1 /* 2 * Copyright (C) Ericsson AB 2007-2008 3 * Copyright (C) ST-Ericsson SA 2008-2010 4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson 5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson 6 * License terms: GNU General Public License (GPL) version 2 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/export.h> 13 #include <linux/dmaengine.h> 14 #include <linux/platform_device.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/pm.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/err.h> 20 #include <linux/amba/bus.h> 21 22 #include <plat/ste_dma40.h> 23 24 #include "dmaengine.h" 25 #include "ste_dma40_ll.h" 26 27 #define D40_NAME "dma40" 28 29 #define D40_PHY_CHAN -1 30 31 /* For masking out/in 2 bit channel positions */ 32 #define D40_CHAN_POS(chan) (2 * (chan / 2)) 33 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) 34 35 /* Maximum iterations taken before giving up suspending a channel */ 36 #define D40_SUSPEND_MAX_IT 500 37 38 /* Milliseconds */ 39 #define DMA40_AUTOSUSPEND_DELAY 100 40 41 /* Hardware requirement on LCLA alignment */ 42 #define LCLA_ALIGNMENT 0x40000 43 44 /* Max number of links per event group */ 45 #define D40_LCLA_LINK_PER_EVENT_GRP 128 46 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP 47 48 /* Attempts before giving up to trying to get pages that are aligned */ 49 #define MAX_LCLA_ALLOC_ATTEMPTS 256 50 51 /* Bit markings for allocation map */ 52 #define D40_ALLOC_FREE (1 << 31) 53 #define D40_ALLOC_PHY (1 << 30) 54 #define D40_ALLOC_LOG_FREE 0 55 56 /** 57 * enum 40_command - The different commands and/or statuses. 58 * 59 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, 60 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. 61 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. 62 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. 63 */ 64 enum d40_command { 65 D40_DMA_STOP = 0, 66 D40_DMA_RUN = 1, 67 D40_DMA_SUSPEND_REQ = 2, 68 D40_DMA_SUSPENDED = 3 69 }; 70 71 /* 72 * These are the registers that has to be saved and later restored 73 * when the DMA hw is powered off. 74 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. 75 */ 76 static u32 d40_backup_regs[] = { 77 D40_DREG_LCPA, 78 D40_DREG_LCLA, 79 D40_DREG_PRMSE, 80 D40_DREG_PRMSO, 81 D40_DREG_PRMOE, 82 D40_DREG_PRMOO, 83 }; 84 85 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) 86 87 /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */ 88 static u32 d40_backup_regs_v3[] = { 89 D40_DREG_PSEG1, 90 D40_DREG_PSEG2, 91 D40_DREG_PSEG3, 92 D40_DREG_PSEG4, 93 D40_DREG_PCEG1, 94 D40_DREG_PCEG2, 95 D40_DREG_PCEG3, 96 D40_DREG_PCEG4, 97 D40_DREG_RSEG1, 98 D40_DREG_RSEG2, 99 D40_DREG_RSEG3, 100 D40_DREG_RSEG4, 101 D40_DREG_RCEG1, 102 D40_DREG_RCEG2, 103 D40_DREG_RCEG3, 104 D40_DREG_RCEG4, 105 }; 106 107 #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3) 108 109 static u32 d40_backup_regs_chan[] = { 110 D40_CHAN_REG_SSCFG, 111 D40_CHAN_REG_SSELT, 112 D40_CHAN_REG_SSPTR, 113 D40_CHAN_REG_SSLNK, 114 D40_CHAN_REG_SDCFG, 115 D40_CHAN_REG_SDELT, 116 D40_CHAN_REG_SDPTR, 117 D40_CHAN_REG_SDLNK, 118 }; 119 120 /** 121 * struct d40_lli_pool - Structure for keeping LLIs in memory 122 * 123 * @base: Pointer to memory area when the pre_alloc_lli's are not large 124 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if 125 * pre_alloc_lli is used. 126 * @dma_addr: DMA address, if mapped 127 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. 128 * @pre_alloc_lli: Pre allocated area for the most common case of transfers, 129 * one buffer to one buffer. 130 */ 131 struct d40_lli_pool { 132 void *base; 133 int size; 134 dma_addr_t dma_addr; 135 /* Space for dst and src, plus an extra for padding */ 136 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; 137 }; 138 139 /** 140 * struct d40_desc - A descriptor is one DMA job. 141 * 142 * @lli_phy: LLI settings for physical channel. Both src and dst= 143 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if 144 * lli_len equals one. 145 * @lli_log: Same as above but for logical channels. 146 * @lli_pool: The pool with two entries pre-allocated. 147 * @lli_len: Number of llis of current descriptor. 148 * @lli_current: Number of transferred llis. 149 * @lcla_alloc: Number of LCLA entries allocated. 150 * @txd: DMA engine struct. Used for among other things for communication 151 * during a transfer. 152 * @node: List entry. 153 * @is_in_client_list: true if the client owns this descriptor. 154 * @cyclic: true if this is a cyclic job 155 * 156 * This descriptor is used for both logical and physical transfers. 157 */ 158 struct d40_desc { 159 /* LLI physical */ 160 struct d40_phy_lli_bidir lli_phy; 161 /* LLI logical */ 162 struct d40_log_lli_bidir lli_log; 163 164 struct d40_lli_pool lli_pool; 165 int lli_len; 166 int lli_current; 167 int lcla_alloc; 168 169 struct dma_async_tx_descriptor txd; 170 struct list_head node; 171 172 bool is_in_client_list; 173 bool cyclic; 174 }; 175 176 /** 177 * struct d40_lcla_pool - LCLA pool settings and data. 178 * 179 * @base: The virtual address of LCLA. 18 bit aligned. 180 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. 181 * This pointer is only there for clean-up on error. 182 * @pages: The number of pages needed for all physical channels. 183 * Only used later for clean-up on error 184 * @lock: Lock to protect the content in this struct. 185 * @alloc_map: big map over which LCLA entry is own by which job. 186 */ 187 struct d40_lcla_pool { 188 void *base; 189 dma_addr_t dma_addr; 190 void *base_unaligned; 191 int pages; 192 spinlock_t lock; 193 struct d40_desc **alloc_map; 194 }; 195 196 /** 197 * struct d40_phy_res - struct for handling eventlines mapped to physical 198 * channels. 199 * 200 * @lock: A lock protection this entity. 201 * @reserved: True if used by secure world or otherwise. 202 * @num: The physical channel number of this entity. 203 * @allocated_src: Bit mapped to show which src event line's are mapped to 204 * this physical channel. Can also be free or physically allocated. 205 * @allocated_dst: Same as for src but is dst. 206 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as 207 * event line number. 208 */ 209 struct d40_phy_res { 210 spinlock_t lock; 211 bool reserved; 212 int num; 213 u32 allocated_src; 214 u32 allocated_dst; 215 }; 216 217 struct d40_base; 218 219 /** 220 * struct d40_chan - Struct that describes a channel. 221 * 222 * @lock: A spinlock to protect this struct. 223 * @log_num: The logical number, if any of this channel. 224 * @pending_tx: The number of pending transfers. Used between interrupt handler 225 * and tasklet. 226 * @busy: Set to true when transfer is ongoing on this channel. 227 * @phy_chan: Pointer to physical channel which this instance runs on. If this 228 * point is NULL, then the channel is not allocated. 229 * @chan: DMA engine handle. 230 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a 231 * transfer and call client callback. 232 * @client: Cliented owned descriptor list. 233 * @pending_queue: Submitted jobs, to be issued by issue_pending() 234 * @active: Active descriptor. 235 * @queue: Queued jobs. 236 * @prepare_queue: Prepared jobs. 237 * @dma_cfg: The client configuration of this dma channel. 238 * @configured: whether the dma_cfg configuration is valid 239 * @base: Pointer to the device instance struct. 240 * @src_def_cfg: Default cfg register setting for src. 241 * @dst_def_cfg: Default cfg register setting for dst. 242 * @log_def: Default logical channel settings. 243 * @lcpa: Pointer to dst and src lcpa settings. 244 * @runtime_addr: runtime configured address. 245 * @runtime_direction: runtime configured direction. 246 * 247 * This struct can either "be" a logical or a physical channel. 248 */ 249 struct d40_chan { 250 spinlock_t lock; 251 int log_num; 252 int pending_tx; 253 bool busy; 254 struct d40_phy_res *phy_chan; 255 struct dma_chan chan; 256 struct tasklet_struct tasklet; 257 struct list_head client; 258 struct list_head pending_queue; 259 struct list_head active; 260 struct list_head queue; 261 struct list_head prepare_queue; 262 struct stedma40_chan_cfg dma_cfg; 263 bool configured; 264 struct d40_base *base; 265 /* Default register configurations */ 266 u32 src_def_cfg; 267 u32 dst_def_cfg; 268 struct d40_def_lcsp log_def; 269 struct d40_log_lli_full *lcpa; 270 /* Runtime reconfiguration */ 271 dma_addr_t runtime_addr; 272 enum dma_transfer_direction runtime_direction; 273 }; 274 275 /** 276 * struct d40_base - The big global struct, one for each probe'd instance. 277 * 278 * @interrupt_lock: Lock used to make sure one interrupt is handle a time. 279 * @execmd_lock: Lock for execute command usage since several channels share 280 * the same physical register. 281 * @dev: The device structure. 282 * @virtbase: The virtual base address of the DMA's register. 283 * @rev: silicon revision detected. 284 * @clk: Pointer to the DMA clock structure. 285 * @phy_start: Physical memory start of the DMA registers. 286 * @phy_size: Size of the DMA register map. 287 * @irq: The IRQ number. 288 * @num_phy_chans: The number of physical channels. Read from HW. This 289 * is the number of available channels for this driver, not counting "Secure 290 * mode" allocated physical channels. 291 * @num_log_chans: The number of logical channels. Calculated from 292 * num_phy_chans. 293 * @dma_both: dma_device channels that can do both memcpy and slave transfers. 294 * @dma_slave: dma_device channels that can do only do slave transfers. 295 * @dma_memcpy: dma_device channels that can do only do memcpy transfers. 296 * @phy_chans: Room for all possible physical channels in system. 297 * @log_chans: Room for all possible logical channels in system. 298 * @lookup_log_chans: Used to map interrupt number to logical channel. Points 299 * to log_chans entries. 300 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points 301 * to phy_chans entries. 302 * @plat_data: Pointer to provided platform_data which is the driver 303 * configuration. 304 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. 305 * @phy_res: Vector containing all physical channels. 306 * @lcla_pool: lcla pool settings and data. 307 * @lcpa_base: The virtual mapped address of LCPA. 308 * @phy_lcpa: The physical address of the LCPA. 309 * @lcpa_size: The size of the LCPA area. 310 * @desc_slab: cache for descriptors. 311 * @reg_val_backup: Here the values of some hardware registers are stored 312 * before the DMA is powered off. They are restored when the power is back on. 313 * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and 314 * later. 315 * @reg_val_backup_chan: Backup data for standard channel parameter registers. 316 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. 317 * @initialized: true if the dma has been initialized 318 */ 319 struct d40_base { 320 spinlock_t interrupt_lock; 321 spinlock_t execmd_lock; 322 struct device *dev; 323 void __iomem *virtbase; 324 u8 rev:4; 325 struct clk *clk; 326 phys_addr_t phy_start; 327 resource_size_t phy_size; 328 int irq; 329 int num_phy_chans; 330 int num_log_chans; 331 struct dma_device dma_both; 332 struct dma_device dma_slave; 333 struct dma_device dma_memcpy; 334 struct d40_chan *phy_chans; 335 struct d40_chan *log_chans; 336 struct d40_chan **lookup_log_chans; 337 struct d40_chan **lookup_phy_chans; 338 struct stedma40_platform_data *plat_data; 339 struct regulator *lcpa_regulator; 340 /* Physical half channels */ 341 struct d40_phy_res *phy_res; 342 struct d40_lcla_pool lcla_pool; 343 void *lcpa_base; 344 dma_addr_t phy_lcpa; 345 resource_size_t lcpa_size; 346 struct kmem_cache *desc_slab; 347 u32 reg_val_backup[BACKUP_REGS_SZ]; 348 u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3]; 349 u32 *reg_val_backup_chan; 350 u16 gcc_pwr_off_mask; 351 bool initialized; 352 }; 353 354 /** 355 * struct d40_interrupt_lookup - lookup table for interrupt handler 356 * 357 * @src: Interrupt mask register. 358 * @clr: Interrupt clear register. 359 * @is_error: true if this is an error interrupt. 360 * @offset: start delta in the lookup_log_chans in d40_base. If equals to 361 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. 362 */ 363 struct d40_interrupt_lookup { 364 u32 src; 365 u32 clr; 366 bool is_error; 367 int offset; 368 }; 369 370 /** 371 * struct d40_reg_val - simple lookup struct 372 * 373 * @reg: The register. 374 * @val: The value that belongs to the register in reg. 375 */ 376 struct d40_reg_val { 377 unsigned int reg; 378 unsigned int val; 379 }; 380 381 static struct device *chan2dev(struct d40_chan *d40c) 382 { 383 return &d40c->chan.dev->device; 384 } 385 386 static bool chan_is_physical(struct d40_chan *chan) 387 { 388 return chan->log_num == D40_PHY_CHAN; 389 } 390 391 static bool chan_is_logical(struct d40_chan *chan) 392 { 393 return !chan_is_physical(chan); 394 } 395 396 static void __iomem *chan_base(struct d40_chan *chan) 397 { 398 return chan->base->virtbase + D40_DREG_PCBASE + 399 chan->phy_chan->num * D40_DREG_PCDELTA; 400 } 401 402 #define d40_err(dev, format, arg...) \ 403 dev_err(dev, "[%s] " format, __func__, ## arg) 404 405 #define chan_err(d40c, format, arg...) \ 406 d40_err(chan2dev(d40c), format, ## arg) 407 408 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, 409 int lli_len) 410 { 411 bool is_log = chan_is_logical(d40c); 412 u32 align; 413 void *base; 414 415 if (is_log) 416 align = sizeof(struct d40_log_lli); 417 else 418 align = sizeof(struct d40_phy_lli); 419 420 if (lli_len == 1) { 421 base = d40d->lli_pool.pre_alloc_lli; 422 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); 423 d40d->lli_pool.base = NULL; 424 } else { 425 d40d->lli_pool.size = lli_len * 2 * align; 426 427 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); 428 d40d->lli_pool.base = base; 429 430 if (d40d->lli_pool.base == NULL) 431 return -ENOMEM; 432 } 433 434 if (is_log) { 435 d40d->lli_log.src = PTR_ALIGN(base, align); 436 d40d->lli_log.dst = d40d->lli_log.src + lli_len; 437 438 d40d->lli_pool.dma_addr = 0; 439 } else { 440 d40d->lli_phy.src = PTR_ALIGN(base, align); 441 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; 442 443 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, 444 d40d->lli_phy.src, 445 d40d->lli_pool.size, 446 DMA_TO_DEVICE); 447 448 if (dma_mapping_error(d40c->base->dev, 449 d40d->lli_pool.dma_addr)) { 450 kfree(d40d->lli_pool.base); 451 d40d->lli_pool.base = NULL; 452 d40d->lli_pool.dma_addr = 0; 453 return -ENOMEM; 454 } 455 } 456 457 return 0; 458 } 459 460 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) 461 { 462 if (d40d->lli_pool.dma_addr) 463 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, 464 d40d->lli_pool.size, DMA_TO_DEVICE); 465 466 kfree(d40d->lli_pool.base); 467 d40d->lli_pool.base = NULL; 468 d40d->lli_pool.size = 0; 469 d40d->lli_log.src = NULL; 470 d40d->lli_log.dst = NULL; 471 d40d->lli_phy.src = NULL; 472 d40d->lli_phy.dst = NULL; 473 } 474 475 static int d40_lcla_alloc_one(struct d40_chan *d40c, 476 struct d40_desc *d40d) 477 { 478 unsigned long flags; 479 int i; 480 int ret = -EINVAL; 481 int p; 482 483 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 484 485 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP; 486 487 /* 488 * Allocate both src and dst at the same time, therefore the half 489 * start on 1 since 0 can't be used since zero is used as end marker. 490 */ 491 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 492 if (!d40c->base->lcla_pool.alloc_map[p + i]) { 493 d40c->base->lcla_pool.alloc_map[p + i] = d40d; 494 d40d->lcla_alloc++; 495 ret = i; 496 break; 497 } 498 } 499 500 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 501 502 return ret; 503 } 504 505 static int d40_lcla_free_all(struct d40_chan *d40c, 506 struct d40_desc *d40d) 507 { 508 unsigned long flags; 509 int i; 510 int ret = -EINVAL; 511 512 if (chan_is_physical(d40c)) 513 return 0; 514 515 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); 516 517 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { 518 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * 519 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) { 520 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num * 521 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL; 522 d40d->lcla_alloc--; 523 if (d40d->lcla_alloc == 0) { 524 ret = 0; 525 break; 526 } 527 } 528 } 529 530 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); 531 532 return ret; 533 534 } 535 536 static void d40_desc_remove(struct d40_desc *d40d) 537 { 538 list_del(&d40d->node); 539 } 540 541 static struct d40_desc *d40_desc_get(struct d40_chan *d40c) 542 { 543 struct d40_desc *desc = NULL; 544 545 if (!list_empty(&d40c->client)) { 546 struct d40_desc *d; 547 struct d40_desc *_d; 548 549 list_for_each_entry_safe(d, _d, &d40c->client, node) { 550 if (async_tx_test_ack(&d->txd)) { 551 d40_desc_remove(d); 552 desc = d; 553 memset(desc, 0, sizeof(*desc)); 554 break; 555 } 556 } 557 } 558 559 if (!desc) 560 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); 561 562 if (desc) 563 INIT_LIST_HEAD(&desc->node); 564 565 return desc; 566 } 567 568 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) 569 { 570 571 d40_pool_lli_free(d40c, d40d); 572 d40_lcla_free_all(d40c, d40d); 573 kmem_cache_free(d40c->base->desc_slab, d40d); 574 } 575 576 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) 577 { 578 list_add_tail(&desc->node, &d40c->active); 579 } 580 581 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) 582 { 583 struct d40_phy_lli *lli_dst = desc->lli_phy.dst; 584 struct d40_phy_lli *lli_src = desc->lli_phy.src; 585 void __iomem *base = chan_base(chan); 586 587 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); 588 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); 589 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); 590 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); 591 592 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); 593 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); 594 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); 595 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); 596 } 597 598 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) 599 { 600 struct d40_lcla_pool *pool = &chan->base->lcla_pool; 601 struct d40_log_lli_bidir *lli = &desc->lli_log; 602 int lli_current = desc->lli_current; 603 int lli_len = desc->lli_len; 604 bool cyclic = desc->cyclic; 605 int curr_lcla = -EINVAL; 606 int first_lcla = 0; 607 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; 608 bool linkback; 609 610 /* 611 * We may have partially running cyclic transfers, in case we did't get 612 * enough LCLA entries. 613 */ 614 linkback = cyclic && lli_current == 0; 615 616 /* 617 * For linkback, we need one LCLA even with only one link, because we 618 * can't link back to the one in LCPA space 619 */ 620 if (linkback || (lli_len - lli_current > 1)) { 621 curr_lcla = d40_lcla_alloc_one(chan, desc); 622 first_lcla = curr_lcla; 623 } 624 625 /* 626 * For linkback, we normally load the LCPA in the loop since we need to 627 * link it to the second LCLA and not the first. However, if we 628 * couldn't even get a first LCLA, then we have to run in LCPA and 629 * reload manually. 630 */ 631 if (!linkback || curr_lcla == -EINVAL) { 632 unsigned int flags = 0; 633 634 if (curr_lcla == -EINVAL) 635 flags |= LLI_TERM_INT; 636 637 d40_log_lli_lcpa_write(chan->lcpa, 638 &lli->dst[lli_current], 639 &lli->src[lli_current], 640 curr_lcla, 641 flags); 642 lli_current++; 643 } 644 645 if (curr_lcla < 0) 646 goto out; 647 648 for (; lli_current < lli_len; lli_current++) { 649 unsigned int lcla_offset = chan->phy_chan->num * 1024 + 650 8 * curr_lcla * 2; 651 struct d40_log_lli *lcla = pool->base + lcla_offset; 652 unsigned int flags = 0; 653 int next_lcla; 654 655 if (lli_current + 1 < lli_len) 656 next_lcla = d40_lcla_alloc_one(chan, desc); 657 else 658 next_lcla = linkback ? first_lcla : -EINVAL; 659 660 if (cyclic || next_lcla == -EINVAL) 661 flags |= LLI_TERM_INT; 662 663 if (linkback && curr_lcla == first_lcla) { 664 /* First link goes in both LCPA and LCLA */ 665 d40_log_lli_lcpa_write(chan->lcpa, 666 &lli->dst[lli_current], 667 &lli->src[lli_current], 668 next_lcla, flags); 669 } 670 671 /* 672 * One unused LCLA in the cyclic case if the very first 673 * next_lcla fails... 674 */ 675 d40_log_lli_lcla_write(lcla, 676 &lli->dst[lli_current], 677 &lli->src[lli_current], 678 next_lcla, flags); 679 680 /* 681 * Cache maintenance is not needed if lcla is 682 * mapped in esram 683 */ 684 if (!use_esram_lcla) { 685 dma_sync_single_range_for_device(chan->base->dev, 686 pool->dma_addr, lcla_offset, 687 2 * sizeof(struct d40_log_lli), 688 DMA_TO_DEVICE); 689 } 690 curr_lcla = next_lcla; 691 692 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { 693 lli_current++; 694 break; 695 } 696 } 697 698 out: 699 desc->lli_current = lli_current; 700 } 701 702 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) 703 { 704 if (chan_is_physical(d40c)) { 705 d40_phy_lli_load(d40c, d40d); 706 d40d->lli_current = d40d->lli_len; 707 } else 708 d40_log_lli_to_lcxa(d40c, d40d); 709 } 710 711 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) 712 { 713 struct d40_desc *d; 714 715 if (list_empty(&d40c->active)) 716 return NULL; 717 718 d = list_first_entry(&d40c->active, 719 struct d40_desc, 720 node); 721 return d; 722 } 723 724 /* remove desc from current queue and add it to the pending_queue */ 725 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) 726 { 727 d40_desc_remove(desc); 728 desc->is_in_client_list = false; 729 list_add_tail(&desc->node, &d40c->pending_queue); 730 } 731 732 static struct d40_desc *d40_first_pending(struct d40_chan *d40c) 733 { 734 struct d40_desc *d; 735 736 if (list_empty(&d40c->pending_queue)) 737 return NULL; 738 739 d = list_first_entry(&d40c->pending_queue, 740 struct d40_desc, 741 node); 742 return d; 743 } 744 745 static struct d40_desc *d40_first_queued(struct d40_chan *d40c) 746 { 747 struct d40_desc *d; 748 749 if (list_empty(&d40c->queue)) 750 return NULL; 751 752 d = list_first_entry(&d40c->queue, 753 struct d40_desc, 754 node); 755 return d; 756 } 757 758 static int d40_psize_2_burst_size(bool is_log, int psize) 759 { 760 if (is_log) { 761 if (psize == STEDMA40_PSIZE_LOG_1) 762 return 1; 763 } else { 764 if (psize == STEDMA40_PSIZE_PHY_1) 765 return 1; 766 } 767 768 return 2 << psize; 769 } 770 771 /* 772 * The dma only supports transmitting packages up to 773 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of 774 * dma elements required to send the entire sg list 775 */ 776 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) 777 { 778 int dmalen; 779 u32 max_w = max(data_width1, data_width2); 780 u32 min_w = min(data_width1, data_width2); 781 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); 782 783 if (seg_max > STEDMA40_MAX_SEG_SIZE) 784 seg_max -= (1 << max_w); 785 786 if (!IS_ALIGNED(size, 1 << max_w)) 787 return -EINVAL; 788 789 if (size <= seg_max) 790 dmalen = 1; 791 else { 792 dmalen = size / seg_max; 793 if (dmalen * seg_max < size) 794 dmalen++; 795 } 796 return dmalen; 797 } 798 799 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, 800 u32 data_width1, u32 data_width2) 801 { 802 struct scatterlist *sg; 803 int i; 804 int len = 0; 805 int ret; 806 807 for_each_sg(sgl, sg, sg_len, i) { 808 ret = d40_size_2_dmalen(sg_dma_len(sg), 809 data_width1, data_width2); 810 if (ret < 0) 811 return ret; 812 len += ret; 813 } 814 return len; 815 } 816 817 818 #ifdef CONFIG_PM 819 static void dma40_backup(void __iomem *baseaddr, u32 *backup, 820 u32 *regaddr, int num, bool save) 821 { 822 int i; 823 824 for (i = 0; i < num; i++) { 825 void __iomem *addr = baseaddr + regaddr[i]; 826 827 if (save) 828 backup[i] = readl_relaxed(addr); 829 else 830 writel_relaxed(backup[i], addr); 831 } 832 } 833 834 static void d40_save_restore_registers(struct d40_base *base, bool save) 835 { 836 int i; 837 838 /* Save/Restore channel specific registers */ 839 for (i = 0; i < base->num_phy_chans; i++) { 840 void __iomem *addr; 841 int idx; 842 843 if (base->phy_res[i].reserved) 844 continue; 845 846 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; 847 idx = i * ARRAY_SIZE(d40_backup_regs_chan); 848 849 dma40_backup(addr, &base->reg_val_backup_chan[idx], 850 d40_backup_regs_chan, 851 ARRAY_SIZE(d40_backup_regs_chan), 852 save); 853 } 854 855 /* Save/Restore global registers */ 856 dma40_backup(base->virtbase, base->reg_val_backup, 857 d40_backup_regs, ARRAY_SIZE(d40_backup_regs), 858 save); 859 860 /* Save/Restore registers only existing on dma40 v3 and later */ 861 if (base->rev >= 3) 862 dma40_backup(base->virtbase, base->reg_val_backup_v3, 863 d40_backup_regs_v3, 864 ARRAY_SIZE(d40_backup_regs_v3), 865 save); 866 } 867 #else 868 static void d40_save_restore_registers(struct d40_base *base, bool save) 869 { 870 } 871 #endif 872 873 static int d40_channel_execute_command(struct d40_chan *d40c, 874 enum d40_command command) 875 { 876 u32 status; 877 int i; 878 void __iomem *active_reg; 879 int ret = 0; 880 unsigned long flags; 881 u32 wmask; 882 883 spin_lock_irqsave(&d40c->base->execmd_lock, flags); 884 885 if (d40c->phy_chan->num % 2 == 0) 886 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 887 else 888 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 889 890 if (command == D40_DMA_SUSPEND_REQ) { 891 status = (readl(active_reg) & 892 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 893 D40_CHAN_POS(d40c->phy_chan->num); 894 895 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 896 goto done; 897 } 898 899 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); 900 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), 901 active_reg); 902 903 if (command == D40_DMA_SUSPEND_REQ) { 904 905 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { 906 status = (readl(active_reg) & 907 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 908 D40_CHAN_POS(d40c->phy_chan->num); 909 910 cpu_relax(); 911 /* 912 * Reduce the number of bus accesses while 913 * waiting for the DMA to suspend. 914 */ 915 udelay(3); 916 917 if (status == D40_DMA_STOP || 918 status == D40_DMA_SUSPENDED) 919 break; 920 } 921 922 if (i == D40_SUSPEND_MAX_IT) { 923 chan_err(d40c, 924 "unable to suspend the chl %d (log: %d) status %x\n", 925 d40c->phy_chan->num, d40c->log_num, 926 status); 927 dump_stack(); 928 ret = -EBUSY; 929 } 930 931 } 932 done: 933 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); 934 return ret; 935 } 936 937 static void d40_term_all(struct d40_chan *d40c) 938 { 939 struct d40_desc *d40d; 940 struct d40_desc *_d; 941 942 /* Release active descriptors */ 943 while ((d40d = d40_first_active_get(d40c))) { 944 d40_desc_remove(d40d); 945 d40_desc_free(d40c, d40d); 946 } 947 948 /* Release queued descriptors waiting for transfer */ 949 while ((d40d = d40_first_queued(d40c))) { 950 d40_desc_remove(d40d); 951 d40_desc_free(d40c, d40d); 952 } 953 954 /* Release pending descriptors */ 955 while ((d40d = d40_first_pending(d40c))) { 956 d40_desc_remove(d40d); 957 d40_desc_free(d40c, d40d); 958 } 959 960 /* Release client owned descriptors */ 961 if (!list_empty(&d40c->client)) 962 list_for_each_entry_safe(d40d, _d, &d40c->client, node) { 963 d40_desc_remove(d40d); 964 d40_desc_free(d40c, d40d); 965 } 966 967 /* Release descriptors in prepare queue */ 968 if (!list_empty(&d40c->prepare_queue)) 969 list_for_each_entry_safe(d40d, _d, 970 &d40c->prepare_queue, node) { 971 d40_desc_remove(d40d); 972 d40_desc_free(d40c, d40d); 973 } 974 975 d40c->pending_tx = 0; 976 d40c->busy = false; 977 } 978 979 static void __d40_config_set_event(struct d40_chan *d40c, bool enable, 980 u32 event, int reg) 981 { 982 void __iomem *addr = chan_base(d40c) + reg; 983 int tries; 984 985 if (!enable) { 986 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) 987 | ~D40_EVENTLINE_MASK(event), addr); 988 return; 989 } 990 991 /* 992 * The hardware sometimes doesn't register the enable when src and dst 993 * event lines are active on the same logical channel. Retry to ensure 994 * it does. Usually only one retry is sufficient. 995 */ 996 tries = 100; 997 while (--tries) { 998 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) 999 | ~D40_EVENTLINE_MASK(event), addr); 1000 1001 if (readl(addr) & D40_EVENTLINE_MASK(event)) 1002 break; 1003 } 1004 1005 if (tries != 99) 1006 dev_dbg(chan2dev(d40c), 1007 "[%s] workaround enable S%cLNK (%d tries)\n", 1008 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', 1009 100 - tries); 1010 1011 WARN_ON(!tries); 1012 } 1013 1014 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable) 1015 { 1016 unsigned long flags; 1017 1018 spin_lock_irqsave(&d40c->phy_chan->lock, flags); 1019 1020 /* Enable event line connected to device (or memcpy) */ 1021 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || 1022 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) { 1023 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1024 1025 __d40_config_set_event(d40c, do_enable, event, 1026 D40_CHAN_REG_SSLNK); 1027 } 1028 1029 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) { 1030 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1031 1032 __d40_config_set_event(d40c, do_enable, event, 1033 D40_CHAN_REG_SDLNK); 1034 } 1035 1036 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); 1037 } 1038 1039 static u32 d40_chan_has_events(struct d40_chan *d40c) 1040 { 1041 void __iomem *chanbase = chan_base(d40c); 1042 u32 val; 1043 1044 val = readl(chanbase + D40_CHAN_REG_SSLNK); 1045 val |= readl(chanbase + D40_CHAN_REG_SDLNK); 1046 1047 return val; 1048 } 1049 1050 static u32 d40_get_prmo(struct d40_chan *d40c) 1051 { 1052 static const unsigned int phy_map[] = { 1053 [STEDMA40_PCHAN_BASIC_MODE] 1054 = D40_DREG_PRMO_PCHAN_BASIC, 1055 [STEDMA40_PCHAN_MODULO_MODE] 1056 = D40_DREG_PRMO_PCHAN_MODULO, 1057 [STEDMA40_PCHAN_DOUBLE_DST_MODE] 1058 = D40_DREG_PRMO_PCHAN_DOUBLE_DST, 1059 }; 1060 static const unsigned int log_map[] = { 1061 [STEDMA40_LCHAN_SRC_PHY_DST_LOG] 1062 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, 1063 [STEDMA40_LCHAN_SRC_LOG_DST_PHY] 1064 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, 1065 [STEDMA40_LCHAN_SRC_LOG_DST_LOG] 1066 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, 1067 }; 1068 1069 if (chan_is_physical(d40c)) 1070 return phy_map[d40c->dma_cfg.mode_opt]; 1071 else 1072 return log_map[d40c->dma_cfg.mode_opt]; 1073 } 1074 1075 static void d40_config_write(struct d40_chan *d40c) 1076 { 1077 u32 addr_base; 1078 u32 var; 1079 1080 /* Odd addresses are even addresses + 4 */ 1081 addr_base = (d40c->phy_chan->num % 2) * 4; 1082 /* Setup channel mode to logical or physical */ 1083 var = ((u32)(chan_is_logical(d40c)) + 1) << 1084 D40_CHAN_POS(d40c->phy_chan->num); 1085 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); 1086 1087 /* Setup operational mode option register */ 1088 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); 1089 1090 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); 1091 1092 if (chan_is_logical(d40c)) { 1093 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) 1094 & D40_SREG_ELEM_LOG_LIDX_MASK; 1095 void __iomem *chanbase = chan_base(d40c); 1096 1097 /* Set default config for CFG reg */ 1098 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); 1099 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); 1100 1101 /* Set LIDX for lcla */ 1102 writel(lidx, chanbase + D40_CHAN_REG_SSELT); 1103 writel(lidx, chanbase + D40_CHAN_REG_SDELT); 1104 1105 /* Clear LNK which will be used by d40_chan_has_events() */ 1106 writel(0, chanbase + D40_CHAN_REG_SSLNK); 1107 writel(0, chanbase + D40_CHAN_REG_SDLNK); 1108 } 1109 } 1110 1111 static u32 d40_residue(struct d40_chan *d40c) 1112 { 1113 u32 num_elt; 1114 1115 if (chan_is_logical(d40c)) 1116 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) 1117 >> D40_MEM_LCSP2_ECNT_POS; 1118 else { 1119 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); 1120 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) 1121 >> D40_SREG_ELEM_PHY_ECNT_POS; 1122 } 1123 1124 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); 1125 } 1126 1127 static bool d40_tx_is_linked(struct d40_chan *d40c) 1128 { 1129 bool is_link; 1130 1131 if (chan_is_logical(d40c)) 1132 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; 1133 else 1134 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) 1135 & D40_SREG_LNK_PHYS_LNK_MASK; 1136 1137 return is_link; 1138 } 1139 1140 static int d40_pause(struct d40_chan *d40c) 1141 { 1142 int res = 0; 1143 unsigned long flags; 1144 1145 if (!d40c->busy) 1146 return 0; 1147 1148 pm_runtime_get_sync(d40c->base->dev); 1149 spin_lock_irqsave(&d40c->lock, flags); 1150 1151 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); 1152 if (res == 0) { 1153 if (chan_is_logical(d40c)) { 1154 d40_config_set_event(d40c, false); 1155 /* Resume the other logical channels if any */ 1156 if (d40_chan_has_events(d40c)) 1157 res = d40_channel_execute_command(d40c, 1158 D40_DMA_RUN); 1159 } 1160 } 1161 pm_runtime_mark_last_busy(d40c->base->dev); 1162 pm_runtime_put_autosuspend(d40c->base->dev); 1163 spin_unlock_irqrestore(&d40c->lock, flags); 1164 return res; 1165 } 1166 1167 static int d40_resume(struct d40_chan *d40c) 1168 { 1169 int res = 0; 1170 unsigned long flags; 1171 1172 if (!d40c->busy) 1173 return 0; 1174 1175 spin_lock_irqsave(&d40c->lock, flags); 1176 pm_runtime_get_sync(d40c->base->dev); 1177 if (d40c->base->rev == 0) 1178 if (chan_is_logical(d40c)) { 1179 res = d40_channel_execute_command(d40c, 1180 D40_DMA_SUSPEND_REQ); 1181 goto no_suspend; 1182 } 1183 1184 /* If bytes left to transfer or linked tx resume job */ 1185 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) { 1186 1187 if (chan_is_logical(d40c)) 1188 d40_config_set_event(d40c, true); 1189 1190 res = d40_channel_execute_command(d40c, D40_DMA_RUN); 1191 } 1192 1193 no_suspend: 1194 pm_runtime_mark_last_busy(d40c->base->dev); 1195 pm_runtime_put_autosuspend(d40c->base->dev); 1196 spin_unlock_irqrestore(&d40c->lock, flags); 1197 return res; 1198 } 1199 1200 static int d40_terminate_all(struct d40_chan *chan) 1201 { 1202 unsigned long flags; 1203 int ret = 0; 1204 1205 ret = d40_pause(chan); 1206 if (!ret && chan_is_physical(chan)) 1207 ret = d40_channel_execute_command(chan, D40_DMA_STOP); 1208 1209 spin_lock_irqsave(&chan->lock, flags); 1210 d40_term_all(chan); 1211 spin_unlock_irqrestore(&chan->lock, flags); 1212 1213 return ret; 1214 } 1215 1216 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) 1217 { 1218 struct d40_chan *d40c = container_of(tx->chan, 1219 struct d40_chan, 1220 chan); 1221 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); 1222 unsigned long flags; 1223 dma_cookie_t cookie; 1224 1225 spin_lock_irqsave(&d40c->lock, flags); 1226 cookie = dma_cookie_assign(tx); 1227 d40_desc_queue(d40c, d40d); 1228 spin_unlock_irqrestore(&d40c->lock, flags); 1229 1230 return cookie; 1231 } 1232 1233 static int d40_start(struct d40_chan *d40c) 1234 { 1235 if (d40c->base->rev == 0) { 1236 int err; 1237 1238 if (chan_is_logical(d40c)) { 1239 err = d40_channel_execute_command(d40c, 1240 D40_DMA_SUSPEND_REQ); 1241 if (err) 1242 return err; 1243 } 1244 } 1245 1246 if (chan_is_logical(d40c)) 1247 d40_config_set_event(d40c, true); 1248 1249 return d40_channel_execute_command(d40c, D40_DMA_RUN); 1250 } 1251 1252 static struct d40_desc *d40_queue_start(struct d40_chan *d40c) 1253 { 1254 struct d40_desc *d40d; 1255 int err; 1256 1257 /* Start queued jobs, if any */ 1258 d40d = d40_first_queued(d40c); 1259 1260 if (d40d != NULL) { 1261 if (!d40c->busy) 1262 d40c->busy = true; 1263 1264 pm_runtime_get_sync(d40c->base->dev); 1265 1266 /* Remove from queue */ 1267 d40_desc_remove(d40d); 1268 1269 /* Add to active queue */ 1270 d40_desc_submit(d40c, d40d); 1271 1272 /* Initiate DMA job */ 1273 d40_desc_load(d40c, d40d); 1274 1275 /* Start dma job */ 1276 err = d40_start(d40c); 1277 1278 if (err) 1279 return NULL; 1280 } 1281 1282 return d40d; 1283 } 1284 1285 /* called from interrupt context */ 1286 static void dma_tc_handle(struct d40_chan *d40c) 1287 { 1288 struct d40_desc *d40d; 1289 1290 /* Get first active entry from list */ 1291 d40d = d40_first_active_get(d40c); 1292 1293 if (d40d == NULL) 1294 return; 1295 1296 if (d40d->cyclic) { 1297 /* 1298 * If this was a paritially loaded list, we need to reloaded 1299 * it, and only when the list is completed. We need to check 1300 * for done because the interrupt will hit for every link, and 1301 * not just the last one. 1302 */ 1303 if (d40d->lli_current < d40d->lli_len 1304 && !d40_tx_is_linked(d40c) 1305 && !d40_residue(d40c)) { 1306 d40_lcla_free_all(d40c, d40d); 1307 d40_desc_load(d40c, d40d); 1308 (void) d40_start(d40c); 1309 1310 if (d40d->lli_current == d40d->lli_len) 1311 d40d->lli_current = 0; 1312 } 1313 } else { 1314 d40_lcla_free_all(d40c, d40d); 1315 1316 if (d40d->lli_current < d40d->lli_len) { 1317 d40_desc_load(d40c, d40d); 1318 /* Start dma job */ 1319 (void) d40_start(d40c); 1320 return; 1321 } 1322 1323 if (d40_queue_start(d40c) == NULL) 1324 d40c->busy = false; 1325 pm_runtime_mark_last_busy(d40c->base->dev); 1326 pm_runtime_put_autosuspend(d40c->base->dev); 1327 } 1328 1329 d40c->pending_tx++; 1330 tasklet_schedule(&d40c->tasklet); 1331 1332 } 1333 1334 static void dma_tasklet(unsigned long data) 1335 { 1336 struct d40_chan *d40c = (struct d40_chan *) data; 1337 struct d40_desc *d40d; 1338 unsigned long flags; 1339 dma_async_tx_callback callback; 1340 void *callback_param; 1341 1342 spin_lock_irqsave(&d40c->lock, flags); 1343 1344 /* Get first active entry from list */ 1345 d40d = d40_first_active_get(d40c); 1346 if (d40d == NULL) 1347 goto err; 1348 1349 if (!d40d->cyclic) 1350 dma_cookie_complete(&d40d->txd); 1351 1352 /* 1353 * If terminating a channel pending_tx is set to zero. 1354 * This prevents any finished active jobs to return to the client. 1355 */ 1356 if (d40c->pending_tx == 0) { 1357 spin_unlock_irqrestore(&d40c->lock, flags); 1358 return; 1359 } 1360 1361 /* Callback to client */ 1362 callback = d40d->txd.callback; 1363 callback_param = d40d->txd.callback_param; 1364 1365 if (!d40d->cyclic) { 1366 if (async_tx_test_ack(&d40d->txd)) { 1367 d40_desc_remove(d40d); 1368 d40_desc_free(d40c, d40d); 1369 } else { 1370 if (!d40d->is_in_client_list) { 1371 d40_desc_remove(d40d); 1372 d40_lcla_free_all(d40c, d40d); 1373 list_add_tail(&d40d->node, &d40c->client); 1374 d40d->is_in_client_list = true; 1375 } 1376 } 1377 } 1378 1379 d40c->pending_tx--; 1380 1381 if (d40c->pending_tx) 1382 tasklet_schedule(&d40c->tasklet); 1383 1384 spin_unlock_irqrestore(&d40c->lock, flags); 1385 1386 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT)) 1387 callback(callback_param); 1388 1389 return; 1390 1391 err: 1392 /* Rescue manoeuvre if receiving double interrupts */ 1393 if (d40c->pending_tx > 0) 1394 d40c->pending_tx--; 1395 spin_unlock_irqrestore(&d40c->lock, flags); 1396 } 1397 1398 static irqreturn_t d40_handle_interrupt(int irq, void *data) 1399 { 1400 static const struct d40_interrupt_lookup il[] = { 1401 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, 1402 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, 1403 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, 1404 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, 1405 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, 1406 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, 1407 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, 1408 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, 1409 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, 1410 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, 1411 }; 1412 1413 int i; 1414 u32 regs[ARRAY_SIZE(il)]; 1415 u32 idx; 1416 u32 row; 1417 long chan = -1; 1418 struct d40_chan *d40c; 1419 unsigned long flags; 1420 struct d40_base *base = data; 1421 1422 spin_lock_irqsave(&base->interrupt_lock, flags); 1423 1424 /* Read interrupt status of both logical and physical channels */ 1425 for (i = 0; i < ARRAY_SIZE(il); i++) 1426 regs[i] = readl(base->virtbase + il[i].src); 1427 1428 for (;;) { 1429 1430 chan = find_next_bit((unsigned long *)regs, 1431 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1); 1432 1433 /* No more set bits found? */ 1434 if (chan == BITS_PER_LONG * ARRAY_SIZE(il)) 1435 break; 1436 1437 row = chan / BITS_PER_LONG; 1438 idx = chan & (BITS_PER_LONG - 1); 1439 1440 /* ACK interrupt */ 1441 writel(1 << idx, base->virtbase + il[row].clr); 1442 1443 if (il[row].offset == D40_PHY_CHAN) 1444 d40c = base->lookup_phy_chans[idx]; 1445 else 1446 d40c = base->lookup_log_chans[il[row].offset + idx]; 1447 spin_lock(&d40c->lock); 1448 1449 if (!il[row].is_error) 1450 dma_tc_handle(d40c); 1451 else 1452 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", 1453 chan, il[row].offset, idx); 1454 1455 spin_unlock(&d40c->lock); 1456 } 1457 1458 spin_unlock_irqrestore(&base->interrupt_lock, flags); 1459 1460 return IRQ_HANDLED; 1461 } 1462 1463 static int d40_validate_conf(struct d40_chan *d40c, 1464 struct stedma40_chan_cfg *conf) 1465 { 1466 int res = 0; 1467 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type); 1468 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type); 1469 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; 1470 1471 if (!conf->dir) { 1472 chan_err(d40c, "Invalid direction.\n"); 1473 res = -EINVAL; 1474 } 1475 1476 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY && 1477 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 && 1478 d40c->runtime_addr == 0) { 1479 1480 chan_err(d40c, "Invalid TX channel address (%d)\n", 1481 conf->dst_dev_type); 1482 res = -EINVAL; 1483 } 1484 1485 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY && 1486 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 && 1487 d40c->runtime_addr == 0) { 1488 chan_err(d40c, "Invalid RX channel address (%d)\n", 1489 conf->src_dev_type); 1490 res = -EINVAL; 1491 } 1492 1493 if (conf->dir == STEDMA40_MEM_TO_PERIPH && 1494 dst_event_group == STEDMA40_DEV_DST_MEMORY) { 1495 chan_err(d40c, "Invalid dst\n"); 1496 res = -EINVAL; 1497 } 1498 1499 if (conf->dir == STEDMA40_PERIPH_TO_MEM && 1500 src_event_group == STEDMA40_DEV_SRC_MEMORY) { 1501 chan_err(d40c, "Invalid src\n"); 1502 res = -EINVAL; 1503 } 1504 1505 if (src_event_group == STEDMA40_DEV_SRC_MEMORY && 1506 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) { 1507 chan_err(d40c, "No event line\n"); 1508 res = -EINVAL; 1509 } 1510 1511 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH && 1512 (src_event_group != dst_event_group)) { 1513 chan_err(d40c, "Invalid event group\n"); 1514 res = -EINVAL; 1515 } 1516 1517 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { 1518 /* 1519 * DMAC HW supports it. Will be added to this driver, 1520 * in case any dma client requires it. 1521 */ 1522 chan_err(d40c, "periph to periph not supported\n"); 1523 res = -EINVAL; 1524 } 1525 1526 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * 1527 (1 << conf->src_info.data_width) != 1528 d40_psize_2_burst_size(is_log, conf->dst_info.psize) * 1529 (1 << conf->dst_info.data_width)) { 1530 /* 1531 * The DMAC hardware only supports 1532 * src (burst x width) == dst (burst x width) 1533 */ 1534 1535 chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); 1536 res = -EINVAL; 1537 } 1538 1539 return res; 1540 } 1541 1542 static bool d40_alloc_mask_set(struct d40_phy_res *phy, 1543 bool is_src, int log_event_line, bool is_log, 1544 bool *first_user) 1545 { 1546 unsigned long flags; 1547 spin_lock_irqsave(&phy->lock, flags); 1548 1549 *first_user = ((phy->allocated_src | phy->allocated_dst) 1550 == D40_ALLOC_FREE); 1551 1552 if (!is_log) { 1553 /* Physical interrupts are masked per physical full channel */ 1554 if (phy->allocated_src == D40_ALLOC_FREE && 1555 phy->allocated_dst == D40_ALLOC_FREE) { 1556 phy->allocated_dst = D40_ALLOC_PHY; 1557 phy->allocated_src = D40_ALLOC_PHY; 1558 goto found; 1559 } else 1560 goto not_found; 1561 } 1562 1563 /* Logical channel */ 1564 if (is_src) { 1565 if (phy->allocated_src == D40_ALLOC_PHY) 1566 goto not_found; 1567 1568 if (phy->allocated_src == D40_ALLOC_FREE) 1569 phy->allocated_src = D40_ALLOC_LOG_FREE; 1570 1571 if (!(phy->allocated_src & (1 << log_event_line))) { 1572 phy->allocated_src |= 1 << log_event_line; 1573 goto found; 1574 } else 1575 goto not_found; 1576 } else { 1577 if (phy->allocated_dst == D40_ALLOC_PHY) 1578 goto not_found; 1579 1580 if (phy->allocated_dst == D40_ALLOC_FREE) 1581 phy->allocated_dst = D40_ALLOC_LOG_FREE; 1582 1583 if (!(phy->allocated_dst & (1 << log_event_line))) { 1584 phy->allocated_dst |= 1 << log_event_line; 1585 goto found; 1586 } else 1587 goto not_found; 1588 } 1589 1590 not_found: 1591 spin_unlock_irqrestore(&phy->lock, flags); 1592 return false; 1593 found: 1594 spin_unlock_irqrestore(&phy->lock, flags); 1595 return true; 1596 } 1597 1598 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, 1599 int log_event_line) 1600 { 1601 unsigned long flags; 1602 bool is_free = false; 1603 1604 spin_lock_irqsave(&phy->lock, flags); 1605 if (!log_event_line) { 1606 phy->allocated_dst = D40_ALLOC_FREE; 1607 phy->allocated_src = D40_ALLOC_FREE; 1608 is_free = true; 1609 goto out; 1610 } 1611 1612 /* Logical channel */ 1613 if (is_src) { 1614 phy->allocated_src &= ~(1 << log_event_line); 1615 if (phy->allocated_src == D40_ALLOC_LOG_FREE) 1616 phy->allocated_src = D40_ALLOC_FREE; 1617 } else { 1618 phy->allocated_dst &= ~(1 << log_event_line); 1619 if (phy->allocated_dst == D40_ALLOC_LOG_FREE) 1620 phy->allocated_dst = D40_ALLOC_FREE; 1621 } 1622 1623 is_free = ((phy->allocated_src | phy->allocated_dst) == 1624 D40_ALLOC_FREE); 1625 1626 out: 1627 spin_unlock_irqrestore(&phy->lock, flags); 1628 1629 return is_free; 1630 } 1631 1632 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) 1633 { 1634 int dev_type; 1635 int event_group; 1636 int event_line; 1637 struct d40_phy_res *phys; 1638 int i; 1639 int j; 1640 int log_num; 1641 bool is_src; 1642 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; 1643 1644 phys = d40c->base->phy_res; 1645 1646 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1647 dev_type = d40c->dma_cfg.src_dev_type; 1648 log_num = 2 * dev_type; 1649 is_src = true; 1650 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1651 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1652 /* dst event lines are used for logical memcpy */ 1653 dev_type = d40c->dma_cfg.dst_dev_type; 1654 log_num = 2 * dev_type + 1; 1655 is_src = false; 1656 } else 1657 return -EINVAL; 1658 1659 event_group = D40_TYPE_TO_GROUP(dev_type); 1660 event_line = D40_TYPE_TO_EVENT(dev_type); 1661 1662 if (!is_log) { 1663 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1664 /* Find physical half channel */ 1665 for (i = 0; i < d40c->base->num_phy_chans; i++) { 1666 1667 if (d40_alloc_mask_set(&phys[i], is_src, 1668 0, is_log, 1669 first_phy_user)) 1670 goto found_phy; 1671 } 1672 } else 1673 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1674 int phy_num = j + event_group * 2; 1675 for (i = phy_num; i < phy_num + 2; i++) { 1676 if (d40_alloc_mask_set(&phys[i], 1677 is_src, 1678 0, 1679 is_log, 1680 first_phy_user)) 1681 goto found_phy; 1682 } 1683 } 1684 return -EINVAL; 1685 found_phy: 1686 d40c->phy_chan = &phys[i]; 1687 d40c->log_num = D40_PHY_CHAN; 1688 goto out; 1689 } 1690 if (dev_type == -1) 1691 return -EINVAL; 1692 1693 /* Find logical channel */ 1694 for (j = 0; j < d40c->base->num_phy_chans; j += 8) { 1695 int phy_num = j + event_group * 2; 1696 1697 if (d40c->dma_cfg.use_fixed_channel) { 1698 i = d40c->dma_cfg.phy_channel; 1699 1700 if ((i != phy_num) && (i != phy_num + 1)) { 1701 dev_err(chan2dev(d40c), 1702 "invalid fixed phy channel %d\n", i); 1703 return -EINVAL; 1704 } 1705 1706 if (d40_alloc_mask_set(&phys[i], is_src, event_line, 1707 is_log, first_phy_user)) 1708 goto found_log; 1709 1710 dev_err(chan2dev(d40c), 1711 "could not allocate fixed phy channel %d\n", i); 1712 return -EINVAL; 1713 } 1714 1715 /* 1716 * Spread logical channels across all available physical rather 1717 * than pack every logical channel at the first available phy 1718 * channels. 1719 */ 1720 if (is_src) { 1721 for (i = phy_num; i < phy_num + 2; i++) { 1722 if (d40_alloc_mask_set(&phys[i], is_src, 1723 event_line, is_log, 1724 first_phy_user)) 1725 goto found_log; 1726 } 1727 } else { 1728 for (i = phy_num + 1; i >= phy_num; i--) { 1729 if (d40_alloc_mask_set(&phys[i], is_src, 1730 event_line, is_log, 1731 first_phy_user)) 1732 goto found_log; 1733 } 1734 } 1735 } 1736 return -EINVAL; 1737 1738 found_log: 1739 d40c->phy_chan = &phys[i]; 1740 d40c->log_num = log_num; 1741 out: 1742 1743 if (is_log) 1744 d40c->base->lookup_log_chans[d40c->log_num] = d40c; 1745 else 1746 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; 1747 1748 return 0; 1749 1750 } 1751 1752 static int d40_config_memcpy(struct d40_chan *d40c) 1753 { 1754 dma_cap_mask_t cap = d40c->chan.device->cap_mask; 1755 1756 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { 1757 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log; 1758 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY; 1759 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data-> 1760 memcpy[d40c->chan.chan_id]; 1761 1762 } else if (dma_has_cap(DMA_MEMCPY, cap) && 1763 dma_has_cap(DMA_SLAVE, cap)) { 1764 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy; 1765 } else { 1766 chan_err(d40c, "No memcpy\n"); 1767 return -EINVAL; 1768 } 1769 1770 return 0; 1771 } 1772 1773 1774 static int d40_free_dma(struct d40_chan *d40c) 1775 { 1776 1777 int res = 0; 1778 u32 event; 1779 struct d40_phy_res *phy = d40c->phy_chan; 1780 bool is_src; 1781 1782 /* Terminate all queued and active transfers */ 1783 d40_term_all(d40c); 1784 1785 if (phy == NULL) { 1786 chan_err(d40c, "phy == null\n"); 1787 return -EINVAL; 1788 } 1789 1790 if (phy->allocated_src == D40_ALLOC_FREE && 1791 phy->allocated_dst == D40_ALLOC_FREE) { 1792 chan_err(d40c, "channel already free\n"); 1793 return -EINVAL; 1794 } 1795 1796 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1797 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1798 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1799 is_src = false; 1800 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1801 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1802 is_src = true; 1803 } else { 1804 chan_err(d40c, "Unknown direction\n"); 1805 return -EINVAL; 1806 } 1807 1808 pm_runtime_get_sync(d40c->base->dev); 1809 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); 1810 if (res) { 1811 chan_err(d40c, "suspend failed\n"); 1812 goto out; 1813 } 1814 1815 if (chan_is_logical(d40c)) { 1816 /* Release logical channel, deactivate the event line */ 1817 1818 d40_config_set_event(d40c, false); 1819 d40c->base->lookup_log_chans[d40c->log_num] = NULL; 1820 1821 /* 1822 * Check if there are more logical allocation 1823 * on this phy channel. 1824 */ 1825 if (!d40_alloc_mask_free(phy, is_src, event)) { 1826 /* Resume the other logical channels if any */ 1827 if (d40_chan_has_events(d40c)) { 1828 res = d40_channel_execute_command(d40c, 1829 D40_DMA_RUN); 1830 if (res) 1831 chan_err(d40c, 1832 "Executing RUN command\n"); 1833 } 1834 goto out; 1835 } 1836 } else { 1837 (void) d40_alloc_mask_free(phy, is_src, 0); 1838 } 1839 1840 /* Release physical channel */ 1841 res = d40_channel_execute_command(d40c, D40_DMA_STOP); 1842 if (res) { 1843 chan_err(d40c, "Failed to stop channel\n"); 1844 goto out; 1845 } 1846 1847 if (d40c->busy) { 1848 pm_runtime_mark_last_busy(d40c->base->dev); 1849 pm_runtime_put_autosuspend(d40c->base->dev); 1850 } 1851 1852 d40c->busy = false; 1853 d40c->phy_chan = NULL; 1854 d40c->configured = false; 1855 d40c->base->lookup_phy_chans[phy->num] = NULL; 1856 out: 1857 1858 pm_runtime_mark_last_busy(d40c->base->dev); 1859 pm_runtime_put_autosuspend(d40c->base->dev); 1860 return res; 1861 } 1862 1863 static bool d40_is_paused(struct d40_chan *d40c) 1864 { 1865 void __iomem *chanbase = chan_base(d40c); 1866 bool is_paused = false; 1867 unsigned long flags; 1868 void __iomem *active_reg; 1869 u32 status; 1870 u32 event; 1871 1872 spin_lock_irqsave(&d40c->lock, flags); 1873 1874 if (chan_is_physical(d40c)) { 1875 if (d40c->phy_chan->num % 2 == 0) 1876 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; 1877 else 1878 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; 1879 1880 status = (readl(active_reg) & 1881 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> 1882 D40_CHAN_POS(d40c->phy_chan->num); 1883 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) 1884 is_paused = true; 1885 1886 goto _exit; 1887 } 1888 1889 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || 1890 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { 1891 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type); 1892 status = readl(chanbase + D40_CHAN_REG_SDLNK); 1893 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { 1894 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type); 1895 status = readl(chanbase + D40_CHAN_REG_SSLNK); 1896 } else { 1897 chan_err(d40c, "Unknown direction\n"); 1898 goto _exit; 1899 } 1900 1901 status = (status & D40_EVENTLINE_MASK(event)) >> 1902 D40_EVENTLINE_POS(event); 1903 1904 if (status != D40_DMA_RUN) 1905 is_paused = true; 1906 _exit: 1907 spin_unlock_irqrestore(&d40c->lock, flags); 1908 return is_paused; 1909 1910 } 1911 1912 1913 static u32 stedma40_residue(struct dma_chan *chan) 1914 { 1915 struct d40_chan *d40c = 1916 container_of(chan, struct d40_chan, chan); 1917 u32 bytes_left; 1918 unsigned long flags; 1919 1920 spin_lock_irqsave(&d40c->lock, flags); 1921 bytes_left = d40_residue(d40c); 1922 spin_unlock_irqrestore(&d40c->lock, flags); 1923 1924 return bytes_left; 1925 } 1926 1927 static int 1928 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, 1929 struct scatterlist *sg_src, struct scatterlist *sg_dst, 1930 unsigned int sg_len, dma_addr_t src_dev_addr, 1931 dma_addr_t dst_dev_addr) 1932 { 1933 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 1934 struct stedma40_half_channel_info *src_info = &cfg->src_info; 1935 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 1936 int ret; 1937 1938 ret = d40_log_sg_to_lli(sg_src, sg_len, 1939 src_dev_addr, 1940 desc->lli_log.src, 1941 chan->log_def.lcsp1, 1942 src_info->data_width, 1943 dst_info->data_width); 1944 1945 ret = d40_log_sg_to_lli(sg_dst, sg_len, 1946 dst_dev_addr, 1947 desc->lli_log.dst, 1948 chan->log_def.lcsp3, 1949 dst_info->data_width, 1950 src_info->data_width); 1951 1952 return ret < 0 ? ret : 0; 1953 } 1954 1955 static int 1956 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, 1957 struct scatterlist *sg_src, struct scatterlist *sg_dst, 1958 unsigned int sg_len, dma_addr_t src_dev_addr, 1959 dma_addr_t dst_dev_addr) 1960 { 1961 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 1962 struct stedma40_half_channel_info *src_info = &cfg->src_info; 1963 struct stedma40_half_channel_info *dst_info = &cfg->dst_info; 1964 unsigned long flags = 0; 1965 int ret; 1966 1967 if (desc->cyclic) 1968 flags |= LLI_CYCLIC | LLI_TERM_INT; 1969 1970 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, 1971 desc->lli_phy.src, 1972 virt_to_phys(desc->lli_phy.src), 1973 chan->src_def_cfg, 1974 src_info, dst_info, flags); 1975 1976 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, 1977 desc->lli_phy.dst, 1978 virt_to_phys(desc->lli_phy.dst), 1979 chan->dst_def_cfg, 1980 dst_info, src_info, flags); 1981 1982 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, 1983 desc->lli_pool.size, DMA_TO_DEVICE); 1984 1985 return ret < 0 ? ret : 0; 1986 } 1987 1988 1989 static struct d40_desc * 1990 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, 1991 unsigned int sg_len, unsigned long dma_flags) 1992 { 1993 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 1994 struct d40_desc *desc; 1995 int ret; 1996 1997 desc = d40_desc_get(chan); 1998 if (!desc) 1999 return NULL; 2000 2001 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, 2002 cfg->dst_info.data_width); 2003 if (desc->lli_len < 0) { 2004 chan_err(chan, "Unaligned size\n"); 2005 goto err; 2006 } 2007 2008 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); 2009 if (ret < 0) { 2010 chan_err(chan, "Could not allocate lli\n"); 2011 goto err; 2012 } 2013 2014 2015 desc->lli_current = 0; 2016 desc->txd.flags = dma_flags; 2017 desc->txd.tx_submit = d40_tx_submit; 2018 2019 dma_async_tx_descriptor_init(&desc->txd, &chan->chan); 2020 2021 return desc; 2022 2023 err: 2024 d40_desc_free(chan, desc); 2025 return NULL; 2026 } 2027 2028 static dma_addr_t 2029 d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction) 2030 { 2031 struct stedma40_platform_data *plat = chan->base->plat_data; 2032 struct stedma40_chan_cfg *cfg = &chan->dma_cfg; 2033 dma_addr_t addr = 0; 2034 2035 if (chan->runtime_addr) 2036 return chan->runtime_addr; 2037 2038 if (direction == DMA_DEV_TO_MEM) 2039 addr = plat->dev_rx[cfg->src_dev_type]; 2040 else if (direction == DMA_MEM_TO_DEV) 2041 addr = plat->dev_tx[cfg->dst_dev_type]; 2042 2043 return addr; 2044 } 2045 2046 static struct dma_async_tx_descriptor * 2047 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, 2048 struct scatterlist *sg_dst, unsigned int sg_len, 2049 enum dma_transfer_direction direction, unsigned long dma_flags) 2050 { 2051 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); 2052 dma_addr_t src_dev_addr = 0; 2053 dma_addr_t dst_dev_addr = 0; 2054 struct d40_desc *desc; 2055 unsigned long flags; 2056 int ret; 2057 2058 if (!chan->phy_chan) { 2059 chan_err(chan, "Cannot prepare unallocated channel\n"); 2060 return NULL; 2061 } 2062 2063 2064 spin_lock_irqsave(&chan->lock, flags); 2065 2066 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); 2067 if (desc == NULL) 2068 goto err; 2069 2070 if (sg_next(&sg_src[sg_len - 1]) == sg_src) 2071 desc->cyclic = true; 2072 2073 if (direction != DMA_NONE) { 2074 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction); 2075 2076 if (direction == DMA_DEV_TO_MEM) 2077 src_dev_addr = dev_addr; 2078 else if (direction == DMA_MEM_TO_DEV) 2079 dst_dev_addr = dev_addr; 2080 } 2081 2082 if (chan_is_logical(chan)) 2083 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, 2084 sg_len, src_dev_addr, dst_dev_addr); 2085 else 2086 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, 2087 sg_len, src_dev_addr, dst_dev_addr); 2088 2089 if (ret) { 2090 chan_err(chan, "Failed to prepare %s sg job: %d\n", 2091 chan_is_logical(chan) ? "log" : "phy", ret); 2092 goto err; 2093 } 2094 2095 /* 2096 * add descriptor to the prepare queue in order to be able 2097 * to free them later in terminate_all 2098 */ 2099 list_add_tail(&desc->node, &chan->prepare_queue); 2100 2101 spin_unlock_irqrestore(&chan->lock, flags); 2102 2103 return &desc->txd; 2104 2105 err: 2106 if (desc) 2107 d40_desc_free(chan, desc); 2108 spin_unlock_irqrestore(&chan->lock, flags); 2109 return NULL; 2110 } 2111 2112 bool stedma40_filter(struct dma_chan *chan, void *data) 2113 { 2114 struct stedma40_chan_cfg *info = data; 2115 struct d40_chan *d40c = 2116 container_of(chan, struct d40_chan, chan); 2117 int err; 2118 2119 if (data) { 2120 err = d40_validate_conf(d40c, info); 2121 if (!err) 2122 d40c->dma_cfg = *info; 2123 } else 2124 err = d40_config_memcpy(d40c); 2125 2126 if (!err) 2127 d40c->configured = true; 2128 2129 return err == 0; 2130 } 2131 EXPORT_SYMBOL(stedma40_filter); 2132 2133 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) 2134 { 2135 bool realtime = d40c->dma_cfg.realtime; 2136 bool highprio = d40c->dma_cfg.high_priority; 2137 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1; 2138 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1; 2139 u32 event = D40_TYPE_TO_EVENT(dev_type); 2140 u32 group = D40_TYPE_TO_GROUP(dev_type); 2141 u32 bit = 1 << event; 2142 2143 /* Destination event lines are stored in the upper halfword */ 2144 if (!src) 2145 bit <<= 16; 2146 2147 writel(bit, d40c->base->virtbase + prioreg + group * 4); 2148 writel(bit, d40c->base->virtbase + rtreg + group * 4); 2149 } 2150 2151 static void d40_set_prio_realtime(struct d40_chan *d40c) 2152 { 2153 if (d40c->base->rev < 3) 2154 return; 2155 2156 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || 2157 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) 2158 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true); 2159 2160 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) || 2161 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) 2162 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false); 2163 } 2164 2165 /* DMA ENGINE functions */ 2166 static int d40_alloc_chan_resources(struct dma_chan *chan) 2167 { 2168 int err; 2169 unsigned long flags; 2170 struct d40_chan *d40c = 2171 container_of(chan, struct d40_chan, chan); 2172 bool is_free_phy; 2173 spin_lock_irqsave(&d40c->lock, flags); 2174 2175 dma_cookie_init(chan); 2176 2177 /* If no dma configuration is set use default configuration (memcpy) */ 2178 if (!d40c->configured) { 2179 err = d40_config_memcpy(d40c); 2180 if (err) { 2181 chan_err(d40c, "Failed to configure memcpy channel\n"); 2182 goto fail; 2183 } 2184 } 2185 2186 err = d40_allocate_channel(d40c, &is_free_phy); 2187 if (err) { 2188 chan_err(d40c, "Failed to allocate channel\n"); 2189 d40c->configured = false; 2190 goto fail; 2191 } 2192 2193 pm_runtime_get_sync(d40c->base->dev); 2194 /* Fill in basic CFG register values */ 2195 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, 2196 &d40c->dst_def_cfg, chan_is_logical(d40c)); 2197 2198 d40_set_prio_realtime(d40c); 2199 2200 if (chan_is_logical(d40c)) { 2201 d40_log_cfg(&d40c->dma_cfg, 2202 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 2203 2204 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) 2205 d40c->lcpa = d40c->base->lcpa_base + 2206 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE; 2207 else 2208 d40c->lcpa = d40c->base->lcpa_base + 2209 d40c->dma_cfg.dst_dev_type * 2210 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; 2211 } 2212 2213 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", 2214 chan_is_logical(d40c) ? "logical" : "physical", 2215 d40c->phy_chan->num, 2216 d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); 2217 2218 2219 /* 2220 * Only write channel configuration to the DMA if the physical 2221 * resource is free. In case of multiple logical channels 2222 * on the same physical resource, only the first write is necessary. 2223 */ 2224 if (is_free_phy) 2225 d40_config_write(d40c); 2226 fail: 2227 pm_runtime_mark_last_busy(d40c->base->dev); 2228 pm_runtime_put_autosuspend(d40c->base->dev); 2229 spin_unlock_irqrestore(&d40c->lock, flags); 2230 return err; 2231 } 2232 2233 static void d40_free_chan_resources(struct dma_chan *chan) 2234 { 2235 struct d40_chan *d40c = 2236 container_of(chan, struct d40_chan, chan); 2237 int err; 2238 unsigned long flags; 2239 2240 if (d40c->phy_chan == NULL) { 2241 chan_err(d40c, "Cannot free unallocated channel\n"); 2242 return; 2243 } 2244 2245 2246 spin_lock_irqsave(&d40c->lock, flags); 2247 2248 err = d40_free_dma(d40c); 2249 2250 if (err) 2251 chan_err(d40c, "Failed to free channel\n"); 2252 spin_unlock_irqrestore(&d40c->lock, flags); 2253 } 2254 2255 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, 2256 dma_addr_t dst, 2257 dma_addr_t src, 2258 size_t size, 2259 unsigned long dma_flags) 2260 { 2261 struct scatterlist dst_sg; 2262 struct scatterlist src_sg; 2263 2264 sg_init_table(&dst_sg, 1); 2265 sg_init_table(&src_sg, 1); 2266 2267 sg_dma_address(&dst_sg) = dst; 2268 sg_dma_address(&src_sg) = src; 2269 2270 sg_dma_len(&dst_sg) = size; 2271 sg_dma_len(&src_sg) = size; 2272 2273 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags); 2274 } 2275 2276 static struct dma_async_tx_descriptor * 2277 d40_prep_memcpy_sg(struct dma_chan *chan, 2278 struct scatterlist *dst_sg, unsigned int dst_nents, 2279 struct scatterlist *src_sg, unsigned int src_nents, 2280 unsigned long dma_flags) 2281 { 2282 if (dst_nents != src_nents) 2283 return NULL; 2284 2285 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags); 2286 } 2287 2288 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan, 2289 struct scatterlist *sgl, 2290 unsigned int sg_len, 2291 enum dma_transfer_direction direction, 2292 unsigned long dma_flags, 2293 void *context) 2294 { 2295 if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV) 2296 return NULL; 2297 2298 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); 2299 } 2300 2301 static struct dma_async_tx_descriptor * 2302 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, 2303 size_t buf_len, size_t period_len, 2304 enum dma_transfer_direction direction, void *context) 2305 { 2306 unsigned int periods = buf_len / period_len; 2307 struct dma_async_tx_descriptor *txd; 2308 struct scatterlist *sg; 2309 int i; 2310 2311 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); 2312 for (i = 0; i < periods; i++) { 2313 sg_dma_address(&sg[i]) = dma_addr; 2314 sg_dma_len(&sg[i]) = period_len; 2315 dma_addr += period_len; 2316 } 2317 2318 sg[periods].offset = 0; 2319 sg[periods].length = 0; 2320 sg[periods].page_link = 2321 ((unsigned long)sg | 0x01) & ~0x02; 2322 2323 txd = d40_prep_sg(chan, sg, sg, periods, direction, 2324 DMA_PREP_INTERRUPT); 2325 2326 kfree(sg); 2327 2328 return txd; 2329 } 2330 2331 static enum dma_status d40_tx_status(struct dma_chan *chan, 2332 dma_cookie_t cookie, 2333 struct dma_tx_state *txstate) 2334 { 2335 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2336 enum dma_status ret; 2337 2338 if (d40c->phy_chan == NULL) { 2339 chan_err(d40c, "Cannot read status of unallocated channel\n"); 2340 return -EINVAL; 2341 } 2342 2343 ret = dma_cookie_status(chan, cookie, txstate); 2344 if (ret != DMA_SUCCESS) 2345 dma_set_residue(txstate, stedma40_residue(chan)); 2346 2347 if (d40_is_paused(d40c)) 2348 ret = DMA_PAUSED; 2349 2350 return ret; 2351 } 2352 2353 static void d40_issue_pending(struct dma_chan *chan) 2354 { 2355 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2356 unsigned long flags; 2357 2358 if (d40c->phy_chan == NULL) { 2359 chan_err(d40c, "Channel is not allocated!\n"); 2360 return; 2361 } 2362 2363 spin_lock_irqsave(&d40c->lock, flags); 2364 2365 list_splice_tail_init(&d40c->pending_queue, &d40c->queue); 2366 2367 /* Busy means that queued jobs are already being processed */ 2368 if (!d40c->busy) 2369 (void) d40_queue_start(d40c); 2370 2371 spin_unlock_irqrestore(&d40c->lock, flags); 2372 } 2373 2374 static int 2375 dma40_config_to_halfchannel(struct d40_chan *d40c, 2376 struct stedma40_half_channel_info *info, 2377 enum dma_slave_buswidth width, 2378 u32 maxburst) 2379 { 2380 enum stedma40_periph_data_width addr_width; 2381 int psize; 2382 2383 switch (width) { 2384 case DMA_SLAVE_BUSWIDTH_1_BYTE: 2385 addr_width = STEDMA40_BYTE_WIDTH; 2386 break; 2387 case DMA_SLAVE_BUSWIDTH_2_BYTES: 2388 addr_width = STEDMA40_HALFWORD_WIDTH; 2389 break; 2390 case DMA_SLAVE_BUSWIDTH_4_BYTES: 2391 addr_width = STEDMA40_WORD_WIDTH; 2392 break; 2393 case DMA_SLAVE_BUSWIDTH_8_BYTES: 2394 addr_width = STEDMA40_DOUBLEWORD_WIDTH; 2395 break; 2396 default: 2397 dev_err(d40c->base->dev, 2398 "illegal peripheral address width " 2399 "requested (%d)\n", 2400 width); 2401 return -EINVAL; 2402 } 2403 2404 if (chan_is_logical(d40c)) { 2405 if (maxburst >= 16) 2406 psize = STEDMA40_PSIZE_LOG_16; 2407 else if (maxburst >= 8) 2408 psize = STEDMA40_PSIZE_LOG_8; 2409 else if (maxburst >= 4) 2410 psize = STEDMA40_PSIZE_LOG_4; 2411 else 2412 psize = STEDMA40_PSIZE_LOG_1; 2413 } else { 2414 if (maxburst >= 16) 2415 psize = STEDMA40_PSIZE_PHY_16; 2416 else if (maxburst >= 8) 2417 psize = STEDMA40_PSIZE_PHY_8; 2418 else if (maxburst >= 4) 2419 psize = STEDMA40_PSIZE_PHY_4; 2420 else 2421 psize = STEDMA40_PSIZE_PHY_1; 2422 } 2423 2424 info->data_width = addr_width; 2425 info->psize = psize; 2426 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; 2427 2428 return 0; 2429 } 2430 2431 /* Runtime reconfiguration extension */ 2432 static int d40_set_runtime_config(struct dma_chan *chan, 2433 struct dma_slave_config *config) 2434 { 2435 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2436 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; 2437 enum dma_slave_buswidth src_addr_width, dst_addr_width; 2438 dma_addr_t config_addr; 2439 u32 src_maxburst, dst_maxburst; 2440 int ret; 2441 2442 src_addr_width = config->src_addr_width; 2443 src_maxburst = config->src_maxburst; 2444 dst_addr_width = config->dst_addr_width; 2445 dst_maxburst = config->dst_maxburst; 2446 2447 if (config->direction == DMA_DEV_TO_MEM) { 2448 dma_addr_t dev_addr_rx = 2449 d40c->base->plat_data->dev_rx[cfg->src_dev_type]; 2450 2451 config_addr = config->src_addr; 2452 if (dev_addr_rx) 2453 dev_dbg(d40c->base->dev, 2454 "channel has a pre-wired RX address %08x " 2455 "overriding with %08x\n", 2456 dev_addr_rx, config_addr); 2457 if (cfg->dir != STEDMA40_PERIPH_TO_MEM) 2458 dev_dbg(d40c->base->dev, 2459 "channel was not configured for peripheral " 2460 "to memory transfer (%d) overriding\n", 2461 cfg->dir); 2462 cfg->dir = STEDMA40_PERIPH_TO_MEM; 2463 2464 /* Configure the memory side */ 2465 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2466 dst_addr_width = src_addr_width; 2467 if (dst_maxburst == 0) 2468 dst_maxburst = src_maxburst; 2469 2470 } else if (config->direction == DMA_MEM_TO_DEV) { 2471 dma_addr_t dev_addr_tx = 2472 d40c->base->plat_data->dev_tx[cfg->dst_dev_type]; 2473 2474 config_addr = config->dst_addr; 2475 if (dev_addr_tx) 2476 dev_dbg(d40c->base->dev, 2477 "channel has a pre-wired TX address %08x " 2478 "overriding with %08x\n", 2479 dev_addr_tx, config_addr); 2480 if (cfg->dir != STEDMA40_MEM_TO_PERIPH) 2481 dev_dbg(d40c->base->dev, 2482 "channel was not configured for memory " 2483 "to peripheral transfer (%d) overriding\n", 2484 cfg->dir); 2485 cfg->dir = STEDMA40_MEM_TO_PERIPH; 2486 2487 /* Configure the memory side */ 2488 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 2489 src_addr_width = dst_addr_width; 2490 if (src_maxburst == 0) 2491 src_maxburst = dst_maxburst; 2492 } else { 2493 dev_err(d40c->base->dev, 2494 "unrecognized channel direction %d\n", 2495 config->direction); 2496 return -EINVAL; 2497 } 2498 2499 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { 2500 dev_err(d40c->base->dev, 2501 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", 2502 src_maxburst, 2503 src_addr_width, 2504 dst_maxburst, 2505 dst_addr_width); 2506 return -EINVAL; 2507 } 2508 2509 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, 2510 src_addr_width, 2511 src_maxburst); 2512 if (ret) 2513 return ret; 2514 2515 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, 2516 dst_addr_width, 2517 dst_maxburst); 2518 if (ret) 2519 return ret; 2520 2521 /* Fill in register values */ 2522 if (chan_is_logical(d40c)) 2523 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); 2524 else 2525 d40_phy_cfg(cfg, &d40c->src_def_cfg, 2526 &d40c->dst_def_cfg, false); 2527 2528 /* These settings will take precedence later */ 2529 d40c->runtime_addr = config_addr; 2530 d40c->runtime_direction = config->direction; 2531 dev_dbg(d40c->base->dev, 2532 "configured channel %s for %s, data width %d/%d, " 2533 "maxburst %d/%d elements, LE, no flow control\n", 2534 dma_chan_name(chan), 2535 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", 2536 src_addr_width, dst_addr_width, 2537 src_maxburst, dst_maxburst); 2538 2539 return 0; 2540 } 2541 2542 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 2543 unsigned long arg) 2544 { 2545 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); 2546 2547 if (d40c->phy_chan == NULL) { 2548 chan_err(d40c, "Channel is not allocated!\n"); 2549 return -EINVAL; 2550 } 2551 2552 switch (cmd) { 2553 case DMA_TERMINATE_ALL: 2554 return d40_terminate_all(d40c); 2555 case DMA_PAUSE: 2556 return d40_pause(d40c); 2557 case DMA_RESUME: 2558 return d40_resume(d40c); 2559 case DMA_SLAVE_CONFIG: 2560 return d40_set_runtime_config(chan, 2561 (struct dma_slave_config *) arg); 2562 default: 2563 break; 2564 } 2565 2566 /* Other commands are unimplemented */ 2567 return -ENXIO; 2568 } 2569 2570 /* Initialization functions */ 2571 2572 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, 2573 struct d40_chan *chans, int offset, 2574 int num_chans) 2575 { 2576 int i = 0; 2577 struct d40_chan *d40c; 2578 2579 INIT_LIST_HEAD(&dma->channels); 2580 2581 for (i = offset; i < offset + num_chans; i++) { 2582 d40c = &chans[i]; 2583 d40c->base = base; 2584 d40c->chan.device = dma; 2585 2586 spin_lock_init(&d40c->lock); 2587 2588 d40c->log_num = D40_PHY_CHAN; 2589 2590 INIT_LIST_HEAD(&d40c->active); 2591 INIT_LIST_HEAD(&d40c->queue); 2592 INIT_LIST_HEAD(&d40c->pending_queue); 2593 INIT_LIST_HEAD(&d40c->client); 2594 INIT_LIST_HEAD(&d40c->prepare_queue); 2595 2596 tasklet_init(&d40c->tasklet, dma_tasklet, 2597 (unsigned long) d40c); 2598 2599 list_add_tail(&d40c->chan.device_node, 2600 &dma->channels); 2601 } 2602 } 2603 2604 static void d40_ops_init(struct d40_base *base, struct dma_device *dev) 2605 { 2606 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) 2607 dev->device_prep_slave_sg = d40_prep_slave_sg; 2608 2609 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { 2610 dev->device_prep_dma_memcpy = d40_prep_memcpy; 2611 2612 /* 2613 * This controller can only access address at even 2614 * 32bit boundaries, i.e. 2^2 2615 */ 2616 dev->copy_align = 2; 2617 } 2618 2619 if (dma_has_cap(DMA_SG, dev->cap_mask)) 2620 dev->device_prep_dma_sg = d40_prep_memcpy_sg; 2621 2622 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) 2623 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; 2624 2625 dev->device_alloc_chan_resources = d40_alloc_chan_resources; 2626 dev->device_free_chan_resources = d40_free_chan_resources; 2627 dev->device_issue_pending = d40_issue_pending; 2628 dev->device_tx_status = d40_tx_status; 2629 dev->device_control = d40_control; 2630 dev->dev = base->dev; 2631 } 2632 2633 static int __init d40_dmaengine_init(struct d40_base *base, 2634 int num_reserved_chans) 2635 { 2636 int err ; 2637 2638 d40_chan_init(base, &base->dma_slave, base->log_chans, 2639 0, base->num_log_chans); 2640 2641 dma_cap_zero(base->dma_slave.cap_mask); 2642 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); 2643 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2644 2645 d40_ops_init(base, &base->dma_slave); 2646 2647 err = dma_async_device_register(&base->dma_slave); 2648 2649 if (err) { 2650 d40_err(base->dev, "Failed to register slave channels\n"); 2651 goto failure1; 2652 } 2653 2654 d40_chan_init(base, &base->dma_memcpy, base->log_chans, 2655 base->num_log_chans, base->plat_data->memcpy_len); 2656 2657 dma_cap_zero(base->dma_memcpy.cap_mask); 2658 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); 2659 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); 2660 2661 d40_ops_init(base, &base->dma_memcpy); 2662 2663 err = dma_async_device_register(&base->dma_memcpy); 2664 2665 if (err) { 2666 d40_err(base->dev, 2667 "Failed to regsiter memcpy only channels\n"); 2668 goto failure2; 2669 } 2670 2671 d40_chan_init(base, &base->dma_both, base->phy_chans, 2672 0, num_reserved_chans); 2673 2674 dma_cap_zero(base->dma_both.cap_mask); 2675 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); 2676 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); 2677 dma_cap_set(DMA_SG, base->dma_both.cap_mask); 2678 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); 2679 2680 d40_ops_init(base, &base->dma_both); 2681 err = dma_async_device_register(&base->dma_both); 2682 2683 if (err) { 2684 d40_err(base->dev, 2685 "Failed to register logical and physical capable channels\n"); 2686 goto failure3; 2687 } 2688 return 0; 2689 failure3: 2690 dma_async_device_unregister(&base->dma_memcpy); 2691 failure2: 2692 dma_async_device_unregister(&base->dma_slave); 2693 failure1: 2694 return err; 2695 } 2696 2697 /* Suspend resume functionality */ 2698 #ifdef CONFIG_PM 2699 static int dma40_pm_suspend(struct device *dev) 2700 { 2701 struct platform_device *pdev = to_platform_device(dev); 2702 struct d40_base *base = platform_get_drvdata(pdev); 2703 int ret = 0; 2704 if (!pm_runtime_suspended(dev)) 2705 return -EBUSY; 2706 2707 if (base->lcpa_regulator) 2708 ret = regulator_disable(base->lcpa_regulator); 2709 return ret; 2710 } 2711 2712 static int dma40_runtime_suspend(struct device *dev) 2713 { 2714 struct platform_device *pdev = to_platform_device(dev); 2715 struct d40_base *base = platform_get_drvdata(pdev); 2716 2717 d40_save_restore_registers(base, true); 2718 2719 /* Don't disable/enable clocks for v1 due to HW bugs */ 2720 if (base->rev != 1) 2721 writel_relaxed(base->gcc_pwr_off_mask, 2722 base->virtbase + D40_DREG_GCC); 2723 2724 return 0; 2725 } 2726 2727 static int dma40_runtime_resume(struct device *dev) 2728 { 2729 struct platform_device *pdev = to_platform_device(dev); 2730 struct d40_base *base = platform_get_drvdata(pdev); 2731 2732 if (base->initialized) 2733 d40_save_restore_registers(base, false); 2734 2735 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, 2736 base->virtbase + D40_DREG_GCC); 2737 return 0; 2738 } 2739 2740 static int dma40_resume(struct device *dev) 2741 { 2742 struct platform_device *pdev = to_platform_device(dev); 2743 struct d40_base *base = platform_get_drvdata(pdev); 2744 int ret = 0; 2745 2746 if (base->lcpa_regulator) 2747 ret = regulator_enable(base->lcpa_regulator); 2748 2749 return ret; 2750 } 2751 2752 static const struct dev_pm_ops dma40_pm_ops = { 2753 .suspend = dma40_pm_suspend, 2754 .runtime_suspend = dma40_runtime_suspend, 2755 .runtime_resume = dma40_runtime_resume, 2756 .resume = dma40_resume, 2757 }; 2758 #define DMA40_PM_OPS (&dma40_pm_ops) 2759 #else 2760 #define DMA40_PM_OPS NULL 2761 #endif 2762 2763 /* Initialization functions. */ 2764 2765 static int __init d40_phy_res_init(struct d40_base *base) 2766 { 2767 int i; 2768 int num_phy_chans_avail = 0; 2769 u32 val[2]; 2770 int odd_even_bit = -2; 2771 int gcc = D40_DREG_GCC_ENA; 2772 2773 val[0] = readl(base->virtbase + D40_DREG_PRSME); 2774 val[1] = readl(base->virtbase + D40_DREG_PRSMO); 2775 2776 for (i = 0; i < base->num_phy_chans; i++) { 2777 base->phy_res[i].num = i; 2778 odd_even_bit += 2 * ((i % 2) == 0); 2779 if (((val[i % 2] >> odd_even_bit) & 3) == 1) { 2780 /* Mark security only channels as occupied */ 2781 base->phy_res[i].allocated_src = D40_ALLOC_PHY; 2782 base->phy_res[i].allocated_dst = D40_ALLOC_PHY; 2783 base->phy_res[i].reserved = true; 2784 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 2785 D40_DREG_GCC_SRC); 2786 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), 2787 D40_DREG_GCC_DST); 2788 2789 2790 } else { 2791 base->phy_res[i].allocated_src = D40_ALLOC_FREE; 2792 base->phy_res[i].allocated_dst = D40_ALLOC_FREE; 2793 base->phy_res[i].reserved = false; 2794 num_phy_chans_avail++; 2795 } 2796 spin_lock_init(&base->phy_res[i].lock); 2797 } 2798 2799 /* Mark disabled channels as occupied */ 2800 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { 2801 int chan = base->plat_data->disabled_channels[i]; 2802 2803 base->phy_res[chan].allocated_src = D40_ALLOC_PHY; 2804 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; 2805 base->phy_res[chan].reserved = true; 2806 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 2807 D40_DREG_GCC_SRC); 2808 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), 2809 D40_DREG_GCC_DST); 2810 num_phy_chans_avail--; 2811 } 2812 2813 dev_info(base->dev, "%d of %d physical DMA channels available\n", 2814 num_phy_chans_avail, base->num_phy_chans); 2815 2816 /* Verify settings extended vs standard */ 2817 val[0] = readl(base->virtbase + D40_DREG_PRTYP); 2818 2819 for (i = 0; i < base->num_phy_chans; i++) { 2820 2821 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && 2822 (val[0] & 0x3) != 1) 2823 dev_info(base->dev, 2824 "[%s] INFO: channel %d is misconfigured (%d)\n", 2825 __func__, i, val[0] & 0x3); 2826 2827 val[0] = val[0] >> 2; 2828 } 2829 2830 /* 2831 * To keep things simple, Enable all clocks initially. 2832 * The clocks will get managed later post channel allocation. 2833 * The clocks for the event lines on which reserved channels exists 2834 * are not managed here. 2835 */ 2836 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); 2837 base->gcc_pwr_off_mask = gcc; 2838 2839 return num_phy_chans_avail; 2840 } 2841 2842 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) 2843 { 2844 struct stedma40_platform_data *plat_data; 2845 struct clk *clk = NULL; 2846 void __iomem *virtbase = NULL; 2847 struct resource *res = NULL; 2848 struct d40_base *base = NULL; 2849 int num_log_chans = 0; 2850 int num_phy_chans; 2851 int i; 2852 u32 pid; 2853 u32 cid; 2854 u8 rev; 2855 2856 clk = clk_get(&pdev->dev, NULL); 2857 2858 if (IS_ERR(clk)) { 2859 d40_err(&pdev->dev, "No matching clock found\n"); 2860 goto failure; 2861 } 2862 2863 clk_enable(clk); 2864 2865 /* Get IO for DMAC base address */ 2866 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); 2867 if (!res) 2868 goto failure; 2869 2870 if (request_mem_region(res->start, resource_size(res), 2871 D40_NAME " I/O base") == NULL) 2872 goto failure; 2873 2874 virtbase = ioremap(res->start, resource_size(res)); 2875 if (!virtbase) 2876 goto failure; 2877 2878 /* This is just a regular AMBA PrimeCell ID actually */ 2879 for (pid = 0, i = 0; i < 4; i++) 2880 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) 2881 & 255) << (i * 8); 2882 for (cid = 0, i = 0; i < 4; i++) 2883 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) 2884 & 255) << (i * 8); 2885 2886 if (cid != AMBA_CID) { 2887 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); 2888 goto failure; 2889 } 2890 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { 2891 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", 2892 AMBA_MANF_BITS(pid), 2893 AMBA_VENDOR_ST); 2894 goto failure; 2895 } 2896 /* 2897 * HW revision: 2898 * DB8500ed has revision 0 2899 * ? has revision 1 2900 * DB8500v1 has revision 2 2901 * DB8500v2 has revision 3 2902 */ 2903 rev = AMBA_REV_BITS(pid); 2904 2905 /* The number of physical channels on this HW */ 2906 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; 2907 2908 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n", 2909 rev, res->start); 2910 2911 plat_data = pdev->dev.platform_data; 2912 2913 /* Count the number of logical channels in use */ 2914 for (i = 0; i < plat_data->dev_len; i++) 2915 if (plat_data->dev_rx[i] != 0) 2916 num_log_chans++; 2917 2918 for (i = 0; i < plat_data->dev_len; i++) 2919 if (plat_data->dev_tx[i] != 0) 2920 num_log_chans++; 2921 2922 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + 2923 (num_phy_chans + num_log_chans + plat_data->memcpy_len) * 2924 sizeof(struct d40_chan), GFP_KERNEL); 2925 2926 if (base == NULL) { 2927 d40_err(&pdev->dev, "Out of memory\n"); 2928 goto failure; 2929 } 2930 2931 base->rev = rev; 2932 base->clk = clk; 2933 base->num_phy_chans = num_phy_chans; 2934 base->num_log_chans = num_log_chans; 2935 base->phy_start = res->start; 2936 base->phy_size = resource_size(res); 2937 base->virtbase = virtbase; 2938 base->plat_data = plat_data; 2939 base->dev = &pdev->dev; 2940 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); 2941 base->log_chans = &base->phy_chans[num_phy_chans]; 2942 2943 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), 2944 GFP_KERNEL); 2945 if (!base->phy_res) 2946 goto failure; 2947 2948 base->lookup_phy_chans = kzalloc(num_phy_chans * 2949 sizeof(struct d40_chan *), 2950 GFP_KERNEL); 2951 if (!base->lookup_phy_chans) 2952 goto failure; 2953 2954 if (num_log_chans + plat_data->memcpy_len) { 2955 /* 2956 * The max number of logical channels are event lines for all 2957 * src devices and dst devices 2958 */ 2959 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * 2960 sizeof(struct d40_chan *), 2961 GFP_KERNEL); 2962 if (!base->lookup_log_chans) 2963 goto failure; 2964 } 2965 2966 base->reg_val_backup_chan = kmalloc(base->num_phy_chans * 2967 sizeof(d40_backup_regs_chan), 2968 GFP_KERNEL); 2969 if (!base->reg_val_backup_chan) 2970 goto failure; 2971 2972 base->lcla_pool.alloc_map = 2973 kzalloc(num_phy_chans * sizeof(struct d40_desc *) 2974 * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL); 2975 if (!base->lcla_pool.alloc_map) 2976 goto failure; 2977 2978 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), 2979 0, SLAB_HWCACHE_ALIGN, 2980 NULL); 2981 if (base->desc_slab == NULL) 2982 goto failure; 2983 2984 return base; 2985 2986 failure: 2987 if (!IS_ERR(clk)) { 2988 clk_disable(clk); 2989 clk_put(clk); 2990 } 2991 if (virtbase) 2992 iounmap(virtbase); 2993 if (res) 2994 release_mem_region(res->start, 2995 resource_size(res)); 2996 if (virtbase) 2997 iounmap(virtbase); 2998 2999 if (base) { 3000 kfree(base->lcla_pool.alloc_map); 3001 kfree(base->lookup_log_chans); 3002 kfree(base->lookup_phy_chans); 3003 kfree(base->phy_res); 3004 kfree(base); 3005 } 3006 3007 return NULL; 3008 } 3009 3010 static void __init d40_hw_init(struct d40_base *base) 3011 { 3012 3013 static struct d40_reg_val dma_init_reg[] = { 3014 /* Clock every part of the DMA block from start */ 3015 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, 3016 3017 /* Interrupts on all logical channels */ 3018 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, 3019 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, 3020 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, 3021 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, 3022 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, 3023 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, 3024 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, 3025 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, 3026 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, 3027 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, 3028 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, 3029 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} 3030 }; 3031 int i; 3032 u32 prmseo[2] = {0, 0}; 3033 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; 3034 u32 pcmis = 0; 3035 u32 pcicr = 0; 3036 3037 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++) 3038 writel(dma_init_reg[i].val, 3039 base->virtbase + dma_init_reg[i].reg); 3040 3041 /* Configure all our dma channels to default settings */ 3042 for (i = 0; i < base->num_phy_chans; i++) { 3043 3044 activeo[i % 2] = activeo[i % 2] << 2; 3045 3046 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src 3047 == D40_ALLOC_PHY) { 3048 activeo[i % 2] |= 3; 3049 continue; 3050 } 3051 3052 /* Enable interrupt # */ 3053 pcmis = (pcmis << 1) | 1; 3054 3055 /* Clear interrupt # */ 3056 pcicr = (pcicr << 1) | 1; 3057 3058 /* Set channel to physical mode */ 3059 prmseo[i % 2] = prmseo[i % 2] << 2; 3060 prmseo[i % 2] |= 1; 3061 3062 } 3063 3064 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); 3065 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); 3066 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); 3067 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); 3068 3069 /* Write which interrupt to enable */ 3070 writel(pcmis, base->virtbase + D40_DREG_PCMIS); 3071 3072 /* Write which interrupt to clear */ 3073 writel(pcicr, base->virtbase + D40_DREG_PCICR); 3074 3075 } 3076 3077 static int __init d40_lcla_allocate(struct d40_base *base) 3078 { 3079 struct d40_lcla_pool *pool = &base->lcla_pool; 3080 unsigned long *page_list; 3081 int i, j; 3082 int ret = 0; 3083 3084 /* 3085 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, 3086 * To full fill this hardware requirement without wasting 256 kb 3087 * we allocate pages until we get an aligned one. 3088 */ 3089 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, 3090 GFP_KERNEL); 3091 3092 if (!page_list) { 3093 ret = -ENOMEM; 3094 goto failure; 3095 } 3096 3097 /* Calculating how many pages that are required */ 3098 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; 3099 3100 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { 3101 page_list[i] = __get_free_pages(GFP_KERNEL, 3102 base->lcla_pool.pages); 3103 if (!page_list[i]) { 3104 3105 d40_err(base->dev, "Failed to allocate %d pages.\n", 3106 base->lcla_pool.pages); 3107 3108 for (j = 0; j < i; j++) 3109 free_pages(page_list[j], base->lcla_pool.pages); 3110 goto failure; 3111 } 3112 3113 if ((virt_to_phys((void *)page_list[i]) & 3114 (LCLA_ALIGNMENT - 1)) == 0) 3115 break; 3116 } 3117 3118 for (j = 0; j < i; j++) 3119 free_pages(page_list[j], base->lcla_pool.pages); 3120 3121 if (i < MAX_LCLA_ALLOC_ATTEMPTS) { 3122 base->lcla_pool.base = (void *)page_list[i]; 3123 } else { 3124 /* 3125 * After many attempts and no succees with finding the correct 3126 * alignment, try with allocating a big buffer. 3127 */ 3128 dev_warn(base->dev, 3129 "[%s] Failed to get %d pages @ 18 bit align.\n", 3130 __func__, base->lcla_pool.pages); 3131 base->lcla_pool.base_unaligned = kmalloc(SZ_1K * 3132 base->num_phy_chans + 3133 LCLA_ALIGNMENT, 3134 GFP_KERNEL); 3135 if (!base->lcla_pool.base_unaligned) { 3136 ret = -ENOMEM; 3137 goto failure; 3138 } 3139 3140 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, 3141 LCLA_ALIGNMENT); 3142 } 3143 3144 pool->dma_addr = dma_map_single(base->dev, pool->base, 3145 SZ_1K * base->num_phy_chans, 3146 DMA_TO_DEVICE); 3147 if (dma_mapping_error(base->dev, pool->dma_addr)) { 3148 pool->dma_addr = 0; 3149 ret = -ENOMEM; 3150 goto failure; 3151 } 3152 3153 writel(virt_to_phys(base->lcla_pool.base), 3154 base->virtbase + D40_DREG_LCLA); 3155 failure: 3156 kfree(page_list); 3157 return ret; 3158 } 3159 3160 static int __init d40_probe(struct platform_device *pdev) 3161 { 3162 int err; 3163 int ret = -ENOENT; 3164 struct d40_base *base; 3165 struct resource *res = NULL; 3166 int num_reserved_chans; 3167 u32 val; 3168 3169 base = d40_hw_detect_init(pdev); 3170 3171 if (!base) 3172 goto failure; 3173 3174 num_reserved_chans = d40_phy_res_init(base); 3175 3176 platform_set_drvdata(pdev, base); 3177 3178 spin_lock_init(&base->interrupt_lock); 3179 spin_lock_init(&base->execmd_lock); 3180 3181 /* Get IO for logical channel parameter address */ 3182 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); 3183 if (!res) { 3184 ret = -ENOENT; 3185 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); 3186 goto failure; 3187 } 3188 base->lcpa_size = resource_size(res); 3189 base->phy_lcpa = res->start; 3190 3191 if (request_mem_region(res->start, resource_size(res), 3192 D40_NAME " I/O lcpa") == NULL) { 3193 ret = -EBUSY; 3194 d40_err(&pdev->dev, 3195 "Failed to request LCPA region 0x%x-0x%x\n", 3196 res->start, res->end); 3197 goto failure; 3198 } 3199 3200 /* We make use of ESRAM memory for this. */ 3201 val = readl(base->virtbase + D40_DREG_LCPA); 3202 if (res->start != val && val != 0) { 3203 dev_warn(&pdev->dev, 3204 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", 3205 __func__, val, res->start); 3206 } else 3207 writel(res->start, base->virtbase + D40_DREG_LCPA); 3208 3209 base->lcpa_base = ioremap(res->start, resource_size(res)); 3210 if (!base->lcpa_base) { 3211 ret = -ENOMEM; 3212 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); 3213 goto failure; 3214 } 3215 /* If lcla has to be located in ESRAM we don't need to allocate */ 3216 if (base->plat_data->use_esram_lcla) { 3217 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 3218 "lcla_esram"); 3219 if (!res) { 3220 ret = -ENOENT; 3221 d40_err(&pdev->dev, 3222 "No \"lcla_esram\" memory resource\n"); 3223 goto failure; 3224 } 3225 base->lcla_pool.base = ioremap(res->start, 3226 resource_size(res)); 3227 if (!base->lcla_pool.base) { 3228 ret = -ENOMEM; 3229 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); 3230 goto failure; 3231 } 3232 writel(res->start, base->virtbase + D40_DREG_LCLA); 3233 3234 } else { 3235 ret = d40_lcla_allocate(base); 3236 if (ret) { 3237 d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); 3238 goto failure; 3239 } 3240 } 3241 3242 spin_lock_init(&base->lcla_pool.lock); 3243 3244 base->irq = platform_get_irq(pdev, 0); 3245 3246 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); 3247 if (ret) { 3248 d40_err(&pdev->dev, "No IRQ defined\n"); 3249 goto failure; 3250 } 3251 3252 pm_runtime_irq_safe(base->dev); 3253 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); 3254 pm_runtime_use_autosuspend(base->dev); 3255 pm_runtime_enable(base->dev); 3256 pm_runtime_resume(base->dev); 3257 3258 if (base->plat_data->use_esram_lcla) { 3259 3260 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); 3261 if (IS_ERR(base->lcpa_regulator)) { 3262 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); 3263 base->lcpa_regulator = NULL; 3264 goto failure; 3265 } 3266 3267 ret = regulator_enable(base->lcpa_regulator); 3268 if (ret) { 3269 d40_err(&pdev->dev, 3270 "Failed to enable lcpa_regulator\n"); 3271 regulator_put(base->lcpa_regulator); 3272 base->lcpa_regulator = NULL; 3273 goto failure; 3274 } 3275 } 3276 3277 base->initialized = true; 3278 err = d40_dmaengine_init(base, num_reserved_chans); 3279 if (err) 3280 goto failure; 3281 3282 d40_hw_init(base); 3283 3284 dev_info(base->dev, "initialized\n"); 3285 return 0; 3286 3287 failure: 3288 if (base) { 3289 if (base->desc_slab) 3290 kmem_cache_destroy(base->desc_slab); 3291 if (base->virtbase) 3292 iounmap(base->virtbase); 3293 3294 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { 3295 iounmap(base->lcla_pool.base); 3296 base->lcla_pool.base = NULL; 3297 } 3298 3299 if (base->lcla_pool.dma_addr) 3300 dma_unmap_single(base->dev, base->lcla_pool.dma_addr, 3301 SZ_1K * base->num_phy_chans, 3302 DMA_TO_DEVICE); 3303 3304 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) 3305 free_pages((unsigned long)base->lcla_pool.base, 3306 base->lcla_pool.pages); 3307 3308 kfree(base->lcla_pool.base_unaligned); 3309 3310 if (base->phy_lcpa) 3311 release_mem_region(base->phy_lcpa, 3312 base->lcpa_size); 3313 if (base->phy_start) 3314 release_mem_region(base->phy_start, 3315 base->phy_size); 3316 if (base->clk) { 3317 clk_disable(base->clk); 3318 clk_put(base->clk); 3319 } 3320 3321 if (base->lcpa_regulator) { 3322 regulator_disable(base->lcpa_regulator); 3323 regulator_put(base->lcpa_regulator); 3324 } 3325 3326 kfree(base->lcla_pool.alloc_map); 3327 kfree(base->lookup_log_chans); 3328 kfree(base->lookup_phy_chans); 3329 kfree(base->phy_res); 3330 kfree(base); 3331 } 3332 3333 d40_err(&pdev->dev, "probe failed\n"); 3334 return ret; 3335 } 3336 3337 static struct platform_driver d40_driver = { 3338 .driver = { 3339 .owner = THIS_MODULE, 3340 .name = D40_NAME, 3341 .pm = DMA40_PM_OPS, 3342 }, 3343 }; 3344 3345 static int __init stedma40_init(void) 3346 { 3347 return platform_driver_probe(&d40_driver, d40_probe); 3348 } 3349 subsys_initcall(stedma40_init); 3350