xref: /linux/drivers/dma/ste_dma40.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * driver/dma/ste_dma40.c
3  *
4  * Copyright (C) ST-Ericsson 2007-2010
5  * License terms: GNU General Public License (GPL) version 2
6  * Author: Per Friden <per.friden@stericsson.com>
7  * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8  *
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 
18 #include <plat/ste_dma40.h>
19 
20 #include "ste_dma40_ll.h"
21 
22 #define D40_NAME "dma40"
23 
24 #define D40_PHY_CHAN -1
25 
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29 
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32 
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
35 /* Attempts before giving up to trying to get pages that are aligned */
36 #define MAX_LCLA_ALLOC_ATTEMPTS 256
37 
38 /* Bit markings for allocation map */
39 #define D40_ALLOC_FREE		(1 << 31)
40 #define D40_ALLOC_PHY		(1 << 30)
41 #define D40_ALLOC_LOG_FREE	0
42 
43 /* Hardware designer of the block */
44 #define D40_PERIPHID2_DESIGNER 0x8
45 
46 /**
47  * enum 40_command - The different commands and/or statuses.
48  *
49  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53  */
54 enum d40_command {
55 	D40_DMA_STOP		= 0,
56 	D40_DMA_RUN		= 1,
57 	D40_DMA_SUSPEND_REQ	= 2,
58 	D40_DMA_SUSPENDED	= 3
59 };
60 
61 /**
62  * struct d40_lli_pool - Structure for keeping LLIs in memory
63  *
64  * @base: Pointer to memory area when the pre_alloc_lli's are not large
65  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66  * pre_alloc_lli is used.
67  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69  * one buffer to one buffer.
70  */
71 struct d40_lli_pool {
72 	void	*base;
73 	int	 size;
74 	/* Space for dst and src, plus an extra for padding */
75 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
76 };
77 
78 /**
79  * struct d40_desc - A descriptor is one DMA job.
80  *
81  * @lli_phy: LLI settings for physical channel. Both src and dst=
82  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83  * lli_len equals one.
84  * @lli_log: Same as above but for logical channels.
85  * @lli_pool: The pool with two entries pre-allocated.
86  * @lli_len: Number of llis of current descriptor.
87  * @lli_count: Number of transfered llis.
88  * @lli_tx_len: Max number of LLIs per transfer, there can be
89  * many transfer for one descriptor.
90  * @txd: DMA engine struct. Used for among other things for communication
91  * during a transfer.
92  * @node: List entry.
93  * @dir: The transfer direction of this job.
94  * @is_in_client_list: true if the client owns this descriptor.
95  *
96  * This descriptor is used for both logical and physical transfers.
97  */
98 
99 struct d40_desc {
100 	/* LLI physical */
101 	struct d40_phy_lli_bidir	 lli_phy;
102 	/* LLI logical */
103 	struct d40_log_lli_bidir	 lli_log;
104 
105 	struct d40_lli_pool		 lli_pool;
106 	int				 lli_len;
107 	int				 lli_count;
108 	u32				 lli_tx_len;
109 
110 	struct dma_async_tx_descriptor	 txd;
111 	struct list_head		 node;
112 
113 	enum dma_data_direction		 dir;
114 	bool				 is_in_client_list;
115 };
116 
117 /**
118  * struct d40_lcla_pool - LCLA pool settings and data.
119  *
120  * @base: The virtual address of LCLA. 18 bit aligned.
121  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122  * This pointer is only there for clean-up on error.
123  * @pages: The number of pages needed for all physical channels.
124  * Only used later for clean-up on error
125  * @lock: Lock to protect the content in this struct.
126  * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
127  * @num_blocks: The number of entries of alloc_map. Equals to the
128  * number of physical channels.
129  */
130 struct d40_lcla_pool {
131 	void		*base;
132 	void		*base_unaligned;
133 	int		 pages;
134 	spinlock_t	 lock;
135 	u32		*alloc_map;
136 	int		 num_blocks;
137 };
138 
139 /**
140  * struct d40_phy_res - struct for handling eventlines mapped to physical
141  * channels.
142  *
143  * @lock: A lock protection this entity.
144  * @num: The physical channel number of this entity.
145  * @allocated_src: Bit mapped to show which src event line's are mapped to
146  * this physical channel. Can also be free or physically allocated.
147  * @allocated_dst: Same as for src but is dst.
148  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149  * event line number. Both allocated_src and allocated_dst can not be
150  * allocated to a physical channel, since the interrupt handler has then
151  * no way of figure out which one the interrupt belongs to.
152  */
153 struct d40_phy_res {
154 	spinlock_t lock;
155 	int	   num;
156 	u32	   allocated_src;
157 	u32	   allocated_dst;
158 };
159 
160 struct d40_base;
161 
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  *
188  * This struct can either "be" a logical or a physical channel.
189  */
190 struct d40_chan {
191 	spinlock_t			 lock;
192 	int				 log_num;
193 	/* ID of the most recent completed transfer */
194 	int				 completed;
195 	int				 pending_tx;
196 	bool				 busy;
197 	struct d40_phy_res		*phy_chan;
198 	struct dma_chan			 chan;
199 	struct tasklet_struct		 tasklet;
200 	struct list_head		 client;
201 	struct list_head		 active;
202 	struct list_head		 queue;
203 	struct stedma40_chan_cfg	 dma_cfg;
204 	struct d40_base			*base;
205 	/* Default register configurations */
206 	u32				 src_def_cfg;
207 	u32				 dst_def_cfg;
208 	struct d40_def_lcsp		 log_def;
209 	struct d40_lcla_elem		 lcla;
210 	struct d40_log_lli_full		*lcpa;
211 	/* Runtime reconfiguration */
212 	dma_addr_t			runtime_addr;
213 	enum dma_data_direction		runtime_direction;
214 };
215 
216 /**
217  * struct d40_base - The big global struct, one for each probe'd instance.
218  *
219  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220  * @execmd_lock: Lock for execute command usage since several channels share
221  * the same physical register.
222  * @dev: The device structure.
223  * @virtbase: The virtual base address of the DMA's register.
224  * @rev: silicon revision detected.
225  * @clk: Pointer to the DMA clock structure.
226  * @phy_start: Physical memory start of the DMA registers.
227  * @phy_size: Size of the DMA register map.
228  * @irq: The IRQ number.
229  * @num_phy_chans: The number of physical channels. Read from HW. This
230  * is the number of available channels for this driver, not counting "Secure
231  * mode" allocated physical channels.
232  * @num_log_chans: The number of logical channels. Calculated from
233  * num_phy_chans.
234  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235  * @dma_slave: dma_device channels that can do only do slave transfers.
236  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237  * @phy_chans: Room for all possible physical channels in system.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253 	spinlock_t			 interrupt_lock;
254 	spinlock_t			 execmd_lock;
255 	struct device			 *dev;
256 	void __iomem			 *virtbase;
257 	u8				  rev:4;
258 	struct clk			 *clk;
259 	phys_addr_t			  phy_start;
260 	resource_size_t			  phy_size;
261 	int				  irq;
262 	int				  num_phy_chans;
263 	int				  num_log_chans;
264 	struct dma_device		  dma_both;
265 	struct dma_device		  dma_slave;
266 	struct dma_device		  dma_memcpy;
267 	struct d40_chan			 *phy_chans;
268 	struct d40_chan			 *log_chans;
269 	struct d40_chan			**lookup_log_chans;
270 	struct d40_chan			**lookup_phy_chans;
271 	struct stedma40_platform_data	 *plat_data;
272 	/* Physical half channels */
273 	struct d40_phy_res		 *phy_res;
274 	struct d40_lcla_pool		  lcla_pool;
275 	void				 *lcpa_base;
276 	dma_addr_t			  phy_lcpa;
277 	resource_size_t			  lcpa_size;
278 	struct kmem_cache		 *desc_slab;
279 };
280 
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291 	u32 src;
292 	u32 clr;
293 	bool is_error;
294 	int offset;
295 };
296 
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304 	unsigned int reg;
305 	unsigned int val;
306 };
307 
308 static int d40_pool_lli_alloc(struct d40_desc *d40d,
309 			      int lli_len, bool is_log)
310 {
311 	u32 align;
312 	void *base;
313 
314 	if (is_log)
315 		align = sizeof(struct d40_log_lli);
316 	else
317 		align = sizeof(struct d40_phy_lli);
318 
319 	if (lli_len == 1) {
320 		base = d40d->lli_pool.pre_alloc_lli;
321 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
322 		d40d->lli_pool.base = NULL;
323 	} else {
324 		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
325 
326 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
327 		d40d->lli_pool.base = base;
328 
329 		if (d40d->lli_pool.base == NULL)
330 			return -ENOMEM;
331 	}
332 
333 	if (is_log) {
334 		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
335 					      align);
336 		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
337 					      align);
338 	} else {
339 		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
340 					      align);
341 		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
342 					      align);
343 
344 		d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
345 		d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
346 	}
347 
348 	return 0;
349 }
350 
351 static void d40_pool_lli_free(struct d40_desc *d40d)
352 {
353 	kfree(d40d->lli_pool.base);
354 	d40d->lli_pool.base = NULL;
355 	d40d->lli_pool.size = 0;
356 	d40d->lli_log.src = NULL;
357 	d40d->lli_log.dst = NULL;
358 	d40d->lli_phy.src = NULL;
359 	d40d->lli_phy.dst = NULL;
360 	d40d->lli_phy.src_addr = 0;
361 	d40d->lli_phy.dst_addr = 0;
362 }
363 
364 static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
365 				      struct d40_desc *desc)
366 {
367 	dma_cookie_t cookie = d40c->chan.cookie;
368 
369 	if (++cookie < 0)
370 		cookie = 1;
371 
372 	d40c->chan.cookie = cookie;
373 	desc->txd.cookie = cookie;
374 
375 	return cookie;
376 }
377 
378 static void d40_desc_remove(struct d40_desc *d40d)
379 {
380 	list_del(&d40d->node);
381 }
382 
383 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
384 {
385 	struct d40_desc *d;
386 	struct d40_desc *_d;
387 
388 	if (!list_empty(&d40c->client)) {
389 		list_for_each_entry_safe(d, _d, &d40c->client, node)
390 			if (async_tx_test_ack(&d->txd)) {
391 				d40_pool_lli_free(d);
392 				d40_desc_remove(d);
393 				break;
394 			}
395 	} else {
396 		d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
397 		if (d != NULL) {
398 			memset(d, 0, sizeof(struct d40_desc));
399 			INIT_LIST_HEAD(&d->node);
400 		}
401 	}
402 	return d;
403 }
404 
405 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
406 {
407 	kmem_cache_free(d40c->base->desc_slab, d40d);
408 }
409 
410 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
411 {
412 	list_add_tail(&desc->node, &d40c->active);
413 }
414 
415 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
416 {
417 	struct d40_desc *d;
418 
419 	if (list_empty(&d40c->active))
420 		return NULL;
421 
422 	d = list_first_entry(&d40c->active,
423 			     struct d40_desc,
424 			     node);
425 	return d;
426 }
427 
428 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
429 {
430 	list_add_tail(&desc->node, &d40c->queue);
431 }
432 
433 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
434 {
435 	struct d40_desc *d;
436 
437 	if (list_empty(&d40c->queue))
438 		return NULL;
439 
440 	d = list_first_entry(&d40c->queue,
441 			     struct d40_desc,
442 			     node);
443 	return d;
444 }
445 
446 /* Support functions for logical channels */
447 
448 static int d40_lcla_id_get(struct d40_chan *d40c)
449 {
450 	int src_id = 0;
451 	int dst_id = 0;
452 	struct d40_log_lli *lcla_lidx_base =
453 		d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
454 	int i;
455 	int lli_per_log = d40c->base->plat_data->llis_per_log;
456 	unsigned long flags;
457 
458 	if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
459 		return 0;
460 
461 	if (d40c->base->lcla_pool.num_blocks > 32)
462 		return -EINVAL;
463 
464 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
465 
466 	for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
467 		if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
468 		      (0x1 << i))) {
469 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
470 				(0x1 << i);
471 			break;
472 		}
473 	}
474 	src_id = i;
475 	if (src_id >= d40c->base->lcla_pool.num_blocks)
476 		goto err;
477 
478 	for (; i < d40c->base->lcla_pool.num_blocks; i++) {
479 		if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
480 		      (0x1 << i))) {
481 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
482 				(0x1 << i);
483 			break;
484 		}
485 	}
486 
487 	dst_id = i;
488 	if (dst_id == src_id)
489 		goto err;
490 
491 	d40c->lcla.src_id = src_id;
492 	d40c->lcla.dst_id = dst_id;
493 	d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
494 	d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
495 
496 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
497 	return 0;
498 err:
499 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
500 	return -EINVAL;
501 }
502 
503 
504 static int d40_channel_execute_command(struct d40_chan *d40c,
505 				       enum d40_command command)
506 {
507 	int status, i;
508 	void __iomem *active_reg;
509 	int ret = 0;
510 	unsigned long flags;
511 	u32 wmask;
512 
513 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
514 
515 	if (d40c->phy_chan->num % 2 == 0)
516 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
517 	else
518 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
519 
520 	if (command == D40_DMA_SUSPEND_REQ) {
521 		status = (readl(active_reg) &
522 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
523 			D40_CHAN_POS(d40c->phy_chan->num);
524 
525 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
526 			goto done;
527 	}
528 
529 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
530 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
531 	       active_reg);
532 
533 	if (command == D40_DMA_SUSPEND_REQ) {
534 
535 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
536 			status = (readl(active_reg) &
537 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
538 				D40_CHAN_POS(d40c->phy_chan->num);
539 
540 			cpu_relax();
541 			/*
542 			 * Reduce the number of bus accesses while
543 			 * waiting for the DMA to suspend.
544 			 */
545 			udelay(3);
546 
547 			if (status == D40_DMA_STOP ||
548 			    status == D40_DMA_SUSPENDED)
549 				break;
550 		}
551 
552 		if (i == D40_SUSPEND_MAX_IT) {
553 			dev_err(&d40c->chan.dev->device,
554 				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
555 				__func__, d40c->phy_chan->num, d40c->log_num,
556 				status);
557 			dump_stack();
558 			ret = -EBUSY;
559 		}
560 
561 	}
562 done:
563 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
564 	return ret;
565 }
566 
567 static void d40_term_all(struct d40_chan *d40c)
568 {
569 	struct d40_desc *d40d;
570 	unsigned long flags;
571 
572 	/* Release active descriptors */
573 	while ((d40d = d40_first_active_get(d40c))) {
574 		d40_desc_remove(d40d);
575 
576 		/* Return desc to free-list */
577 		d40_desc_free(d40c, d40d);
578 	}
579 
580 	/* Release queued descriptors waiting for transfer */
581 	while ((d40d = d40_first_queued(d40c))) {
582 		d40_desc_remove(d40d);
583 
584 		/* Return desc to free-list */
585 		d40_desc_free(d40c, d40d);
586 	}
587 
588 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
589 
590 	d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
591 		(~(0x1 << d40c->lcla.dst_id));
592 	d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
593 		(~(0x1 << d40c->lcla.src_id));
594 
595 	d40c->lcla.src_id = -1;
596 	d40c->lcla.dst_id = -1;
597 
598 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
599 
600 	d40c->pending_tx = 0;
601 	d40c->busy = false;
602 }
603 
604 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
605 {
606 	u32 val;
607 	unsigned long flags;
608 
609 	/* Notice, that disable requires the physical channel to be stopped */
610 	if (do_enable)
611 		val = D40_ACTIVATE_EVENTLINE;
612 	else
613 		val = D40_DEACTIVATE_EVENTLINE;
614 
615 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
616 
617 	/* Enable event line connected to device (or memcpy) */
618 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
619 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
620 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
621 
622 		writel((val << D40_EVENTLINE_POS(event)) |
623 		       ~D40_EVENTLINE_MASK(event),
624 		       d40c->base->virtbase + D40_DREG_PCBASE +
625 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
626 		       D40_CHAN_REG_SSLNK);
627 	}
628 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
629 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
630 
631 		writel((val << D40_EVENTLINE_POS(event)) |
632 		       ~D40_EVENTLINE_MASK(event),
633 		       d40c->base->virtbase + D40_DREG_PCBASE +
634 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
635 		       D40_CHAN_REG_SDLNK);
636 	}
637 
638 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
639 }
640 
641 static u32 d40_chan_has_events(struct d40_chan *d40c)
642 {
643 	u32 val = 0;
644 
645 	/* If SSLNK or SDLNK is zero all events are disabled */
646 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
647 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
648 		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
649 			    d40c->phy_chan->num * D40_DREG_PCDELTA +
650 			    D40_CHAN_REG_SSLNK);
651 
652 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
653 		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
654 			    d40c->phy_chan->num * D40_DREG_PCDELTA +
655 			    D40_CHAN_REG_SDLNK);
656 	return val;
657 }
658 
659 static void d40_config_enable_lidx(struct d40_chan *d40c)
660 {
661 	/* Set LIDX for lcla */
662 	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
663 	       D40_SREG_ELEM_LOG_LIDX_MASK,
664 	       d40c->base->virtbase + D40_DREG_PCBASE +
665 	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
666 
667 	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
668 	       D40_SREG_ELEM_LOG_LIDX_MASK,
669 	       d40c->base->virtbase + D40_DREG_PCBASE +
670 	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
671 }
672 
673 static int d40_config_write(struct d40_chan *d40c)
674 {
675 	u32 addr_base;
676 	u32 var;
677 	int res;
678 
679 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
680 	if (res)
681 		return res;
682 
683 	/* Odd addresses are even addresses + 4 */
684 	addr_base = (d40c->phy_chan->num % 2) * 4;
685 	/* Setup channel mode to logical or physical */
686 	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
687 		D40_CHAN_POS(d40c->phy_chan->num);
688 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
689 
690 	/* Setup operational mode option register */
691 	var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
692 	       0x3) << D40_CHAN_POS(d40c->phy_chan->num);
693 
694 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
695 
696 	if (d40c->log_num != D40_PHY_CHAN) {
697 		/* Set default config for CFG reg */
698 		writel(d40c->src_def_cfg,
699 		       d40c->base->virtbase + D40_DREG_PCBASE +
700 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
701 		       D40_CHAN_REG_SSCFG);
702 		writel(d40c->dst_def_cfg,
703 		       d40c->base->virtbase + D40_DREG_PCBASE +
704 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
705 		       D40_CHAN_REG_SDCFG);
706 
707 		d40_config_enable_lidx(d40c);
708 	}
709 	return res;
710 }
711 
712 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
713 {
714 	if (d40d->lli_phy.dst && d40d->lli_phy.src) {
715 		d40_phy_lli_write(d40c->base->virtbase,
716 				  d40c->phy_chan->num,
717 				  d40d->lli_phy.dst,
718 				  d40d->lli_phy.src);
719 	} else if (d40d->lli_log.dst && d40d->lli_log.src) {
720 		struct d40_log_lli *src = d40d->lli_log.src;
721 		struct d40_log_lli *dst = d40d->lli_log.dst;
722 		int s;
723 
724 		src += d40d->lli_count;
725 		dst += d40d->lli_count;
726 		s = d40_log_lli_write(d40c->lcpa,
727 				      d40c->lcla.src, d40c->lcla.dst,
728 				      dst, src,
729 				      d40c->base->plat_data->llis_per_log);
730 
731 		/* If s equals to zero, the job is not linked */
732 		if (s > 0) {
733 			(void) dma_map_single(d40c->base->dev, d40c->lcla.src,
734 					      s * sizeof(struct d40_log_lli),
735 					      DMA_TO_DEVICE);
736 			(void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
737 					      s * sizeof(struct d40_log_lli),
738 					      DMA_TO_DEVICE);
739 		}
740 	}
741 	d40d->lli_count += d40d->lli_tx_len;
742 }
743 
744 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
745 {
746 	struct d40_chan *d40c = container_of(tx->chan,
747 					     struct d40_chan,
748 					     chan);
749 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
750 	unsigned long flags;
751 
752 	spin_lock_irqsave(&d40c->lock, flags);
753 
754 	tx->cookie = d40_assign_cookie(d40c, d40d);
755 
756 	d40_desc_queue(d40c, d40d);
757 
758 	spin_unlock_irqrestore(&d40c->lock, flags);
759 
760 	return tx->cookie;
761 }
762 
763 static int d40_start(struct d40_chan *d40c)
764 {
765 	if (d40c->base->rev == 0) {
766 		int err;
767 
768 		if (d40c->log_num != D40_PHY_CHAN) {
769 			err = d40_channel_execute_command(d40c,
770 							  D40_DMA_SUSPEND_REQ);
771 			if (err)
772 				return err;
773 		}
774 	}
775 
776 	if (d40c->log_num != D40_PHY_CHAN)
777 		d40_config_set_event(d40c, true);
778 
779 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
780 }
781 
782 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
783 {
784 	struct d40_desc *d40d;
785 	int err;
786 
787 	/* Start queued jobs, if any */
788 	d40d = d40_first_queued(d40c);
789 
790 	if (d40d != NULL) {
791 		d40c->busy = true;
792 
793 		/* Remove from queue */
794 		d40_desc_remove(d40d);
795 
796 		/* Add to active queue */
797 		d40_desc_submit(d40c, d40d);
798 
799 		/* Initiate DMA job */
800 		d40_desc_load(d40c, d40d);
801 
802 		/* Start dma job */
803 		err = d40_start(d40c);
804 
805 		if (err)
806 			return NULL;
807 	}
808 
809 	return d40d;
810 }
811 
812 /* called from interrupt context */
813 static void dma_tc_handle(struct d40_chan *d40c)
814 {
815 	struct d40_desc *d40d;
816 
817 	if (!d40c->phy_chan)
818 		return;
819 
820 	/* Get first active entry from list */
821 	d40d = d40_first_active_get(d40c);
822 
823 	if (d40d == NULL)
824 		return;
825 
826 	if (d40d->lli_count < d40d->lli_len) {
827 
828 		d40_desc_load(d40c, d40d);
829 		/* Start dma job */
830 		(void) d40_start(d40c);
831 		return;
832 	}
833 
834 	if (d40_queue_start(d40c) == NULL)
835 		d40c->busy = false;
836 
837 	d40c->pending_tx++;
838 	tasklet_schedule(&d40c->tasklet);
839 
840 }
841 
842 static void dma_tasklet(unsigned long data)
843 {
844 	struct d40_chan *d40c = (struct d40_chan *) data;
845 	struct d40_desc *d40d_fin;
846 	unsigned long flags;
847 	dma_async_tx_callback callback;
848 	void *callback_param;
849 
850 	spin_lock_irqsave(&d40c->lock, flags);
851 
852 	/* Get first active entry from list */
853 	d40d_fin = d40_first_active_get(d40c);
854 
855 	if (d40d_fin == NULL)
856 		goto err;
857 
858 	d40c->completed = d40d_fin->txd.cookie;
859 
860 	/*
861 	 * If terminating a channel pending_tx is set to zero.
862 	 * This prevents any finished active jobs to return to the client.
863 	 */
864 	if (d40c->pending_tx == 0) {
865 		spin_unlock_irqrestore(&d40c->lock, flags);
866 		return;
867 	}
868 
869 	/* Callback to client */
870 	callback = d40d_fin->txd.callback;
871 	callback_param = d40d_fin->txd.callback_param;
872 
873 	if (async_tx_test_ack(&d40d_fin->txd)) {
874 		d40_pool_lli_free(d40d_fin);
875 		d40_desc_remove(d40d_fin);
876 		/* Return desc to free-list */
877 		d40_desc_free(d40c, d40d_fin);
878 	} else {
879 		if (!d40d_fin->is_in_client_list) {
880 			d40_desc_remove(d40d_fin);
881 			list_add_tail(&d40d_fin->node, &d40c->client);
882 			d40d_fin->is_in_client_list = true;
883 		}
884 	}
885 
886 	d40c->pending_tx--;
887 
888 	if (d40c->pending_tx)
889 		tasklet_schedule(&d40c->tasklet);
890 
891 	spin_unlock_irqrestore(&d40c->lock, flags);
892 
893 	if (callback)
894 		callback(callback_param);
895 
896 	return;
897 
898  err:
899 	/* Rescue manouver if receiving double interrupts */
900 	if (d40c->pending_tx > 0)
901 		d40c->pending_tx--;
902 	spin_unlock_irqrestore(&d40c->lock, flags);
903 }
904 
905 static irqreturn_t d40_handle_interrupt(int irq, void *data)
906 {
907 	static const struct d40_interrupt_lookup il[] = {
908 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
909 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
910 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
911 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
912 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
913 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
914 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
915 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
916 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
917 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
918 	};
919 
920 	int i;
921 	u32 regs[ARRAY_SIZE(il)];
922 	u32 tmp;
923 	u32 idx;
924 	u32 row;
925 	long chan = -1;
926 	struct d40_chan *d40c;
927 	unsigned long flags;
928 	struct d40_base *base = data;
929 
930 	spin_lock_irqsave(&base->interrupt_lock, flags);
931 
932 	/* Read interrupt status of both logical and physical channels */
933 	for (i = 0; i < ARRAY_SIZE(il); i++)
934 		regs[i] = readl(base->virtbase + il[i].src);
935 
936 	for (;;) {
937 
938 		chan = find_next_bit((unsigned long *)regs,
939 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
940 
941 		/* No more set bits found? */
942 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
943 			break;
944 
945 		row = chan / BITS_PER_LONG;
946 		idx = chan & (BITS_PER_LONG - 1);
947 
948 		/* ACK interrupt */
949 		tmp = readl(base->virtbase + il[row].clr);
950 		tmp |= 1 << idx;
951 		writel(tmp, base->virtbase + il[row].clr);
952 
953 		if (il[row].offset == D40_PHY_CHAN)
954 			d40c = base->lookup_phy_chans[idx];
955 		else
956 			d40c = base->lookup_log_chans[il[row].offset + idx];
957 		spin_lock(&d40c->lock);
958 
959 		if (!il[row].is_error)
960 			dma_tc_handle(d40c);
961 		else
962 			dev_err(base->dev,
963 				"[%s] IRQ chan: %ld offset %d idx %d\n",
964 				__func__, chan, il[row].offset, idx);
965 
966 		spin_unlock(&d40c->lock);
967 	}
968 
969 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
970 
971 	return IRQ_HANDLED;
972 }
973 
974 
975 static int d40_validate_conf(struct d40_chan *d40c,
976 			     struct stedma40_chan_cfg *conf)
977 {
978 	int res = 0;
979 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
980 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
981 	bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
982 		== STEDMA40_CHANNEL_IN_LOG_MODE;
983 
984 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
985 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
986 		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
987 			__func__);
988 		res = -EINVAL;
989 	}
990 
991 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
992 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
993 		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
994 			__func__);
995 		res = -EINVAL;
996 	}
997 
998 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
999 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1000 		dev_err(&d40c->chan.dev->device,
1001 			"[%s] No event line\n", __func__);
1002 		res = -EINVAL;
1003 	}
1004 
1005 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1006 	    (src_event_group != dst_event_group)) {
1007 		dev_err(&d40c->chan.dev->device,
1008 			"[%s] Invalid event group\n", __func__);
1009 		res = -EINVAL;
1010 	}
1011 
1012 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1013 		/*
1014 		 * DMAC HW supports it. Will be added to this driver,
1015 		 * in case any dma client requires it.
1016 		 */
1017 		dev_err(&d40c->chan.dev->device,
1018 			"[%s] periph to periph not supported\n",
1019 			__func__);
1020 		res = -EINVAL;
1021 	}
1022 
1023 	return res;
1024 }
1025 
1026 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1027 			       int log_event_line, bool is_log)
1028 {
1029 	unsigned long flags;
1030 	spin_lock_irqsave(&phy->lock, flags);
1031 	if (!is_log) {
1032 		/* Physical interrupts are masked per physical full channel */
1033 		if (phy->allocated_src == D40_ALLOC_FREE &&
1034 		    phy->allocated_dst == D40_ALLOC_FREE) {
1035 			phy->allocated_dst = D40_ALLOC_PHY;
1036 			phy->allocated_src = D40_ALLOC_PHY;
1037 			goto found;
1038 		} else
1039 			goto not_found;
1040 	}
1041 
1042 	/* Logical channel */
1043 	if (is_src) {
1044 		if (phy->allocated_src == D40_ALLOC_PHY)
1045 			goto not_found;
1046 
1047 		if (phy->allocated_src == D40_ALLOC_FREE)
1048 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1049 
1050 		if (!(phy->allocated_src & (1 << log_event_line))) {
1051 			phy->allocated_src |= 1 << log_event_line;
1052 			goto found;
1053 		} else
1054 			goto not_found;
1055 	} else {
1056 		if (phy->allocated_dst == D40_ALLOC_PHY)
1057 			goto not_found;
1058 
1059 		if (phy->allocated_dst == D40_ALLOC_FREE)
1060 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1061 
1062 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1063 			phy->allocated_dst |= 1 << log_event_line;
1064 			goto found;
1065 		} else
1066 			goto not_found;
1067 	}
1068 
1069 not_found:
1070 	spin_unlock_irqrestore(&phy->lock, flags);
1071 	return false;
1072 found:
1073 	spin_unlock_irqrestore(&phy->lock, flags);
1074 	return true;
1075 }
1076 
1077 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1078 			       int log_event_line)
1079 {
1080 	unsigned long flags;
1081 	bool is_free = false;
1082 
1083 	spin_lock_irqsave(&phy->lock, flags);
1084 	if (!log_event_line) {
1085 		/* Physical interrupts are masked per physical full channel */
1086 		phy->allocated_dst = D40_ALLOC_FREE;
1087 		phy->allocated_src = D40_ALLOC_FREE;
1088 		is_free = true;
1089 		goto out;
1090 	}
1091 
1092 	/* Logical channel */
1093 	if (is_src) {
1094 		phy->allocated_src &= ~(1 << log_event_line);
1095 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1096 			phy->allocated_src = D40_ALLOC_FREE;
1097 	} else {
1098 		phy->allocated_dst &= ~(1 << log_event_line);
1099 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1100 			phy->allocated_dst = D40_ALLOC_FREE;
1101 	}
1102 
1103 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1104 		   D40_ALLOC_FREE);
1105 
1106 out:
1107 	spin_unlock_irqrestore(&phy->lock, flags);
1108 
1109 	return is_free;
1110 }
1111 
1112 static int d40_allocate_channel(struct d40_chan *d40c)
1113 {
1114 	int dev_type;
1115 	int event_group;
1116 	int event_line;
1117 	struct d40_phy_res *phys;
1118 	int i;
1119 	int j;
1120 	int log_num;
1121 	bool is_src;
1122 	bool is_log = (d40c->dma_cfg.channel_type &
1123 		       STEDMA40_CHANNEL_IN_OPER_MODE)
1124 		== STEDMA40_CHANNEL_IN_LOG_MODE;
1125 
1126 
1127 	phys = d40c->base->phy_res;
1128 
1129 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1130 		dev_type = d40c->dma_cfg.src_dev_type;
1131 		log_num = 2 * dev_type;
1132 		is_src = true;
1133 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1134 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1135 		/* dst event lines are used for logical memcpy */
1136 		dev_type = d40c->dma_cfg.dst_dev_type;
1137 		log_num = 2 * dev_type + 1;
1138 		is_src = false;
1139 	} else
1140 		return -EINVAL;
1141 
1142 	event_group = D40_TYPE_TO_GROUP(dev_type);
1143 	event_line = D40_TYPE_TO_EVENT(dev_type);
1144 
1145 	if (!is_log) {
1146 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1147 			/* Find physical half channel */
1148 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1149 
1150 				if (d40_alloc_mask_set(&phys[i], is_src,
1151 						       0, is_log))
1152 					goto found_phy;
1153 			}
1154 		} else
1155 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1156 				int phy_num = j  + event_group * 2;
1157 				for (i = phy_num; i < phy_num + 2; i++) {
1158 					if (d40_alloc_mask_set(&phys[i],
1159 							       is_src,
1160 							       0,
1161 							       is_log))
1162 						goto found_phy;
1163 				}
1164 			}
1165 		return -EINVAL;
1166 found_phy:
1167 		d40c->phy_chan = &phys[i];
1168 		d40c->log_num = D40_PHY_CHAN;
1169 		goto out;
1170 	}
1171 	if (dev_type == -1)
1172 		return -EINVAL;
1173 
1174 	/* Find logical channel */
1175 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1176 		int phy_num = j + event_group * 2;
1177 		/*
1178 		 * Spread logical channels across all available physical rather
1179 		 * than pack every logical channel at the first available phy
1180 		 * channels.
1181 		 */
1182 		if (is_src) {
1183 			for (i = phy_num; i < phy_num + 2; i++) {
1184 				if (d40_alloc_mask_set(&phys[i], is_src,
1185 						       event_line, is_log))
1186 					goto found_log;
1187 			}
1188 		} else {
1189 			for (i = phy_num + 1; i >= phy_num; i--) {
1190 				if (d40_alloc_mask_set(&phys[i], is_src,
1191 						       event_line, is_log))
1192 					goto found_log;
1193 			}
1194 		}
1195 	}
1196 	return -EINVAL;
1197 
1198 found_log:
1199 	d40c->phy_chan = &phys[i];
1200 	d40c->log_num = log_num;
1201 out:
1202 
1203 	if (is_log)
1204 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1205 	else
1206 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1207 
1208 	return 0;
1209 
1210 }
1211 
1212 static int d40_config_memcpy(struct d40_chan *d40c)
1213 {
1214 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1215 
1216 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1217 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1218 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1219 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1220 			memcpy[d40c->chan.chan_id];
1221 
1222 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1223 		   dma_has_cap(DMA_SLAVE, cap)) {
1224 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1225 	} else {
1226 		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1227 			__func__);
1228 		return -EINVAL;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 
1235 static int d40_free_dma(struct d40_chan *d40c)
1236 {
1237 
1238 	int res = 0;
1239 	u32 event;
1240 	struct d40_phy_res *phy = d40c->phy_chan;
1241 	bool is_src;
1242 	struct d40_desc *d;
1243 	struct d40_desc *_d;
1244 
1245 
1246 	/* Terminate all queued and active transfers */
1247 	d40_term_all(d40c);
1248 
1249 	/* Release client owned descriptors */
1250 	if (!list_empty(&d40c->client))
1251 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1252 			d40_pool_lli_free(d);
1253 			d40_desc_remove(d);
1254 			/* Return desc to free-list */
1255 			d40_desc_free(d40c, d);
1256 		}
1257 
1258 	if (phy == NULL) {
1259 		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1260 			__func__);
1261 		return -EINVAL;
1262 	}
1263 
1264 	if (phy->allocated_src == D40_ALLOC_FREE &&
1265 	    phy->allocated_dst == D40_ALLOC_FREE) {
1266 		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1267 			__func__);
1268 		return -EINVAL;
1269 	}
1270 
1271 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1272 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1273 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1274 		is_src = false;
1275 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1276 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1277 		is_src = true;
1278 	} else {
1279 		dev_err(&d40c->chan.dev->device,
1280 			"[%s] Unknown direction\n", __func__);
1281 		return -EINVAL;
1282 	}
1283 
1284 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1285 	if (res) {
1286 		dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1287 			__func__);
1288 		return res;
1289 	}
1290 
1291 	if (d40c->log_num != D40_PHY_CHAN) {
1292 		/* Release logical channel, deactivate the event line */
1293 
1294 		d40_config_set_event(d40c, false);
1295 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1296 
1297 		/*
1298 		 * Check if there are more logical allocation
1299 		 * on this phy channel.
1300 		 */
1301 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1302 			/* Resume the other logical channels if any */
1303 			if (d40_chan_has_events(d40c)) {
1304 				res = d40_channel_execute_command(d40c,
1305 								  D40_DMA_RUN);
1306 				if (res) {
1307 					dev_err(&d40c->chan.dev->device,
1308 						"[%s] Executing RUN command\n",
1309 						__func__);
1310 					return res;
1311 				}
1312 			}
1313 			return 0;
1314 		}
1315 	} else {
1316 		(void) d40_alloc_mask_free(phy, is_src, 0);
1317 	}
1318 
1319 	/* Release physical channel */
1320 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1321 	if (res) {
1322 		dev_err(&d40c->chan.dev->device,
1323 			"[%s] Failed to stop channel\n", __func__);
1324 		return res;
1325 	}
1326 	d40c->phy_chan = NULL;
1327 	/* Invalidate channel type */
1328 	d40c->dma_cfg.channel_type = 0;
1329 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1330 
1331 	return 0;
1332 }
1333 
1334 static int d40_pause(struct dma_chan *chan)
1335 {
1336 	struct d40_chan *d40c =
1337 		container_of(chan, struct d40_chan, chan);
1338 	int res;
1339 	unsigned long flags;
1340 
1341 	spin_lock_irqsave(&d40c->lock, flags);
1342 
1343 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1344 	if (res == 0) {
1345 		if (d40c->log_num != D40_PHY_CHAN) {
1346 			d40_config_set_event(d40c, false);
1347 			/* Resume the other logical channels if any */
1348 			if (d40_chan_has_events(d40c))
1349 				res = d40_channel_execute_command(d40c,
1350 								  D40_DMA_RUN);
1351 		}
1352 	}
1353 
1354 	spin_unlock_irqrestore(&d40c->lock, flags);
1355 	return res;
1356 }
1357 
1358 static bool d40_is_paused(struct d40_chan *d40c)
1359 {
1360 	bool is_paused = false;
1361 	unsigned long flags;
1362 	void __iomem *active_reg;
1363 	u32 status;
1364 	u32 event;
1365 
1366 	spin_lock_irqsave(&d40c->lock, flags);
1367 
1368 	if (d40c->log_num == D40_PHY_CHAN) {
1369 		if (d40c->phy_chan->num % 2 == 0)
1370 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1371 		else
1372 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1373 
1374 		status = (readl(active_reg) &
1375 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1376 			D40_CHAN_POS(d40c->phy_chan->num);
1377 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1378 			is_paused = true;
1379 
1380 		goto _exit;
1381 	}
1382 
1383 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1384 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1385 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1386 	else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1387 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1388 	else {
1389 		dev_err(&d40c->chan.dev->device,
1390 			"[%s] Unknown direction\n", __func__);
1391 		goto _exit;
1392 	}
1393 	status = d40_chan_has_events(d40c);
1394 	status = (status & D40_EVENTLINE_MASK(event)) >>
1395 		D40_EVENTLINE_POS(event);
1396 
1397 	if (status != D40_DMA_RUN)
1398 		is_paused = true;
1399 _exit:
1400 	spin_unlock_irqrestore(&d40c->lock, flags);
1401 	return is_paused;
1402 
1403 }
1404 
1405 
1406 static bool d40_tx_is_linked(struct d40_chan *d40c)
1407 {
1408 	bool is_link;
1409 
1410 	if (d40c->log_num != D40_PHY_CHAN)
1411 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1412 	else
1413 		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1414 				d40c->phy_chan->num * D40_DREG_PCDELTA +
1415 				D40_CHAN_REG_SDLNK) &
1416 			D40_SREG_LNK_PHYS_LNK_MASK;
1417 	return is_link;
1418 }
1419 
1420 static u32 d40_residue(struct d40_chan *d40c)
1421 {
1422 	u32 num_elt;
1423 
1424 	if (d40c->log_num != D40_PHY_CHAN)
1425 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1426 			>> D40_MEM_LCSP2_ECNT_POS;
1427 	else
1428 		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1429 				 d40c->phy_chan->num * D40_DREG_PCDELTA +
1430 				 D40_CHAN_REG_SDELT) &
1431 			   D40_SREG_ELEM_PHY_ECNT_MASK) >>
1432 			D40_SREG_ELEM_PHY_ECNT_POS;
1433 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1434 }
1435 
1436 static int d40_resume(struct dma_chan *chan)
1437 {
1438 	struct d40_chan *d40c =
1439 		container_of(chan, struct d40_chan, chan);
1440 	int res = 0;
1441 	unsigned long flags;
1442 
1443 	spin_lock_irqsave(&d40c->lock, flags);
1444 
1445 	if (d40c->base->rev == 0)
1446 		if (d40c->log_num != D40_PHY_CHAN) {
1447 			res = d40_channel_execute_command(d40c,
1448 							  D40_DMA_SUSPEND_REQ);
1449 			goto no_suspend;
1450 		}
1451 
1452 	/* If bytes left to transfer or linked tx resume job */
1453 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1454 		if (d40c->log_num != D40_PHY_CHAN)
1455 			d40_config_set_event(d40c, true);
1456 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1457 	}
1458 
1459 no_suspend:
1460 	spin_unlock_irqrestore(&d40c->lock, flags);
1461 	return res;
1462 }
1463 
1464 static u32 stedma40_residue(struct dma_chan *chan)
1465 {
1466 	struct d40_chan *d40c =
1467 		container_of(chan, struct d40_chan, chan);
1468 	u32 bytes_left;
1469 	unsigned long flags;
1470 
1471 	spin_lock_irqsave(&d40c->lock, flags);
1472 	bytes_left = d40_residue(d40c);
1473 	spin_unlock_irqrestore(&d40c->lock, flags);
1474 
1475 	return bytes_left;
1476 }
1477 
1478 /* Public DMA functions in addition to the DMA engine framework */
1479 
1480 int stedma40_set_psize(struct dma_chan *chan,
1481 		       int src_psize,
1482 		       int dst_psize)
1483 {
1484 	struct d40_chan *d40c =
1485 		container_of(chan, struct d40_chan, chan);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&d40c->lock, flags);
1489 
1490 	if (d40c->log_num != D40_PHY_CHAN) {
1491 		d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1492 		d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1493 		d40c->log_def.lcsp1 |= src_psize <<
1494 			D40_MEM_LCSP1_SCFG_PSIZE_POS;
1495 		d40c->log_def.lcsp3 |= dst_psize <<
1496 			D40_MEM_LCSP1_SCFG_PSIZE_POS;
1497 		goto out;
1498 	}
1499 
1500 	if (src_psize == STEDMA40_PSIZE_PHY_1)
1501 		d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1502 	else {
1503 		d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1504 		d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1505 				       D40_SREG_CFG_PSIZE_POS);
1506 		d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1507 	}
1508 
1509 	if (dst_psize == STEDMA40_PSIZE_PHY_1)
1510 		d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1511 	else {
1512 		d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1513 		d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1514 				       D40_SREG_CFG_PSIZE_POS);
1515 		d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1516 	}
1517 out:
1518 	spin_unlock_irqrestore(&d40c->lock, flags);
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL(stedma40_set_psize);
1522 
1523 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1524 						   struct scatterlist *sgl_dst,
1525 						   struct scatterlist *sgl_src,
1526 						   unsigned int sgl_len,
1527 						   unsigned long dma_flags)
1528 {
1529 	int res;
1530 	struct d40_desc *d40d;
1531 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1532 					     chan);
1533 	unsigned long flags;
1534 
1535 	if (d40c->phy_chan == NULL) {
1536 		dev_err(&d40c->chan.dev->device,
1537 			"[%s] Unallocated channel.\n", __func__);
1538 		return ERR_PTR(-EINVAL);
1539 	}
1540 
1541 	spin_lock_irqsave(&d40c->lock, flags);
1542 	d40d = d40_desc_get(d40c);
1543 
1544 	if (d40d == NULL)
1545 		goto err;
1546 
1547 	d40d->lli_len = sgl_len;
1548 	d40d->lli_tx_len = d40d->lli_len;
1549 	d40d->txd.flags = dma_flags;
1550 
1551 	if (d40c->log_num != D40_PHY_CHAN) {
1552 		if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1553 			d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1554 
1555 		if (sgl_len > 1)
1556 			/*
1557 			 * Check if there is space available in lcla. If not,
1558 			 * split list into 1-length and run only in lcpa
1559 			 * space.
1560 			 */
1561 			if (d40_lcla_id_get(d40c) != 0)
1562 				d40d->lli_tx_len = 1;
1563 
1564 		if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1565 			dev_err(&d40c->chan.dev->device,
1566 				"[%s] Out of memory\n", __func__);
1567 			goto err;
1568 		}
1569 
1570 		(void) d40_log_sg_to_lli(d40c->lcla.src_id,
1571 					 sgl_src,
1572 					 sgl_len,
1573 					 d40d->lli_log.src,
1574 					 d40c->log_def.lcsp1,
1575 					 d40c->dma_cfg.src_info.data_width,
1576 					 dma_flags & DMA_PREP_INTERRUPT,
1577 					 d40d->lli_tx_len,
1578 					 d40c->base->plat_data->llis_per_log);
1579 
1580 		(void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1581 					 sgl_dst,
1582 					 sgl_len,
1583 					 d40d->lli_log.dst,
1584 					 d40c->log_def.lcsp3,
1585 					 d40c->dma_cfg.dst_info.data_width,
1586 					 dma_flags & DMA_PREP_INTERRUPT,
1587 					 d40d->lli_tx_len,
1588 					 d40c->base->plat_data->llis_per_log);
1589 
1590 
1591 	} else {
1592 		if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1593 			dev_err(&d40c->chan.dev->device,
1594 				"[%s] Out of memory\n", __func__);
1595 			goto err;
1596 		}
1597 
1598 		res = d40_phy_sg_to_lli(sgl_src,
1599 					sgl_len,
1600 					0,
1601 					d40d->lli_phy.src,
1602 					d40d->lli_phy.src_addr,
1603 					d40c->src_def_cfg,
1604 					d40c->dma_cfg.src_info.data_width,
1605 					d40c->dma_cfg.src_info.psize,
1606 					true);
1607 
1608 		if (res < 0)
1609 			goto err;
1610 
1611 		res = d40_phy_sg_to_lli(sgl_dst,
1612 					sgl_len,
1613 					0,
1614 					d40d->lli_phy.dst,
1615 					d40d->lli_phy.dst_addr,
1616 					d40c->dst_def_cfg,
1617 					d40c->dma_cfg.dst_info.data_width,
1618 					d40c->dma_cfg.dst_info.psize,
1619 					true);
1620 
1621 		if (res < 0)
1622 			goto err;
1623 
1624 		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1625 				      d40d->lli_pool.size, DMA_TO_DEVICE);
1626 	}
1627 
1628 	dma_async_tx_descriptor_init(&d40d->txd, chan);
1629 
1630 	d40d->txd.tx_submit = d40_tx_submit;
1631 
1632 	spin_unlock_irqrestore(&d40c->lock, flags);
1633 
1634 	return &d40d->txd;
1635 err:
1636 	spin_unlock_irqrestore(&d40c->lock, flags);
1637 	return NULL;
1638 }
1639 EXPORT_SYMBOL(stedma40_memcpy_sg);
1640 
1641 bool stedma40_filter(struct dma_chan *chan, void *data)
1642 {
1643 	struct stedma40_chan_cfg *info = data;
1644 	struct d40_chan *d40c =
1645 		container_of(chan, struct d40_chan, chan);
1646 	int err;
1647 
1648 	if (data) {
1649 		err = d40_validate_conf(d40c, info);
1650 		if (!err)
1651 			d40c->dma_cfg = *info;
1652 	} else
1653 		err = d40_config_memcpy(d40c);
1654 
1655 	return err == 0;
1656 }
1657 EXPORT_SYMBOL(stedma40_filter);
1658 
1659 /* DMA ENGINE functions */
1660 static int d40_alloc_chan_resources(struct dma_chan *chan)
1661 {
1662 	int err;
1663 	unsigned long flags;
1664 	struct d40_chan *d40c =
1665 		container_of(chan, struct d40_chan, chan);
1666 	bool is_free_phy;
1667 	spin_lock_irqsave(&d40c->lock, flags);
1668 
1669 	d40c->completed = chan->cookie = 1;
1670 
1671 	/*
1672 	 * If no dma configuration is set (channel_type == 0)
1673 	 * use default configuration (memcpy)
1674 	 */
1675 	if (d40c->dma_cfg.channel_type == 0) {
1676 		err = d40_config_memcpy(d40c);
1677 		if (err) {
1678 			dev_err(&d40c->chan.dev->device,
1679 				"[%s] Failed to configure memcpy channel\n",
1680 				__func__);
1681 			goto fail;
1682 		}
1683 	}
1684 	is_free_phy = (d40c->phy_chan == NULL);
1685 
1686 	err = d40_allocate_channel(d40c);
1687 	if (err) {
1688 		dev_err(&d40c->chan.dev->device,
1689 			"[%s] Failed to allocate channel\n", __func__);
1690 		goto fail;
1691 	}
1692 
1693 	/* Fill in basic CFG register values */
1694 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1695 		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1696 
1697 	if (d40c->log_num != D40_PHY_CHAN) {
1698 		d40_log_cfg(&d40c->dma_cfg,
1699 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1700 
1701 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1702 			d40c->lcpa = d40c->base->lcpa_base +
1703 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1704 		else
1705 			d40c->lcpa = d40c->base->lcpa_base +
1706 			  d40c->dma_cfg.dst_dev_type *
1707 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1708 	}
1709 
1710 	/*
1711 	 * Only write channel configuration to the DMA if the physical
1712 	 * resource is free. In case of multiple logical channels
1713 	 * on the same physical resource, only the first write is necessary.
1714 	 */
1715 	if (is_free_phy) {
1716 		err = d40_config_write(d40c);
1717 		if (err) {
1718 			dev_err(&d40c->chan.dev->device,
1719 				"[%s] Failed to configure channel\n",
1720 				__func__);
1721 		}
1722 	}
1723 fail:
1724 	spin_unlock_irqrestore(&d40c->lock, flags);
1725 	return err;
1726 }
1727 
1728 static void d40_free_chan_resources(struct dma_chan *chan)
1729 {
1730 	struct d40_chan *d40c =
1731 		container_of(chan, struct d40_chan, chan);
1732 	int err;
1733 	unsigned long flags;
1734 
1735 	if (d40c->phy_chan == NULL) {
1736 		dev_err(&d40c->chan.dev->device,
1737 			"[%s] Cannot free unallocated channel\n", __func__);
1738 		return;
1739 	}
1740 
1741 
1742 	spin_lock_irqsave(&d40c->lock, flags);
1743 
1744 	err = d40_free_dma(d40c);
1745 
1746 	if (err)
1747 		dev_err(&d40c->chan.dev->device,
1748 			"[%s] Failed to free channel\n", __func__);
1749 	spin_unlock_irqrestore(&d40c->lock, flags);
1750 }
1751 
1752 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1753 						       dma_addr_t dst,
1754 						       dma_addr_t src,
1755 						       size_t size,
1756 						       unsigned long dma_flags)
1757 {
1758 	struct d40_desc *d40d;
1759 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1760 					     chan);
1761 	unsigned long flags;
1762 	int err = 0;
1763 
1764 	if (d40c->phy_chan == NULL) {
1765 		dev_err(&d40c->chan.dev->device,
1766 			"[%s] Channel is not allocated.\n", __func__);
1767 		return ERR_PTR(-EINVAL);
1768 	}
1769 
1770 	spin_lock_irqsave(&d40c->lock, flags);
1771 	d40d = d40_desc_get(d40c);
1772 
1773 	if (d40d == NULL) {
1774 		dev_err(&d40c->chan.dev->device,
1775 			"[%s] Descriptor is NULL\n", __func__);
1776 		goto err;
1777 	}
1778 
1779 	d40d->txd.flags = dma_flags;
1780 
1781 	dma_async_tx_descriptor_init(&d40d->txd, chan);
1782 
1783 	d40d->txd.tx_submit = d40_tx_submit;
1784 
1785 	if (d40c->log_num != D40_PHY_CHAN) {
1786 
1787 		if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1788 			dev_err(&d40c->chan.dev->device,
1789 				"[%s] Out of memory\n", __func__);
1790 			goto err;
1791 		}
1792 		d40d->lli_len = 1;
1793 		d40d->lli_tx_len = 1;
1794 
1795 		d40_log_fill_lli(d40d->lli_log.src,
1796 				 src,
1797 				 size,
1798 				 0,
1799 				 d40c->log_def.lcsp1,
1800 				 d40c->dma_cfg.src_info.data_width,
1801 				 false, true);
1802 
1803 		d40_log_fill_lli(d40d->lli_log.dst,
1804 				 dst,
1805 				 size,
1806 				 0,
1807 				 d40c->log_def.lcsp3,
1808 				 d40c->dma_cfg.dst_info.data_width,
1809 				 true, true);
1810 
1811 	} else {
1812 
1813 		if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1814 			dev_err(&d40c->chan.dev->device,
1815 				"[%s] Out of memory\n", __func__);
1816 			goto err;
1817 		}
1818 
1819 		err = d40_phy_fill_lli(d40d->lli_phy.src,
1820 				       src,
1821 				       size,
1822 				       d40c->dma_cfg.src_info.psize,
1823 				       0,
1824 				       d40c->src_def_cfg,
1825 				       true,
1826 				       d40c->dma_cfg.src_info.data_width,
1827 				       false);
1828 		if (err)
1829 			goto err_fill_lli;
1830 
1831 		err = d40_phy_fill_lli(d40d->lli_phy.dst,
1832 				       dst,
1833 				       size,
1834 				       d40c->dma_cfg.dst_info.psize,
1835 				       0,
1836 				       d40c->dst_def_cfg,
1837 				       true,
1838 				       d40c->dma_cfg.dst_info.data_width,
1839 				       false);
1840 
1841 		if (err)
1842 			goto err_fill_lli;
1843 
1844 		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1845 				      d40d->lli_pool.size, DMA_TO_DEVICE);
1846 	}
1847 
1848 	spin_unlock_irqrestore(&d40c->lock, flags);
1849 	return &d40d->txd;
1850 
1851 err_fill_lli:
1852 	dev_err(&d40c->chan.dev->device,
1853 		"[%s] Failed filling in PHY LLI\n", __func__);
1854 	d40_pool_lli_free(d40d);
1855 err:
1856 	spin_unlock_irqrestore(&d40c->lock, flags);
1857 	return NULL;
1858 }
1859 
1860 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1861 				 struct d40_chan *d40c,
1862 				 struct scatterlist *sgl,
1863 				 unsigned int sg_len,
1864 				 enum dma_data_direction direction,
1865 				 unsigned long dma_flags)
1866 {
1867 	dma_addr_t dev_addr = 0;
1868 	int total_size;
1869 
1870 	if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1871 		dev_err(&d40c->chan.dev->device,
1872 			"[%s] Out of memory\n", __func__);
1873 		return -ENOMEM;
1874 	}
1875 
1876 	d40d->lli_len = sg_len;
1877 	if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1878 		d40d->lli_tx_len = d40d->lli_len;
1879 	else
1880 		d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1881 
1882 	if (sg_len > 1)
1883 		/*
1884 		 * Check if there is space available in lcla.
1885 		 * If not, split list into 1-length and run only
1886 		 * in lcpa space.
1887 		 */
1888 		if (d40_lcla_id_get(d40c) != 0)
1889 			d40d->lli_tx_len = 1;
1890 
1891 	if (direction == DMA_FROM_DEVICE)
1892 		if (d40c->runtime_addr)
1893 			dev_addr = d40c->runtime_addr;
1894 		else
1895 			dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1896 	else if (direction == DMA_TO_DEVICE)
1897 		if (d40c->runtime_addr)
1898 			dev_addr = d40c->runtime_addr;
1899 		else
1900 			dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1901 
1902 	else
1903 		return -EINVAL;
1904 
1905 	total_size = d40_log_sg_to_dev(&d40c->lcla,
1906 				       sgl, sg_len,
1907 				       &d40d->lli_log,
1908 				       &d40c->log_def,
1909 				       d40c->dma_cfg.src_info.data_width,
1910 				       d40c->dma_cfg.dst_info.data_width,
1911 				       direction,
1912 				       dma_flags & DMA_PREP_INTERRUPT,
1913 				       dev_addr, d40d->lli_tx_len,
1914 				       d40c->base->plat_data->llis_per_log);
1915 
1916 	if (total_size < 0)
1917 		return -EINVAL;
1918 
1919 	return 0;
1920 }
1921 
1922 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1923 				 struct d40_chan *d40c,
1924 				 struct scatterlist *sgl,
1925 				 unsigned int sgl_len,
1926 				 enum dma_data_direction direction,
1927 				 unsigned long dma_flags)
1928 {
1929 	dma_addr_t src_dev_addr;
1930 	dma_addr_t dst_dev_addr;
1931 	int res;
1932 
1933 	if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1934 		dev_err(&d40c->chan.dev->device,
1935 			"[%s] Out of memory\n", __func__);
1936 		return -ENOMEM;
1937 	}
1938 
1939 	d40d->lli_len = sgl_len;
1940 	d40d->lli_tx_len = sgl_len;
1941 
1942 	if (direction == DMA_FROM_DEVICE) {
1943 		dst_dev_addr = 0;
1944 		if (d40c->runtime_addr)
1945 			src_dev_addr = d40c->runtime_addr;
1946 		else
1947 			src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1948 	} else if (direction == DMA_TO_DEVICE) {
1949 		if (d40c->runtime_addr)
1950 			dst_dev_addr = d40c->runtime_addr;
1951 		else
1952 			dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1953 		src_dev_addr = 0;
1954 	} else
1955 		return -EINVAL;
1956 
1957 	res = d40_phy_sg_to_lli(sgl,
1958 				sgl_len,
1959 				src_dev_addr,
1960 				d40d->lli_phy.src,
1961 				d40d->lli_phy.src_addr,
1962 				d40c->src_def_cfg,
1963 				d40c->dma_cfg.src_info.data_width,
1964 				d40c->dma_cfg.src_info.psize,
1965 				true);
1966 	if (res < 0)
1967 		return res;
1968 
1969 	res = d40_phy_sg_to_lli(sgl,
1970 				sgl_len,
1971 				dst_dev_addr,
1972 				d40d->lli_phy.dst,
1973 				d40d->lli_phy.dst_addr,
1974 				d40c->dst_def_cfg,
1975 				d40c->dma_cfg.dst_info.data_width,
1976 				d40c->dma_cfg.dst_info.psize,
1977 				 true);
1978 	if (res < 0)
1979 		return res;
1980 
1981 	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1982 			      d40d->lli_pool.size, DMA_TO_DEVICE);
1983 	return 0;
1984 }
1985 
1986 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1987 							 struct scatterlist *sgl,
1988 							 unsigned int sg_len,
1989 							 enum dma_data_direction direction,
1990 							 unsigned long dma_flags)
1991 {
1992 	struct d40_desc *d40d;
1993 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1994 					     chan);
1995 	unsigned long flags;
1996 	int err;
1997 
1998 	if (d40c->phy_chan == NULL) {
1999 		dev_err(&d40c->chan.dev->device,
2000 			"[%s] Cannot prepare unallocated channel\n", __func__);
2001 		return ERR_PTR(-EINVAL);
2002 	}
2003 
2004 	if (d40c->dma_cfg.pre_transfer)
2005 		d40c->dma_cfg.pre_transfer(chan,
2006 					   d40c->dma_cfg.pre_transfer_data,
2007 					   sg_dma_len(sgl));
2008 
2009 	spin_lock_irqsave(&d40c->lock, flags);
2010 	d40d = d40_desc_get(d40c);
2011 	spin_unlock_irqrestore(&d40c->lock, flags);
2012 
2013 	if (d40d == NULL)
2014 		return NULL;
2015 
2016 	if (d40c->log_num != D40_PHY_CHAN)
2017 		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2018 					    direction, dma_flags);
2019 	else
2020 		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2021 					    direction, dma_flags);
2022 	if (err) {
2023 		dev_err(&d40c->chan.dev->device,
2024 			"[%s] Failed to prepare %s slave sg job: %d\n",
2025 			__func__,
2026 			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2027 		return NULL;
2028 	}
2029 
2030 	d40d->txd.flags = dma_flags;
2031 
2032 	dma_async_tx_descriptor_init(&d40d->txd, chan);
2033 
2034 	d40d->txd.tx_submit = d40_tx_submit;
2035 
2036 	return &d40d->txd;
2037 }
2038 
2039 static enum dma_status d40_tx_status(struct dma_chan *chan,
2040 				     dma_cookie_t cookie,
2041 				     struct dma_tx_state *txstate)
2042 {
2043 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2044 	dma_cookie_t last_used;
2045 	dma_cookie_t last_complete;
2046 	int ret;
2047 
2048 	if (d40c->phy_chan == NULL) {
2049 		dev_err(&d40c->chan.dev->device,
2050 			"[%s] Cannot read status of unallocated channel\n",
2051 			__func__);
2052 		return -EINVAL;
2053 	}
2054 
2055 	last_complete = d40c->completed;
2056 	last_used = chan->cookie;
2057 
2058 	if (d40_is_paused(d40c))
2059 		ret = DMA_PAUSED;
2060 	else
2061 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2062 
2063 	dma_set_tx_state(txstate, last_complete, last_used,
2064 			 stedma40_residue(chan));
2065 
2066 	return ret;
2067 }
2068 
2069 static void d40_issue_pending(struct dma_chan *chan)
2070 {
2071 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2072 	unsigned long flags;
2073 
2074 	if (d40c->phy_chan == NULL) {
2075 		dev_err(&d40c->chan.dev->device,
2076 			"[%s] Channel is not allocated!\n", __func__);
2077 		return;
2078 	}
2079 
2080 	spin_lock_irqsave(&d40c->lock, flags);
2081 
2082 	/* Busy means that pending jobs are already being processed */
2083 	if (!d40c->busy)
2084 		(void) d40_queue_start(d40c);
2085 
2086 	spin_unlock_irqrestore(&d40c->lock, flags);
2087 }
2088 
2089 /* Runtime reconfiguration extension */
2090 static void d40_set_runtime_config(struct dma_chan *chan,
2091 			       struct dma_slave_config *config)
2092 {
2093 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2094 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2095 	enum dma_slave_buswidth config_addr_width;
2096 	dma_addr_t config_addr;
2097 	u32 config_maxburst;
2098 	enum stedma40_periph_data_width addr_width;
2099 	int psize;
2100 
2101 	if (config->direction == DMA_FROM_DEVICE) {
2102 		dma_addr_t dev_addr_rx =
2103 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2104 
2105 		config_addr = config->src_addr;
2106 		if (dev_addr_rx)
2107 			dev_dbg(d40c->base->dev,
2108 				"channel has a pre-wired RX address %08x "
2109 				"overriding with %08x\n",
2110 				dev_addr_rx, config_addr);
2111 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2112 			dev_dbg(d40c->base->dev,
2113 				"channel was not configured for peripheral "
2114 				"to memory transfer (%d) overriding\n",
2115 				cfg->dir);
2116 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2117 
2118 		config_addr_width = config->src_addr_width;
2119 		config_maxburst = config->src_maxburst;
2120 
2121 	} else if (config->direction == DMA_TO_DEVICE) {
2122 		dma_addr_t dev_addr_tx =
2123 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2124 
2125 		config_addr = config->dst_addr;
2126 		if (dev_addr_tx)
2127 			dev_dbg(d40c->base->dev,
2128 				"channel has a pre-wired TX address %08x "
2129 				"overriding with %08x\n",
2130 				dev_addr_tx, config_addr);
2131 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2132 			dev_dbg(d40c->base->dev,
2133 				"channel was not configured for memory "
2134 				"to peripheral transfer (%d) overriding\n",
2135 				cfg->dir);
2136 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2137 
2138 		config_addr_width = config->dst_addr_width;
2139 		config_maxburst = config->dst_maxburst;
2140 
2141 	} else {
2142 		dev_err(d40c->base->dev,
2143 			"unrecognized channel direction %d\n",
2144 			config->direction);
2145 		return;
2146 	}
2147 
2148 	switch (config_addr_width) {
2149 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2150 		addr_width = STEDMA40_BYTE_WIDTH;
2151 		break;
2152 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2153 		addr_width = STEDMA40_HALFWORD_WIDTH;
2154 		break;
2155 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2156 		addr_width = STEDMA40_WORD_WIDTH;
2157 		break;
2158 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2159 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2160 		break;
2161 	default:
2162 		dev_err(d40c->base->dev,
2163 			"illegal peripheral address width "
2164 			"requested (%d)\n",
2165 			config->src_addr_width);
2166 		return;
2167 	}
2168 
2169 	if (config_maxburst >= 16)
2170 		psize = STEDMA40_PSIZE_LOG_16;
2171 	else if (config_maxburst >= 8)
2172 		psize = STEDMA40_PSIZE_LOG_8;
2173 	else if (config_maxburst >= 4)
2174 		psize = STEDMA40_PSIZE_LOG_4;
2175 	else
2176 		psize = STEDMA40_PSIZE_LOG_1;
2177 
2178 	/* Set up all the endpoint configs */
2179 	cfg->src_info.data_width = addr_width;
2180 	cfg->src_info.psize = psize;
2181 	cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2182 	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2183 	cfg->dst_info.data_width = addr_width;
2184 	cfg->dst_info.psize = psize;
2185 	cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2186 	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2187 
2188 	/* These settings will take precedence later */
2189 	d40c->runtime_addr = config_addr;
2190 	d40c->runtime_direction = config->direction;
2191 	dev_dbg(d40c->base->dev,
2192 		"configured channel %s for %s, data width %d, "
2193 		"maxburst %d bytes, LE, no flow control\n",
2194 		dma_chan_name(chan),
2195 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2196 		config_addr_width,
2197 		config_maxburst);
2198 }
2199 
2200 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2201 		       unsigned long arg)
2202 {
2203 	unsigned long flags;
2204 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2205 
2206 	if (d40c->phy_chan == NULL) {
2207 		dev_err(&d40c->chan.dev->device,
2208 			"[%s] Channel is not allocated!\n", __func__);
2209 		return -EINVAL;
2210 	}
2211 
2212 	switch (cmd) {
2213 	case DMA_TERMINATE_ALL:
2214 		spin_lock_irqsave(&d40c->lock, flags);
2215 		d40_term_all(d40c);
2216 		spin_unlock_irqrestore(&d40c->lock, flags);
2217 		return 0;
2218 	case DMA_PAUSE:
2219 		return d40_pause(chan);
2220 	case DMA_RESUME:
2221 		return d40_resume(chan);
2222 	case DMA_SLAVE_CONFIG:
2223 		d40_set_runtime_config(chan,
2224 			(struct dma_slave_config *) arg);
2225 		return 0;
2226 	default:
2227 		break;
2228 	}
2229 
2230 	/* Other commands are unimplemented */
2231 	return -ENXIO;
2232 }
2233 
2234 /* Initialization functions */
2235 
2236 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2237 				 struct d40_chan *chans, int offset,
2238 				 int num_chans)
2239 {
2240 	int i = 0;
2241 	struct d40_chan *d40c;
2242 
2243 	INIT_LIST_HEAD(&dma->channels);
2244 
2245 	for (i = offset; i < offset + num_chans; i++) {
2246 		d40c = &chans[i];
2247 		d40c->base = base;
2248 		d40c->chan.device = dma;
2249 
2250 		/* Invalidate lcla element */
2251 		d40c->lcla.src_id = -1;
2252 		d40c->lcla.dst_id = -1;
2253 
2254 		spin_lock_init(&d40c->lock);
2255 
2256 		d40c->log_num = D40_PHY_CHAN;
2257 
2258 		INIT_LIST_HEAD(&d40c->active);
2259 		INIT_LIST_HEAD(&d40c->queue);
2260 		INIT_LIST_HEAD(&d40c->client);
2261 
2262 		tasklet_init(&d40c->tasklet, dma_tasklet,
2263 			     (unsigned long) d40c);
2264 
2265 		list_add_tail(&d40c->chan.device_node,
2266 			      &dma->channels);
2267 	}
2268 }
2269 
2270 static int __init d40_dmaengine_init(struct d40_base *base,
2271 				     int num_reserved_chans)
2272 {
2273 	int err ;
2274 
2275 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2276 		      0, base->num_log_chans);
2277 
2278 	dma_cap_zero(base->dma_slave.cap_mask);
2279 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2280 
2281 	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2282 	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2283 	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2284 	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2285 	base->dma_slave.device_tx_status = d40_tx_status;
2286 	base->dma_slave.device_issue_pending = d40_issue_pending;
2287 	base->dma_slave.device_control = d40_control;
2288 	base->dma_slave.dev = base->dev;
2289 
2290 	err = dma_async_device_register(&base->dma_slave);
2291 
2292 	if (err) {
2293 		dev_err(base->dev,
2294 			"[%s] Failed to register slave channels\n",
2295 			__func__);
2296 		goto failure1;
2297 	}
2298 
2299 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2300 		      base->num_log_chans, base->plat_data->memcpy_len);
2301 
2302 	dma_cap_zero(base->dma_memcpy.cap_mask);
2303 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2304 
2305 	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2306 	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2307 	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2308 	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2309 	base->dma_memcpy.device_tx_status = d40_tx_status;
2310 	base->dma_memcpy.device_issue_pending = d40_issue_pending;
2311 	base->dma_memcpy.device_control = d40_control;
2312 	base->dma_memcpy.dev = base->dev;
2313 	/*
2314 	 * This controller can only access address at even
2315 	 * 32bit boundaries, i.e. 2^2
2316 	 */
2317 	base->dma_memcpy.copy_align = 2;
2318 
2319 	err = dma_async_device_register(&base->dma_memcpy);
2320 
2321 	if (err) {
2322 		dev_err(base->dev,
2323 			"[%s] Failed to regsiter memcpy only channels\n",
2324 			__func__);
2325 		goto failure2;
2326 	}
2327 
2328 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2329 		      0, num_reserved_chans);
2330 
2331 	dma_cap_zero(base->dma_both.cap_mask);
2332 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2333 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2334 
2335 	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2336 	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2337 	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2338 	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2339 	base->dma_both.device_tx_status = d40_tx_status;
2340 	base->dma_both.device_issue_pending = d40_issue_pending;
2341 	base->dma_both.device_control = d40_control;
2342 	base->dma_both.dev = base->dev;
2343 	base->dma_both.copy_align = 2;
2344 	err = dma_async_device_register(&base->dma_both);
2345 
2346 	if (err) {
2347 		dev_err(base->dev,
2348 			"[%s] Failed to register logical and physical capable channels\n",
2349 			__func__);
2350 		goto failure3;
2351 	}
2352 	return 0;
2353 failure3:
2354 	dma_async_device_unregister(&base->dma_memcpy);
2355 failure2:
2356 	dma_async_device_unregister(&base->dma_slave);
2357 failure1:
2358 	return err;
2359 }
2360 
2361 /* Initialization functions. */
2362 
2363 static int __init d40_phy_res_init(struct d40_base *base)
2364 {
2365 	int i;
2366 	int num_phy_chans_avail = 0;
2367 	u32 val[2];
2368 	int odd_even_bit = -2;
2369 
2370 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2371 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2372 
2373 	for (i = 0; i < base->num_phy_chans; i++) {
2374 		base->phy_res[i].num = i;
2375 		odd_even_bit += 2 * ((i % 2) == 0);
2376 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2377 			/* Mark security only channels as occupied */
2378 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2379 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2380 		} else {
2381 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2382 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2383 			num_phy_chans_avail++;
2384 		}
2385 		spin_lock_init(&base->phy_res[i].lock);
2386 	}
2387 
2388 	/* Mark disabled channels as occupied */
2389 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2390 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2391 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2392 			num_phy_chans_avail--;
2393 	}
2394 
2395 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2396 		 num_phy_chans_avail, base->num_phy_chans);
2397 
2398 	/* Verify settings extended vs standard */
2399 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2400 
2401 	for (i = 0; i < base->num_phy_chans; i++) {
2402 
2403 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2404 		    (val[0] & 0x3) != 1)
2405 			dev_info(base->dev,
2406 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2407 				 __func__, i, val[0] & 0x3);
2408 
2409 		val[0] = val[0] >> 2;
2410 	}
2411 
2412 	return num_phy_chans_avail;
2413 }
2414 
2415 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2416 {
2417 	static const struct d40_reg_val dma_id_regs[] = {
2418 		/* Peripheral Id */
2419 		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2420 		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2421 		/*
2422 		 * D40_DREG_PERIPHID2 Depends on HW revision:
2423 		 *  MOP500/HREF ED has 0x0008,
2424 		 *  ? has 0x0018,
2425 		 *  HREF V1 has 0x0028
2426 		 */
2427 		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2428 
2429 		/* PCell Id */
2430 		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2431 		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2432 		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2433 		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2434 	};
2435 	struct stedma40_platform_data *plat_data;
2436 	struct clk *clk = NULL;
2437 	void __iomem *virtbase = NULL;
2438 	struct resource *res = NULL;
2439 	struct d40_base *base = NULL;
2440 	int num_log_chans = 0;
2441 	int num_phy_chans;
2442 	int i;
2443 	u32 val;
2444 
2445 	clk = clk_get(&pdev->dev, NULL);
2446 
2447 	if (IS_ERR(clk)) {
2448 		dev_err(&pdev->dev, "[%s] No matching clock found\n",
2449 			__func__);
2450 		goto failure;
2451 	}
2452 
2453 	clk_enable(clk);
2454 
2455 	/* Get IO for DMAC base address */
2456 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2457 	if (!res)
2458 		goto failure;
2459 
2460 	if (request_mem_region(res->start, resource_size(res),
2461 			       D40_NAME " I/O base") == NULL)
2462 		goto failure;
2463 
2464 	virtbase = ioremap(res->start, resource_size(res));
2465 	if (!virtbase)
2466 		goto failure;
2467 
2468 	/* HW version check */
2469 	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2470 		if (dma_id_regs[i].val !=
2471 		    readl(virtbase + dma_id_regs[i].reg)) {
2472 			dev_err(&pdev->dev,
2473 				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2474 				__func__,
2475 				dma_id_regs[i].val,
2476 				dma_id_regs[i].reg,
2477 				readl(virtbase + dma_id_regs[i].reg));
2478 			goto failure;
2479 		}
2480 	}
2481 
2482 	/* Get silicon revision */
2483 	val = readl(virtbase + D40_DREG_PERIPHID2);
2484 
2485 	if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
2486 		dev_err(&pdev->dev,
2487 			"[%s] Unknown designer! Got %x wanted %x\n",
2488 			__func__, val & 0xf, D40_PERIPHID2_DESIGNER);
2489 		goto failure;
2490 	}
2491 
2492 	/* The number of physical channels on this HW */
2493 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2494 
2495 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2496 		 (val >> 4) & 0xf, res->start);
2497 
2498 	plat_data = pdev->dev.platform_data;
2499 
2500 	/* Count the number of logical channels in use */
2501 	for (i = 0; i < plat_data->dev_len; i++)
2502 		if (plat_data->dev_rx[i] != 0)
2503 			num_log_chans++;
2504 
2505 	for (i = 0; i < plat_data->dev_len; i++)
2506 		if (plat_data->dev_tx[i] != 0)
2507 			num_log_chans++;
2508 
2509 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2510 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2511 		       sizeof(struct d40_chan), GFP_KERNEL);
2512 
2513 	if (base == NULL) {
2514 		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2515 		goto failure;
2516 	}
2517 
2518 	base->rev = (val >> 4) & 0xf;
2519 	base->clk = clk;
2520 	base->num_phy_chans = num_phy_chans;
2521 	base->num_log_chans = num_log_chans;
2522 	base->phy_start = res->start;
2523 	base->phy_size = resource_size(res);
2524 	base->virtbase = virtbase;
2525 	base->plat_data = plat_data;
2526 	base->dev = &pdev->dev;
2527 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2528 	base->log_chans = &base->phy_chans[num_phy_chans];
2529 
2530 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2531 				GFP_KERNEL);
2532 	if (!base->phy_res)
2533 		goto failure;
2534 
2535 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2536 					 sizeof(struct d40_chan *),
2537 					 GFP_KERNEL);
2538 	if (!base->lookup_phy_chans)
2539 		goto failure;
2540 
2541 	if (num_log_chans + plat_data->memcpy_len) {
2542 		/*
2543 		 * The max number of logical channels are event lines for all
2544 		 * src devices and dst devices
2545 		 */
2546 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2547 						 sizeof(struct d40_chan *),
2548 						 GFP_KERNEL);
2549 		if (!base->lookup_log_chans)
2550 			goto failure;
2551 	}
2552 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2553 					    GFP_KERNEL);
2554 	if (!base->lcla_pool.alloc_map)
2555 		goto failure;
2556 
2557 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2558 					    0, SLAB_HWCACHE_ALIGN,
2559 					    NULL);
2560 	if (base->desc_slab == NULL)
2561 		goto failure;
2562 
2563 	return base;
2564 
2565 failure:
2566 	if (clk) {
2567 		clk_disable(clk);
2568 		clk_put(clk);
2569 	}
2570 	if (virtbase)
2571 		iounmap(virtbase);
2572 	if (res)
2573 		release_mem_region(res->start,
2574 				   resource_size(res));
2575 	if (virtbase)
2576 		iounmap(virtbase);
2577 
2578 	if (base) {
2579 		kfree(base->lcla_pool.alloc_map);
2580 		kfree(base->lookup_log_chans);
2581 		kfree(base->lookup_phy_chans);
2582 		kfree(base->phy_res);
2583 		kfree(base);
2584 	}
2585 
2586 	return NULL;
2587 }
2588 
2589 static void __init d40_hw_init(struct d40_base *base)
2590 {
2591 
2592 	static const struct d40_reg_val dma_init_reg[] = {
2593 		/* Clock every part of the DMA block from start */
2594 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2595 
2596 		/* Interrupts on all logical channels */
2597 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2598 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2599 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2600 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2601 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2602 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2603 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2604 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2605 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2606 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2607 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2608 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2609 	};
2610 	int i;
2611 	u32 prmseo[2] = {0, 0};
2612 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2613 	u32 pcmis = 0;
2614 	u32 pcicr = 0;
2615 
2616 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2617 		writel(dma_init_reg[i].val,
2618 		       base->virtbase + dma_init_reg[i].reg);
2619 
2620 	/* Configure all our dma channels to default settings */
2621 	for (i = 0; i < base->num_phy_chans; i++) {
2622 
2623 		activeo[i % 2] = activeo[i % 2] << 2;
2624 
2625 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2626 		    == D40_ALLOC_PHY) {
2627 			activeo[i % 2] |= 3;
2628 			continue;
2629 		}
2630 
2631 		/* Enable interrupt # */
2632 		pcmis = (pcmis << 1) | 1;
2633 
2634 		/* Clear interrupt # */
2635 		pcicr = (pcicr << 1) | 1;
2636 
2637 		/* Set channel to physical mode */
2638 		prmseo[i % 2] = prmseo[i % 2] << 2;
2639 		prmseo[i % 2] |= 1;
2640 
2641 	}
2642 
2643 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2644 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2645 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2646 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2647 
2648 	/* Write which interrupt to enable */
2649 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2650 
2651 	/* Write which interrupt to clear */
2652 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2653 
2654 }
2655 
2656 static int __init d40_lcla_allocate(struct d40_base *base)
2657 {
2658 	unsigned long *page_list;
2659 	int i, j;
2660 	int ret = 0;
2661 
2662 	/*
2663 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2664 	 * To full fill this hardware requirement without wasting 256 kb
2665 	 * we allocate pages until we get an aligned one.
2666 	 */
2667 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2668 			    GFP_KERNEL);
2669 
2670 	if (!page_list) {
2671 		ret = -ENOMEM;
2672 		goto failure;
2673 	}
2674 
2675 	/* Calculating how many pages that are required */
2676 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2677 
2678 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2679 		page_list[i] = __get_free_pages(GFP_KERNEL,
2680 						base->lcla_pool.pages);
2681 		if (!page_list[i]) {
2682 
2683 			dev_err(base->dev,
2684 				"[%s] Failed to allocate %d pages.\n",
2685 				__func__, base->lcla_pool.pages);
2686 
2687 			for (j = 0; j < i; j++)
2688 				free_pages(page_list[j], base->lcla_pool.pages);
2689 			goto failure;
2690 		}
2691 
2692 		if ((virt_to_phys((void *)page_list[i]) &
2693 		     (LCLA_ALIGNMENT - 1)) == 0)
2694 			break;
2695 	}
2696 
2697 	for (j = 0; j < i; j++)
2698 		free_pages(page_list[j], base->lcla_pool.pages);
2699 
2700 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2701 		base->lcla_pool.base = (void *)page_list[i];
2702 	} else {
2703 		/* After many attempts, no succees with finding the correct
2704 		 * alignment try with allocating a big buffer */
2705 		dev_warn(base->dev,
2706 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2707 			 __func__, base->lcla_pool.pages);
2708 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2709 							 base->num_phy_chans +
2710 							 LCLA_ALIGNMENT,
2711 							 GFP_KERNEL);
2712 		if (!base->lcla_pool.base_unaligned) {
2713 			ret = -ENOMEM;
2714 			goto failure;
2715 		}
2716 
2717 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2718 						 LCLA_ALIGNMENT);
2719 	}
2720 
2721 	writel(virt_to_phys(base->lcla_pool.base),
2722 	       base->virtbase + D40_DREG_LCLA);
2723 failure:
2724 	kfree(page_list);
2725 	return ret;
2726 }
2727 
2728 static int __init d40_probe(struct platform_device *pdev)
2729 {
2730 	int err;
2731 	int ret = -ENOENT;
2732 	struct d40_base *base;
2733 	struct resource *res = NULL;
2734 	int num_reserved_chans;
2735 	u32 val;
2736 
2737 	base = d40_hw_detect_init(pdev);
2738 
2739 	if (!base)
2740 		goto failure;
2741 
2742 	num_reserved_chans = d40_phy_res_init(base);
2743 
2744 	platform_set_drvdata(pdev, base);
2745 
2746 	spin_lock_init(&base->interrupt_lock);
2747 	spin_lock_init(&base->execmd_lock);
2748 
2749 	/* Get IO for logical channel parameter address */
2750 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2751 	if (!res) {
2752 		ret = -ENOENT;
2753 		dev_err(&pdev->dev,
2754 			"[%s] No \"lcpa\" memory resource\n",
2755 			__func__);
2756 		goto failure;
2757 	}
2758 	base->lcpa_size = resource_size(res);
2759 	base->phy_lcpa = res->start;
2760 
2761 	if (request_mem_region(res->start, resource_size(res),
2762 			       D40_NAME " I/O lcpa") == NULL) {
2763 		ret = -EBUSY;
2764 		dev_err(&pdev->dev,
2765 			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
2766 			__func__, res->start, res->end);
2767 		goto failure;
2768 	}
2769 
2770 	/* We make use of ESRAM memory for this. */
2771 	val = readl(base->virtbase + D40_DREG_LCPA);
2772 	if (res->start != val && val != 0) {
2773 		dev_warn(&pdev->dev,
2774 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2775 			 __func__, val, res->start);
2776 	} else
2777 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2778 
2779 	base->lcpa_base = ioremap(res->start, resource_size(res));
2780 	if (!base->lcpa_base) {
2781 		ret = -ENOMEM;
2782 		dev_err(&pdev->dev,
2783 			"[%s] Failed to ioremap LCPA region\n",
2784 			__func__);
2785 		goto failure;
2786 	}
2787 
2788 	ret = d40_lcla_allocate(base);
2789 	if (ret) {
2790 		dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2791 			__func__);
2792 		goto failure;
2793 	}
2794 
2795 	spin_lock_init(&base->lcla_pool.lock);
2796 
2797 	base->lcla_pool.num_blocks = base->num_phy_chans;
2798 
2799 	base->irq = platform_get_irq(pdev, 0);
2800 
2801 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2802 
2803 	if (ret) {
2804 		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2805 		goto failure;
2806 	}
2807 
2808 	err = d40_dmaengine_init(base, num_reserved_chans);
2809 	if (err)
2810 		goto failure;
2811 
2812 	d40_hw_init(base);
2813 
2814 	dev_info(base->dev, "initialized\n");
2815 	return 0;
2816 
2817 failure:
2818 	if (base) {
2819 		if (base->desc_slab)
2820 			kmem_cache_destroy(base->desc_slab);
2821 		if (base->virtbase)
2822 			iounmap(base->virtbase);
2823 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2824 			free_pages((unsigned long)base->lcla_pool.base,
2825 				   base->lcla_pool.pages);
2826 		if (base->lcla_pool.base_unaligned)
2827 			kfree(base->lcla_pool.base_unaligned);
2828 		if (base->phy_lcpa)
2829 			release_mem_region(base->phy_lcpa,
2830 					   base->lcpa_size);
2831 		if (base->phy_start)
2832 			release_mem_region(base->phy_start,
2833 					   base->phy_size);
2834 		if (base->clk) {
2835 			clk_disable(base->clk);
2836 			clk_put(base->clk);
2837 		}
2838 
2839 		kfree(base->lcla_pool.alloc_map);
2840 		kfree(base->lookup_log_chans);
2841 		kfree(base->lookup_phy_chans);
2842 		kfree(base->phy_res);
2843 		kfree(base);
2844 	}
2845 
2846 	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2847 	return ret;
2848 }
2849 
2850 static struct platform_driver d40_driver = {
2851 	.driver = {
2852 		.owner = THIS_MODULE,
2853 		.name  = D40_NAME,
2854 	},
2855 };
2856 
2857 int __init stedma40_init(void)
2858 {
2859 	return platform_driver_probe(&d40_driver, d40_probe);
2860 }
2861 arch_initcall(stedma40_init);
2862