xref: /linux/drivers/dma/ste_dma40.c (revision b34bce45530ca897aea35915e0e42eb3c8047b52)
1 /*
2  * driver/dma/ste_dma40.c
3  *
4  * Copyright (C) ST-Ericsson 2007-2010
5  * License terms: GNU General Public License (GPL) version 2
6  * Author: Per Friden <per.friden@stericsson.com>
7  * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8  *
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 
18 #include <plat/ste_dma40.h>
19 
20 #include "ste_dma40_ll.h"
21 
22 #define D40_NAME "dma40"
23 
24 #define D40_PHY_CHAN -1
25 
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29 
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32 
33 #define D40_ALLOC_FREE		(1 << 31)
34 #define D40_ALLOC_PHY		(1 << 30)
35 #define D40_ALLOC_LOG_FREE	0
36 
37 /* The number of free d40_desc to keep in memory before starting
38  * to kfree() them */
39 #define D40_DESC_CACHE_SIZE 50
40 
41 /* Hardware designer of the block */
42 #define D40_PERIPHID2_DESIGNER 0x8
43 
44 /**
45  * enum 40_command - The different commands and/or statuses.
46  *
47  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
48  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
49  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
50  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
51  */
52 enum d40_command {
53 	D40_DMA_STOP		= 0,
54 	D40_DMA_RUN		= 1,
55 	D40_DMA_SUSPEND_REQ	= 2,
56 	D40_DMA_SUSPENDED	= 3
57 };
58 
59 /**
60  * struct d40_lli_pool - Structure for keeping LLIs in memory
61  *
62  * @base: Pointer to memory area when the pre_alloc_lli's are not large
63  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
64  * pre_alloc_lli is used.
65  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
66  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
67  * one buffer to one buffer.
68  */
69 struct d40_lli_pool {
70 	void	*base;
71 	int	size;
72 	/* Space for dst and src, plus an extra for padding */
73 	u8	pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
74 };
75 
76 /**
77  * struct d40_desc - A descriptor is one DMA job.
78  *
79  * @lli_phy: LLI settings for physical channel. Both src and dst=
80  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
81  * lli_len equals one.
82  * @lli_log: Same as above but for logical channels.
83  * @lli_pool: The pool with two entries pre-allocated.
84  * @lli_len: Number of LLI's in lli_pool
85  * @lli_tcount: Number of LLIs processed in the transfer. When equals lli_len
86  * then this transfer job is done.
87  * @txd: DMA engine struct. Used for among other things for communication
88  * during a transfer.
89  * @node: List entry.
90  * @dir: The transfer direction of this job.
91  * @is_in_client_list: true if the client owns this descriptor.
92  *
93  * This descriptor is used for both logical and physical transfers.
94  */
95 
96 struct d40_desc {
97 	/* LLI physical */
98 	struct d40_phy_lli_bidir	 lli_phy;
99 	/* LLI logical */
100 	struct d40_log_lli_bidir	 lli_log;
101 
102 	struct d40_lli_pool		 lli_pool;
103 	u32				 lli_len;
104 	u32				 lli_tcount;
105 
106 	struct dma_async_tx_descriptor	 txd;
107 	struct list_head		 node;
108 
109 	enum dma_data_direction		 dir;
110 	bool				 is_in_client_list;
111 };
112 
113 /**
114  * struct d40_lcla_pool - LCLA pool settings and data.
115  *
116  * @base: The virtual address of LCLA.
117  * @phy: Physical base address of LCLA.
118  * @base_size: size of lcla.
119  * @lock: Lock to protect the content in this struct.
120  * @alloc_map: Mapping between physical channel and LCLA entries.
121  * @num_blocks: The number of entries of alloc_map. Equals to the
122  * number of physical channels.
123  */
124 struct d40_lcla_pool {
125 	void		*base;
126 	dma_addr_t	 phy;
127 	resource_size_t  base_size;
128 	spinlock_t	 lock;
129 	u32		*alloc_map;
130 	int		 num_blocks;
131 };
132 
133 /**
134  * struct d40_phy_res - struct for handling eventlines mapped to physical
135  * channels.
136  *
137  * @lock: A lock protection this entity.
138  * @num: The physical channel number of this entity.
139  * @allocated_src: Bit mapped to show which src event line's are mapped to
140  * this physical channel. Can also be free or physically allocated.
141  * @allocated_dst: Same as for src but is dst.
142  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
143  * event line number. Both allocated_src and allocated_dst can not be
144  * allocated to a physical channel, since the interrupt handler has then
145  * no way of figure out which one the interrupt belongs to.
146  */
147 struct d40_phy_res {
148 	spinlock_t lock;
149 	int	   num;
150 	u32	   allocated_src;
151 	u32	   allocated_dst;
152 };
153 
154 struct d40_base;
155 
156 /**
157  * struct d40_chan - Struct that describes a channel.
158  *
159  * @lock: A spinlock to protect this struct.
160  * @log_num: The logical number, if any of this channel.
161  * @completed: Starts with 1, after first interrupt it is set to dma engine's
162  * current cookie.
163  * @pending_tx: The number of pending transfers. Used between interrupt handler
164  * and tasklet.
165  * @busy: Set to true when transfer is ongoing on this channel.
166  * @phy_chan: Pointer to physical channel which this instance runs on.
167  * @chan: DMA engine handle.
168  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
169  * transfer and call client callback.
170  * @client: Cliented owned descriptor list.
171  * @active: Active descriptor.
172  * @queue: Queued jobs.
173  * @free: List of free descripts, ready to be reused.
174  * @free_len: Number of descriptors in the free list.
175  * @dma_cfg: The client configuration of this dma channel.
176  * @base: Pointer to the device instance struct.
177  * @src_def_cfg: Default cfg register setting for src.
178  * @dst_def_cfg: Default cfg register setting for dst.
179  * @log_def: Default logical channel settings.
180  * @lcla: Space for one dst src pair for logical channel transfers.
181  * @lcpa: Pointer to dst and src lcpa settings.
182  *
183  * This struct can either "be" a logical or a physical channel.
184  */
185 struct d40_chan {
186 	spinlock_t			 lock;
187 	int				 log_num;
188 	/* ID of the most recent completed transfer */
189 	int				 completed;
190 	int				 pending_tx;
191 	bool				 busy;
192 	struct d40_phy_res		*phy_chan;
193 	struct dma_chan			 chan;
194 	struct tasklet_struct		 tasklet;
195 	struct list_head		 client;
196 	struct list_head		 active;
197 	struct list_head		 queue;
198 	struct list_head		 free;
199 	int				 free_len;
200 	struct stedma40_chan_cfg	 dma_cfg;
201 	struct d40_base			*base;
202 	/* Default register configurations */
203 	u32				 src_def_cfg;
204 	u32				 dst_def_cfg;
205 	struct d40_def_lcsp		 log_def;
206 	struct d40_lcla_elem		 lcla;
207 	struct d40_log_lli_full		*lcpa;
208 };
209 
210 /**
211  * struct d40_base - The big global struct, one for each probe'd instance.
212  *
213  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
214  * @execmd_lock: Lock for execute command usage since several channels share
215  * the same physical register.
216  * @dev: The device structure.
217  * @virtbase: The virtual base address of the DMA's register.
218  * @clk: Pointer to the DMA clock structure.
219  * @phy_start: Physical memory start of the DMA registers.
220  * @phy_size: Size of the DMA register map.
221  * @irq: The IRQ number.
222  * @num_phy_chans: The number of physical channels. Read from HW. This
223  * is the number of available channels for this driver, not counting "Secure
224  * mode" allocated physical channels.
225  * @num_log_chans: The number of logical channels. Calculated from
226  * num_phy_chans.
227  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
228  * @dma_slave: dma_device channels that can do only do slave transfers.
229  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
230  * @phy_chans: Room for all possible physical channels in system.
231  * @log_chans: Room for all possible logical channels in system.
232  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
233  * to log_chans entries.
234  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
235  * to phy_chans entries.
236  * @plat_data: Pointer to provided platform_data which is the driver
237  * configuration.
238  * @phy_res: Vector containing all physical channels.
239  * @lcla_pool: lcla pool settings and data.
240  * @lcpa_base: The virtual mapped address of LCPA.
241  * @phy_lcpa: The physical address of the LCPA.
242  * @lcpa_size: The size of the LCPA area.
243  */
244 struct d40_base {
245 	spinlock_t			 interrupt_lock;
246 	spinlock_t			 execmd_lock;
247 	struct device			 *dev;
248 	void __iomem			 *virtbase;
249 	struct clk			 *clk;
250 	phys_addr_t			  phy_start;
251 	resource_size_t			  phy_size;
252 	int				  irq;
253 	int				  num_phy_chans;
254 	int				  num_log_chans;
255 	struct dma_device		  dma_both;
256 	struct dma_device		  dma_slave;
257 	struct dma_device		  dma_memcpy;
258 	struct d40_chan			 *phy_chans;
259 	struct d40_chan			 *log_chans;
260 	struct d40_chan			**lookup_log_chans;
261 	struct d40_chan			**lookup_phy_chans;
262 	struct stedma40_platform_data	 *plat_data;
263 	/* Physical half channels */
264 	struct d40_phy_res		 *phy_res;
265 	struct d40_lcla_pool		  lcla_pool;
266 	void				 *lcpa_base;
267 	dma_addr_t			  phy_lcpa;
268 	resource_size_t			  lcpa_size;
269 };
270 
271 /**
272  * struct d40_interrupt_lookup - lookup table for interrupt handler
273  *
274  * @src: Interrupt mask register.
275  * @clr: Interrupt clear register.
276  * @is_error: true if this is an error interrupt.
277  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
278  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
279  */
280 struct d40_interrupt_lookup {
281 	u32 src;
282 	u32 clr;
283 	bool is_error;
284 	int offset;
285 };
286 
287 /**
288  * struct d40_reg_val - simple lookup struct
289  *
290  * @reg: The register.
291  * @val: The value that belongs to the register in reg.
292  */
293 struct d40_reg_val {
294 	unsigned int reg;
295 	unsigned int val;
296 };
297 
298 static int d40_pool_lli_alloc(struct d40_desc *d40d,
299 			      int lli_len, bool is_log)
300 {
301 	u32 align;
302 	void *base;
303 
304 	if (is_log)
305 		align = sizeof(struct d40_log_lli);
306 	else
307 		align = sizeof(struct d40_phy_lli);
308 
309 	if (lli_len == 1) {
310 		base = d40d->lli_pool.pre_alloc_lli;
311 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
312 		d40d->lli_pool.base = NULL;
313 	} else {
314 		d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
315 
316 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
317 		d40d->lli_pool.base = base;
318 
319 		if (d40d->lli_pool.base == NULL)
320 			return -ENOMEM;
321 	}
322 
323 	if (is_log) {
324 		d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
325 					      align);
326 		d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
327 					      align);
328 	} else {
329 		d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
330 					      align);
331 		d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
332 					      align);
333 
334 		d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
335 		d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
336 	}
337 
338 	return 0;
339 }
340 
341 static void d40_pool_lli_free(struct d40_desc *d40d)
342 {
343 	kfree(d40d->lli_pool.base);
344 	d40d->lli_pool.base = NULL;
345 	d40d->lli_pool.size = 0;
346 	d40d->lli_log.src = NULL;
347 	d40d->lli_log.dst = NULL;
348 	d40d->lli_phy.src = NULL;
349 	d40d->lli_phy.dst = NULL;
350 	d40d->lli_phy.src_addr = 0;
351 	d40d->lli_phy.dst_addr = 0;
352 }
353 
354 static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
355 				      struct d40_desc *desc)
356 {
357 	dma_cookie_t cookie = d40c->chan.cookie;
358 
359 	if (++cookie < 0)
360 		cookie = 1;
361 
362 	d40c->chan.cookie = cookie;
363 	desc->txd.cookie = cookie;
364 
365 	return cookie;
366 }
367 
368 static void d40_desc_reset(struct d40_desc *d40d)
369 {
370 	d40d->lli_tcount = 0;
371 }
372 
373 static void d40_desc_remove(struct d40_desc *d40d)
374 {
375 	list_del(&d40d->node);
376 }
377 
378 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
379 {
380 	struct d40_desc *desc;
381 	struct d40_desc *d;
382 	struct d40_desc *_d;
383 
384 	if (!list_empty(&d40c->client)) {
385 		list_for_each_entry_safe(d, _d, &d40c->client, node)
386 			if (async_tx_test_ack(&d->txd)) {
387 				d40_pool_lli_free(d);
388 				d40_desc_remove(d);
389 				desc = d;
390 				goto out;
391 			}
392 	}
393 
394 	if (list_empty(&d40c->free)) {
395 		/* Alloc new desc because we're out of used ones */
396 		desc = kzalloc(sizeof(struct d40_desc), GFP_NOWAIT);
397 		if (desc == NULL)
398 			goto out;
399 		INIT_LIST_HEAD(&desc->node);
400 	} else {
401 		/* Reuse an old desc. */
402 		desc = list_first_entry(&d40c->free,
403 					struct d40_desc,
404 					node);
405 		list_del(&desc->node);
406 		d40c->free_len--;
407 	}
408 out:
409 	return desc;
410 }
411 
412 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
413 {
414 	if (d40c->free_len < D40_DESC_CACHE_SIZE) {
415 		list_add_tail(&d40d->node, &d40c->free);
416 		d40c->free_len++;
417 	} else
418 		kfree(d40d);
419 }
420 
421 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
422 {
423 	list_add_tail(&desc->node, &d40c->active);
424 }
425 
426 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
427 {
428 	struct d40_desc *d;
429 
430 	if (list_empty(&d40c->active))
431 		return NULL;
432 
433 	d = list_first_entry(&d40c->active,
434 			     struct d40_desc,
435 			     node);
436 	return d;
437 }
438 
439 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
440 {
441 	list_add_tail(&desc->node, &d40c->queue);
442 }
443 
444 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
445 {
446 	struct d40_desc *d;
447 
448 	if (list_empty(&d40c->queue))
449 		return NULL;
450 
451 	d = list_first_entry(&d40c->queue,
452 			     struct d40_desc,
453 			     node);
454 	return d;
455 }
456 
457 /* Support functions for logical channels */
458 
459 static int d40_lcla_id_get(struct d40_chan *d40c,
460 			   struct d40_lcla_pool *pool)
461 {
462 	int src_id = 0;
463 	int dst_id = 0;
464 	struct d40_log_lli *lcla_lidx_base =
465 		pool->base + d40c->phy_chan->num * 1024;
466 	int i;
467 	int lli_per_log = d40c->base->plat_data->llis_per_log;
468 
469 	if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
470 		return 0;
471 
472 	if (pool->num_blocks > 32)
473 		return -EINVAL;
474 
475 	spin_lock(&pool->lock);
476 
477 	for (i = 0; i < pool->num_blocks; i++) {
478 		if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
479 			pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
480 			break;
481 		}
482 	}
483 	src_id = i;
484 	if (src_id >= pool->num_blocks)
485 		goto err;
486 
487 	for (; i < pool->num_blocks; i++) {
488 		if (!(pool->alloc_map[d40c->phy_chan->num] & (0x1 << i))) {
489 			pool->alloc_map[d40c->phy_chan->num] |= (0x1 << i);
490 			break;
491 		}
492 	}
493 
494 	dst_id = i;
495 	if (dst_id == src_id)
496 		goto err;
497 
498 	d40c->lcla.src_id = src_id;
499 	d40c->lcla.dst_id = dst_id;
500 	d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
501 	d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
502 
503 
504 	spin_unlock(&pool->lock);
505 	return 0;
506 err:
507 	spin_unlock(&pool->lock);
508 	return -EINVAL;
509 }
510 
511 static void d40_lcla_id_put(struct d40_chan *d40c,
512 			    struct d40_lcla_pool *pool,
513 			    int id)
514 {
515 	if (id < 0)
516 		return;
517 
518 	d40c->lcla.src_id = -1;
519 	d40c->lcla.dst_id = -1;
520 
521 	spin_lock(&pool->lock);
522 	pool->alloc_map[d40c->phy_chan->num] &= (~(0x1 << id));
523 	spin_unlock(&pool->lock);
524 }
525 
526 static int d40_channel_execute_command(struct d40_chan *d40c,
527 				       enum d40_command command)
528 {
529 	int status, i;
530 	void __iomem *active_reg;
531 	int ret = 0;
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
535 
536 	if (d40c->phy_chan->num % 2 == 0)
537 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
538 	else
539 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
540 
541 	if (command == D40_DMA_SUSPEND_REQ) {
542 		status = (readl(active_reg) &
543 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
544 			D40_CHAN_POS(d40c->phy_chan->num);
545 
546 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
547 			goto done;
548 	}
549 
550 	writel(command << D40_CHAN_POS(d40c->phy_chan->num), active_reg);
551 
552 	if (command == D40_DMA_SUSPEND_REQ) {
553 
554 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
555 			status = (readl(active_reg) &
556 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
557 				D40_CHAN_POS(d40c->phy_chan->num);
558 
559 			cpu_relax();
560 			/*
561 			 * Reduce the number of bus accesses while
562 			 * waiting for the DMA to suspend.
563 			 */
564 			udelay(3);
565 
566 			if (status == D40_DMA_STOP ||
567 			    status == D40_DMA_SUSPENDED)
568 				break;
569 		}
570 
571 		if (i == D40_SUSPEND_MAX_IT) {
572 			dev_err(&d40c->chan.dev->device,
573 				"[%s]: unable to suspend the chl %d (log: %d) status %x\n",
574 				__func__, d40c->phy_chan->num, d40c->log_num,
575 				status);
576 			dump_stack();
577 			ret = -EBUSY;
578 		}
579 
580 	}
581 done:
582 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
583 	return ret;
584 }
585 
586 static void d40_term_all(struct d40_chan *d40c)
587 {
588 	struct d40_desc *d40d;
589 	struct d40_desc *d;
590 	struct d40_desc *_d;
591 
592 	/* Release active descriptors */
593 	while ((d40d = d40_first_active_get(d40c))) {
594 		d40_desc_remove(d40d);
595 
596 		/* Return desc to free-list */
597 		d40_desc_free(d40c, d40d);
598 	}
599 
600 	/* Release queued descriptors waiting for transfer */
601 	while ((d40d = d40_first_queued(d40c))) {
602 		d40_desc_remove(d40d);
603 
604 		/* Return desc to free-list */
605 		d40_desc_free(d40c, d40d);
606 	}
607 
608 	/* Release client owned descriptors */
609 	if (!list_empty(&d40c->client))
610 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
611 			d40_pool_lli_free(d);
612 			d40_desc_remove(d);
613 			/* Return desc to free-list */
614 			d40_desc_free(d40c, d40d);
615 		}
616 
617 	d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
618 			d40c->lcla.src_id);
619 	d40_lcla_id_put(d40c, &d40c->base->lcla_pool,
620 			d40c->lcla.dst_id);
621 
622 	d40c->pending_tx = 0;
623 	d40c->busy = false;
624 }
625 
626 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
627 {
628 	u32 val;
629 	unsigned long flags;
630 
631 	if (do_enable)
632 		val = D40_ACTIVATE_EVENTLINE;
633 	else
634 		val = D40_DEACTIVATE_EVENTLINE;
635 
636 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
637 
638 	/* Enable event line connected to device (or memcpy) */
639 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
640 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
641 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
642 
643 		writel((val << D40_EVENTLINE_POS(event)) |
644 		       ~D40_EVENTLINE_MASK(event),
645 		       d40c->base->virtbase + D40_DREG_PCBASE +
646 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
647 		       D40_CHAN_REG_SSLNK);
648 	}
649 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
650 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
651 
652 		writel((val << D40_EVENTLINE_POS(event)) |
653 		       ~D40_EVENTLINE_MASK(event),
654 		       d40c->base->virtbase + D40_DREG_PCBASE +
655 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
656 		       D40_CHAN_REG_SDLNK);
657 	}
658 
659 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
660 }
661 
662 static u32 d40_chan_has_events(struct d40_chan *d40c)
663 {
664 	u32 val = 0;
665 
666 	/* If SSLNK or SDLNK is zero all events are disabled */
667 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
668 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
669 		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
670 			    d40c->phy_chan->num * D40_DREG_PCDELTA +
671 			    D40_CHAN_REG_SSLNK);
672 
673 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
674 		val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
675 			    d40c->phy_chan->num * D40_DREG_PCDELTA +
676 			    D40_CHAN_REG_SDLNK);
677 	return val;
678 }
679 
680 static void d40_config_enable_lidx(struct d40_chan *d40c)
681 {
682 	/* Set LIDX for lcla */
683 	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
684 	       D40_SREG_ELEM_LOG_LIDX_MASK,
685 	       d40c->base->virtbase + D40_DREG_PCBASE +
686 	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
687 
688 	writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
689 	       D40_SREG_ELEM_LOG_LIDX_MASK,
690 	       d40c->base->virtbase + D40_DREG_PCBASE +
691 	       d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
692 }
693 
694 static int d40_config_write(struct d40_chan *d40c)
695 {
696 	u32 addr_base;
697 	u32 var;
698 	int res;
699 
700 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
701 	if (res)
702 		return res;
703 
704 	/* Odd addresses are even addresses + 4 */
705 	addr_base = (d40c->phy_chan->num % 2) * 4;
706 	/* Setup channel mode to logical or physical */
707 	var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
708 		D40_CHAN_POS(d40c->phy_chan->num);
709 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
710 
711 	/* Setup operational mode option register */
712 	var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
713 	       0x3) << D40_CHAN_POS(d40c->phy_chan->num);
714 
715 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
716 
717 	if (d40c->log_num != D40_PHY_CHAN) {
718 		/* Set default config for CFG reg */
719 		writel(d40c->src_def_cfg,
720 		       d40c->base->virtbase + D40_DREG_PCBASE +
721 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
722 		       D40_CHAN_REG_SSCFG);
723 		writel(d40c->dst_def_cfg,
724 		       d40c->base->virtbase + D40_DREG_PCBASE +
725 		       d40c->phy_chan->num * D40_DREG_PCDELTA +
726 		       D40_CHAN_REG_SDCFG);
727 
728 		d40_config_enable_lidx(d40c);
729 	}
730 	return res;
731 }
732 
733 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
734 {
735 
736 	if (d40d->lli_phy.dst && d40d->lli_phy.src) {
737 		d40_phy_lli_write(d40c->base->virtbase,
738 				  d40c->phy_chan->num,
739 				  d40d->lli_phy.dst,
740 				  d40d->lli_phy.src);
741 		d40d->lli_tcount = d40d->lli_len;
742 	} else if (d40d->lli_log.dst && d40d->lli_log.src) {
743 		u32 lli_len;
744 		struct d40_log_lli *src = d40d->lli_log.src;
745 		struct d40_log_lli *dst = d40d->lli_log.dst;
746 
747 		src += d40d->lli_tcount;
748 		dst += d40d->lli_tcount;
749 
750 		if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
751 			lli_len = d40d->lli_len;
752 		else
753 			lli_len = d40c->base->plat_data->llis_per_log;
754 		d40d->lli_tcount += lli_len;
755 		d40_log_lli_write(d40c->lcpa, d40c->lcla.src,
756 				  d40c->lcla.dst,
757 				  dst, src,
758 				  d40c->base->plat_data->llis_per_log);
759 	}
760 }
761 
762 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
763 {
764 	struct d40_chan *d40c = container_of(tx->chan,
765 					     struct d40_chan,
766 					     chan);
767 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
768 	unsigned long flags;
769 
770 	spin_lock_irqsave(&d40c->lock, flags);
771 
772 	tx->cookie = d40_assign_cookie(d40c, d40d);
773 
774 	d40_desc_queue(d40c, d40d);
775 
776 	spin_unlock_irqrestore(&d40c->lock, flags);
777 
778 	return tx->cookie;
779 }
780 
781 static int d40_start(struct d40_chan *d40c)
782 {
783 	int err;
784 
785 	if (d40c->log_num != D40_PHY_CHAN) {
786 		err = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
787 		if (err)
788 			return err;
789 		d40_config_set_event(d40c, true);
790 	}
791 
792 	err = d40_channel_execute_command(d40c, D40_DMA_RUN);
793 
794 	return err;
795 }
796 
797 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
798 {
799 	struct d40_desc *d40d;
800 	int err;
801 
802 	/* Start queued jobs, if any */
803 	d40d = d40_first_queued(d40c);
804 
805 	if (d40d != NULL) {
806 		d40c->busy = true;
807 
808 		/* Remove from queue */
809 		d40_desc_remove(d40d);
810 
811 		/* Add to active queue */
812 		d40_desc_submit(d40c, d40d);
813 
814 		/* Initiate DMA job */
815 		d40_desc_load(d40c, d40d);
816 
817 		/* Start dma job */
818 		err = d40_start(d40c);
819 
820 		if (err)
821 			return NULL;
822 	}
823 
824 	return d40d;
825 }
826 
827 /* called from interrupt context */
828 static void dma_tc_handle(struct d40_chan *d40c)
829 {
830 	struct d40_desc *d40d;
831 
832 	if (!d40c->phy_chan)
833 		return;
834 
835 	/* Get first active entry from list */
836 	d40d = d40_first_active_get(d40c);
837 
838 	if (d40d == NULL)
839 		return;
840 
841 	if (d40d->lli_tcount < d40d->lli_len) {
842 
843 		d40_desc_load(d40c, d40d);
844 		/* Start dma job */
845 		(void) d40_start(d40c);
846 		return;
847 	}
848 
849 	if (d40_queue_start(d40c) == NULL)
850 		d40c->busy = false;
851 
852 	d40c->pending_tx++;
853 	tasklet_schedule(&d40c->tasklet);
854 
855 }
856 
857 static void dma_tasklet(unsigned long data)
858 {
859 	struct d40_chan *d40c = (struct d40_chan *) data;
860 	struct d40_desc *d40d_fin;
861 	unsigned long flags;
862 	dma_async_tx_callback callback;
863 	void *callback_param;
864 
865 	spin_lock_irqsave(&d40c->lock, flags);
866 
867 	/* Get first active entry from list */
868 	d40d_fin = d40_first_active_get(d40c);
869 
870 	if (d40d_fin == NULL)
871 		goto err;
872 
873 	d40c->completed = d40d_fin->txd.cookie;
874 
875 	/*
876 	 * If terminating a channel pending_tx is set to zero.
877 	 * This prevents any finished active jobs to return to the client.
878 	 */
879 	if (d40c->pending_tx == 0) {
880 		spin_unlock_irqrestore(&d40c->lock, flags);
881 		return;
882 	}
883 
884 	/* Callback to client */
885 	callback = d40d_fin->txd.callback;
886 	callback_param = d40d_fin->txd.callback_param;
887 
888 	if (async_tx_test_ack(&d40d_fin->txd)) {
889 		d40_pool_lli_free(d40d_fin);
890 		d40_desc_remove(d40d_fin);
891 		/* Return desc to free-list */
892 		d40_desc_free(d40c, d40d_fin);
893 	} else {
894 		d40_desc_reset(d40d_fin);
895 		if (!d40d_fin->is_in_client_list) {
896 			d40_desc_remove(d40d_fin);
897 			list_add_tail(&d40d_fin->node, &d40c->client);
898 			d40d_fin->is_in_client_list = true;
899 		}
900 	}
901 
902 	d40c->pending_tx--;
903 
904 	if (d40c->pending_tx)
905 		tasklet_schedule(&d40c->tasklet);
906 
907 	spin_unlock_irqrestore(&d40c->lock, flags);
908 
909 	if (callback)
910 		callback(callback_param);
911 
912 	return;
913 
914  err:
915 	/* Rescue manouver if receiving double interrupts */
916 	if (d40c->pending_tx > 0)
917 		d40c->pending_tx--;
918 	spin_unlock_irqrestore(&d40c->lock, flags);
919 }
920 
921 static irqreturn_t d40_handle_interrupt(int irq, void *data)
922 {
923 	static const struct d40_interrupt_lookup il[] = {
924 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
925 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
926 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
927 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
928 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
929 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
930 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
931 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
932 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
933 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
934 	};
935 
936 	int i;
937 	u32 regs[ARRAY_SIZE(il)];
938 	u32 tmp;
939 	u32 idx;
940 	u32 row;
941 	long chan = -1;
942 	struct d40_chan *d40c;
943 	unsigned long flags;
944 	struct d40_base *base = data;
945 
946 	spin_lock_irqsave(&base->interrupt_lock, flags);
947 
948 	/* Read interrupt status of both logical and physical channels */
949 	for (i = 0; i < ARRAY_SIZE(il); i++)
950 		regs[i] = readl(base->virtbase + il[i].src);
951 
952 	for (;;) {
953 
954 		chan = find_next_bit((unsigned long *)regs,
955 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
956 
957 		/* No more set bits found? */
958 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
959 			break;
960 
961 		row = chan / BITS_PER_LONG;
962 		idx = chan & (BITS_PER_LONG - 1);
963 
964 		/* ACK interrupt */
965 		tmp = readl(base->virtbase + il[row].clr);
966 		tmp |= 1 << idx;
967 		writel(tmp, base->virtbase + il[row].clr);
968 
969 		if (il[row].offset == D40_PHY_CHAN)
970 			d40c = base->lookup_phy_chans[idx];
971 		else
972 			d40c = base->lookup_log_chans[il[row].offset + idx];
973 		spin_lock(&d40c->lock);
974 
975 		if (!il[row].is_error)
976 			dma_tc_handle(d40c);
977 		else
978 			dev_err(base->dev, "[%s] IRQ chan: %ld offset %d idx %d\n",
979 				__func__, chan, il[row].offset, idx);
980 
981 		spin_unlock(&d40c->lock);
982 	}
983 
984 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
985 
986 	return IRQ_HANDLED;
987 }
988 
989 
990 static int d40_validate_conf(struct d40_chan *d40c,
991 			     struct stedma40_chan_cfg *conf)
992 {
993 	int res = 0;
994 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
995 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
996 	bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
997 		== STEDMA40_CHANNEL_IN_LOG_MODE;
998 
999 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
1000 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1001 		dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1002 			__func__);
1003 		res = -EINVAL;
1004 	}
1005 
1006 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
1007 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1008 		dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1009 			__func__);
1010 		res = -EINVAL;
1011 	}
1012 
1013 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1014 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1015 		dev_err(&d40c->chan.dev->device,
1016 			"[%s] No event line\n", __func__);
1017 		res = -EINVAL;
1018 	}
1019 
1020 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1021 	    (src_event_group != dst_event_group)) {
1022 		dev_err(&d40c->chan.dev->device,
1023 			"[%s] Invalid event group\n", __func__);
1024 		res = -EINVAL;
1025 	}
1026 
1027 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1028 		/*
1029 		 * DMAC HW supports it. Will be added to this driver,
1030 		 * in case any dma client requires it.
1031 		 */
1032 		dev_err(&d40c->chan.dev->device,
1033 			"[%s] periph to periph not supported\n",
1034 			__func__);
1035 		res = -EINVAL;
1036 	}
1037 
1038 	return res;
1039 }
1040 
1041 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1042 			       int log_event_line, bool is_log)
1043 {
1044 	unsigned long flags;
1045 	spin_lock_irqsave(&phy->lock, flags);
1046 	if (!is_log) {
1047 		/* Physical interrupts are masked per physical full channel */
1048 		if (phy->allocated_src == D40_ALLOC_FREE &&
1049 		    phy->allocated_dst == D40_ALLOC_FREE) {
1050 			phy->allocated_dst = D40_ALLOC_PHY;
1051 			phy->allocated_src = D40_ALLOC_PHY;
1052 			goto found;
1053 		} else
1054 			goto not_found;
1055 	}
1056 
1057 	/* Logical channel */
1058 	if (is_src) {
1059 		if (phy->allocated_src == D40_ALLOC_PHY)
1060 			goto not_found;
1061 
1062 		if (phy->allocated_src == D40_ALLOC_FREE)
1063 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1064 
1065 		if (!(phy->allocated_src & (1 << log_event_line))) {
1066 			phy->allocated_src |= 1 << log_event_line;
1067 			goto found;
1068 		} else
1069 			goto not_found;
1070 	} else {
1071 		if (phy->allocated_dst == D40_ALLOC_PHY)
1072 			goto not_found;
1073 
1074 		if (phy->allocated_dst == D40_ALLOC_FREE)
1075 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1076 
1077 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1078 			phy->allocated_dst |= 1 << log_event_line;
1079 			goto found;
1080 		} else
1081 			goto not_found;
1082 	}
1083 
1084 not_found:
1085 	spin_unlock_irqrestore(&phy->lock, flags);
1086 	return false;
1087 found:
1088 	spin_unlock_irqrestore(&phy->lock, flags);
1089 	return true;
1090 }
1091 
1092 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1093 			       int log_event_line)
1094 {
1095 	unsigned long flags;
1096 	bool is_free = false;
1097 
1098 	spin_lock_irqsave(&phy->lock, flags);
1099 	if (!log_event_line) {
1100 		/* Physical interrupts are masked per physical full channel */
1101 		phy->allocated_dst = D40_ALLOC_FREE;
1102 		phy->allocated_src = D40_ALLOC_FREE;
1103 		is_free = true;
1104 		goto out;
1105 	}
1106 
1107 	/* Logical channel */
1108 	if (is_src) {
1109 		phy->allocated_src &= ~(1 << log_event_line);
1110 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1111 			phy->allocated_src = D40_ALLOC_FREE;
1112 	} else {
1113 		phy->allocated_dst &= ~(1 << log_event_line);
1114 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1115 			phy->allocated_dst = D40_ALLOC_FREE;
1116 	}
1117 
1118 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1119 		   D40_ALLOC_FREE);
1120 
1121 out:
1122 	spin_unlock_irqrestore(&phy->lock, flags);
1123 
1124 	return is_free;
1125 }
1126 
1127 static int d40_allocate_channel(struct d40_chan *d40c)
1128 {
1129 	int dev_type;
1130 	int event_group;
1131 	int event_line;
1132 	struct d40_phy_res *phys;
1133 	int i;
1134 	int j;
1135 	int log_num;
1136 	bool is_src;
1137 	bool is_log = (d40c->dma_cfg.channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
1138 		== STEDMA40_CHANNEL_IN_LOG_MODE;
1139 
1140 
1141 	phys = d40c->base->phy_res;
1142 
1143 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1144 		dev_type = d40c->dma_cfg.src_dev_type;
1145 		log_num = 2 * dev_type;
1146 		is_src = true;
1147 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1148 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1149 		/* dst event lines are used for logical memcpy */
1150 		dev_type = d40c->dma_cfg.dst_dev_type;
1151 		log_num = 2 * dev_type + 1;
1152 		is_src = false;
1153 	} else
1154 		return -EINVAL;
1155 
1156 	event_group = D40_TYPE_TO_GROUP(dev_type);
1157 	event_line = D40_TYPE_TO_EVENT(dev_type);
1158 
1159 	if (!is_log) {
1160 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1161 			/* Find physical half channel */
1162 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1163 
1164 				if (d40_alloc_mask_set(&phys[i], is_src,
1165 						       0, is_log))
1166 					goto found_phy;
1167 			}
1168 		} else
1169 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1170 				int phy_num = j  + event_group * 2;
1171 				for (i = phy_num; i < phy_num + 2; i++) {
1172 					if (d40_alloc_mask_set(&phys[i], is_src,
1173 							       0, is_log))
1174 						goto found_phy;
1175 				}
1176 			}
1177 		return -EINVAL;
1178 found_phy:
1179 		d40c->phy_chan = &phys[i];
1180 		d40c->log_num = D40_PHY_CHAN;
1181 		goto out;
1182 	}
1183 	if (dev_type == -1)
1184 		return -EINVAL;
1185 
1186 	/* Find logical channel */
1187 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1188 		int phy_num = j + event_group * 2;
1189 		/*
1190 		 * Spread logical channels across all available physical rather
1191 		 * than pack every logical channel at the first available phy
1192 		 * channels.
1193 		 */
1194 		if (is_src) {
1195 			for (i = phy_num; i < phy_num + 2; i++) {
1196 				if (d40_alloc_mask_set(&phys[i], is_src,
1197 						       event_line, is_log))
1198 					goto found_log;
1199 			}
1200 		} else {
1201 			for (i = phy_num + 1; i >= phy_num; i--) {
1202 				if (d40_alloc_mask_set(&phys[i], is_src,
1203 						       event_line, is_log))
1204 					goto found_log;
1205 			}
1206 		}
1207 	}
1208 	return -EINVAL;
1209 
1210 found_log:
1211 	d40c->phy_chan = &phys[i];
1212 	d40c->log_num = log_num;
1213 out:
1214 
1215 	if (is_log)
1216 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1217 	else
1218 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1219 
1220 	return 0;
1221 
1222 }
1223 
1224 static int d40_config_chan(struct d40_chan *d40c,
1225 			   struct stedma40_chan_cfg *info)
1226 {
1227 
1228 	/* Fill in basic CFG register values */
1229 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1230 		    &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1231 
1232 	if (d40c->log_num != D40_PHY_CHAN) {
1233 		d40_log_cfg(&d40c->dma_cfg,
1234 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1235 
1236 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1237 			d40c->lcpa = d40c->base->lcpa_base +
1238 				d40c->dma_cfg.src_dev_type * 32;
1239 		else
1240 			d40c->lcpa = d40c->base->lcpa_base +
1241 				d40c->dma_cfg.dst_dev_type * 32 + 16;
1242 	}
1243 
1244 	/* Write channel configuration to the DMA */
1245 	return d40_config_write(d40c);
1246 }
1247 
1248 static int d40_config_memcpy(struct d40_chan *d40c)
1249 {
1250 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1251 
1252 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1253 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1254 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1255 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1256 			memcpy[d40c->chan.chan_id];
1257 
1258 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1259 		   dma_has_cap(DMA_SLAVE, cap)) {
1260 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1261 	} else {
1262 		dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1263 			__func__);
1264 		return -EINVAL;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 
1271 static int d40_free_dma(struct d40_chan *d40c)
1272 {
1273 
1274 	int res = 0;
1275 	u32 event, dir;
1276 	struct d40_phy_res *phy = d40c->phy_chan;
1277 	bool is_src;
1278 
1279 	/* Terminate all queued and active transfers */
1280 	d40_term_all(d40c);
1281 
1282 	if (phy == NULL) {
1283 		dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1284 			__func__);
1285 		return -EINVAL;
1286 	}
1287 
1288 	if (phy->allocated_src == D40_ALLOC_FREE &&
1289 	    phy->allocated_dst == D40_ALLOC_FREE) {
1290 		dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1291 			__func__);
1292 		return -EINVAL;
1293 	}
1294 
1295 
1296 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1297 	if (res) {
1298 		dev_err(&d40c->chan.dev->device, "[%s] suspend\n",
1299 			__func__);
1300 		return res;
1301 	}
1302 
1303 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1304 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1305 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1306 		dir = D40_CHAN_REG_SDLNK;
1307 		is_src = false;
1308 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1309 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1310 		dir = D40_CHAN_REG_SSLNK;
1311 		is_src = true;
1312 	} else {
1313 		dev_err(&d40c->chan.dev->device,
1314 			"[%s] Unknown direction\n", __func__);
1315 		return -EINVAL;
1316 	}
1317 
1318 	if (d40c->log_num != D40_PHY_CHAN) {
1319 		/*
1320 		 * Release logical channel, deactivate the event line during
1321 		 * the time physical res is suspended.
1322 		 */
1323 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
1324 		       D40_EVENTLINE_MASK(event),
1325 		       d40c->base->virtbase + D40_DREG_PCBASE +
1326 		       phy->num * D40_DREG_PCDELTA + dir);
1327 
1328 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1329 
1330 		/*
1331 		 * Check if there are more logical allocation
1332 		 * on this phy channel.
1333 		 */
1334 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1335 			/* Resume the other logical channels if any */
1336 			if (d40_chan_has_events(d40c)) {
1337 				res = d40_channel_execute_command(d40c,
1338 								  D40_DMA_RUN);
1339 				if (res) {
1340 					dev_err(&d40c->chan.dev->device,
1341 						"[%s] Executing RUN command\n",
1342 						__func__);
1343 					return res;
1344 				}
1345 			}
1346 			return 0;
1347 		}
1348 	} else
1349 		d40_alloc_mask_free(phy, is_src, 0);
1350 
1351 	/* Release physical channel */
1352 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1353 	if (res) {
1354 		dev_err(&d40c->chan.dev->device,
1355 			"[%s] Failed to stop channel\n", __func__);
1356 		return res;
1357 	}
1358 	d40c->phy_chan = NULL;
1359 	/* Invalidate channel type */
1360 	d40c->dma_cfg.channel_type = 0;
1361 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1362 
1363 	return 0;
1364 
1365 
1366 }
1367 
1368 static int d40_pause(struct dma_chan *chan)
1369 {
1370 	struct d40_chan *d40c =
1371 		container_of(chan, struct d40_chan, chan);
1372 	int res;
1373 
1374 	unsigned long flags;
1375 
1376 	spin_lock_irqsave(&d40c->lock, flags);
1377 
1378 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1379 	if (res == 0) {
1380 		if (d40c->log_num != D40_PHY_CHAN) {
1381 			d40_config_set_event(d40c, false);
1382 			/* Resume the other logical channels if any */
1383 			if (d40_chan_has_events(d40c))
1384 				res = d40_channel_execute_command(d40c,
1385 								  D40_DMA_RUN);
1386 		}
1387 	}
1388 
1389 	spin_unlock_irqrestore(&d40c->lock, flags);
1390 	return res;
1391 }
1392 
1393 static bool d40_is_paused(struct d40_chan *d40c)
1394 {
1395 	bool is_paused = false;
1396 	unsigned long flags;
1397 	void __iomem *active_reg;
1398 	u32 status;
1399 	u32 event;
1400 	int res;
1401 
1402 	spin_lock_irqsave(&d40c->lock, flags);
1403 
1404 	if (d40c->log_num == D40_PHY_CHAN) {
1405 		if (d40c->phy_chan->num % 2 == 0)
1406 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1407 		else
1408 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1409 
1410 		status = (readl(active_reg) &
1411 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1412 			D40_CHAN_POS(d40c->phy_chan->num);
1413 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1414 			is_paused = true;
1415 
1416 		goto _exit;
1417 	}
1418 
1419 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1420 	if (res != 0)
1421 		goto _exit;
1422 
1423 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1424 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1425 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1426 	else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1427 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1428 	else {
1429 		dev_err(&d40c->chan.dev->device,
1430 			"[%s] Unknown direction\n", __func__);
1431 		goto _exit;
1432 	}
1433 	status = d40_chan_has_events(d40c);
1434 	status = (status & D40_EVENTLINE_MASK(event)) >>
1435 		D40_EVENTLINE_POS(event);
1436 
1437 	if (status != D40_DMA_RUN)
1438 		is_paused = true;
1439 
1440 	/* Resume the other logical channels if any */
1441 	if (d40_chan_has_events(d40c))
1442 		res = d40_channel_execute_command(d40c,
1443 						  D40_DMA_RUN);
1444 
1445 _exit:
1446 	spin_unlock_irqrestore(&d40c->lock, flags);
1447 	return is_paused;
1448 
1449 }
1450 
1451 
1452 static bool d40_tx_is_linked(struct d40_chan *d40c)
1453 {
1454 	bool is_link;
1455 
1456 	if (d40c->log_num != D40_PHY_CHAN)
1457 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1458 	else
1459 		is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1460 				d40c->phy_chan->num * D40_DREG_PCDELTA +
1461 				D40_CHAN_REG_SDLNK) &
1462 			D40_SREG_LNK_PHYS_LNK_MASK;
1463 	return is_link;
1464 }
1465 
1466 static u32 d40_residue(struct d40_chan *d40c)
1467 {
1468 	u32 num_elt;
1469 
1470 	if (d40c->log_num != D40_PHY_CHAN)
1471 		num_elt = (readl(&d40c->lcpa->lcsp2) &  D40_MEM_LCSP2_ECNT_MASK)
1472 			>> D40_MEM_LCSP2_ECNT_POS;
1473 	else
1474 		num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1475 				 d40c->phy_chan->num * D40_DREG_PCDELTA +
1476 				 D40_CHAN_REG_SDELT) &
1477 			   D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS;
1478 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1479 }
1480 
1481 static int d40_resume(struct dma_chan *chan)
1482 {
1483 	struct d40_chan *d40c =
1484 		container_of(chan, struct d40_chan, chan);
1485 	int res = 0;
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&d40c->lock, flags);
1489 
1490 	if (d40c->log_num != D40_PHY_CHAN) {
1491 		res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1492 		if (res)
1493 			goto out;
1494 
1495 		/* If bytes left to transfer or linked tx resume job */
1496 		if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1497 			d40_config_set_event(d40c, true);
1498 			res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1499 		}
1500 	} else if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1501 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1502 
1503 out:
1504 	spin_unlock_irqrestore(&d40c->lock, flags);
1505 	return res;
1506 }
1507 
1508 static u32 stedma40_residue(struct dma_chan *chan)
1509 {
1510 	struct d40_chan *d40c =
1511 		container_of(chan, struct d40_chan, chan);
1512 	u32 bytes_left;
1513 	unsigned long flags;
1514 
1515 	spin_lock_irqsave(&d40c->lock, flags);
1516 	bytes_left = d40_residue(d40c);
1517 	spin_unlock_irqrestore(&d40c->lock, flags);
1518 
1519 	return bytes_left;
1520 }
1521 
1522 /* Public DMA functions in addition to the DMA engine framework */
1523 
1524 int stedma40_set_psize(struct dma_chan *chan,
1525 		       int src_psize,
1526 		       int dst_psize)
1527 {
1528 	struct d40_chan *d40c =
1529 		container_of(chan, struct d40_chan, chan);
1530 	unsigned long flags;
1531 
1532 	spin_lock_irqsave(&d40c->lock, flags);
1533 
1534 	if (d40c->log_num != D40_PHY_CHAN) {
1535 		d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1536 		d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1537 		d40c->log_def.lcsp1 |= src_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
1538 		d40c->log_def.lcsp3 |= dst_psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
1539 		goto out;
1540 	}
1541 
1542 	if (src_psize == STEDMA40_PSIZE_PHY_1)
1543 		d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1544 	else {
1545 		d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1546 		d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1547 				       D40_SREG_CFG_PSIZE_POS);
1548 		d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1549 	}
1550 
1551 	if (dst_psize == STEDMA40_PSIZE_PHY_1)
1552 		d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1553 	else {
1554 		d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1555 		d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1556 				       D40_SREG_CFG_PSIZE_POS);
1557 		d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1558 	}
1559 out:
1560 	spin_unlock_irqrestore(&d40c->lock, flags);
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(stedma40_set_psize);
1564 
1565 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1566 						   struct scatterlist *sgl_dst,
1567 						   struct scatterlist *sgl_src,
1568 						   unsigned int sgl_len,
1569 						   unsigned long flags)
1570 {
1571 	int res;
1572 	struct d40_desc *d40d;
1573 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1574 					     chan);
1575 	unsigned long flg;
1576 	int lli_max = d40c->base->plat_data->llis_per_log;
1577 
1578 
1579 	spin_lock_irqsave(&d40c->lock, flg);
1580 	d40d = d40_desc_get(d40c);
1581 
1582 	if (d40d == NULL)
1583 		goto err;
1584 
1585 	memset(d40d, 0, sizeof(struct d40_desc));
1586 	d40d->lli_len = sgl_len;
1587 
1588 	d40d->txd.flags = flags;
1589 
1590 	if (d40c->log_num != D40_PHY_CHAN) {
1591 		if (sgl_len > 1)
1592 			/*
1593 			 * Check if there is space available in lcla. If not,
1594 			 * split list into 1-length and run only in lcpa
1595 			 * space.
1596 			 */
1597 			if (d40_lcla_id_get(d40c,
1598 					    &d40c->base->lcla_pool) != 0)
1599 				lli_max = 1;
1600 
1601 		if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1602 			dev_err(&d40c->chan.dev->device,
1603 				"[%s] Out of memory\n", __func__);
1604 			goto err;
1605 		}
1606 
1607 		(void) d40_log_sg_to_lli(d40c->lcla.src_id,
1608 					 sgl_src,
1609 					 sgl_len,
1610 					 d40d->lli_log.src,
1611 					 d40c->log_def.lcsp1,
1612 					 d40c->dma_cfg.src_info.data_width,
1613 					 flags & DMA_PREP_INTERRUPT, lli_max,
1614 					 d40c->base->plat_data->llis_per_log);
1615 
1616 		(void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1617 					 sgl_dst,
1618 					 sgl_len,
1619 					 d40d->lli_log.dst,
1620 					 d40c->log_def.lcsp3,
1621 					 d40c->dma_cfg.dst_info.data_width,
1622 					 flags & DMA_PREP_INTERRUPT, lli_max,
1623 					 d40c->base->plat_data->llis_per_log);
1624 
1625 
1626 	} else {
1627 		if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1628 			dev_err(&d40c->chan.dev->device,
1629 				"[%s] Out of memory\n", __func__);
1630 			goto err;
1631 		}
1632 
1633 		res = d40_phy_sg_to_lli(sgl_src,
1634 					sgl_len,
1635 					0,
1636 					d40d->lli_phy.src,
1637 					d40d->lli_phy.src_addr,
1638 					d40c->src_def_cfg,
1639 					d40c->dma_cfg.src_info.data_width,
1640 					d40c->dma_cfg.src_info.psize,
1641 					true);
1642 
1643 		if (res < 0)
1644 			goto err;
1645 
1646 		res = d40_phy_sg_to_lli(sgl_dst,
1647 					sgl_len,
1648 					0,
1649 					d40d->lli_phy.dst,
1650 					d40d->lli_phy.dst_addr,
1651 					d40c->dst_def_cfg,
1652 					d40c->dma_cfg.dst_info.data_width,
1653 					d40c->dma_cfg.dst_info.psize,
1654 					true);
1655 
1656 		if (res < 0)
1657 			goto err;
1658 
1659 		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1660 				      d40d->lli_pool.size, DMA_TO_DEVICE);
1661 	}
1662 
1663 	dma_async_tx_descriptor_init(&d40d->txd, chan);
1664 
1665 	d40d->txd.tx_submit = d40_tx_submit;
1666 
1667 	spin_unlock_irqrestore(&d40c->lock, flg);
1668 
1669 	return &d40d->txd;
1670 err:
1671 	spin_unlock_irqrestore(&d40c->lock, flg);
1672 	return NULL;
1673 }
1674 EXPORT_SYMBOL(stedma40_memcpy_sg);
1675 
1676 bool stedma40_filter(struct dma_chan *chan, void *data)
1677 {
1678 	struct stedma40_chan_cfg *info = data;
1679 	struct d40_chan *d40c =
1680 		container_of(chan, struct d40_chan, chan);
1681 	int err;
1682 
1683 	if (data) {
1684 		err = d40_validate_conf(d40c, info);
1685 		if (!err)
1686 			d40c->dma_cfg = *info;
1687 	} else
1688 		err = d40_config_memcpy(d40c);
1689 
1690 	return err == 0;
1691 }
1692 EXPORT_SYMBOL(stedma40_filter);
1693 
1694 /* DMA ENGINE functions */
1695 static int d40_alloc_chan_resources(struct dma_chan *chan)
1696 {
1697 	int err;
1698 	unsigned long flags;
1699 	struct d40_chan *d40c =
1700 		container_of(chan, struct d40_chan, chan);
1701 
1702 	spin_lock_irqsave(&d40c->lock, flags);
1703 
1704 	d40c->completed = chan->cookie = 1;
1705 
1706 	/*
1707 	 * If no dma configuration is set (channel_type == 0)
1708 	 * use default configuration
1709 	 */
1710 	if (d40c->dma_cfg.channel_type == 0) {
1711 		err = d40_config_memcpy(d40c);
1712 		if (err)
1713 			goto err_alloc;
1714 	}
1715 
1716 	err = d40_allocate_channel(d40c);
1717 	if (err) {
1718 		dev_err(&d40c->chan.dev->device,
1719 			"[%s] Failed to allocate channel\n", __func__);
1720 		goto err_alloc;
1721 	}
1722 
1723 	err = d40_config_chan(d40c, &d40c->dma_cfg);
1724 	if (err) {
1725 		dev_err(&d40c->chan.dev->device,
1726 			"[%s] Failed to configure channel\n",
1727 			__func__);
1728 		goto err_config;
1729 	}
1730 
1731 	spin_unlock_irqrestore(&d40c->lock, flags);
1732 	return 0;
1733 
1734  err_config:
1735 	(void) d40_free_dma(d40c);
1736  err_alloc:
1737 	spin_unlock_irqrestore(&d40c->lock, flags);
1738 	dev_err(&d40c->chan.dev->device,
1739 		"[%s] Channel allocation failed\n", __func__);
1740 	return -EINVAL;
1741 }
1742 
1743 static void d40_free_chan_resources(struct dma_chan *chan)
1744 {
1745 	struct d40_chan *d40c =
1746 		container_of(chan, struct d40_chan, chan);
1747 	int err;
1748 	unsigned long flags;
1749 
1750 	spin_lock_irqsave(&d40c->lock, flags);
1751 
1752 	err = d40_free_dma(d40c);
1753 
1754 	if (err)
1755 		dev_err(&d40c->chan.dev->device,
1756 			"[%s] Failed to free channel\n", __func__);
1757 	spin_unlock_irqrestore(&d40c->lock, flags);
1758 }
1759 
1760 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1761 						       dma_addr_t dst,
1762 						       dma_addr_t src,
1763 						       size_t size,
1764 						       unsigned long flags)
1765 {
1766 	struct d40_desc *d40d;
1767 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1768 					     chan);
1769 	unsigned long flg;
1770 	int err = 0;
1771 
1772 	spin_lock_irqsave(&d40c->lock, flg);
1773 	d40d = d40_desc_get(d40c);
1774 
1775 	if (d40d == NULL) {
1776 		dev_err(&d40c->chan.dev->device,
1777 			"[%s] Descriptor is NULL\n", __func__);
1778 		goto err;
1779 	}
1780 
1781 	memset(d40d, 0, sizeof(struct d40_desc));
1782 
1783 	d40d->txd.flags = flags;
1784 
1785 	dma_async_tx_descriptor_init(&d40d->txd, chan);
1786 
1787 	d40d->txd.tx_submit = d40_tx_submit;
1788 
1789 	if (d40c->log_num != D40_PHY_CHAN) {
1790 
1791 		if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1792 			dev_err(&d40c->chan.dev->device,
1793 				"[%s] Out of memory\n", __func__);
1794 			goto err;
1795 		}
1796 		d40d->lli_len = 1;
1797 
1798 		d40_log_fill_lli(d40d->lli_log.src,
1799 				 src,
1800 				 size,
1801 				 0,
1802 				 d40c->log_def.lcsp1,
1803 				 d40c->dma_cfg.src_info.data_width,
1804 				 true, true);
1805 
1806 		d40_log_fill_lli(d40d->lli_log.dst,
1807 				 dst,
1808 				 size,
1809 				 0,
1810 				 d40c->log_def.lcsp3,
1811 				 d40c->dma_cfg.dst_info.data_width,
1812 				 true, true);
1813 
1814 	} else {
1815 
1816 		if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1817 			dev_err(&d40c->chan.dev->device,
1818 				"[%s] Out of memory\n", __func__);
1819 			goto err;
1820 		}
1821 
1822 		err = d40_phy_fill_lli(d40d->lli_phy.src,
1823 				       src,
1824 				       size,
1825 				       d40c->dma_cfg.src_info.psize,
1826 				       0,
1827 				       d40c->src_def_cfg,
1828 				       true,
1829 				       d40c->dma_cfg.src_info.data_width,
1830 				       false);
1831 		if (err)
1832 			goto err_fill_lli;
1833 
1834 		err = d40_phy_fill_lli(d40d->lli_phy.dst,
1835 				       dst,
1836 				       size,
1837 				       d40c->dma_cfg.dst_info.psize,
1838 				       0,
1839 				       d40c->dst_def_cfg,
1840 				       true,
1841 				       d40c->dma_cfg.dst_info.data_width,
1842 				       false);
1843 
1844 		if (err)
1845 			goto err_fill_lli;
1846 
1847 		(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1848 				      d40d->lli_pool.size, DMA_TO_DEVICE);
1849 	}
1850 
1851 	spin_unlock_irqrestore(&d40c->lock, flg);
1852 	return &d40d->txd;
1853 
1854 err_fill_lli:
1855 	dev_err(&d40c->chan.dev->device,
1856 		"[%s] Failed filling in PHY LLI\n", __func__);
1857 	d40_pool_lli_free(d40d);
1858 err:
1859 	spin_unlock_irqrestore(&d40c->lock, flg);
1860 	return NULL;
1861 }
1862 
1863 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1864 				 struct d40_chan *d40c,
1865 				 struct scatterlist *sgl,
1866 				 unsigned int sg_len,
1867 				 enum dma_data_direction direction,
1868 				 unsigned long flags)
1869 {
1870 	dma_addr_t dev_addr = 0;
1871 	int total_size;
1872 	int lli_max = d40c->base->plat_data->llis_per_log;
1873 
1874 	if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1875 		dev_err(&d40c->chan.dev->device,
1876 			"[%s] Out of memory\n", __func__);
1877 		return -ENOMEM;
1878 	}
1879 
1880 	d40d->lli_len = sg_len;
1881 	d40d->lli_tcount = 0;
1882 
1883 	if (sg_len > 1)
1884 		/*
1885 		 * Check if there is space available in lcla.
1886 		 * If not, split list into 1-length and run only
1887 		 * in lcpa space.
1888 		 */
1889 		if (d40_lcla_id_get(d40c, &d40c->base->lcla_pool) != 0)
1890 			lli_max = 1;
1891 
1892 	if (direction == DMA_FROM_DEVICE) {
1893 		dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1894 		total_size = d40_log_sg_to_dev(&d40c->lcla,
1895 					       sgl, sg_len,
1896 					       &d40d->lli_log,
1897 					       &d40c->log_def,
1898 					       d40c->dma_cfg.src_info.data_width,
1899 					       d40c->dma_cfg.dst_info.data_width,
1900 					       direction,
1901 					       flags & DMA_PREP_INTERRUPT,
1902 					       dev_addr, lli_max,
1903 					       d40c->base->plat_data->llis_per_log);
1904 	} else if (direction == DMA_TO_DEVICE) {
1905 		dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1906 		total_size = d40_log_sg_to_dev(&d40c->lcla,
1907 					       sgl, sg_len,
1908 					       &d40d->lli_log,
1909 					       &d40c->log_def,
1910 					       d40c->dma_cfg.src_info.data_width,
1911 					       d40c->dma_cfg.dst_info.data_width,
1912 					       direction,
1913 					       flags & DMA_PREP_INTERRUPT,
1914 					       dev_addr, lli_max,
1915 					       d40c->base->plat_data->llis_per_log);
1916 	} else
1917 		return -EINVAL;
1918 	if (total_size < 0)
1919 		return -EINVAL;
1920 
1921 	return 0;
1922 }
1923 
1924 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1925 				 struct d40_chan *d40c,
1926 				 struct scatterlist *sgl,
1927 				 unsigned int sgl_len,
1928 				 enum dma_data_direction direction,
1929 				 unsigned long flags)
1930 {
1931 	dma_addr_t src_dev_addr;
1932 	dma_addr_t dst_dev_addr;
1933 	int res;
1934 
1935 	if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1936 		dev_err(&d40c->chan.dev->device,
1937 			"[%s] Out of memory\n", __func__);
1938 		return -ENOMEM;
1939 	}
1940 
1941 	d40d->lli_len = sgl_len;
1942 	d40d->lli_tcount = 0;
1943 
1944 	if (direction == DMA_FROM_DEVICE) {
1945 		dst_dev_addr = 0;
1946 		src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1947 	} else if (direction == DMA_TO_DEVICE) {
1948 		dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1949 		src_dev_addr = 0;
1950 	} else
1951 		return -EINVAL;
1952 
1953 	res = d40_phy_sg_to_lli(sgl,
1954 				sgl_len,
1955 				src_dev_addr,
1956 				d40d->lli_phy.src,
1957 				d40d->lli_phy.src_addr,
1958 				d40c->src_def_cfg,
1959 				d40c->dma_cfg.src_info.data_width,
1960 				d40c->dma_cfg.src_info.psize,
1961 				true);
1962 	if (res < 0)
1963 		return res;
1964 
1965 	res = d40_phy_sg_to_lli(sgl,
1966 				sgl_len,
1967 				dst_dev_addr,
1968 				d40d->lli_phy.dst,
1969 				d40d->lli_phy.dst_addr,
1970 				d40c->dst_def_cfg,
1971 				d40c->dma_cfg.dst_info.data_width,
1972 				d40c->dma_cfg.dst_info.psize,
1973 				 true);
1974 	if (res < 0)
1975 		return res;
1976 
1977 	(void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1978 			      d40d->lli_pool.size, DMA_TO_DEVICE);
1979 	return 0;
1980 }
1981 
1982 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1983 							 struct scatterlist *sgl,
1984 							 unsigned int sg_len,
1985 							 enum dma_data_direction direction,
1986 							 unsigned long flags)
1987 {
1988 	struct d40_desc *d40d;
1989 	struct d40_chan *d40c = container_of(chan, struct d40_chan,
1990 					     chan);
1991 	unsigned long flg;
1992 	int err;
1993 
1994 	if (d40c->dma_cfg.pre_transfer)
1995 		d40c->dma_cfg.pre_transfer(chan,
1996 					   d40c->dma_cfg.pre_transfer_data,
1997 					   sg_dma_len(sgl));
1998 
1999 	spin_lock_irqsave(&d40c->lock, flg);
2000 	d40d = d40_desc_get(d40c);
2001 	spin_unlock_irqrestore(&d40c->lock, flg);
2002 
2003 	if (d40d == NULL)
2004 		return NULL;
2005 
2006 	memset(d40d, 0, sizeof(struct d40_desc));
2007 
2008 	if (d40c->log_num != D40_PHY_CHAN)
2009 		err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2010 					    direction, flags);
2011 	else
2012 		err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2013 					    direction, flags);
2014 	if (err) {
2015 		dev_err(&d40c->chan.dev->device,
2016 			"[%s] Failed to prepare %s slave sg job: %d\n",
2017 			__func__,
2018 			d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2019 		return NULL;
2020 	}
2021 
2022 	d40d->txd.flags = flags;
2023 
2024 	dma_async_tx_descriptor_init(&d40d->txd, chan);
2025 
2026 	d40d->txd.tx_submit = d40_tx_submit;
2027 
2028 	return &d40d->txd;
2029 }
2030 
2031 static enum dma_status d40_tx_status(struct dma_chan *chan,
2032 				     dma_cookie_t cookie,
2033 				     struct dma_tx_state *txstate)
2034 {
2035 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2036 	dma_cookie_t last_used;
2037 	dma_cookie_t last_complete;
2038 	int ret;
2039 
2040 	last_complete = d40c->completed;
2041 	last_used = chan->cookie;
2042 
2043 	if (d40_is_paused(d40c))
2044 		ret = DMA_PAUSED;
2045 	else
2046 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2047 
2048 	dma_set_tx_state(txstate, last_complete, last_used,
2049 			 stedma40_residue(chan));
2050 
2051 	return ret;
2052 }
2053 
2054 static void d40_issue_pending(struct dma_chan *chan)
2055 {
2056 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2057 	unsigned long flags;
2058 
2059 	spin_lock_irqsave(&d40c->lock, flags);
2060 
2061 	/* Busy means that pending jobs are already being processed */
2062 	if (!d40c->busy)
2063 		(void) d40_queue_start(d40c);
2064 
2065 	spin_unlock_irqrestore(&d40c->lock, flags);
2066 }
2067 
2068 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2069 		       unsigned long arg)
2070 {
2071 	unsigned long flags;
2072 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2073 
2074 	switch (cmd) {
2075 	case DMA_TERMINATE_ALL:
2076 		spin_lock_irqsave(&d40c->lock, flags);
2077 		d40_term_all(d40c);
2078 		spin_unlock_irqrestore(&d40c->lock, flags);
2079 		return 0;
2080 	case DMA_PAUSE:
2081 		return d40_pause(chan);
2082 	case DMA_RESUME:
2083 		return d40_resume(chan);
2084 	}
2085 
2086 	/* Other commands are unimplemented */
2087 	return -ENXIO;
2088 }
2089 
2090 /* Initialization functions */
2091 
2092 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2093 				 struct d40_chan *chans, int offset,
2094 				 int num_chans)
2095 {
2096 	int i = 0;
2097 	struct d40_chan *d40c;
2098 
2099 	INIT_LIST_HEAD(&dma->channels);
2100 
2101 	for (i = offset; i < offset + num_chans; i++) {
2102 		d40c = &chans[i];
2103 		d40c->base = base;
2104 		d40c->chan.device = dma;
2105 
2106 		/* Invalidate lcla element */
2107 		d40c->lcla.src_id = -1;
2108 		d40c->lcla.dst_id = -1;
2109 
2110 		spin_lock_init(&d40c->lock);
2111 
2112 		d40c->log_num = D40_PHY_CHAN;
2113 
2114 		INIT_LIST_HEAD(&d40c->free);
2115 		INIT_LIST_HEAD(&d40c->active);
2116 		INIT_LIST_HEAD(&d40c->queue);
2117 		INIT_LIST_HEAD(&d40c->client);
2118 
2119 		d40c->free_len = 0;
2120 
2121 		tasklet_init(&d40c->tasklet, dma_tasklet,
2122 			     (unsigned long) d40c);
2123 
2124 		list_add_tail(&d40c->chan.device_node,
2125 			      &dma->channels);
2126 	}
2127 }
2128 
2129 static int __init d40_dmaengine_init(struct d40_base *base,
2130 				     int num_reserved_chans)
2131 {
2132 	int err ;
2133 
2134 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2135 		      0, base->num_log_chans);
2136 
2137 	dma_cap_zero(base->dma_slave.cap_mask);
2138 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2139 
2140 	base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2141 	base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2142 	base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2143 	base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2144 	base->dma_slave.device_tx_status = d40_tx_status;
2145 	base->dma_slave.device_issue_pending = d40_issue_pending;
2146 	base->dma_slave.device_control = d40_control;
2147 	base->dma_slave.dev = base->dev;
2148 
2149 	err = dma_async_device_register(&base->dma_slave);
2150 
2151 	if (err) {
2152 		dev_err(base->dev,
2153 			"[%s] Failed to register slave channels\n",
2154 			__func__);
2155 		goto failure1;
2156 	}
2157 
2158 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2159 		      base->num_log_chans, base->plat_data->memcpy_len);
2160 
2161 	dma_cap_zero(base->dma_memcpy.cap_mask);
2162 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2163 
2164 	base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2165 	base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2166 	base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2167 	base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2168 	base->dma_memcpy.device_tx_status = d40_tx_status;
2169 	base->dma_memcpy.device_issue_pending = d40_issue_pending;
2170 	base->dma_memcpy.device_control = d40_control;
2171 	base->dma_memcpy.dev = base->dev;
2172 	/*
2173 	 * This controller can only access address at even
2174 	 * 32bit boundaries, i.e. 2^2
2175 	 */
2176 	base->dma_memcpy.copy_align = 2;
2177 
2178 	err = dma_async_device_register(&base->dma_memcpy);
2179 
2180 	if (err) {
2181 		dev_err(base->dev,
2182 			"[%s] Failed to regsiter memcpy only channels\n",
2183 			__func__);
2184 		goto failure2;
2185 	}
2186 
2187 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2188 		      0, num_reserved_chans);
2189 
2190 	dma_cap_zero(base->dma_both.cap_mask);
2191 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2192 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2193 
2194 	base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2195 	base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2196 	base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2197 	base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2198 	base->dma_both.device_tx_status = d40_tx_status;
2199 	base->dma_both.device_issue_pending = d40_issue_pending;
2200 	base->dma_both.device_control = d40_control;
2201 	base->dma_both.dev = base->dev;
2202 	base->dma_both.copy_align = 2;
2203 	err = dma_async_device_register(&base->dma_both);
2204 
2205 	if (err) {
2206 		dev_err(base->dev,
2207 			"[%s] Failed to register logical and physical capable channels\n",
2208 			__func__);
2209 		goto failure3;
2210 	}
2211 	return 0;
2212 failure3:
2213 	dma_async_device_unregister(&base->dma_memcpy);
2214 failure2:
2215 	dma_async_device_unregister(&base->dma_slave);
2216 failure1:
2217 	return err;
2218 }
2219 
2220 /* Initialization functions. */
2221 
2222 static int __init d40_phy_res_init(struct d40_base *base)
2223 {
2224 	int i;
2225 	int num_phy_chans_avail = 0;
2226 	u32 val[2];
2227 	int odd_even_bit = -2;
2228 
2229 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2230 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2231 
2232 	for (i = 0; i < base->num_phy_chans; i++) {
2233 		base->phy_res[i].num = i;
2234 		odd_even_bit += 2 * ((i % 2) == 0);
2235 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2236 			/* Mark security only channels as occupied */
2237 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2238 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2239 		} else {
2240 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2241 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2242 			num_phy_chans_avail++;
2243 		}
2244 		spin_lock_init(&base->phy_res[i].lock);
2245 	}
2246 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2247 		 num_phy_chans_avail, base->num_phy_chans);
2248 
2249 	/* Verify settings extended vs standard */
2250 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2251 
2252 	for (i = 0; i < base->num_phy_chans; i++) {
2253 
2254 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2255 		    (val[0] & 0x3) != 1)
2256 			dev_info(base->dev,
2257 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2258 				 __func__, i, val[0] & 0x3);
2259 
2260 		val[0] = val[0] >> 2;
2261 	}
2262 
2263 	return num_phy_chans_avail;
2264 }
2265 
2266 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2267 {
2268 	static const struct d40_reg_val dma_id_regs[] = {
2269 		/* Peripheral Id */
2270 		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2271 		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2272 		/*
2273 		 * D40_DREG_PERIPHID2 Depends on HW revision:
2274 		 *  MOP500/HREF ED has 0x0008,
2275 		 *  ? has 0x0018,
2276 		 *  HREF V1 has 0x0028
2277 		 */
2278 		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2279 
2280 		/* PCell Id */
2281 		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2282 		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2283 		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2284 		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2285 	};
2286 	struct stedma40_platform_data *plat_data;
2287 	struct clk *clk = NULL;
2288 	void __iomem *virtbase = NULL;
2289 	struct resource *res = NULL;
2290 	struct d40_base *base = NULL;
2291 	int num_log_chans = 0;
2292 	int num_phy_chans;
2293 	int i;
2294 
2295 	clk = clk_get(&pdev->dev, NULL);
2296 
2297 	if (IS_ERR(clk)) {
2298 		dev_err(&pdev->dev, "[%s] No matching clock found\n",
2299 			__func__);
2300 		goto failure;
2301 	}
2302 
2303 	clk_enable(clk);
2304 
2305 	/* Get IO for DMAC base address */
2306 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2307 	if (!res)
2308 		goto failure;
2309 
2310 	if (request_mem_region(res->start, resource_size(res),
2311 			       D40_NAME " I/O base") == NULL)
2312 		goto failure;
2313 
2314 	virtbase = ioremap(res->start, resource_size(res));
2315 	if (!virtbase)
2316 		goto failure;
2317 
2318 	/* HW version check */
2319 	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2320 		if (dma_id_regs[i].val !=
2321 		    readl(virtbase + dma_id_regs[i].reg)) {
2322 			dev_err(&pdev->dev,
2323 				"[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2324 				__func__,
2325 				dma_id_regs[i].val,
2326 				dma_id_regs[i].reg,
2327 				readl(virtbase + dma_id_regs[i].reg));
2328 			goto failure;
2329 		}
2330 	}
2331 
2332 	i = readl(virtbase + D40_DREG_PERIPHID2);
2333 
2334 	if ((i & 0xf) != D40_PERIPHID2_DESIGNER) {
2335 		dev_err(&pdev->dev,
2336 			"[%s] Unknown designer! Got %x wanted %x\n",
2337 			__func__, i & 0xf, D40_PERIPHID2_DESIGNER);
2338 		goto failure;
2339 	}
2340 
2341 	/* The number of physical channels on this HW */
2342 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2343 
2344 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2345 		 (i >> 4) & 0xf, res->start);
2346 
2347 	plat_data = pdev->dev.platform_data;
2348 
2349 	/* Count the number of logical channels in use */
2350 	for (i = 0; i < plat_data->dev_len; i++)
2351 		if (plat_data->dev_rx[i] != 0)
2352 			num_log_chans++;
2353 
2354 	for (i = 0; i < plat_data->dev_len; i++)
2355 		if (plat_data->dev_tx[i] != 0)
2356 			num_log_chans++;
2357 
2358 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2359 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2360 		       sizeof(struct d40_chan), GFP_KERNEL);
2361 
2362 	if (base == NULL) {
2363 		dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2364 		goto failure;
2365 	}
2366 
2367 	base->clk = clk;
2368 	base->num_phy_chans = num_phy_chans;
2369 	base->num_log_chans = num_log_chans;
2370 	base->phy_start = res->start;
2371 	base->phy_size = resource_size(res);
2372 	base->virtbase = virtbase;
2373 	base->plat_data = plat_data;
2374 	base->dev = &pdev->dev;
2375 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2376 	base->log_chans = &base->phy_chans[num_phy_chans];
2377 
2378 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2379 				GFP_KERNEL);
2380 	if (!base->phy_res)
2381 		goto failure;
2382 
2383 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2384 					 sizeof(struct d40_chan *),
2385 					 GFP_KERNEL);
2386 	if (!base->lookup_phy_chans)
2387 		goto failure;
2388 
2389 	if (num_log_chans + plat_data->memcpy_len) {
2390 		/*
2391 		 * The max number of logical channels are event lines for all
2392 		 * src devices and dst devices
2393 		 */
2394 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2395 						 sizeof(struct d40_chan *),
2396 						 GFP_KERNEL);
2397 		if (!base->lookup_log_chans)
2398 			goto failure;
2399 	}
2400 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2401 					    GFP_KERNEL);
2402 	if (!base->lcla_pool.alloc_map)
2403 		goto failure;
2404 
2405 	return base;
2406 
2407 failure:
2408 	if (clk) {
2409 		clk_disable(clk);
2410 		clk_put(clk);
2411 	}
2412 	if (virtbase)
2413 		iounmap(virtbase);
2414 	if (res)
2415 		release_mem_region(res->start,
2416 				   resource_size(res));
2417 	if (virtbase)
2418 		iounmap(virtbase);
2419 
2420 	if (base) {
2421 		kfree(base->lcla_pool.alloc_map);
2422 		kfree(base->lookup_log_chans);
2423 		kfree(base->lookup_phy_chans);
2424 		kfree(base->phy_res);
2425 		kfree(base);
2426 	}
2427 
2428 	return NULL;
2429 }
2430 
2431 static void __init d40_hw_init(struct d40_base *base)
2432 {
2433 
2434 	static const struct d40_reg_val dma_init_reg[] = {
2435 		/* Clock every part of the DMA block from start */
2436 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2437 
2438 		/* Interrupts on all logical channels */
2439 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2440 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2441 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2442 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2443 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2444 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2445 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2446 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2447 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2448 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2449 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2450 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2451 	};
2452 	int i;
2453 	u32 prmseo[2] = {0, 0};
2454 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2455 	u32 pcmis = 0;
2456 	u32 pcicr = 0;
2457 
2458 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2459 		writel(dma_init_reg[i].val,
2460 		       base->virtbase + dma_init_reg[i].reg);
2461 
2462 	/* Configure all our dma channels to default settings */
2463 	for (i = 0; i < base->num_phy_chans; i++) {
2464 
2465 		activeo[i % 2] = activeo[i % 2] << 2;
2466 
2467 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2468 		    == D40_ALLOC_PHY) {
2469 			activeo[i % 2] |= 3;
2470 			continue;
2471 		}
2472 
2473 		/* Enable interrupt # */
2474 		pcmis = (pcmis << 1) | 1;
2475 
2476 		/* Clear interrupt # */
2477 		pcicr = (pcicr << 1) | 1;
2478 
2479 		/* Set channel to physical mode */
2480 		prmseo[i % 2] = prmseo[i % 2] << 2;
2481 		prmseo[i % 2] |= 1;
2482 
2483 	}
2484 
2485 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2486 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2487 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2488 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2489 
2490 	/* Write which interrupt to enable */
2491 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2492 
2493 	/* Write which interrupt to clear */
2494 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2495 
2496 }
2497 
2498 static int __init d40_probe(struct platform_device *pdev)
2499 {
2500 	int err;
2501 	int ret = -ENOENT;
2502 	struct d40_base *base;
2503 	struct resource *res = NULL;
2504 	int num_reserved_chans;
2505 	u32 val;
2506 
2507 	base = d40_hw_detect_init(pdev);
2508 
2509 	if (!base)
2510 		goto failure;
2511 
2512 	num_reserved_chans = d40_phy_res_init(base);
2513 
2514 	platform_set_drvdata(pdev, base);
2515 
2516 	spin_lock_init(&base->interrupt_lock);
2517 	spin_lock_init(&base->execmd_lock);
2518 
2519 	/* Get IO for logical channel parameter address */
2520 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2521 	if (!res) {
2522 		ret = -ENOENT;
2523 		dev_err(&pdev->dev,
2524 			"[%s] No \"lcpa\" memory resource\n",
2525 			__func__);
2526 		goto failure;
2527 	}
2528 	base->lcpa_size = resource_size(res);
2529 	base->phy_lcpa = res->start;
2530 
2531 	if (request_mem_region(res->start, resource_size(res),
2532 			       D40_NAME " I/O lcpa") == NULL) {
2533 		ret = -EBUSY;
2534 		dev_err(&pdev->dev,
2535 			"[%s] Failed to request LCPA region 0x%x-0x%x\n",
2536 			__func__, res->start, res->end);
2537 		goto failure;
2538 	}
2539 
2540 	/* We make use of ESRAM memory for this. */
2541 	val = readl(base->virtbase + D40_DREG_LCPA);
2542 	if (res->start != val && val != 0) {
2543 		dev_warn(&pdev->dev,
2544 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2545 			 __func__, val, res->start);
2546 	} else
2547 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2548 
2549 	base->lcpa_base = ioremap(res->start, resource_size(res));
2550 	if (!base->lcpa_base) {
2551 		ret = -ENOMEM;
2552 		dev_err(&pdev->dev,
2553 			"[%s] Failed to ioremap LCPA region\n",
2554 			__func__);
2555 		goto failure;
2556 	}
2557 	/* Get IO for logical channel link address */
2558 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla");
2559 	if (!res) {
2560 		ret = -ENOENT;
2561 		dev_err(&pdev->dev,
2562 			"[%s] No \"lcla\" resource defined\n",
2563 			__func__);
2564 		goto failure;
2565 	}
2566 
2567 	base->lcla_pool.base_size = resource_size(res);
2568 	base->lcla_pool.phy = res->start;
2569 
2570 	if (request_mem_region(res->start, resource_size(res),
2571 			       D40_NAME " I/O lcla") == NULL) {
2572 		ret = -EBUSY;
2573 		dev_err(&pdev->dev,
2574 			"[%s] Failed to request LCLA region 0x%x-0x%x\n",
2575 			__func__, res->start, res->end);
2576 		goto failure;
2577 	}
2578 	val = readl(base->virtbase + D40_DREG_LCLA);
2579 	if (res->start != val && val != 0) {
2580 		dev_warn(&pdev->dev,
2581 			 "[%s] Mismatch LCLA dma 0x%x, def 0x%x\n",
2582 			 __func__, val, res->start);
2583 	} else
2584 		writel(res->start, base->virtbase + D40_DREG_LCLA);
2585 
2586 	base->lcla_pool.base = ioremap(res->start, resource_size(res));
2587 	if (!base->lcla_pool.base) {
2588 		ret = -ENOMEM;
2589 		dev_err(&pdev->dev,
2590 			"[%s] Failed to ioremap LCLA 0x%x-0x%x\n",
2591 			__func__, res->start, res->end);
2592 		goto failure;
2593 	}
2594 
2595 	spin_lock_init(&base->lcla_pool.lock);
2596 
2597 	base->lcla_pool.num_blocks = base->num_phy_chans;
2598 
2599 	base->irq = platform_get_irq(pdev, 0);
2600 
2601 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2602 
2603 	if (ret) {
2604 		dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2605 		goto failure;
2606 	}
2607 
2608 	err = d40_dmaengine_init(base, num_reserved_chans);
2609 	if (err)
2610 		goto failure;
2611 
2612 	d40_hw_init(base);
2613 
2614 	dev_info(base->dev, "initialized\n");
2615 	return 0;
2616 
2617 failure:
2618 	if (base) {
2619 		if (base->virtbase)
2620 			iounmap(base->virtbase);
2621 		if (base->lcla_pool.phy)
2622 			release_mem_region(base->lcla_pool.phy,
2623 					   base->lcla_pool.base_size);
2624 		if (base->phy_lcpa)
2625 			release_mem_region(base->phy_lcpa,
2626 					   base->lcpa_size);
2627 		if (base->phy_start)
2628 			release_mem_region(base->phy_start,
2629 					   base->phy_size);
2630 		if (base->clk) {
2631 			clk_disable(base->clk);
2632 			clk_put(base->clk);
2633 		}
2634 
2635 		kfree(base->lcla_pool.alloc_map);
2636 		kfree(base->lookup_log_chans);
2637 		kfree(base->lookup_phy_chans);
2638 		kfree(base->phy_res);
2639 		kfree(base);
2640 	}
2641 
2642 	dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2643 	return ret;
2644 }
2645 
2646 static struct platform_driver d40_driver = {
2647 	.driver = {
2648 		.owner = THIS_MODULE,
2649 		.name  = D40_NAME,
2650 	},
2651 };
2652 
2653 int __init stedma40_init(void)
2654 {
2655 	return platform_driver_probe(&d40_driver, d40_probe);
2656 }
2657 arch_initcall(stedma40_init);
2658