xref: /linux/drivers/dma/ste_dma40.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/amba/bus.h>
19 
20 #include <plat/ste_dma40.h>
21 
22 #include "ste_dma40_ll.h"
23 
24 #define D40_NAME "dma40"
25 
26 #define D40_PHY_CHAN -1
27 
28 /* For masking out/in 2 bit channel positions */
29 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
30 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
31 
32 /* Maximum iterations taken before giving up suspending a channel */
33 #define D40_SUSPEND_MAX_IT 500
34 
35 /* Hardware requirement on LCLA alignment */
36 #define LCLA_ALIGNMENT 0x40000
37 
38 /* Max number of links per event group */
39 #define D40_LCLA_LINK_PER_EVENT_GRP 128
40 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
41 
42 /* Attempts before giving up to trying to get pages that are aligned */
43 #define MAX_LCLA_ALLOC_ATTEMPTS 256
44 
45 /* Bit markings for allocation map */
46 #define D40_ALLOC_FREE		(1 << 31)
47 #define D40_ALLOC_PHY		(1 << 30)
48 #define D40_ALLOC_LOG_FREE	0
49 
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59 	D40_DMA_STOP		= 0,
60 	D40_DMA_RUN		= 1,
61 	D40_DMA_SUSPEND_REQ	= 2,
62 	D40_DMA_SUSPENDED	= 3
63 };
64 
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @dma_addr: DMA address, if mapped
72  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74  * one buffer to one buffer.
75  */
76 struct d40_lli_pool {
77 	void	*base;
78 	int	 size;
79 	dma_addr_t	dma_addr;
80 	/* Space for dst and src, plus an extra for padding */
81 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83 
84 /**
85  * struct d40_desc - A descriptor is one DMA job.
86  *
87  * @lli_phy: LLI settings for physical channel. Both src and dst=
88  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89  * lli_len equals one.
90  * @lli_log: Same as above but for logical channels.
91  * @lli_pool: The pool with two entries pre-allocated.
92  * @lli_len: Number of llis of current descriptor.
93  * @lli_current: Number of transferred llis.
94  * @lcla_alloc: Number of LCLA entries allocated.
95  * @txd: DMA engine struct. Used for among other things for communication
96  * during a transfer.
97  * @node: List entry.
98  * @is_in_client_list: true if the client owns this descriptor.
99  * the previous one.
100  *
101  * This descriptor is used for both logical and physical transfers.
102  */
103 struct d40_desc {
104 	/* LLI physical */
105 	struct d40_phy_lli_bidir	 lli_phy;
106 	/* LLI logical */
107 	struct d40_log_lli_bidir	 lli_log;
108 
109 	struct d40_lli_pool		 lli_pool;
110 	int				 lli_len;
111 	int				 lli_current;
112 	int				 lcla_alloc;
113 
114 	struct dma_async_tx_descriptor	 txd;
115 	struct list_head		 node;
116 
117 	bool				 is_in_client_list;
118 	bool				 cyclic;
119 };
120 
121 /**
122  * struct d40_lcla_pool - LCLA pool settings and data.
123  *
124  * @base: The virtual address of LCLA. 18 bit aligned.
125  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
126  * This pointer is only there for clean-up on error.
127  * @pages: The number of pages needed for all physical channels.
128  * Only used later for clean-up on error
129  * @lock: Lock to protect the content in this struct.
130  * @alloc_map: big map over which LCLA entry is own by which job.
131  */
132 struct d40_lcla_pool {
133 	void		*base;
134 	dma_addr_t	dma_addr;
135 	void		*base_unaligned;
136 	int		 pages;
137 	spinlock_t	 lock;
138 	struct d40_desc	**alloc_map;
139 };
140 
141 /**
142  * struct d40_phy_res - struct for handling eventlines mapped to physical
143  * channels.
144  *
145  * @lock: A lock protection this entity.
146  * @num: The physical channel number of this entity.
147  * @allocated_src: Bit mapped to show which src event line's are mapped to
148  * this physical channel. Can also be free or physically allocated.
149  * @allocated_dst: Same as for src but is dst.
150  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151  * event line number.
152  */
153 struct d40_phy_res {
154 	spinlock_t lock;
155 	int	   num;
156 	u32	   allocated_src;
157 	u32	   allocated_dst;
158 };
159 
160 struct d40_base;
161 
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @pending_queue: Submitted jobs, to be issued by issue_pending()
179  * @active: Active descriptor.
180  * @queue: Queued jobs.
181  * @prepare_queue: Prepared jobs.
182  * @dma_cfg: The client configuration of this dma channel.
183  * @configured: whether the dma_cfg configuration is valid
184  * @base: Pointer to the device instance struct.
185  * @src_def_cfg: Default cfg register setting for src.
186  * @dst_def_cfg: Default cfg register setting for dst.
187  * @log_def: Default logical channel settings.
188  * @lcla: Space for one dst src pair for logical channel transfers.
189  * @lcpa: Pointer to dst and src lcpa settings.
190  * @runtime_addr: runtime configured address.
191  * @runtime_direction: runtime configured direction.
192  *
193  * This struct can either "be" a logical or a physical channel.
194  */
195 struct d40_chan {
196 	spinlock_t			 lock;
197 	int				 log_num;
198 	/* ID of the most recent completed transfer */
199 	int				 completed;
200 	int				 pending_tx;
201 	bool				 busy;
202 	struct d40_phy_res		*phy_chan;
203 	struct dma_chan			 chan;
204 	struct tasklet_struct		 tasklet;
205 	struct list_head		 client;
206 	struct list_head		 pending_queue;
207 	struct list_head		 active;
208 	struct list_head		 queue;
209 	struct list_head		 prepare_queue;
210 	struct stedma40_chan_cfg	 dma_cfg;
211 	bool				 configured;
212 	struct d40_base			*base;
213 	/* Default register configurations */
214 	u32				 src_def_cfg;
215 	u32				 dst_def_cfg;
216 	struct d40_def_lcsp		 log_def;
217 	struct d40_log_lli_full		*lcpa;
218 	/* Runtime reconfiguration */
219 	dma_addr_t			runtime_addr;
220 	enum dma_data_direction		runtime_direction;
221 };
222 
223 /**
224  * struct d40_base - The big global struct, one for each probe'd instance.
225  *
226  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
227  * @execmd_lock: Lock for execute command usage since several channels share
228  * the same physical register.
229  * @dev: The device structure.
230  * @virtbase: The virtual base address of the DMA's register.
231  * @rev: silicon revision detected.
232  * @clk: Pointer to the DMA clock structure.
233  * @phy_start: Physical memory start of the DMA registers.
234  * @phy_size: Size of the DMA register map.
235  * @irq: The IRQ number.
236  * @num_phy_chans: The number of physical channels. Read from HW. This
237  * is the number of available channels for this driver, not counting "Secure
238  * mode" allocated physical channels.
239  * @num_log_chans: The number of logical channels. Calculated from
240  * num_phy_chans.
241  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
242  * @dma_slave: dma_device channels that can do only do slave transfers.
243  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
244  * @log_chans: Room for all possible logical channels in system.
245  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
246  * to log_chans entries.
247  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
248  * to phy_chans entries.
249  * @plat_data: Pointer to provided platform_data which is the driver
250  * configuration.
251  * @phy_res: Vector containing all physical channels.
252  * @lcla_pool: lcla pool settings and data.
253  * @lcpa_base: The virtual mapped address of LCPA.
254  * @phy_lcpa: The physical address of the LCPA.
255  * @lcpa_size: The size of the LCPA area.
256  * @desc_slab: cache for descriptors.
257  */
258 struct d40_base {
259 	spinlock_t			 interrupt_lock;
260 	spinlock_t			 execmd_lock;
261 	struct device			 *dev;
262 	void __iomem			 *virtbase;
263 	u8				  rev:4;
264 	struct clk			 *clk;
265 	phys_addr_t			  phy_start;
266 	resource_size_t			  phy_size;
267 	int				  irq;
268 	int				  num_phy_chans;
269 	int				  num_log_chans;
270 	struct dma_device		  dma_both;
271 	struct dma_device		  dma_slave;
272 	struct dma_device		  dma_memcpy;
273 	struct d40_chan			 *phy_chans;
274 	struct d40_chan			 *log_chans;
275 	struct d40_chan			**lookup_log_chans;
276 	struct d40_chan			**lookup_phy_chans;
277 	struct stedma40_platform_data	 *plat_data;
278 	/* Physical half channels */
279 	struct d40_phy_res		 *phy_res;
280 	struct d40_lcla_pool		  lcla_pool;
281 	void				 *lcpa_base;
282 	dma_addr_t			  phy_lcpa;
283 	resource_size_t			  lcpa_size;
284 	struct kmem_cache		 *desc_slab;
285 };
286 
287 /**
288  * struct d40_interrupt_lookup - lookup table for interrupt handler
289  *
290  * @src: Interrupt mask register.
291  * @clr: Interrupt clear register.
292  * @is_error: true if this is an error interrupt.
293  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
294  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
295  */
296 struct d40_interrupt_lookup {
297 	u32 src;
298 	u32 clr;
299 	bool is_error;
300 	int offset;
301 };
302 
303 /**
304  * struct d40_reg_val - simple lookup struct
305  *
306  * @reg: The register.
307  * @val: The value that belongs to the register in reg.
308  */
309 struct d40_reg_val {
310 	unsigned int reg;
311 	unsigned int val;
312 };
313 
314 static struct device *chan2dev(struct d40_chan *d40c)
315 {
316 	return &d40c->chan.dev->device;
317 }
318 
319 static bool chan_is_physical(struct d40_chan *chan)
320 {
321 	return chan->log_num == D40_PHY_CHAN;
322 }
323 
324 static bool chan_is_logical(struct d40_chan *chan)
325 {
326 	return !chan_is_physical(chan);
327 }
328 
329 static void __iomem *chan_base(struct d40_chan *chan)
330 {
331 	return chan->base->virtbase + D40_DREG_PCBASE +
332 	       chan->phy_chan->num * D40_DREG_PCDELTA;
333 }
334 
335 #define d40_err(dev, format, arg...)		\
336 	dev_err(dev, "[%s] " format, __func__, ## arg)
337 
338 #define chan_err(d40c, format, arg...)		\
339 	d40_err(chan2dev(d40c), format, ## arg)
340 
341 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
342 			      int lli_len)
343 {
344 	bool is_log = chan_is_logical(d40c);
345 	u32 align;
346 	void *base;
347 
348 	if (is_log)
349 		align = sizeof(struct d40_log_lli);
350 	else
351 		align = sizeof(struct d40_phy_lli);
352 
353 	if (lli_len == 1) {
354 		base = d40d->lli_pool.pre_alloc_lli;
355 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
356 		d40d->lli_pool.base = NULL;
357 	} else {
358 		d40d->lli_pool.size = lli_len * 2 * align;
359 
360 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
361 		d40d->lli_pool.base = base;
362 
363 		if (d40d->lli_pool.base == NULL)
364 			return -ENOMEM;
365 	}
366 
367 	if (is_log) {
368 		d40d->lli_log.src = PTR_ALIGN(base, align);
369 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
370 
371 		d40d->lli_pool.dma_addr = 0;
372 	} else {
373 		d40d->lli_phy.src = PTR_ALIGN(base, align);
374 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
375 
376 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
377 							 d40d->lli_phy.src,
378 							 d40d->lli_pool.size,
379 							 DMA_TO_DEVICE);
380 
381 		if (dma_mapping_error(d40c->base->dev,
382 				      d40d->lli_pool.dma_addr)) {
383 			kfree(d40d->lli_pool.base);
384 			d40d->lli_pool.base = NULL;
385 			d40d->lli_pool.dma_addr = 0;
386 			return -ENOMEM;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
394 {
395 	if (d40d->lli_pool.dma_addr)
396 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
397 				 d40d->lli_pool.size, DMA_TO_DEVICE);
398 
399 	kfree(d40d->lli_pool.base);
400 	d40d->lli_pool.base = NULL;
401 	d40d->lli_pool.size = 0;
402 	d40d->lli_log.src = NULL;
403 	d40d->lli_log.dst = NULL;
404 	d40d->lli_phy.src = NULL;
405 	d40d->lli_phy.dst = NULL;
406 }
407 
408 static int d40_lcla_alloc_one(struct d40_chan *d40c,
409 			      struct d40_desc *d40d)
410 {
411 	unsigned long flags;
412 	int i;
413 	int ret = -EINVAL;
414 	int p;
415 
416 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
417 
418 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
419 
420 	/*
421 	 * Allocate both src and dst at the same time, therefore the half
422 	 * start on 1 since 0 can't be used since zero is used as end marker.
423 	 */
424 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
425 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
426 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
427 			d40d->lcla_alloc++;
428 			ret = i;
429 			break;
430 		}
431 	}
432 
433 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
434 
435 	return ret;
436 }
437 
438 static int d40_lcla_free_all(struct d40_chan *d40c,
439 			     struct d40_desc *d40d)
440 {
441 	unsigned long flags;
442 	int i;
443 	int ret = -EINVAL;
444 
445 	if (chan_is_physical(d40c))
446 		return 0;
447 
448 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
449 
450 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
451 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
452 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
453 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
454 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
455 			d40d->lcla_alloc--;
456 			if (d40d->lcla_alloc == 0) {
457 				ret = 0;
458 				break;
459 			}
460 		}
461 	}
462 
463 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
464 
465 	return ret;
466 
467 }
468 
469 static void d40_desc_remove(struct d40_desc *d40d)
470 {
471 	list_del(&d40d->node);
472 }
473 
474 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
475 {
476 	struct d40_desc *desc = NULL;
477 
478 	if (!list_empty(&d40c->client)) {
479 		struct d40_desc *d;
480 		struct d40_desc *_d;
481 
482 		list_for_each_entry_safe(d, _d, &d40c->client, node)
483 			if (async_tx_test_ack(&d->txd)) {
484 				d40_desc_remove(d);
485 				desc = d;
486 				memset(desc, 0, sizeof(*desc));
487 				break;
488 			}
489 	}
490 
491 	if (!desc)
492 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
493 
494 	if (desc)
495 		INIT_LIST_HEAD(&desc->node);
496 
497 	return desc;
498 }
499 
500 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
501 {
502 
503 	d40_pool_lli_free(d40c, d40d);
504 	d40_lcla_free_all(d40c, d40d);
505 	kmem_cache_free(d40c->base->desc_slab, d40d);
506 }
507 
508 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
509 {
510 	list_add_tail(&desc->node, &d40c->active);
511 }
512 
513 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
514 {
515 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
516 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
517 	void __iomem *base = chan_base(chan);
518 
519 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
520 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
521 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
522 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
523 
524 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
525 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
526 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
527 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
528 }
529 
530 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
531 {
532 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
533 	struct d40_log_lli_bidir *lli = &desc->lli_log;
534 	int lli_current = desc->lli_current;
535 	int lli_len = desc->lli_len;
536 	bool cyclic = desc->cyclic;
537 	int curr_lcla = -EINVAL;
538 	int first_lcla = 0;
539 	bool linkback;
540 
541 	/*
542 	 * We may have partially running cyclic transfers, in case we did't get
543 	 * enough LCLA entries.
544 	 */
545 	linkback = cyclic && lli_current == 0;
546 
547 	/*
548 	 * For linkback, we need one LCLA even with only one link, because we
549 	 * can't link back to the one in LCPA space
550 	 */
551 	if (linkback || (lli_len - lli_current > 1)) {
552 		curr_lcla = d40_lcla_alloc_one(chan, desc);
553 		first_lcla = curr_lcla;
554 	}
555 
556 	/*
557 	 * For linkback, we normally load the LCPA in the loop since we need to
558 	 * link it to the second LCLA and not the first.  However, if we
559 	 * couldn't even get a first LCLA, then we have to run in LCPA and
560 	 * reload manually.
561 	 */
562 	if (!linkback || curr_lcla == -EINVAL) {
563 		unsigned int flags = 0;
564 
565 		if (curr_lcla == -EINVAL)
566 			flags |= LLI_TERM_INT;
567 
568 		d40_log_lli_lcpa_write(chan->lcpa,
569 				       &lli->dst[lli_current],
570 				       &lli->src[lli_current],
571 				       curr_lcla,
572 				       flags);
573 		lli_current++;
574 	}
575 
576 	if (curr_lcla < 0)
577 		goto out;
578 
579 	for (; lli_current < lli_len; lli_current++) {
580 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
581 					   8 * curr_lcla * 2;
582 		struct d40_log_lli *lcla = pool->base + lcla_offset;
583 		unsigned int flags = 0;
584 		int next_lcla;
585 
586 		if (lli_current + 1 < lli_len)
587 			next_lcla = d40_lcla_alloc_one(chan, desc);
588 		else
589 			next_lcla = linkback ? first_lcla : -EINVAL;
590 
591 		if (cyclic || next_lcla == -EINVAL)
592 			flags |= LLI_TERM_INT;
593 
594 		if (linkback && curr_lcla == first_lcla) {
595 			/* First link goes in both LCPA and LCLA */
596 			d40_log_lli_lcpa_write(chan->lcpa,
597 					       &lli->dst[lli_current],
598 					       &lli->src[lli_current],
599 					       next_lcla, flags);
600 		}
601 
602 		/*
603 		 * One unused LCLA in the cyclic case if the very first
604 		 * next_lcla fails...
605 		 */
606 		d40_log_lli_lcla_write(lcla,
607 				       &lli->dst[lli_current],
608 				       &lli->src[lli_current],
609 				       next_lcla, flags);
610 
611 		dma_sync_single_range_for_device(chan->base->dev,
612 					pool->dma_addr, lcla_offset,
613 					2 * sizeof(struct d40_log_lli),
614 					DMA_TO_DEVICE);
615 
616 		curr_lcla = next_lcla;
617 
618 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
619 			lli_current++;
620 			break;
621 		}
622 	}
623 
624 out:
625 	desc->lli_current = lli_current;
626 }
627 
628 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
629 {
630 	if (chan_is_physical(d40c)) {
631 		d40_phy_lli_load(d40c, d40d);
632 		d40d->lli_current = d40d->lli_len;
633 	} else
634 		d40_log_lli_to_lcxa(d40c, d40d);
635 }
636 
637 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
638 {
639 	struct d40_desc *d;
640 
641 	if (list_empty(&d40c->active))
642 		return NULL;
643 
644 	d = list_first_entry(&d40c->active,
645 			     struct d40_desc,
646 			     node);
647 	return d;
648 }
649 
650 /* remove desc from current queue and add it to the pending_queue */
651 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
652 {
653 	d40_desc_remove(desc);
654 	desc->is_in_client_list = false;
655 	list_add_tail(&desc->node, &d40c->pending_queue);
656 }
657 
658 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
659 {
660 	struct d40_desc *d;
661 
662 	if (list_empty(&d40c->pending_queue))
663 		return NULL;
664 
665 	d = list_first_entry(&d40c->pending_queue,
666 			     struct d40_desc,
667 			     node);
668 	return d;
669 }
670 
671 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
672 {
673 	struct d40_desc *d;
674 
675 	if (list_empty(&d40c->queue))
676 		return NULL;
677 
678 	d = list_first_entry(&d40c->queue,
679 			     struct d40_desc,
680 			     node);
681 	return d;
682 }
683 
684 static int d40_psize_2_burst_size(bool is_log, int psize)
685 {
686 	if (is_log) {
687 		if (psize == STEDMA40_PSIZE_LOG_1)
688 			return 1;
689 	} else {
690 		if (psize == STEDMA40_PSIZE_PHY_1)
691 			return 1;
692 	}
693 
694 	return 2 << psize;
695 }
696 
697 /*
698  * The dma only supports transmitting packages up to
699  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
700  * dma elements required to send the entire sg list
701  */
702 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
703 {
704 	int dmalen;
705 	u32 max_w = max(data_width1, data_width2);
706 	u32 min_w = min(data_width1, data_width2);
707 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
708 
709 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
710 		seg_max -= (1 << max_w);
711 
712 	if (!IS_ALIGNED(size, 1 << max_w))
713 		return -EINVAL;
714 
715 	if (size <= seg_max)
716 		dmalen = 1;
717 	else {
718 		dmalen = size / seg_max;
719 		if (dmalen * seg_max < size)
720 			dmalen++;
721 	}
722 	return dmalen;
723 }
724 
725 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
726 			   u32 data_width1, u32 data_width2)
727 {
728 	struct scatterlist *sg;
729 	int i;
730 	int len = 0;
731 	int ret;
732 
733 	for_each_sg(sgl, sg, sg_len, i) {
734 		ret = d40_size_2_dmalen(sg_dma_len(sg),
735 					data_width1, data_width2);
736 		if (ret < 0)
737 			return ret;
738 		len += ret;
739 	}
740 	return len;
741 }
742 
743 /* Support functions for logical channels */
744 
745 static int d40_channel_execute_command(struct d40_chan *d40c,
746 				       enum d40_command command)
747 {
748 	u32 status;
749 	int i;
750 	void __iomem *active_reg;
751 	int ret = 0;
752 	unsigned long flags;
753 	u32 wmask;
754 
755 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
756 
757 	if (d40c->phy_chan->num % 2 == 0)
758 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
759 	else
760 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
761 
762 	if (command == D40_DMA_SUSPEND_REQ) {
763 		status = (readl(active_reg) &
764 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
765 			D40_CHAN_POS(d40c->phy_chan->num);
766 
767 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
768 			goto done;
769 	}
770 
771 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
772 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
773 	       active_reg);
774 
775 	if (command == D40_DMA_SUSPEND_REQ) {
776 
777 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
778 			status = (readl(active_reg) &
779 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
780 				D40_CHAN_POS(d40c->phy_chan->num);
781 
782 			cpu_relax();
783 			/*
784 			 * Reduce the number of bus accesses while
785 			 * waiting for the DMA to suspend.
786 			 */
787 			udelay(3);
788 
789 			if (status == D40_DMA_STOP ||
790 			    status == D40_DMA_SUSPENDED)
791 				break;
792 		}
793 
794 		if (i == D40_SUSPEND_MAX_IT) {
795 			chan_err(d40c,
796 				"unable to suspend the chl %d (log: %d) status %x\n",
797 				d40c->phy_chan->num, d40c->log_num,
798 				status);
799 			dump_stack();
800 			ret = -EBUSY;
801 		}
802 
803 	}
804 done:
805 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
806 	return ret;
807 }
808 
809 static void d40_term_all(struct d40_chan *d40c)
810 {
811 	struct d40_desc *d40d;
812 	struct d40_desc *_d;
813 
814 	/* Release active descriptors */
815 	while ((d40d = d40_first_active_get(d40c))) {
816 		d40_desc_remove(d40d);
817 		d40_desc_free(d40c, d40d);
818 	}
819 
820 	/* Release queued descriptors waiting for transfer */
821 	while ((d40d = d40_first_queued(d40c))) {
822 		d40_desc_remove(d40d);
823 		d40_desc_free(d40c, d40d);
824 	}
825 
826 	/* Release pending descriptors */
827 	while ((d40d = d40_first_pending(d40c))) {
828 		d40_desc_remove(d40d);
829 		d40_desc_free(d40c, d40d);
830 	}
831 
832 	/* Release client owned descriptors */
833 	if (!list_empty(&d40c->client))
834 		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
835 			d40_desc_remove(d40d);
836 			d40_desc_free(d40c, d40d);
837 		}
838 
839 	/* Release descriptors in prepare queue */
840 	if (!list_empty(&d40c->prepare_queue))
841 		list_for_each_entry_safe(d40d, _d,
842 					 &d40c->prepare_queue, node) {
843 			d40_desc_remove(d40d);
844 			d40_desc_free(d40c, d40d);
845 		}
846 
847 	d40c->pending_tx = 0;
848 	d40c->busy = false;
849 }
850 
851 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
852 				   u32 event, int reg)
853 {
854 	void __iomem *addr = chan_base(d40c) + reg;
855 	int tries;
856 
857 	if (!enable) {
858 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
859 		       | ~D40_EVENTLINE_MASK(event), addr);
860 		return;
861 	}
862 
863 	/*
864 	 * The hardware sometimes doesn't register the enable when src and dst
865 	 * event lines are active on the same logical channel.  Retry to ensure
866 	 * it does.  Usually only one retry is sufficient.
867 	 */
868 	tries = 100;
869 	while (--tries) {
870 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
871 		       | ~D40_EVENTLINE_MASK(event), addr);
872 
873 		if (readl(addr) & D40_EVENTLINE_MASK(event))
874 			break;
875 	}
876 
877 	if (tries != 99)
878 		dev_dbg(chan2dev(d40c),
879 			"[%s] workaround enable S%cLNK (%d tries)\n",
880 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
881 			100 - tries);
882 
883 	WARN_ON(!tries);
884 }
885 
886 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
887 {
888 	unsigned long flags;
889 
890 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
891 
892 	/* Enable event line connected to device (or memcpy) */
893 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
894 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
895 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
896 
897 		__d40_config_set_event(d40c, do_enable, event,
898 				       D40_CHAN_REG_SSLNK);
899 	}
900 
901 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
902 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
903 
904 		__d40_config_set_event(d40c, do_enable, event,
905 				       D40_CHAN_REG_SDLNK);
906 	}
907 
908 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
909 }
910 
911 static u32 d40_chan_has_events(struct d40_chan *d40c)
912 {
913 	void __iomem *chanbase = chan_base(d40c);
914 	u32 val;
915 
916 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
917 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
918 
919 	return val;
920 }
921 
922 static u32 d40_get_prmo(struct d40_chan *d40c)
923 {
924 	static const unsigned int phy_map[] = {
925 		[STEDMA40_PCHAN_BASIC_MODE]
926 			= D40_DREG_PRMO_PCHAN_BASIC,
927 		[STEDMA40_PCHAN_MODULO_MODE]
928 			= D40_DREG_PRMO_PCHAN_MODULO,
929 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
930 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
931 	};
932 	static const unsigned int log_map[] = {
933 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
934 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
935 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
936 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
937 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
938 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
939 	};
940 
941 	if (chan_is_physical(d40c))
942 		return phy_map[d40c->dma_cfg.mode_opt];
943 	else
944 		return log_map[d40c->dma_cfg.mode_opt];
945 }
946 
947 static void d40_config_write(struct d40_chan *d40c)
948 {
949 	u32 addr_base;
950 	u32 var;
951 
952 	/* Odd addresses are even addresses + 4 */
953 	addr_base = (d40c->phy_chan->num % 2) * 4;
954 	/* Setup channel mode to logical or physical */
955 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
956 		D40_CHAN_POS(d40c->phy_chan->num);
957 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
958 
959 	/* Setup operational mode option register */
960 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
961 
962 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
963 
964 	if (chan_is_logical(d40c)) {
965 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
966 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
967 		void __iomem *chanbase = chan_base(d40c);
968 
969 		/* Set default config for CFG reg */
970 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
971 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
972 
973 		/* Set LIDX for lcla */
974 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
975 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
976 	}
977 }
978 
979 static u32 d40_residue(struct d40_chan *d40c)
980 {
981 	u32 num_elt;
982 
983 	if (chan_is_logical(d40c))
984 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
985 			>> D40_MEM_LCSP2_ECNT_POS;
986 	else {
987 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
988 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
989 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
990 	}
991 
992 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
993 }
994 
995 static bool d40_tx_is_linked(struct d40_chan *d40c)
996 {
997 	bool is_link;
998 
999 	if (chan_is_logical(d40c))
1000 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1001 	else
1002 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1003 			  & D40_SREG_LNK_PHYS_LNK_MASK;
1004 
1005 	return is_link;
1006 }
1007 
1008 static int d40_pause(struct d40_chan *d40c)
1009 {
1010 	int res = 0;
1011 	unsigned long flags;
1012 
1013 	if (!d40c->busy)
1014 		return 0;
1015 
1016 	spin_lock_irqsave(&d40c->lock, flags);
1017 
1018 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1019 	if (res == 0) {
1020 		if (chan_is_logical(d40c)) {
1021 			d40_config_set_event(d40c, false);
1022 			/* Resume the other logical channels if any */
1023 			if (d40_chan_has_events(d40c))
1024 				res = d40_channel_execute_command(d40c,
1025 								  D40_DMA_RUN);
1026 		}
1027 	}
1028 
1029 	spin_unlock_irqrestore(&d40c->lock, flags);
1030 	return res;
1031 }
1032 
1033 static int d40_resume(struct d40_chan *d40c)
1034 {
1035 	int res = 0;
1036 	unsigned long flags;
1037 
1038 	if (!d40c->busy)
1039 		return 0;
1040 
1041 	spin_lock_irqsave(&d40c->lock, flags);
1042 
1043 	if (d40c->base->rev == 0)
1044 		if (chan_is_logical(d40c)) {
1045 			res = d40_channel_execute_command(d40c,
1046 							  D40_DMA_SUSPEND_REQ);
1047 			goto no_suspend;
1048 		}
1049 
1050 	/* If bytes left to transfer or linked tx resume job */
1051 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1052 
1053 		if (chan_is_logical(d40c))
1054 			d40_config_set_event(d40c, true);
1055 
1056 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1057 	}
1058 
1059 no_suspend:
1060 	spin_unlock_irqrestore(&d40c->lock, flags);
1061 	return res;
1062 }
1063 
1064 static int d40_terminate_all(struct d40_chan *chan)
1065 {
1066 	unsigned long flags;
1067 	int ret = 0;
1068 
1069 	ret = d40_pause(chan);
1070 	if (!ret && chan_is_physical(chan))
1071 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1072 
1073 	spin_lock_irqsave(&chan->lock, flags);
1074 	d40_term_all(chan);
1075 	spin_unlock_irqrestore(&chan->lock, flags);
1076 
1077 	return ret;
1078 }
1079 
1080 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1081 {
1082 	struct d40_chan *d40c = container_of(tx->chan,
1083 					     struct d40_chan,
1084 					     chan);
1085 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1086 	unsigned long flags;
1087 
1088 	spin_lock_irqsave(&d40c->lock, flags);
1089 
1090 	d40c->chan.cookie++;
1091 
1092 	if (d40c->chan.cookie < 0)
1093 		d40c->chan.cookie = 1;
1094 
1095 	d40d->txd.cookie = d40c->chan.cookie;
1096 
1097 	d40_desc_queue(d40c, d40d);
1098 
1099 	spin_unlock_irqrestore(&d40c->lock, flags);
1100 
1101 	return tx->cookie;
1102 }
1103 
1104 static int d40_start(struct d40_chan *d40c)
1105 {
1106 	if (d40c->base->rev == 0) {
1107 		int err;
1108 
1109 		if (chan_is_logical(d40c)) {
1110 			err = d40_channel_execute_command(d40c,
1111 							  D40_DMA_SUSPEND_REQ);
1112 			if (err)
1113 				return err;
1114 		}
1115 	}
1116 
1117 	if (chan_is_logical(d40c))
1118 		d40_config_set_event(d40c, true);
1119 
1120 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1121 }
1122 
1123 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1124 {
1125 	struct d40_desc *d40d;
1126 	int err;
1127 
1128 	/* Start queued jobs, if any */
1129 	d40d = d40_first_queued(d40c);
1130 
1131 	if (d40d != NULL) {
1132 		d40c->busy = true;
1133 
1134 		/* Remove from queue */
1135 		d40_desc_remove(d40d);
1136 
1137 		/* Add to active queue */
1138 		d40_desc_submit(d40c, d40d);
1139 
1140 		/* Initiate DMA job */
1141 		d40_desc_load(d40c, d40d);
1142 
1143 		/* Start dma job */
1144 		err = d40_start(d40c);
1145 
1146 		if (err)
1147 			return NULL;
1148 	}
1149 
1150 	return d40d;
1151 }
1152 
1153 /* called from interrupt context */
1154 static void dma_tc_handle(struct d40_chan *d40c)
1155 {
1156 	struct d40_desc *d40d;
1157 
1158 	/* Get first active entry from list */
1159 	d40d = d40_first_active_get(d40c);
1160 
1161 	if (d40d == NULL)
1162 		return;
1163 
1164 	if (d40d->cyclic) {
1165 		/*
1166 		 * If this was a paritially loaded list, we need to reloaded
1167 		 * it, and only when the list is completed.  We need to check
1168 		 * for done because the interrupt will hit for every link, and
1169 		 * not just the last one.
1170 		 */
1171 		if (d40d->lli_current < d40d->lli_len
1172 		    && !d40_tx_is_linked(d40c)
1173 		    && !d40_residue(d40c)) {
1174 			d40_lcla_free_all(d40c, d40d);
1175 			d40_desc_load(d40c, d40d);
1176 			(void) d40_start(d40c);
1177 
1178 			if (d40d->lli_current == d40d->lli_len)
1179 				d40d->lli_current = 0;
1180 		}
1181 	} else {
1182 		d40_lcla_free_all(d40c, d40d);
1183 
1184 		if (d40d->lli_current < d40d->lli_len) {
1185 			d40_desc_load(d40c, d40d);
1186 			/* Start dma job */
1187 			(void) d40_start(d40c);
1188 			return;
1189 		}
1190 
1191 		if (d40_queue_start(d40c) == NULL)
1192 			d40c->busy = false;
1193 	}
1194 
1195 	d40c->pending_tx++;
1196 	tasklet_schedule(&d40c->tasklet);
1197 
1198 }
1199 
1200 static void dma_tasklet(unsigned long data)
1201 {
1202 	struct d40_chan *d40c = (struct d40_chan *) data;
1203 	struct d40_desc *d40d;
1204 	unsigned long flags;
1205 	dma_async_tx_callback callback;
1206 	void *callback_param;
1207 
1208 	spin_lock_irqsave(&d40c->lock, flags);
1209 
1210 	/* Get first active entry from list */
1211 	d40d = d40_first_active_get(d40c);
1212 	if (d40d == NULL)
1213 		goto err;
1214 
1215 	if (!d40d->cyclic)
1216 		d40c->completed = d40d->txd.cookie;
1217 
1218 	/*
1219 	 * If terminating a channel pending_tx is set to zero.
1220 	 * This prevents any finished active jobs to return to the client.
1221 	 */
1222 	if (d40c->pending_tx == 0) {
1223 		spin_unlock_irqrestore(&d40c->lock, flags);
1224 		return;
1225 	}
1226 
1227 	/* Callback to client */
1228 	callback = d40d->txd.callback;
1229 	callback_param = d40d->txd.callback_param;
1230 
1231 	if (!d40d->cyclic) {
1232 		if (async_tx_test_ack(&d40d->txd)) {
1233 			d40_desc_remove(d40d);
1234 			d40_desc_free(d40c, d40d);
1235 		} else {
1236 			if (!d40d->is_in_client_list) {
1237 				d40_desc_remove(d40d);
1238 				d40_lcla_free_all(d40c, d40d);
1239 				list_add_tail(&d40d->node, &d40c->client);
1240 				d40d->is_in_client_list = true;
1241 			}
1242 		}
1243 	}
1244 
1245 	d40c->pending_tx--;
1246 
1247 	if (d40c->pending_tx)
1248 		tasklet_schedule(&d40c->tasklet);
1249 
1250 	spin_unlock_irqrestore(&d40c->lock, flags);
1251 
1252 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1253 		callback(callback_param);
1254 
1255 	return;
1256 
1257  err:
1258 	/* Rescue manoeuvre if receiving double interrupts */
1259 	if (d40c->pending_tx > 0)
1260 		d40c->pending_tx--;
1261 	spin_unlock_irqrestore(&d40c->lock, flags);
1262 }
1263 
1264 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1265 {
1266 	static const struct d40_interrupt_lookup il[] = {
1267 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1268 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1269 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1270 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1271 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1272 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1273 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1274 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1275 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1276 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1277 	};
1278 
1279 	int i;
1280 	u32 regs[ARRAY_SIZE(il)];
1281 	u32 idx;
1282 	u32 row;
1283 	long chan = -1;
1284 	struct d40_chan *d40c;
1285 	unsigned long flags;
1286 	struct d40_base *base = data;
1287 
1288 	spin_lock_irqsave(&base->interrupt_lock, flags);
1289 
1290 	/* Read interrupt status of both logical and physical channels */
1291 	for (i = 0; i < ARRAY_SIZE(il); i++)
1292 		regs[i] = readl(base->virtbase + il[i].src);
1293 
1294 	for (;;) {
1295 
1296 		chan = find_next_bit((unsigned long *)regs,
1297 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1298 
1299 		/* No more set bits found? */
1300 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1301 			break;
1302 
1303 		row = chan / BITS_PER_LONG;
1304 		idx = chan & (BITS_PER_LONG - 1);
1305 
1306 		/* ACK interrupt */
1307 		writel(1 << idx, base->virtbase + il[row].clr);
1308 
1309 		if (il[row].offset == D40_PHY_CHAN)
1310 			d40c = base->lookup_phy_chans[idx];
1311 		else
1312 			d40c = base->lookup_log_chans[il[row].offset + idx];
1313 		spin_lock(&d40c->lock);
1314 
1315 		if (!il[row].is_error)
1316 			dma_tc_handle(d40c);
1317 		else
1318 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1319 				chan, il[row].offset, idx);
1320 
1321 		spin_unlock(&d40c->lock);
1322 	}
1323 
1324 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1325 
1326 	return IRQ_HANDLED;
1327 }
1328 
1329 static int d40_validate_conf(struct d40_chan *d40c,
1330 			     struct stedma40_chan_cfg *conf)
1331 {
1332 	int res = 0;
1333 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1334 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1335 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1336 
1337 	if (!conf->dir) {
1338 		chan_err(d40c, "Invalid direction.\n");
1339 		res = -EINVAL;
1340 	}
1341 
1342 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1343 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1344 	    d40c->runtime_addr == 0) {
1345 
1346 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1347 			 conf->dst_dev_type);
1348 		res = -EINVAL;
1349 	}
1350 
1351 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1352 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1353 	    d40c->runtime_addr == 0) {
1354 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1355 			conf->src_dev_type);
1356 		res = -EINVAL;
1357 	}
1358 
1359 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1360 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1361 		chan_err(d40c, "Invalid dst\n");
1362 		res = -EINVAL;
1363 	}
1364 
1365 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1366 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1367 		chan_err(d40c, "Invalid src\n");
1368 		res = -EINVAL;
1369 	}
1370 
1371 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1372 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1373 		chan_err(d40c, "No event line\n");
1374 		res = -EINVAL;
1375 	}
1376 
1377 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1378 	    (src_event_group != dst_event_group)) {
1379 		chan_err(d40c, "Invalid event group\n");
1380 		res = -EINVAL;
1381 	}
1382 
1383 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1384 		/*
1385 		 * DMAC HW supports it. Will be added to this driver,
1386 		 * in case any dma client requires it.
1387 		 */
1388 		chan_err(d40c, "periph to periph not supported\n");
1389 		res = -EINVAL;
1390 	}
1391 
1392 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1393 	    (1 << conf->src_info.data_width) !=
1394 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1395 	    (1 << conf->dst_info.data_width)) {
1396 		/*
1397 		 * The DMAC hardware only supports
1398 		 * src (burst x width) == dst (burst x width)
1399 		 */
1400 
1401 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1402 		res = -EINVAL;
1403 	}
1404 
1405 	return res;
1406 }
1407 
1408 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1409 			       int log_event_line, bool is_log)
1410 {
1411 	unsigned long flags;
1412 	spin_lock_irqsave(&phy->lock, flags);
1413 	if (!is_log) {
1414 		/* Physical interrupts are masked per physical full channel */
1415 		if (phy->allocated_src == D40_ALLOC_FREE &&
1416 		    phy->allocated_dst == D40_ALLOC_FREE) {
1417 			phy->allocated_dst = D40_ALLOC_PHY;
1418 			phy->allocated_src = D40_ALLOC_PHY;
1419 			goto found;
1420 		} else
1421 			goto not_found;
1422 	}
1423 
1424 	/* Logical channel */
1425 	if (is_src) {
1426 		if (phy->allocated_src == D40_ALLOC_PHY)
1427 			goto not_found;
1428 
1429 		if (phy->allocated_src == D40_ALLOC_FREE)
1430 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1431 
1432 		if (!(phy->allocated_src & (1 << log_event_line))) {
1433 			phy->allocated_src |= 1 << log_event_line;
1434 			goto found;
1435 		} else
1436 			goto not_found;
1437 	} else {
1438 		if (phy->allocated_dst == D40_ALLOC_PHY)
1439 			goto not_found;
1440 
1441 		if (phy->allocated_dst == D40_ALLOC_FREE)
1442 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1443 
1444 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1445 			phy->allocated_dst |= 1 << log_event_line;
1446 			goto found;
1447 		} else
1448 			goto not_found;
1449 	}
1450 
1451 not_found:
1452 	spin_unlock_irqrestore(&phy->lock, flags);
1453 	return false;
1454 found:
1455 	spin_unlock_irqrestore(&phy->lock, flags);
1456 	return true;
1457 }
1458 
1459 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1460 			       int log_event_line)
1461 {
1462 	unsigned long flags;
1463 	bool is_free = false;
1464 
1465 	spin_lock_irqsave(&phy->lock, flags);
1466 	if (!log_event_line) {
1467 		phy->allocated_dst = D40_ALLOC_FREE;
1468 		phy->allocated_src = D40_ALLOC_FREE;
1469 		is_free = true;
1470 		goto out;
1471 	}
1472 
1473 	/* Logical channel */
1474 	if (is_src) {
1475 		phy->allocated_src &= ~(1 << log_event_line);
1476 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1477 			phy->allocated_src = D40_ALLOC_FREE;
1478 	} else {
1479 		phy->allocated_dst &= ~(1 << log_event_line);
1480 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1481 			phy->allocated_dst = D40_ALLOC_FREE;
1482 	}
1483 
1484 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1485 		   D40_ALLOC_FREE);
1486 
1487 out:
1488 	spin_unlock_irqrestore(&phy->lock, flags);
1489 
1490 	return is_free;
1491 }
1492 
1493 static int d40_allocate_channel(struct d40_chan *d40c)
1494 {
1495 	int dev_type;
1496 	int event_group;
1497 	int event_line;
1498 	struct d40_phy_res *phys;
1499 	int i;
1500 	int j;
1501 	int log_num;
1502 	bool is_src;
1503 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1504 
1505 	phys = d40c->base->phy_res;
1506 
1507 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1508 		dev_type = d40c->dma_cfg.src_dev_type;
1509 		log_num = 2 * dev_type;
1510 		is_src = true;
1511 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1512 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1513 		/* dst event lines are used for logical memcpy */
1514 		dev_type = d40c->dma_cfg.dst_dev_type;
1515 		log_num = 2 * dev_type + 1;
1516 		is_src = false;
1517 	} else
1518 		return -EINVAL;
1519 
1520 	event_group = D40_TYPE_TO_GROUP(dev_type);
1521 	event_line = D40_TYPE_TO_EVENT(dev_type);
1522 
1523 	if (!is_log) {
1524 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1525 			/* Find physical half channel */
1526 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1527 
1528 				if (d40_alloc_mask_set(&phys[i], is_src,
1529 						       0, is_log))
1530 					goto found_phy;
1531 			}
1532 		} else
1533 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1534 				int phy_num = j  + event_group * 2;
1535 				for (i = phy_num; i < phy_num + 2; i++) {
1536 					if (d40_alloc_mask_set(&phys[i],
1537 							       is_src,
1538 							       0,
1539 							       is_log))
1540 						goto found_phy;
1541 				}
1542 			}
1543 		return -EINVAL;
1544 found_phy:
1545 		d40c->phy_chan = &phys[i];
1546 		d40c->log_num = D40_PHY_CHAN;
1547 		goto out;
1548 	}
1549 	if (dev_type == -1)
1550 		return -EINVAL;
1551 
1552 	/* Find logical channel */
1553 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1554 		int phy_num = j + event_group * 2;
1555 		/*
1556 		 * Spread logical channels across all available physical rather
1557 		 * than pack every logical channel at the first available phy
1558 		 * channels.
1559 		 */
1560 		if (is_src) {
1561 			for (i = phy_num; i < phy_num + 2; i++) {
1562 				if (d40_alloc_mask_set(&phys[i], is_src,
1563 						       event_line, is_log))
1564 					goto found_log;
1565 			}
1566 		} else {
1567 			for (i = phy_num + 1; i >= phy_num; i--) {
1568 				if (d40_alloc_mask_set(&phys[i], is_src,
1569 						       event_line, is_log))
1570 					goto found_log;
1571 			}
1572 		}
1573 	}
1574 	return -EINVAL;
1575 
1576 found_log:
1577 	d40c->phy_chan = &phys[i];
1578 	d40c->log_num = log_num;
1579 out:
1580 
1581 	if (is_log)
1582 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1583 	else
1584 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1585 
1586 	return 0;
1587 
1588 }
1589 
1590 static int d40_config_memcpy(struct d40_chan *d40c)
1591 {
1592 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1593 
1594 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1595 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1596 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1597 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1598 			memcpy[d40c->chan.chan_id];
1599 
1600 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1601 		   dma_has_cap(DMA_SLAVE, cap)) {
1602 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1603 	} else {
1604 		chan_err(d40c, "No memcpy\n");
1605 		return -EINVAL;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 
1612 static int d40_free_dma(struct d40_chan *d40c)
1613 {
1614 
1615 	int res = 0;
1616 	u32 event;
1617 	struct d40_phy_res *phy = d40c->phy_chan;
1618 	bool is_src;
1619 
1620 	/* Terminate all queued and active transfers */
1621 	d40_term_all(d40c);
1622 
1623 	if (phy == NULL) {
1624 		chan_err(d40c, "phy == null\n");
1625 		return -EINVAL;
1626 	}
1627 
1628 	if (phy->allocated_src == D40_ALLOC_FREE &&
1629 	    phy->allocated_dst == D40_ALLOC_FREE) {
1630 		chan_err(d40c, "channel already free\n");
1631 		return -EINVAL;
1632 	}
1633 
1634 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1635 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1636 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1637 		is_src = false;
1638 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1639 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1640 		is_src = true;
1641 	} else {
1642 		chan_err(d40c, "Unknown direction\n");
1643 		return -EINVAL;
1644 	}
1645 
1646 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1647 	if (res) {
1648 		chan_err(d40c, "suspend failed\n");
1649 		return res;
1650 	}
1651 
1652 	if (chan_is_logical(d40c)) {
1653 		/* Release logical channel, deactivate the event line */
1654 
1655 		d40_config_set_event(d40c, false);
1656 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1657 
1658 		/*
1659 		 * Check if there are more logical allocation
1660 		 * on this phy channel.
1661 		 */
1662 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1663 			/* Resume the other logical channels if any */
1664 			if (d40_chan_has_events(d40c)) {
1665 				res = d40_channel_execute_command(d40c,
1666 								  D40_DMA_RUN);
1667 				if (res) {
1668 					chan_err(d40c,
1669 						"Executing RUN command\n");
1670 					return res;
1671 				}
1672 			}
1673 			return 0;
1674 		}
1675 	} else {
1676 		(void) d40_alloc_mask_free(phy, is_src, 0);
1677 	}
1678 
1679 	/* Release physical channel */
1680 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1681 	if (res) {
1682 		chan_err(d40c, "Failed to stop channel\n");
1683 		return res;
1684 	}
1685 	d40c->phy_chan = NULL;
1686 	d40c->configured = false;
1687 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1688 
1689 	return 0;
1690 }
1691 
1692 static bool d40_is_paused(struct d40_chan *d40c)
1693 {
1694 	void __iomem *chanbase = chan_base(d40c);
1695 	bool is_paused = false;
1696 	unsigned long flags;
1697 	void __iomem *active_reg;
1698 	u32 status;
1699 	u32 event;
1700 
1701 	spin_lock_irqsave(&d40c->lock, flags);
1702 
1703 	if (chan_is_physical(d40c)) {
1704 		if (d40c->phy_chan->num % 2 == 0)
1705 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1706 		else
1707 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1708 
1709 		status = (readl(active_reg) &
1710 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1711 			D40_CHAN_POS(d40c->phy_chan->num);
1712 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1713 			is_paused = true;
1714 
1715 		goto _exit;
1716 	}
1717 
1718 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1719 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1720 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1721 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1722 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1723 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1724 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1725 	} else {
1726 		chan_err(d40c, "Unknown direction\n");
1727 		goto _exit;
1728 	}
1729 
1730 	status = (status & D40_EVENTLINE_MASK(event)) >>
1731 		D40_EVENTLINE_POS(event);
1732 
1733 	if (status != D40_DMA_RUN)
1734 		is_paused = true;
1735 _exit:
1736 	spin_unlock_irqrestore(&d40c->lock, flags);
1737 	return is_paused;
1738 
1739 }
1740 
1741 
1742 static u32 stedma40_residue(struct dma_chan *chan)
1743 {
1744 	struct d40_chan *d40c =
1745 		container_of(chan, struct d40_chan, chan);
1746 	u32 bytes_left;
1747 	unsigned long flags;
1748 
1749 	spin_lock_irqsave(&d40c->lock, flags);
1750 	bytes_left = d40_residue(d40c);
1751 	spin_unlock_irqrestore(&d40c->lock, flags);
1752 
1753 	return bytes_left;
1754 }
1755 
1756 static int
1757 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1758 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1759 		unsigned int sg_len, dma_addr_t src_dev_addr,
1760 		dma_addr_t dst_dev_addr)
1761 {
1762 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1763 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1764 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1765 	int ret;
1766 
1767 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1768 				src_dev_addr,
1769 				desc->lli_log.src,
1770 				chan->log_def.lcsp1,
1771 				src_info->data_width,
1772 				dst_info->data_width);
1773 
1774 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1775 				dst_dev_addr,
1776 				desc->lli_log.dst,
1777 				chan->log_def.lcsp3,
1778 				dst_info->data_width,
1779 				src_info->data_width);
1780 
1781 	return ret < 0 ? ret : 0;
1782 }
1783 
1784 static int
1785 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1786 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1787 		unsigned int sg_len, dma_addr_t src_dev_addr,
1788 		dma_addr_t dst_dev_addr)
1789 {
1790 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1791 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1792 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1793 	unsigned long flags = 0;
1794 	int ret;
1795 
1796 	if (desc->cyclic)
1797 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1798 
1799 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1800 				desc->lli_phy.src,
1801 				virt_to_phys(desc->lli_phy.src),
1802 				chan->src_def_cfg,
1803 				src_info, dst_info, flags);
1804 
1805 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1806 				desc->lli_phy.dst,
1807 				virt_to_phys(desc->lli_phy.dst),
1808 				chan->dst_def_cfg,
1809 				dst_info, src_info, flags);
1810 
1811 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1812 				   desc->lli_pool.size, DMA_TO_DEVICE);
1813 
1814 	return ret < 0 ? ret : 0;
1815 }
1816 
1817 
1818 static struct d40_desc *
1819 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1820 	      unsigned int sg_len, unsigned long dma_flags)
1821 {
1822 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1823 	struct d40_desc *desc;
1824 	int ret;
1825 
1826 	desc = d40_desc_get(chan);
1827 	if (!desc)
1828 		return NULL;
1829 
1830 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1831 					cfg->dst_info.data_width);
1832 	if (desc->lli_len < 0) {
1833 		chan_err(chan, "Unaligned size\n");
1834 		goto err;
1835 	}
1836 
1837 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1838 	if (ret < 0) {
1839 		chan_err(chan, "Could not allocate lli\n");
1840 		goto err;
1841 	}
1842 
1843 
1844 	desc->lli_current = 0;
1845 	desc->txd.flags = dma_flags;
1846 	desc->txd.tx_submit = d40_tx_submit;
1847 
1848 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1849 
1850 	return desc;
1851 
1852 err:
1853 	d40_desc_free(chan, desc);
1854 	return NULL;
1855 }
1856 
1857 static dma_addr_t
1858 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1859 {
1860 	struct stedma40_platform_data *plat = chan->base->plat_data;
1861 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1862 	dma_addr_t addr = 0;
1863 
1864 	if (chan->runtime_addr)
1865 		return chan->runtime_addr;
1866 
1867 	if (direction == DMA_FROM_DEVICE)
1868 		addr = plat->dev_rx[cfg->src_dev_type];
1869 	else if (direction == DMA_TO_DEVICE)
1870 		addr = plat->dev_tx[cfg->dst_dev_type];
1871 
1872 	return addr;
1873 }
1874 
1875 static struct dma_async_tx_descriptor *
1876 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1877 	    struct scatterlist *sg_dst, unsigned int sg_len,
1878 	    enum dma_data_direction direction, unsigned long dma_flags)
1879 {
1880 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1881 	dma_addr_t src_dev_addr = 0;
1882 	dma_addr_t dst_dev_addr = 0;
1883 	struct d40_desc *desc;
1884 	unsigned long flags;
1885 	int ret;
1886 
1887 	if (!chan->phy_chan) {
1888 		chan_err(chan, "Cannot prepare unallocated channel\n");
1889 		return NULL;
1890 	}
1891 
1892 
1893 	spin_lock_irqsave(&chan->lock, flags);
1894 
1895 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1896 	if (desc == NULL)
1897 		goto err;
1898 
1899 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1900 		desc->cyclic = true;
1901 
1902 	if (direction != DMA_NONE) {
1903 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1904 
1905 		if (direction == DMA_FROM_DEVICE)
1906 			src_dev_addr = dev_addr;
1907 		else if (direction == DMA_TO_DEVICE)
1908 			dst_dev_addr = dev_addr;
1909 	}
1910 
1911 	if (chan_is_logical(chan))
1912 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1913 				      sg_len, src_dev_addr, dst_dev_addr);
1914 	else
1915 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1916 				      sg_len, src_dev_addr, dst_dev_addr);
1917 
1918 	if (ret) {
1919 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
1920 			 chan_is_logical(chan) ? "log" : "phy", ret);
1921 		goto err;
1922 	}
1923 
1924 	/*
1925 	 * add descriptor to the prepare queue in order to be able
1926 	 * to free them later in terminate_all
1927 	 */
1928 	list_add_tail(&desc->node, &chan->prepare_queue);
1929 
1930 	spin_unlock_irqrestore(&chan->lock, flags);
1931 
1932 	return &desc->txd;
1933 
1934 err:
1935 	if (desc)
1936 		d40_desc_free(chan, desc);
1937 	spin_unlock_irqrestore(&chan->lock, flags);
1938 	return NULL;
1939 }
1940 
1941 bool stedma40_filter(struct dma_chan *chan, void *data)
1942 {
1943 	struct stedma40_chan_cfg *info = data;
1944 	struct d40_chan *d40c =
1945 		container_of(chan, struct d40_chan, chan);
1946 	int err;
1947 
1948 	if (data) {
1949 		err = d40_validate_conf(d40c, info);
1950 		if (!err)
1951 			d40c->dma_cfg = *info;
1952 	} else
1953 		err = d40_config_memcpy(d40c);
1954 
1955 	if (!err)
1956 		d40c->configured = true;
1957 
1958 	return err == 0;
1959 }
1960 EXPORT_SYMBOL(stedma40_filter);
1961 
1962 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1963 {
1964 	bool realtime = d40c->dma_cfg.realtime;
1965 	bool highprio = d40c->dma_cfg.high_priority;
1966 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1967 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1968 	u32 event = D40_TYPE_TO_EVENT(dev_type);
1969 	u32 group = D40_TYPE_TO_GROUP(dev_type);
1970 	u32 bit = 1 << event;
1971 
1972 	/* Destination event lines are stored in the upper halfword */
1973 	if (!src)
1974 		bit <<= 16;
1975 
1976 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
1977 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
1978 }
1979 
1980 static void d40_set_prio_realtime(struct d40_chan *d40c)
1981 {
1982 	if (d40c->base->rev < 3)
1983 		return;
1984 
1985 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1986 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1987 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1988 
1989 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1990 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1991 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1992 }
1993 
1994 /* DMA ENGINE functions */
1995 static int d40_alloc_chan_resources(struct dma_chan *chan)
1996 {
1997 	int err;
1998 	unsigned long flags;
1999 	struct d40_chan *d40c =
2000 		container_of(chan, struct d40_chan, chan);
2001 	bool is_free_phy;
2002 	spin_lock_irqsave(&d40c->lock, flags);
2003 
2004 	d40c->completed = chan->cookie = 1;
2005 
2006 	/* If no dma configuration is set use default configuration (memcpy) */
2007 	if (!d40c->configured) {
2008 		err = d40_config_memcpy(d40c);
2009 		if (err) {
2010 			chan_err(d40c, "Failed to configure memcpy channel\n");
2011 			goto fail;
2012 		}
2013 	}
2014 	is_free_phy = (d40c->phy_chan == NULL);
2015 
2016 	err = d40_allocate_channel(d40c);
2017 	if (err) {
2018 		chan_err(d40c, "Failed to allocate channel\n");
2019 		goto fail;
2020 	}
2021 
2022 	/* Fill in basic CFG register values */
2023 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2024 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2025 
2026 	d40_set_prio_realtime(d40c);
2027 
2028 	if (chan_is_logical(d40c)) {
2029 		d40_log_cfg(&d40c->dma_cfg,
2030 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2031 
2032 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2033 			d40c->lcpa = d40c->base->lcpa_base +
2034 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2035 		else
2036 			d40c->lcpa = d40c->base->lcpa_base +
2037 			  d40c->dma_cfg.dst_dev_type *
2038 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2039 	}
2040 
2041 	/*
2042 	 * Only write channel configuration to the DMA if the physical
2043 	 * resource is free. In case of multiple logical channels
2044 	 * on the same physical resource, only the first write is necessary.
2045 	 */
2046 	if (is_free_phy)
2047 		d40_config_write(d40c);
2048 fail:
2049 	spin_unlock_irqrestore(&d40c->lock, flags);
2050 	return err;
2051 }
2052 
2053 static void d40_free_chan_resources(struct dma_chan *chan)
2054 {
2055 	struct d40_chan *d40c =
2056 		container_of(chan, struct d40_chan, chan);
2057 	int err;
2058 	unsigned long flags;
2059 
2060 	if (d40c->phy_chan == NULL) {
2061 		chan_err(d40c, "Cannot free unallocated channel\n");
2062 		return;
2063 	}
2064 
2065 
2066 	spin_lock_irqsave(&d40c->lock, flags);
2067 
2068 	err = d40_free_dma(d40c);
2069 
2070 	if (err)
2071 		chan_err(d40c, "Failed to free channel\n");
2072 	spin_unlock_irqrestore(&d40c->lock, flags);
2073 }
2074 
2075 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2076 						       dma_addr_t dst,
2077 						       dma_addr_t src,
2078 						       size_t size,
2079 						       unsigned long dma_flags)
2080 {
2081 	struct scatterlist dst_sg;
2082 	struct scatterlist src_sg;
2083 
2084 	sg_init_table(&dst_sg, 1);
2085 	sg_init_table(&src_sg, 1);
2086 
2087 	sg_dma_address(&dst_sg) = dst;
2088 	sg_dma_address(&src_sg) = src;
2089 
2090 	sg_dma_len(&dst_sg) = size;
2091 	sg_dma_len(&src_sg) = size;
2092 
2093 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2094 }
2095 
2096 static struct dma_async_tx_descriptor *
2097 d40_prep_memcpy_sg(struct dma_chan *chan,
2098 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2099 		   struct scatterlist *src_sg, unsigned int src_nents,
2100 		   unsigned long dma_flags)
2101 {
2102 	if (dst_nents != src_nents)
2103 		return NULL;
2104 
2105 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2106 }
2107 
2108 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2109 							 struct scatterlist *sgl,
2110 							 unsigned int sg_len,
2111 							 enum dma_data_direction direction,
2112 							 unsigned long dma_flags)
2113 {
2114 	if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2115 		return NULL;
2116 
2117 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2118 }
2119 
2120 static struct dma_async_tx_descriptor *
2121 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2122 		     size_t buf_len, size_t period_len,
2123 		     enum dma_data_direction direction)
2124 {
2125 	unsigned int periods = buf_len / period_len;
2126 	struct dma_async_tx_descriptor *txd;
2127 	struct scatterlist *sg;
2128 	int i;
2129 
2130 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2131 	for (i = 0; i < periods; i++) {
2132 		sg_dma_address(&sg[i]) = dma_addr;
2133 		sg_dma_len(&sg[i]) = period_len;
2134 		dma_addr += period_len;
2135 	}
2136 
2137 	sg[periods].offset = 0;
2138 	sg[periods].length = 0;
2139 	sg[periods].page_link =
2140 		((unsigned long)sg | 0x01) & ~0x02;
2141 
2142 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2143 			  DMA_PREP_INTERRUPT);
2144 
2145 	kfree(sg);
2146 
2147 	return txd;
2148 }
2149 
2150 static enum dma_status d40_tx_status(struct dma_chan *chan,
2151 				     dma_cookie_t cookie,
2152 				     struct dma_tx_state *txstate)
2153 {
2154 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2155 	dma_cookie_t last_used;
2156 	dma_cookie_t last_complete;
2157 	int ret;
2158 
2159 	if (d40c->phy_chan == NULL) {
2160 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2161 		return -EINVAL;
2162 	}
2163 
2164 	last_complete = d40c->completed;
2165 	last_used = chan->cookie;
2166 
2167 	if (d40_is_paused(d40c))
2168 		ret = DMA_PAUSED;
2169 	else
2170 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2171 
2172 	dma_set_tx_state(txstate, last_complete, last_used,
2173 			 stedma40_residue(chan));
2174 
2175 	return ret;
2176 }
2177 
2178 static void d40_issue_pending(struct dma_chan *chan)
2179 {
2180 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2181 	unsigned long flags;
2182 
2183 	if (d40c->phy_chan == NULL) {
2184 		chan_err(d40c, "Channel is not allocated!\n");
2185 		return;
2186 	}
2187 
2188 	spin_lock_irqsave(&d40c->lock, flags);
2189 
2190 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2191 
2192 	/* Busy means that queued jobs are already being processed */
2193 	if (!d40c->busy)
2194 		(void) d40_queue_start(d40c);
2195 
2196 	spin_unlock_irqrestore(&d40c->lock, flags);
2197 }
2198 
2199 static int
2200 dma40_config_to_halfchannel(struct d40_chan *d40c,
2201 			    struct stedma40_half_channel_info *info,
2202 			    enum dma_slave_buswidth width,
2203 			    u32 maxburst)
2204 {
2205 	enum stedma40_periph_data_width addr_width;
2206 	int psize;
2207 
2208 	switch (width) {
2209 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2210 		addr_width = STEDMA40_BYTE_WIDTH;
2211 		break;
2212 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2213 		addr_width = STEDMA40_HALFWORD_WIDTH;
2214 		break;
2215 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2216 		addr_width = STEDMA40_WORD_WIDTH;
2217 		break;
2218 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2219 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2220 		break;
2221 	default:
2222 		dev_err(d40c->base->dev,
2223 			"illegal peripheral address width "
2224 			"requested (%d)\n",
2225 			width);
2226 		return -EINVAL;
2227 	}
2228 
2229 	if (chan_is_logical(d40c)) {
2230 		if (maxburst >= 16)
2231 			psize = STEDMA40_PSIZE_LOG_16;
2232 		else if (maxburst >= 8)
2233 			psize = STEDMA40_PSIZE_LOG_8;
2234 		else if (maxburst >= 4)
2235 			psize = STEDMA40_PSIZE_LOG_4;
2236 		else
2237 			psize = STEDMA40_PSIZE_LOG_1;
2238 	} else {
2239 		if (maxburst >= 16)
2240 			psize = STEDMA40_PSIZE_PHY_16;
2241 		else if (maxburst >= 8)
2242 			psize = STEDMA40_PSIZE_PHY_8;
2243 		else if (maxburst >= 4)
2244 			psize = STEDMA40_PSIZE_PHY_4;
2245 		else
2246 			psize = STEDMA40_PSIZE_PHY_1;
2247 	}
2248 
2249 	info->data_width = addr_width;
2250 	info->psize = psize;
2251 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2252 
2253 	return 0;
2254 }
2255 
2256 /* Runtime reconfiguration extension */
2257 static int d40_set_runtime_config(struct dma_chan *chan,
2258 				  struct dma_slave_config *config)
2259 {
2260 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2261 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2262 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2263 	dma_addr_t config_addr;
2264 	u32 src_maxburst, dst_maxburst;
2265 	int ret;
2266 
2267 	src_addr_width = config->src_addr_width;
2268 	src_maxburst = config->src_maxburst;
2269 	dst_addr_width = config->dst_addr_width;
2270 	dst_maxburst = config->dst_maxburst;
2271 
2272 	if (config->direction == DMA_FROM_DEVICE) {
2273 		dma_addr_t dev_addr_rx =
2274 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2275 
2276 		config_addr = config->src_addr;
2277 		if (dev_addr_rx)
2278 			dev_dbg(d40c->base->dev,
2279 				"channel has a pre-wired RX address %08x "
2280 				"overriding with %08x\n",
2281 				dev_addr_rx, config_addr);
2282 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2283 			dev_dbg(d40c->base->dev,
2284 				"channel was not configured for peripheral "
2285 				"to memory transfer (%d) overriding\n",
2286 				cfg->dir);
2287 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2288 
2289 		/* Configure the memory side */
2290 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2291 			dst_addr_width = src_addr_width;
2292 		if (dst_maxburst == 0)
2293 			dst_maxburst = src_maxburst;
2294 
2295 	} else if (config->direction == DMA_TO_DEVICE) {
2296 		dma_addr_t dev_addr_tx =
2297 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2298 
2299 		config_addr = config->dst_addr;
2300 		if (dev_addr_tx)
2301 			dev_dbg(d40c->base->dev,
2302 				"channel has a pre-wired TX address %08x "
2303 				"overriding with %08x\n",
2304 				dev_addr_tx, config_addr);
2305 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2306 			dev_dbg(d40c->base->dev,
2307 				"channel was not configured for memory "
2308 				"to peripheral transfer (%d) overriding\n",
2309 				cfg->dir);
2310 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2311 
2312 		/* Configure the memory side */
2313 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2314 			src_addr_width = dst_addr_width;
2315 		if (src_maxburst == 0)
2316 			src_maxburst = dst_maxburst;
2317 	} else {
2318 		dev_err(d40c->base->dev,
2319 			"unrecognized channel direction %d\n",
2320 			config->direction);
2321 		return -EINVAL;
2322 	}
2323 
2324 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2325 		dev_err(d40c->base->dev,
2326 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2327 			src_maxburst,
2328 			src_addr_width,
2329 			dst_maxburst,
2330 			dst_addr_width);
2331 		return -EINVAL;
2332 	}
2333 
2334 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2335 					  src_addr_width,
2336 					  src_maxburst);
2337 	if (ret)
2338 		return ret;
2339 
2340 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2341 					  dst_addr_width,
2342 					  dst_maxburst);
2343 	if (ret)
2344 		return ret;
2345 
2346 	/* Fill in register values */
2347 	if (chan_is_logical(d40c))
2348 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2349 	else
2350 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2351 			    &d40c->dst_def_cfg, false);
2352 
2353 	/* These settings will take precedence later */
2354 	d40c->runtime_addr = config_addr;
2355 	d40c->runtime_direction = config->direction;
2356 	dev_dbg(d40c->base->dev,
2357 		"configured channel %s for %s, data width %d/%d, "
2358 		"maxburst %d/%d elements, LE, no flow control\n",
2359 		dma_chan_name(chan),
2360 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2361 		src_addr_width, dst_addr_width,
2362 		src_maxburst, dst_maxburst);
2363 
2364 	return 0;
2365 }
2366 
2367 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2368 		       unsigned long arg)
2369 {
2370 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2371 
2372 	if (d40c->phy_chan == NULL) {
2373 		chan_err(d40c, "Channel is not allocated!\n");
2374 		return -EINVAL;
2375 	}
2376 
2377 	switch (cmd) {
2378 	case DMA_TERMINATE_ALL:
2379 		return d40_terminate_all(d40c);
2380 	case DMA_PAUSE:
2381 		return d40_pause(d40c);
2382 	case DMA_RESUME:
2383 		return d40_resume(d40c);
2384 	case DMA_SLAVE_CONFIG:
2385 		return d40_set_runtime_config(chan,
2386 			(struct dma_slave_config *) arg);
2387 	default:
2388 		break;
2389 	}
2390 
2391 	/* Other commands are unimplemented */
2392 	return -ENXIO;
2393 }
2394 
2395 /* Initialization functions */
2396 
2397 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2398 				 struct d40_chan *chans, int offset,
2399 				 int num_chans)
2400 {
2401 	int i = 0;
2402 	struct d40_chan *d40c;
2403 
2404 	INIT_LIST_HEAD(&dma->channels);
2405 
2406 	for (i = offset; i < offset + num_chans; i++) {
2407 		d40c = &chans[i];
2408 		d40c->base = base;
2409 		d40c->chan.device = dma;
2410 
2411 		spin_lock_init(&d40c->lock);
2412 
2413 		d40c->log_num = D40_PHY_CHAN;
2414 
2415 		INIT_LIST_HEAD(&d40c->active);
2416 		INIT_LIST_HEAD(&d40c->queue);
2417 		INIT_LIST_HEAD(&d40c->pending_queue);
2418 		INIT_LIST_HEAD(&d40c->client);
2419 		INIT_LIST_HEAD(&d40c->prepare_queue);
2420 
2421 		tasklet_init(&d40c->tasklet, dma_tasklet,
2422 			     (unsigned long) d40c);
2423 
2424 		list_add_tail(&d40c->chan.device_node,
2425 			      &dma->channels);
2426 	}
2427 }
2428 
2429 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2430 {
2431 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2432 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2433 
2434 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2435 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2436 
2437 		/*
2438 		 * This controller can only access address at even
2439 		 * 32bit boundaries, i.e. 2^2
2440 		 */
2441 		dev->copy_align = 2;
2442 	}
2443 
2444 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2445 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2446 
2447 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2448 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2449 
2450 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2451 	dev->device_free_chan_resources = d40_free_chan_resources;
2452 	dev->device_issue_pending = d40_issue_pending;
2453 	dev->device_tx_status = d40_tx_status;
2454 	dev->device_control = d40_control;
2455 	dev->dev = base->dev;
2456 }
2457 
2458 static int __init d40_dmaengine_init(struct d40_base *base,
2459 				     int num_reserved_chans)
2460 {
2461 	int err ;
2462 
2463 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2464 		      0, base->num_log_chans);
2465 
2466 	dma_cap_zero(base->dma_slave.cap_mask);
2467 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2468 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2469 
2470 	d40_ops_init(base, &base->dma_slave);
2471 
2472 	err = dma_async_device_register(&base->dma_slave);
2473 
2474 	if (err) {
2475 		d40_err(base->dev, "Failed to register slave channels\n");
2476 		goto failure1;
2477 	}
2478 
2479 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2480 		      base->num_log_chans, base->plat_data->memcpy_len);
2481 
2482 	dma_cap_zero(base->dma_memcpy.cap_mask);
2483 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2484 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2485 
2486 	d40_ops_init(base, &base->dma_memcpy);
2487 
2488 	err = dma_async_device_register(&base->dma_memcpy);
2489 
2490 	if (err) {
2491 		d40_err(base->dev,
2492 			"Failed to regsiter memcpy only channels\n");
2493 		goto failure2;
2494 	}
2495 
2496 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2497 		      0, num_reserved_chans);
2498 
2499 	dma_cap_zero(base->dma_both.cap_mask);
2500 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2501 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2502 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2503 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2504 
2505 	d40_ops_init(base, &base->dma_both);
2506 	err = dma_async_device_register(&base->dma_both);
2507 
2508 	if (err) {
2509 		d40_err(base->dev,
2510 			"Failed to register logical and physical capable channels\n");
2511 		goto failure3;
2512 	}
2513 	return 0;
2514 failure3:
2515 	dma_async_device_unregister(&base->dma_memcpy);
2516 failure2:
2517 	dma_async_device_unregister(&base->dma_slave);
2518 failure1:
2519 	return err;
2520 }
2521 
2522 /* Initialization functions. */
2523 
2524 static int __init d40_phy_res_init(struct d40_base *base)
2525 {
2526 	int i;
2527 	int num_phy_chans_avail = 0;
2528 	u32 val[2];
2529 	int odd_even_bit = -2;
2530 
2531 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2532 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2533 
2534 	for (i = 0; i < base->num_phy_chans; i++) {
2535 		base->phy_res[i].num = i;
2536 		odd_even_bit += 2 * ((i % 2) == 0);
2537 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2538 			/* Mark security only channels as occupied */
2539 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2540 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2541 		} else {
2542 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2543 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2544 			num_phy_chans_avail++;
2545 		}
2546 		spin_lock_init(&base->phy_res[i].lock);
2547 	}
2548 
2549 	/* Mark disabled channels as occupied */
2550 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2551 		int chan = base->plat_data->disabled_channels[i];
2552 
2553 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2554 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2555 		num_phy_chans_avail--;
2556 	}
2557 
2558 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2559 		 num_phy_chans_avail, base->num_phy_chans);
2560 
2561 	/* Verify settings extended vs standard */
2562 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2563 
2564 	for (i = 0; i < base->num_phy_chans; i++) {
2565 
2566 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2567 		    (val[0] & 0x3) != 1)
2568 			dev_info(base->dev,
2569 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2570 				 __func__, i, val[0] & 0x3);
2571 
2572 		val[0] = val[0] >> 2;
2573 	}
2574 
2575 	return num_phy_chans_avail;
2576 }
2577 
2578 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2579 {
2580 	struct stedma40_platform_data *plat_data;
2581 	struct clk *clk = NULL;
2582 	void __iomem *virtbase = NULL;
2583 	struct resource *res = NULL;
2584 	struct d40_base *base = NULL;
2585 	int num_log_chans = 0;
2586 	int num_phy_chans;
2587 	int i;
2588 	u32 pid;
2589 	u32 cid;
2590 	u8 rev;
2591 
2592 	clk = clk_get(&pdev->dev, NULL);
2593 
2594 	if (IS_ERR(clk)) {
2595 		d40_err(&pdev->dev, "No matching clock found\n");
2596 		goto failure;
2597 	}
2598 
2599 	clk_enable(clk);
2600 
2601 	/* Get IO for DMAC base address */
2602 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2603 	if (!res)
2604 		goto failure;
2605 
2606 	if (request_mem_region(res->start, resource_size(res),
2607 			       D40_NAME " I/O base") == NULL)
2608 		goto failure;
2609 
2610 	virtbase = ioremap(res->start, resource_size(res));
2611 	if (!virtbase)
2612 		goto failure;
2613 
2614 	/* This is just a regular AMBA PrimeCell ID actually */
2615 	for (pid = 0, i = 0; i < 4; i++)
2616 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2617 			& 255) << (i * 8);
2618 	for (cid = 0, i = 0; i < 4; i++)
2619 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2620 			& 255) << (i * 8);
2621 
2622 	if (cid != AMBA_CID) {
2623 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2624 		goto failure;
2625 	}
2626 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2627 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2628 			AMBA_MANF_BITS(pid),
2629 			AMBA_VENDOR_ST);
2630 		goto failure;
2631 	}
2632 	/*
2633 	 * HW revision:
2634 	 * DB8500ed has revision 0
2635 	 * ? has revision 1
2636 	 * DB8500v1 has revision 2
2637 	 * DB8500v2 has revision 3
2638 	 */
2639 	rev = AMBA_REV_BITS(pid);
2640 
2641 	/* The number of physical channels on this HW */
2642 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2643 
2644 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2645 		 rev, res->start);
2646 
2647 	plat_data = pdev->dev.platform_data;
2648 
2649 	/* Count the number of logical channels in use */
2650 	for (i = 0; i < plat_data->dev_len; i++)
2651 		if (plat_data->dev_rx[i] != 0)
2652 			num_log_chans++;
2653 
2654 	for (i = 0; i < plat_data->dev_len; i++)
2655 		if (plat_data->dev_tx[i] != 0)
2656 			num_log_chans++;
2657 
2658 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2659 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2660 		       sizeof(struct d40_chan), GFP_KERNEL);
2661 
2662 	if (base == NULL) {
2663 		d40_err(&pdev->dev, "Out of memory\n");
2664 		goto failure;
2665 	}
2666 
2667 	base->rev = rev;
2668 	base->clk = clk;
2669 	base->num_phy_chans = num_phy_chans;
2670 	base->num_log_chans = num_log_chans;
2671 	base->phy_start = res->start;
2672 	base->phy_size = resource_size(res);
2673 	base->virtbase = virtbase;
2674 	base->plat_data = plat_data;
2675 	base->dev = &pdev->dev;
2676 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2677 	base->log_chans = &base->phy_chans[num_phy_chans];
2678 
2679 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2680 				GFP_KERNEL);
2681 	if (!base->phy_res)
2682 		goto failure;
2683 
2684 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2685 					 sizeof(struct d40_chan *),
2686 					 GFP_KERNEL);
2687 	if (!base->lookup_phy_chans)
2688 		goto failure;
2689 
2690 	if (num_log_chans + plat_data->memcpy_len) {
2691 		/*
2692 		 * The max number of logical channels are event lines for all
2693 		 * src devices and dst devices
2694 		 */
2695 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2696 						 sizeof(struct d40_chan *),
2697 						 GFP_KERNEL);
2698 		if (!base->lookup_log_chans)
2699 			goto failure;
2700 	}
2701 
2702 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2703 					    sizeof(struct d40_desc *) *
2704 					    D40_LCLA_LINK_PER_EVENT_GRP,
2705 					    GFP_KERNEL);
2706 	if (!base->lcla_pool.alloc_map)
2707 		goto failure;
2708 
2709 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2710 					    0, SLAB_HWCACHE_ALIGN,
2711 					    NULL);
2712 	if (base->desc_slab == NULL)
2713 		goto failure;
2714 
2715 	return base;
2716 
2717 failure:
2718 	if (!IS_ERR(clk)) {
2719 		clk_disable(clk);
2720 		clk_put(clk);
2721 	}
2722 	if (virtbase)
2723 		iounmap(virtbase);
2724 	if (res)
2725 		release_mem_region(res->start,
2726 				   resource_size(res));
2727 	if (virtbase)
2728 		iounmap(virtbase);
2729 
2730 	if (base) {
2731 		kfree(base->lcla_pool.alloc_map);
2732 		kfree(base->lookup_log_chans);
2733 		kfree(base->lookup_phy_chans);
2734 		kfree(base->phy_res);
2735 		kfree(base);
2736 	}
2737 
2738 	return NULL;
2739 }
2740 
2741 static void __init d40_hw_init(struct d40_base *base)
2742 {
2743 
2744 	static const struct d40_reg_val dma_init_reg[] = {
2745 		/* Clock every part of the DMA block from start */
2746 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2747 
2748 		/* Interrupts on all logical channels */
2749 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2750 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2751 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2752 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2753 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2754 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2755 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2756 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2757 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2758 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2759 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2760 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2761 	};
2762 	int i;
2763 	u32 prmseo[2] = {0, 0};
2764 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2765 	u32 pcmis = 0;
2766 	u32 pcicr = 0;
2767 
2768 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2769 		writel(dma_init_reg[i].val,
2770 		       base->virtbase + dma_init_reg[i].reg);
2771 
2772 	/* Configure all our dma channels to default settings */
2773 	for (i = 0; i < base->num_phy_chans; i++) {
2774 
2775 		activeo[i % 2] = activeo[i % 2] << 2;
2776 
2777 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2778 		    == D40_ALLOC_PHY) {
2779 			activeo[i % 2] |= 3;
2780 			continue;
2781 		}
2782 
2783 		/* Enable interrupt # */
2784 		pcmis = (pcmis << 1) | 1;
2785 
2786 		/* Clear interrupt # */
2787 		pcicr = (pcicr << 1) | 1;
2788 
2789 		/* Set channel to physical mode */
2790 		prmseo[i % 2] = prmseo[i % 2] << 2;
2791 		prmseo[i % 2] |= 1;
2792 
2793 	}
2794 
2795 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2796 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2797 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2798 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2799 
2800 	/* Write which interrupt to enable */
2801 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2802 
2803 	/* Write which interrupt to clear */
2804 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2805 
2806 }
2807 
2808 static int __init d40_lcla_allocate(struct d40_base *base)
2809 {
2810 	struct d40_lcla_pool *pool = &base->lcla_pool;
2811 	unsigned long *page_list;
2812 	int i, j;
2813 	int ret = 0;
2814 
2815 	/*
2816 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2817 	 * To full fill this hardware requirement without wasting 256 kb
2818 	 * we allocate pages until we get an aligned one.
2819 	 */
2820 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2821 			    GFP_KERNEL);
2822 
2823 	if (!page_list) {
2824 		ret = -ENOMEM;
2825 		goto failure;
2826 	}
2827 
2828 	/* Calculating how many pages that are required */
2829 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2830 
2831 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2832 		page_list[i] = __get_free_pages(GFP_KERNEL,
2833 						base->lcla_pool.pages);
2834 		if (!page_list[i]) {
2835 
2836 			d40_err(base->dev, "Failed to allocate %d pages.\n",
2837 				base->lcla_pool.pages);
2838 
2839 			for (j = 0; j < i; j++)
2840 				free_pages(page_list[j], base->lcla_pool.pages);
2841 			goto failure;
2842 		}
2843 
2844 		if ((virt_to_phys((void *)page_list[i]) &
2845 		     (LCLA_ALIGNMENT - 1)) == 0)
2846 			break;
2847 	}
2848 
2849 	for (j = 0; j < i; j++)
2850 		free_pages(page_list[j], base->lcla_pool.pages);
2851 
2852 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2853 		base->lcla_pool.base = (void *)page_list[i];
2854 	} else {
2855 		/*
2856 		 * After many attempts and no succees with finding the correct
2857 		 * alignment, try with allocating a big buffer.
2858 		 */
2859 		dev_warn(base->dev,
2860 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2861 			 __func__, base->lcla_pool.pages);
2862 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2863 							 base->num_phy_chans +
2864 							 LCLA_ALIGNMENT,
2865 							 GFP_KERNEL);
2866 		if (!base->lcla_pool.base_unaligned) {
2867 			ret = -ENOMEM;
2868 			goto failure;
2869 		}
2870 
2871 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2872 						 LCLA_ALIGNMENT);
2873 	}
2874 
2875 	pool->dma_addr = dma_map_single(base->dev, pool->base,
2876 					SZ_1K * base->num_phy_chans,
2877 					DMA_TO_DEVICE);
2878 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
2879 		pool->dma_addr = 0;
2880 		ret = -ENOMEM;
2881 		goto failure;
2882 	}
2883 
2884 	writel(virt_to_phys(base->lcla_pool.base),
2885 	       base->virtbase + D40_DREG_LCLA);
2886 failure:
2887 	kfree(page_list);
2888 	return ret;
2889 }
2890 
2891 static int __init d40_probe(struct platform_device *pdev)
2892 {
2893 	int err;
2894 	int ret = -ENOENT;
2895 	struct d40_base *base;
2896 	struct resource *res = NULL;
2897 	int num_reserved_chans;
2898 	u32 val;
2899 
2900 	base = d40_hw_detect_init(pdev);
2901 
2902 	if (!base)
2903 		goto failure;
2904 
2905 	num_reserved_chans = d40_phy_res_init(base);
2906 
2907 	platform_set_drvdata(pdev, base);
2908 
2909 	spin_lock_init(&base->interrupt_lock);
2910 	spin_lock_init(&base->execmd_lock);
2911 
2912 	/* Get IO for logical channel parameter address */
2913 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2914 	if (!res) {
2915 		ret = -ENOENT;
2916 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2917 		goto failure;
2918 	}
2919 	base->lcpa_size = resource_size(res);
2920 	base->phy_lcpa = res->start;
2921 
2922 	if (request_mem_region(res->start, resource_size(res),
2923 			       D40_NAME " I/O lcpa") == NULL) {
2924 		ret = -EBUSY;
2925 		d40_err(&pdev->dev,
2926 			"Failed to request LCPA region 0x%x-0x%x\n",
2927 			res->start, res->end);
2928 		goto failure;
2929 	}
2930 
2931 	/* We make use of ESRAM memory for this. */
2932 	val = readl(base->virtbase + D40_DREG_LCPA);
2933 	if (res->start != val && val != 0) {
2934 		dev_warn(&pdev->dev,
2935 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2936 			 __func__, val, res->start);
2937 	} else
2938 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2939 
2940 	base->lcpa_base = ioremap(res->start, resource_size(res));
2941 	if (!base->lcpa_base) {
2942 		ret = -ENOMEM;
2943 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2944 		goto failure;
2945 	}
2946 
2947 	ret = d40_lcla_allocate(base);
2948 	if (ret) {
2949 		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2950 		goto failure;
2951 	}
2952 
2953 	spin_lock_init(&base->lcla_pool.lock);
2954 
2955 	base->irq = platform_get_irq(pdev, 0);
2956 
2957 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2958 	if (ret) {
2959 		d40_err(&pdev->dev, "No IRQ defined\n");
2960 		goto failure;
2961 	}
2962 
2963 	err = d40_dmaengine_init(base, num_reserved_chans);
2964 	if (err)
2965 		goto failure;
2966 
2967 	d40_hw_init(base);
2968 
2969 	dev_info(base->dev, "initialized\n");
2970 	return 0;
2971 
2972 failure:
2973 	if (base) {
2974 		if (base->desc_slab)
2975 			kmem_cache_destroy(base->desc_slab);
2976 		if (base->virtbase)
2977 			iounmap(base->virtbase);
2978 
2979 		if (base->lcla_pool.dma_addr)
2980 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2981 					 SZ_1K * base->num_phy_chans,
2982 					 DMA_TO_DEVICE);
2983 
2984 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2985 			free_pages((unsigned long)base->lcla_pool.base,
2986 				   base->lcla_pool.pages);
2987 
2988 		kfree(base->lcla_pool.base_unaligned);
2989 
2990 		if (base->phy_lcpa)
2991 			release_mem_region(base->phy_lcpa,
2992 					   base->lcpa_size);
2993 		if (base->phy_start)
2994 			release_mem_region(base->phy_start,
2995 					   base->phy_size);
2996 		if (base->clk) {
2997 			clk_disable(base->clk);
2998 			clk_put(base->clk);
2999 		}
3000 
3001 		kfree(base->lcla_pool.alloc_map);
3002 		kfree(base->lookup_log_chans);
3003 		kfree(base->lookup_phy_chans);
3004 		kfree(base->phy_res);
3005 		kfree(base);
3006 	}
3007 
3008 	d40_err(&pdev->dev, "probe failed\n");
3009 	return ret;
3010 }
3011 
3012 static struct platform_driver d40_driver = {
3013 	.driver = {
3014 		.owner = THIS_MODULE,
3015 		.name  = D40_NAME,
3016 	},
3017 };
3018 
3019 static int __init stedma40_init(void)
3020 {
3021 	return platform_driver_probe(&d40_driver, d40_probe);
3022 }
3023 subsys_initcall(stedma40_init);
3024