIG:
2560 		return d40_set_runtime_config(chan,
2561 			(struct dma_slave_config *) arg);
2562 	default:
2563 		break;
2564 	}
2565 
2566 	/* Other commands are unimplemented */
2567 	return -ENXIO;
2568 }
2569 
2570 /* Initialization functions */
2571 
2572 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2573 				 struct d40_chan *chans, int offset,
2574 				 int num_chans)
2575 {
2576 	int i = 0;
2577 	struct d40_chan *d40c;
2578 
2579 	INIT_LIST_HEAD(&dma->channels);
2580 
2581 	for (i = offset; i < offset + num_chans; i++) {
2582 		d40c = &chans[i];
2583 		d40c->base = base;
2584 		d40c->chan.device = dma;
2585 
2586 		spin_lock_init(&d40c->lock);
2587 
2588 		d40c->log_num = D40_PHY_CHAN;
2589 
2590 		INIT_LIST_HEAD(&d40c->active);
2591 		INIT_LIST_HEAD(&d40c->queue);
2592 		INIT_LIST_HEAD(&d40c->pending_queue);
2593 		INIT_LIST_HEAD(&d40c->client);
2594 		INIT_LIST_HEAD(&d40c->prepare_queue);
2595 
2596 		tasklet_init(&d40c->tasklet, dma_tasklet,
2597 			     (unsigned long) d40c);
2598 
2599 		list_add_tail(&d40c->chan.device_node,
2600 			      &dma->channels);
2601 	}
2602 }
2603 
2604 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2605 {
2606 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2607 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2608 
2609 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2610 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2611 
2612 		/*
2613 		 * This controller can only access address at even
2614 		 * 32bit boundaries, i.e. 2^2
2615 		 */
2616 		dev->copy_align = 2;
2617 	}
2618 
2619 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2620 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2621 
2622 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2623 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2624 
2625 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2626 	dev->device_free_chan_resources = d40_free_chan_resources;
2627 	dev->device_issue_pending = d40_issue_pending;
2628 	dev->device_tx_status = d40_tx_status;
2629 	dev->device_control = d40_control;
2630 	dev->dev = base->dev;
2631 }
2632 
2633 static int __init d40_dmaengine_init(struct d40_base *base,
2634 				     int num_reserved_chans)
2635 {
2636 	int err ;
2637 
2638 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2639 		      0, base->num_log_chans);
2640 
2641 	dma_cap_zero(base->dma_slave.cap_mask);
2642 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2643 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2644 
2645 	d40_ops_init(base, &base->dma_slave);
2646 
2647 	err = dma_async_device_register(&base->dma_slave);
2648 
2649 	if (err) {
2650 		d40_err(base->dev, "Failed to register slave channels\n");
2651 		goto failure1;
2652 	}
2653 
2654 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2655 		      base->num_log_chans, base->plat_data->memcpy_len);
2656 
2657 	dma_cap_zero(base->dma_memcpy.cap_mask);
2658 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2659 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2660 
2661 	d40_ops_init(base, &base->dma_memcpy);
2662 
2663 	err = dma_async_device_register(&base->dma_memcpy);
2664 
2665 	if (err) {
2666 		d40_err(base->dev,
2667 			"Failed to regsiter memcpy only channels\n");
2668 		goto failure2;
2669 	}
2670 
2671 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2672 		      0, num_reserved_chans);
2673 
2674 	dma_cap_zero(base->dma_both.cap_mask);
2675 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2676 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2677 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2678 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2679 
2680 	d40_ops_init(base, &base->dma_both);
2681 	err = dma_async_device_register(&base->dma_both);
2682 
2683 	if (err) {
2684 		d40_err(base->dev,
2685 			"Failed to register logical and physical capable channels\n");
2686 		goto failure3;
2687 	}
2688 	return 0;
2689 failure3:
2690 	dma_async_device_unregister(&base->dma_memcpy);
2691 failure2:
2692 	dma_async_device_unregister(&base->dma_slave);
2693 failure1:
2694 	return err;
2695 }
2696 
2697 /* Suspend resume functionality */
2698 #ifdef CONFIG_PM
2699 static int dma40_pm_suspend(struct device *dev)
2700 {
2701 	struct platform_device *pdev = to_platform_device(dev);
2702 	struct d40_base *base = platform_get_drvdata(pdev);
2703 	int ret = 0;
2704 	if (!pm_runtime_suspended(dev))
2705 		return -EBUSY;
2706 
2707 	if (base->lcpa_regulator)
2708 		ret = regulator_disable(base->lcpa_regulator);
2709 	return ret;
2710 }
2711 
2712 static int dma40_runtime_suspend(struct device *dev)
2713 {
2714 	struct platform_device *pdev = to_platform_device(dev);
2715 	struct d40_base *base = platform_get_drvdata(pdev);
2716 
2717 	d40_save_restore_registers(base, true);
2718 
2719 	/* Don't disable/enable clocks for v1 due to HW bugs */
2720 	if (base->rev != 1)
2721 		writel_relaxed(base->gcc_pwr_off_mask,
2722 			       base->virtbase + D40_DREG_GCC);
2723 
2724 	return 0;
2725 }
2726 
2727 static int dma40_runtime_resume(struct device *dev)
2728 {
2729 	struct platform_device *pdev = to_platform_device(dev);
2730 	struct d40_base *base = platform_get_drvdata(pdev);
2731 
2732 	if (base->initialized)
2733 		d40_save_restore_registers(base, false);
2734 
2735 	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2736 		       base->virtbase + D40_DREG_GCC);
2737 	return 0;
2738 }
2739 
2740 static int dma40_resume(struct device *dev)
2741 {
2742 	struct platform_device *pdev = to_platform_device(dev);
2743 	struct d40_base *base = platform_get_drvdata(pdev);
2744 	int ret = 0;
2745 
2746 	if (base->lcpa_regulator)
2747 		ret = regulator_enable(base->lcpa_regulator);
2748 
2749 	return ret;
2750 }
2751 
2752 static const struct dev_pm_ops dma40_pm_ops = {
2753 	.suspend		= dma40_pm_suspend,
2754 	.runtime_suspend	= dma40_runtime_suspend,
2755 	.runtime_resume		= dma40_runtime_resume,
2756 	.resume			= dma40_resume,
2757 };
2758 #define DMA40_PM_OPS	(&dma40_pm_ops)
2759 #else
2760 #define DMA40_PM_OPS	NULL
2761 #endif
2762 
2763 /* Initialization functions. */
2764 
2765 static int __init d40_phy_res_init(struct d40_base *base)
2766 {
2767 	int i;
2768 	int num_phy_chans_avail = 0;
2769 	u32 val[2];
2770 	int odd_even_bit = -2;
2771 	int gcc = D40_DREG_GCC_ENA;
2772 
2773 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2774 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2775 
2776 	for (i = 0; i < base->num_phy_chans; i++) {
2777 		base->phy_res[i].num = i;
2778 		odd_even_bit += 2 * ((i % 2) == 0);
2779 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2780 			/* Mark security only channels as occupied */
2781 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2782 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2783 			base->phy_res[i].reserved = true;
2784 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2785 						       D40_DREG_GCC_SRC);
2786 			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
2787 						       D40_DREG_GCC_DST);
2788 
2789 
2790 		} else {
2791 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2792 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2793 			base->phy_res[i].reserved = false;
2794 			num_phy_chans_avail++;
2795 		}
2796 		spin_lock_init(&base->phy_res[i].lock);
2797 	}
2798 
2799 	/* Mark disabled channels as occupied */
2800 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2801 		int chan = base->plat_data->disabled_channels[i];
2802 
2803 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2804 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2805 		base->phy_res[chan].reserved = true;
2806 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2807 					       D40_DREG_GCC_SRC);
2808 		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
2809 					       D40_DREG_GCC_DST);
2810 		num_phy_chans_avail--;
2811 	}
2812 
2813 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2814 		 num_phy_chans_avail, base->num_phy_chans);
2815 
2816 	/* Verify settings extended vs standard */
2817 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2818 
2819 	for (i = 0; i < base->num_phy_chans; i++) {
2820 
2821 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2822 		    (val[0] & 0x3) != 1)
2823 			dev_info(base->dev,
2824 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2825 				 __func__, i, val[0] & 0x3);
2826 
2827 		val[0] = val[0] >> 2;
2828 	}
2829 
2830 	/*
2831 	 * To keep things simple, Enable all clocks initially.
2832 	 * The clocks will get managed later post channel allocation.
2833 	 * The clocks for the event lines on which reserved channels exists
2834 	 * are not managed here.
2835 	 */
2836 	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
2837 	base->gcc_pwr_off_mask = gcc;
2838 
2839 	return num_phy_chans_avail;
2840 }
2841 
2842 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2843 {
2844 	struct stedma40_platform_data *plat_data;
2845 	struct clk *clk = NULL;
2846 	void __iomem *virtbase = NULL;
2847 	struct resource *res = NULL;
2848 	struct d40_base *base = NULL;
2849 	int num_log_chans = 0;
2850 	int num_phy_chans;
2851 	int i;
2852 	u32 pid;
2853 	u32 cid;
2854 	u8 rev;
2855 
2856 	clk = clk_get(&pdev->dev, NULL);
2857 
2858 	if (IS_ERR(clk)) {
2859 		d40_err(&pdev->dev, "No matching clock found\n");
2860 		goto failure;
2861 	}
2862 
2863 	clk_enable(clk);
2864 
2865 	/* Get IO for DMAC base address */
2866 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2867 	if (!res)
2868 		goto failure;
2869 
2870 	if (request_mem_region(res->start, resource_size(res),
2871 			       D40_NAME " I/O base") == NULL)
2872 		goto failure;
2873 
2874 	virtbase = ioremap(res->start, resource_size(res));
2875 	if (!virtbase)
2876 		goto failure;
2877 
2878 	/* This is just a regular AMBA PrimeCell ID actually */
2879 	for (pid = 0, i = 0; i < 4; i++)
2880 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2881 			& 255) << (i * 8);
2882 	for (cid = 0, i = 0; i < 4; i++)
2883 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2884 			& 255) << (i * 8);
2885 
2886 	if (cid != AMBA_CID) {
2887 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2888 		goto failure;
2889 	}
2890 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2891 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2892 			AMBA_MANF_BITS(pid),
2893 			AMBA_VENDOR_ST);
2894 		goto failure;
2895 	}
2896 	/*
2897 	 * HW revision:
2898 	 * DB8500ed has revision 0
2899 	 * ? has revision 1
2900 	 * DB8500v1 has revision 2
2901 	 * DB8500v2 has revision 3
2902 	 */
2903 	rev = AMBA_REV_BITS(pid);
2904 
2905 	/* The number of physical channels on this HW */
2906 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2907 
2908 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2909 		 rev, res->start);
2910 
2911 	plat_data = pdev->dev.platform_data;
2912 
2913 	/* Count the number of logical channels in use */
2914 	for (i = 0; i < plat_data->dev_len; i++)
2915 		if (plat_data->dev_rx[i] != 0)
2916 			num_log_chans++;
2917 
2918 	for (i = 0; i < plat_data->dev_len; i++)
2919 		if (plat_data->dev_tx[i] != 0)
2920 			num_log_chans++;
2921 
2922 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2923 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2924 		       sizeof(struct d40_chan), GFP_KERNEL);
2925 
2926 	if (base == NULL) {
2927 		d40_err(&pdev->dev, "Out of memory\n");
2928 		goto failure;
2929 	}
2930 
2931 	base->rev = rev;
2932 	base->clk = clk;
2933 	base->num_phy_chans = num_phy_chans;
2934 	base->num_log_chans = num_log_chans;
2935 	base->phy_start = res->start;
2936 	base->phy_size = resource_size(res);
2937 	base->virtbase = virtbase;
2938 	base->plat_data = plat_data;
2939 	base->dev = &pdev->dev;
2940 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2941 	base->log_chans = &base->phy_chans[num_phy_chans];
2942 
2943 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2944 				GFP_KERNEL);
2945 	if (!base->phy_res)
2946 		goto failure;
2947 
2948 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2949 					 sizeof(struct d40_chan *),
2950 					 GFP_KERNEL);
2951 	if (!base->lookup_phy_chans)
2952 		goto failure;
2953 
2954 	if (num_log_chans + plat_data->memcpy_len) {
2955 		/*
2956 		 * The max number of logical channels are event lines for all
2957 		 * src devices and dst devices
2958 		 */
2959 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2960 						 sizeof(struct d40_chan *),
2961 						 GFP_KERNEL);
2962 		if (!base->lookup_log_chans)
2963 			goto failure;
2964 	}
2965 
2966 	base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
2967 					    sizeof(d40_backup_regs_chan),
2968 					    GFP_KERNEL);
2969 	if (!base->reg_val_backup_chan)
2970 		goto failure;
2971 
2972 	base->lcla_pool.alloc_map =
2973 		kzalloc(num_phy_chans * sizeof(struct d40_desc *)
2974 			* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
2975 	if (!base->lcla_pool.alloc_map)
2976 		goto failure;
2977 
2978 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2979 					    0, SLAB_HWCACHE_ALIGN,
2980 					    NULL);
2981 	if (base->desc_slab == NULL)
2982 		goto failure;
2983 
2984 	return base;
2985 
2986 failure:
2987 	if (!IS_ERR(clk)) {
2988 		clk_disable(clk);
2989 		clk_put(clk);
2990 	}
2991 	if (virtbase)
2992 		iounmap(virtbase);
2993 	if (res)
2994 		release_mem_region(res->start,
2995 				   resource_size(res));
2996 	if (virtbase)
2997 		iounmap(virtbase);
2998 
2999 	if (base) {
3000 		kfree(base->lcla_pool.alloc_map);
3001 		kfree(base->lookup_log_chans);
3002 		kfree(base->lookup_phy_chans);
3003 		kfree(base->phy_res);
3004 		kfree(base);
3005 	}
3006 
3007 	return NULL;
3008 }
3009 
3010 static void __init d40_hw_init(struct d40_base *base)
3011 {
3012 
3013 	static struct d40_reg_val dma_init_reg[] = {
3014 		/* Clock every part of the DMA block from start */
3015 		{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
3016 
3017 		/* Interrupts on all logical channels */
3018 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
3019 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
3020 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
3021 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
3022 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
3023 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
3024 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
3025 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
3026 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
3027 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
3028 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
3029 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
3030 	};
3031 	int i;
3032 	u32 prmseo[2] = {0, 0};
3033 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3034 	u32 pcmis = 0;
3035 	u32 pcicr = 0;
3036 
3037 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
3038 		writel(dma_init_reg[i].val,
3039 		       base->virtbase + dma_init_reg[i].reg);
3040 
3041 	/* Configure all our dma channels to default settings */
3042 	for (i = 0; i < base->num_phy_chans; i++) {
3043 
3044 		activeo[i % 2] = activeo[i % 2] << 2;
3045 
3046 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3047 		    == D40_ALLOC_PHY) {
3048 			activeo[i % 2] |= 3;
3049 			continue;
3050 		}
3051 
3052 		/* Enable interrupt # */
3053 		pcmis = (pcmis << 1) | 1;
3054 
3055 		/* Clear interrupt # */
3056 		pcicr = (pcicr << 1) | 1;
3057 
3058 		/* Set channel to physical mode */
3059 		prmseo[i % 2] = prmseo[i % 2] << 2;
3060 		prmseo[i % 2] |= 1;
3061 
3062 	}
3063 
3064 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3065 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3066 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3067 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3068 
3069 	/* Write which interrupt to enable */
3070 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
3071 
3072 	/* Write which interrupt to clear */
3073 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
3074 
3075 }
3076 
3077 static int __init d40_lcla_allocate(struct d40_base *base)
3078 {
3079 	struct d40_lcla_pool *pool = &base->lcla_pool;
3080 	unsigned long *page_list;
3081 	int i, j;
3082 	int ret = 0;
3083 
3084 	/*
3085 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3086 	 * To full fill this hardware requirement without wasting 256 kb
3087 	 * we allocate pages until we get an aligned one.
3088 	 */
3089 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3090 			    GFP_KERNEL);
3091 
3092 	if (!page_list) {
3093 		ret = -ENOMEM;
3094 		goto failure;
3095 	}
3096 
3097 	/* Calculating how many pages that are required */
3098 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3099 
3100 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3101 		page_list[i] = __get_free_pages(GFP_KERNEL,
3102 						base->lcla_pool.pages);
3103 		if (!page_list[i]) {
3104 
3105 			d40_err(base->dev, "Failed to allocate %d pages.\n",
3106 				base->lcla_pool.pages);
3107 
3108 			for (j = 0; j < i; j++)
3109 				free_pages(page_list[j], base->lcla_pool.pages);
3110 			goto failure;
3111 		}
3112 
3113 		if ((virt_to_phys((void *)page_list[i]) &
3114 		     (LCLA_ALIGNMENT - 1)) == 0)
3115 			break;
3116 	}
3117 
3118 	for (j = 0; j < i; j++)
3119 		free_pages(page_list[j], base->lcla_pool.pages);
3120 
3121 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3122 		base->lcla_pool.base = (void *)page_list[i];
3123 	} else {
3124 		/*
3125 		 * After many attempts and no succees with finding the correct
3126 		 * alignment, try with allocating a big buffer.
3127 		 */
3128 		dev_warn(base->dev,
3129 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3130 			 __func__, base->lcla_pool.pages);
3131 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3132 							 base->num_phy_chans +
3133 							 LCLA_ALIGNMENT,
3134 							 GFP_KERNEL);
3135 		if (!base->lcla_pool.base_unaligned) {
3136 			ret = -ENOMEM;
3137 			goto failure;
3138 		}
3139 
3140 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3141 						 LCLA_ALIGNMENT);
3142 	}
3143 
3144 	pool->dma_addr = dma_map_single(base->dev, pool->base,
3145 					SZ_1K * base->num_phy_chans,
3146 					DMA_TO_DEVICE);
3147 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3148 		pool->dma_addr = 0;
3149 		ret = -ENOMEM;
3150 		goto failure;
3151 	}
3152 
3153 	writel(virt_to_phys(base->lcla_pool.base),
3154 	       base->virtbase + D40_DREG_LCLA);
3155 failure:
3156 	kfree(page_list);
3157 	return ret;
3158 }
3159 
3160 static int __init d40_probe(struct platform_device *pdev)
3161 {
3162 	int err;
3163 	int ret = -ENOENT;
3164 	struct d40_base *base;
3165 	struct resource *res = NULL;
3166 	int num_reserved_chans;
3167 	u32 val;
3168 
3169 	base = d40_hw_detect_init(pdev);
3170 
3171 	if (!base)
3172 		goto failure;
3173 
3174 	num_reserved_chans = d40_phy_res_init(base);
3175 
3176 	platform_set_drvdata(pdev, base);
3177 
3178 	spin_lock_init(&base->interrupt_lock);
3179 	spin_lock_init(&base->execmd_lock);
3180 
3181 	/* Get IO for logical channel parameter address */
3182 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3183 	if (!res) {
3184 		ret = -ENOENT;
3185 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3186 		goto failure;
3187 	}
3188 	base->lcpa_size = resource_size(res);
3189 	base->phy_lcpa = res->start;
3190 
3191 	if (request_mem_region(res->start, resource_size(res),
3192 			       D40_NAME " I/O lcpa") == NULL) {
3193 		ret = -EBUSY;
3194 		d40_err(&pdev->dev,
3195 			"Failed to request LCPA region 0x%x-0x%x\n",
3196 			res->start, res->end);
3197 		goto failure;
3198 	}
3199 
3200 	/* We make use of ESRAM memory for this. */
3201 	val = readl(base->virtbase + D40_DREG_LCPA);
3202 	if (res->start != val && val != 0) {
3203 		dev_warn(&pdev->dev,
3204 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
3205 			 __func__, val, res->start);
3206 	} else
3207 		writel(res->start, base->virtbase + D40_DREG_LCPA);
3208 
3209 	base->lcpa_base = ioremap(res->start, resource_size(res));
3210 	if (!base->lcpa_base) {
3211 		ret = -ENOMEM;
3212 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3213 		goto failure;
3214 	}
3215 	/* If lcla has to be located in ESRAM we don't need to allocate */
3216 	if (base->plat_data->use_esram_lcla) {
3217 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3218 							"lcla_esram");
3219 		if (!res) {
3220 			ret = -ENOENT;
3221 			d40_err(&pdev->dev,
3222 				"No \"lcla_esram\" memory resource\n");
3223 			goto failure;
3224 		}
3225 		base->lcla_pool.base = ioremap(res->start,
3226 						resource_size(res));
3227 		if (!base->lcla_pool.base) {
3228 			ret = -ENOMEM;
3229 			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3230 			goto failure;
3231 		}
3232 		writel(res->start, base->virtbase + D40_DREG_LCLA);
3233 
3234 	} else {
3235 		ret = d40_lcla_allocate(base);
3236 		if (ret) {
3237 			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3238 			goto failure;
3239 		}
3240 	}
3241 
3242 	spin_lock_init(&base->lcla_pool.lock);
3243 
3244 	base->irq = platform_get_irq(pdev, 0);
3245 
3246 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3247 	if (ret) {
3248 		d40_err(&pdev->dev, "No IRQ defined\n");
3249 		goto failure;
3250 	}
3251 
3252 	pm_runtime_irq_safe(base->dev);
3253 	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3254 	pm_runtime_use_autosuspend(base->dev);
3255 	pm_runtime_enable(base->dev);
3256 	pm_runtime_resume(base->dev);
3257 
3258 	if (base->plat_data->use_esram_lcla) {
3259 
3260 		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3261 		if (IS_ERR(base->lcpa_regulator)) {
3262 			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3263 			base->lcpa_regulator = NULL;
3264 			goto failure;
3265 		}
3266 
3267 		ret = regulator_enable(base->lcpa_regulator);
3268 		if (ret) {
3269 			d40_err(&pdev->dev,
3270 				"Failed to enable lcpa_regulator\n");
3271 			regulator_put(base->lcpa_regulator);
3272 			base->lcpa_regulator = NULL;
3273 			goto failure;
3274 		}
3275 	}
3276 
3277 	base->initialized = true;
3278 	err = d40_dmaengine_init(base, num_reserved_chans);
3279 	if (err)
3280 		goto failure;
3281 
3282 	d40_hw_init(base);
3283 
3284 	dev_info(base->dev, "initialized\n");
3285 	return 0;
3286 
3287 failure:
3288 	if (base) {
3289 		if (base->desc_slab)
3290 			kmem_cache_destroy(base->desc_slab);
3291 		if (base->virtbase)
3292 			iounmap(base->virtbase);
3293 
3294 		if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3295 			iounmap(base->lcla_pool.base);
3296 			base->lcla_pool.base = NULL;
3297 		}
3298 
3299 		if (base->lcla_pool.dma_addr)
3300 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3301 					 SZ_1K * base->num_phy_chans,
3302 					 DMA_TO_DEVICE);
3303 
3304 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3305 			free_pages((unsigned long)base->lcla_pool.base,
3306 				   base->lcla_pool.pages);
3307 
3308 		kfree(base->lcla_pool.base_unaligned);
3309 
3310 		if (base->phy_lcpa)
3311 			release_mem_region(base->phy_lcpa,
3312 					   base->lcpa_size);
3313 		if (base->phy_start)
3314 			release_mem_region(base->phy_start,
3315 					   base->phy_size);
3316 		if (base->clk) {
3317 			clk_disable(base->clk);
3318 			clk_put(base->clk);
3319 		}
3320 
3321 		if (base->lcpa_regulator) {
3322 			regulator_disable(base->lcpa_regulator);
3323 			regulator_put(base->lcpa_regulator);
3324 		}
3325 
3326 		kfree(base->lcla_pool.alloc_map);
3327 		kfree(base->lookup_log_chans);
3328 		kfree(base->lookup_phy_chans);
3329 		kfree(base->phy_res);
3330 		kfree(base);
3331 	}
3332 
3333 	d40_err(&pdev->dev, "probe failed\n");
3334 	return ret;
3335 }
3336 
3337 static struct platform_driver d40_driver = {
3338 	.driver = {
3339 		.owner = THIS_MODULE,
3340 		.name  = D40_NAME,
3341 		.pm = DMA40_PM_OPS,
3342 	},
3343 };
3344 
3345 static int __init stedma40_init(void)
3346 {
3347 	return platform_driver_probe(&d40_driver, d40_probe);
3348 }
3349 subsys_initcall(stedma40_init);
3350