xref: /linux/drivers/dma/ste_dma40.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
18 
19 #include <plat/ste_dma40.h>
20 
21 #include "ste_dma40_ll.h"
22 
23 #define D40_NAME "dma40"
24 
25 #define D40_PHY_CHAN -1
26 
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
30 
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
33 
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
36 
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
40 
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
43 
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE		(1 << 31)
46 #define D40_ALLOC_PHY		(1 << 30)
47 #define D40_ALLOC_LOG_FREE	0
48 
49 /**
50  * enum 40_command - The different commands and/or statuses.
51  *
52  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
56  */
57 enum d40_command {
58 	D40_DMA_STOP		= 0,
59 	D40_DMA_RUN		= 1,
60 	D40_DMA_SUSPEND_REQ	= 2,
61 	D40_DMA_SUSPENDED	= 3
62 };
63 
64 /**
65  * struct d40_lli_pool - Structure for keeping LLIs in memory
66  *
67  * @base: Pointer to memory area when the pre_alloc_lli's are not large
68  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69  * pre_alloc_lli is used.
70  * @dma_addr: DMA address, if mapped
71  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73  * one buffer to one buffer.
74  */
75 struct d40_lli_pool {
76 	void	*base;
77 	int	 size;
78 	dma_addr_t	dma_addr;
79 	/* Space for dst and src, plus an extra for padding */
80 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 };
82 
83 /**
84  * struct d40_desc - A descriptor is one DMA job.
85  *
86  * @lli_phy: LLI settings for physical channel. Both src and dst=
87  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88  * lli_len equals one.
89  * @lli_log: Same as above but for logical channels.
90  * @lli_pool: The pool with two entries pre-allocated.
91  * @lli_len: Number of llis of current descriptor.
92  * @lli_current: Number of transferred llis.
93  * @lcla_alloc: Number of LCLA entries allocated.
94  * @txd: DMA engine struct. Used for among other things for communication
95  * during a transfer.
96  * @node: List entry.
97  * @is_in_client_list: true if the client owns this descriptor.
98  * the previous one.
99  *
100  * This descriptor is used for both logical and physical transfers.
101  */
102 struct d40_desc {
103 	/* LLI physical */
104 	struct d40_phy_lli_bidir	 lli_phy;
105 	/* LLI logical */
106 	struct d40_log_lli_bidir	 lli_log;
107 
108 	struct d40_lli_pool		 lli_pool;
109 	int				 lli_len;
110 	int				 lli_current;
111 	int				 lcla_alloc;
112 
113 	struct dma_async_tx_descriptor	 txd;
114 	struct list_head		 node;
115 
116 	bool				 is_in_client_list;
117 	bool				 cyclic;
118 };
119 
120 /**
121  * struct d40_lcla_pool - LCLA pool settings and data.
122  *
123  * @base: The virtual address of LCLA. 18 bit aligned.
124  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125  * This pointer is only there for clean-up on error.
126  * @pages: The number of pages needed for all physical channels.
127  * Only used later for clean-up on error
128  * @lock: Lock to protect the content in this struct.
129  * @alloc_map: big map over which LCLA entry is own by which job.
130  */
131 struct d40_lcla_pool {
132 	void		*base;
133 	dma_addr_t	dma_addr;
134 	void		*base_unaligned;
135 	int		 pages;
136 	spinlock_t	 lock;
137 	struct d40_desc	**alloc_map;
138 };
139 
140 /**
141  * struct d40_phy_res - struct for handling eventlines mapped to physical
142  * channels.
143  *
144  * @lock: A lock protection this entity.
145  * @num: The physical channel number of this entity.
146  * @allocated_src: Bit mapped to show which src event line's are mapped to
147  * this physical channel. Can also be free or physically allocated.
148  * @allocated_dst: Same as for src but is dst.
149  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150  * event line number.
151  */
152 struct d40_phy_res {
153 	spinlock_t lock;
154 	int	   num;
155 	u32	   allocated_src;
156 	u32	   allocated_dst;
157 };
158 
159 struct d40_base;
160 
161 /**
162  * struct d40_chan - Struct that describes a channel.
163  *
164  * @lock: A spinlock to protect this struct.
165  * @log_num: The logical number, if any of this channel.
166  * @completed: Starts with 1, after first interrupt it is set to dma engine's
167  * current cookie.
168  * @pending_tx: The number of pending transfers. Used between interrupt handler
169  * and tasklet.
170  * @busy: Set to true when transfer is ongoing on this channel.
171  * @phy_chan: Pointer to physical channel which this instance runs on. If this
172  * point is NULL, then the channel is not allocated.
173  * @chan: DMA engine handle.
174  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175  * transfer and call client callback.
176  * @client: Cliented owned descriptor list.
177  * @active: Active descriptor.
178  * @queue: Queued jobs.
179  * @dma_cfg: The client configuration of this dma channel.
180  * @configured: whether the dma_cfg configuration is valid
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  * @runtime_addr: runtime configured address.
188  * @runtime_direction: runtime configured direction.
189  *
190  * This struct can either "be" a logical or a physical channel.
191  */
192 struct d40_chan {
193 	spinlock_t			 lock;
194 	int				 log_num;
195 	/* ID of the most recent completed transfer */
196 	int				 completed;
197 	int				 pending_tx;
198 	bool				 busy;
199 	struct d40_phy_res		*phy_chan;
200 	struct dma_chan			 chan;
201 	struct tasklet_struct		 tasklet;
202 	struct list_head		 client;
203 	struct list_head		 pending_queue;
204 	struct list_head		 active;
205 	struct list_head		 queue;
206 	struct stedma40_chan_cfg	 dma_cfg;
207 	bool				 configured;
208 	struct d40_base			*base;
209 	/* Default register configurations */
210 	u32				 src_def_cfg;
211 	u32				 dst_def_cfg;
212 	struct d40_def_lcsp		 log_def;
213 	struct d40_log_lli_full		*lcpa;
214 	/* Runtime reconfiguration */
215 	dma_addr_t			runtime_addr;
216 	enum dma_data_direction		runtime_direction;
217 };
218 
219 /**
220  * struct d40_base - The big global struct, one for each probe'd instance.
221  *
222  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
223  * @execmd_lock: Lock for execute command usage since several channels share
224  * the same physical register.
225  * @dev: The device structure.
226  * @virtbase: The virtual base address of the DMA's register.
227  * @rev: silicon revision detected.
228  * @clk: Pointer to the DMA clock structure.
229  * @phy_start: Physical memory start of the DMA registers.
230  * @phy_size: Size of the DMA register map.
231  * @irq: The IRQ number.
232  * @num_phy_chans: The number of physical channels. Read from HW. This
233  * is the number of available channels for this driver, not counting "Secure
234  * mode" allocated physical channels.
235  * @num_log_chans: The number of logical channels. Calculated from
236  * num_phy_chans.
237  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
238  * @dma_slave: dma_device channels that can do only do slave transfers.
239  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
240  * @log_chans: Room for all possible logical channels in system.
241  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
242  * to log_chans entries.
243  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
244  * to phy_chans entries.
245  * @plat_data: Pointer to provided platform_data which is the driver
246  * configuration.
247  * @phy_res: Vector containing all physical channels.
248  * @lcla_pool: lcla pool settings and data.
249  * @lcpa_base: The virtual mapped address of LCPA.
250  * @phy_lcpa: The physical address of the LCPA.
251  * @lcpa_size: The size of the LCPA area.
252  * @desc_slab: cache for descriptors.
253  */
254 struct d40_base {
255 	spinlock_t			 interrupt_lock;
256 	spinlock_t			 execmd_lock;
257 	struct device			 *dev;
258 	void __iomem			 *virtbase;
259 	u8				  rev:4;
260 	struct clk			 *clk;
261 	phys_addr_t			  phy_start;
262 	resource_size_t			  phy_size;
263 	int				  irq;
264 	int				  num_phy_chans;
265 	int				  num_log_chans;
266 	struct dma_device		  dma_both;
267 	struct dma_device		  dma_slave;
268 	struct dma_device		  dma_memcpy;
269 	struct d40_chan			 *phy_chans;
270 	struct d40_chan			 *log_chans;
271 	struct d40_chan			**lookup_log_chans;
272 	struct d40_chan			**lookup_phy_chans;
273 	struct stedma40_platform_data	 *plat_data;
274 	/* Physical half channels */
275 	struct d40_phy_res		 *phy_res;
276 	struct d40_lcla_pool		  lcla_pool;
277 	void				 *lcpa_base;
278 	dma_addr_t			  phy_lcpa;
279 	resource_size_t			  lcpa_size;
280 	struct kmem_cache		 *desc_slab;
281 };
282 
283 /**
284  * struct d40_interrupt_lookup - lookup table for interrupt handler
285  *
286  * @src: Interrupt mask register.
287  * @clr: Interrupt clear register.
288  * @is_error: true if this is an error interrupt.
289  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
290  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
291  */
292 struct d40_interrupt_lookup {
293 	u32 src;
294 	u32 clr;
295 	bool is_error;
296 	int offset;
297 };
298 
299 /**
300  * struct d40_reg_val - simple lookup struct
301  *
302  * @reg: The register.
303  * @val: The value that belongs to the register in reg.
304  */
305 struct d40_reg_val {
306 	unsigned int reg;
307 	unsigned int val;
308 };
309 
310 static struct device *chan2dev(struct d40_chan *d40c)
311 {
312 	return &d40c->chan.dev->device;
313 }
314 
315 static bool chan_is_physical(struct d40_chan *chan)
316 {
317 	return chan->log_num == D40_PHY_CHAN;
318 }
319 
320 static bool chan_is_logical(struct d40_chan *chan)
321 {
322 	return !chan_is_physical(chan);
323 }
324 
325 static void __iomem *chan_base(struct d40_chan *chan)
326 {
327 	return chan->base->virtbase + D40_DREG_PCBASE +
328 	       chan->phy_chan->num * D40_DREG_PCDELTA;
329 }
330 
331 #define d40_err(dev, format, arg...)		\
332 	dev_err(dev, "[%s] " format, __func__, ## arg)
333 
334 #define chan_err(d40c, format, arg...)		\
335 	d40_err(chan2dev(d40c), format, ## arg)
336 
337 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
338 			      int lli_len)
339 {
340 	bool is_log = chan_is_logical(d40c);
341 	u32 align;
342 	void *base;
343 
344 	if (is_log)
345 		align = sizeof(struct d40_log_lli);
346 	else
347 		align = sizeof(struct d40_phy_lli);
348 
349 	if (lli_len == 1) {
350 		base = d40d->lli_pool.pre_alloc_lli;
351 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
352 		d40d->lli_pool.base = NULL;
353 	} else {
354 		d40d->lli_pool.size = lli_len * 2 * align;
355 
356 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
357 		d40d->lli_pool.base = base;
358 
359 		if (d40d->lli_pool.base == NULL)
360 			return -ENOMEM;
361 	}
362 
363 	if (is_log) {
364 		d40d->lli_log.src = PTR_ALIGN(base, align);
365 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
366 
367 		d40d->lli_pool.dma_addr = 0;
368 	} else {
369 		d40d->lli_phy.src = PTR_ALIGN(base, align);
370 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
371 
372 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
373 							 d40d->lli_phy.src,
374 							 d40d->lli_pool.size,
375 							 DMA_TO_DEVICE);
376 
377 		if (dma_mapping_error(d40c->base->dev,
378 				      d40d->lli_pool.dma_addr)) {
379 			kfree(d40d->lli_pool.base);
380 			d40d->lli_pool.base = NULL;
381 			d40d->lli_pool.dma_addr = 0;
382 			return -ENOMEM;
383 		}
384 	}
385 
386 	return 0;
387 }
388 
389 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
390 {
391 	if (d40d->lli_pool.dma_addr)
392 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
393 				 d40d->lli_pool.size, DMA_TO_DEVICE);
394 
395 	kfree(d40d->lli_pool.base);
396 	d40d->lli_pool.base = NULL;
397 	d40d->lli_pool.size = 0;
398 	d40d->lli_log.src = NULL;
399 	d40d->lli_log.dst = NULL;
400 	d40d->lli_phy.src = NULL;
401 	d40d->lli_phy.dst = NULL;
402 }
403 
404 static int d40_lcla_alloc_one(struct d40_chan *d40c,
405 			      struct d40_desc *d40d)
406 {
407 	unsigned long flags;
408 	int i;
409 	int ret = -EINVAL;
410 	int p;
411 
412 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
413 
414 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
415 
416 	/*
417 	 * Allocate both src and dst at the same time, therefore the half
418 	 * start on 1 since 0 can't be used since zero is used as end marker.
419 	 */
420 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
421 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
422 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
423 			d40d->lcla_alloc++;
424 			ret = i;
425 			break;
426 		}
427 	}
428 
429 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
430 
431 	return ret;
432 }
433 
434 static int d40_lcla_free_all(struct d40_chan *d40c,
435 			     struct d40_desc *d40d)
436 {
437 	unsigned long flags;
438 	int i;
439 	int ret = -EINVAL;
440 
441 	if (chan_is_physical(d40c))
442 		return 0;
443 
444 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
445 
446 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
447 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
448 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
449 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
450 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
451 			d40d->lcla_alloc--;
452 			if (d40d->lcla_alloc == 0) {
453 				ret = 0;
454 				break;
455 			}
456 		}
457 	}
458 
459 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
460 
461 	return ret;
462 
463 }
464 
465 static void d40_desc_remove(struct d40_desc *d40d)
466 {
467 	list_del(&d40d->node);
468 }
469 
470 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
471 {
472 	struct d40_desc *desc = NULL;
473 
474 	if (!list_empty(&d40c->client)) {
475 		struct d40_desc *d;
476 		struct d40_desc *_d;
477 
478 		list_for_each_entry_safe(d, _d, &d40c->client, node)
479 			if (async_tx_test_ack(&d->txd)) {
480 				d40_pool_lli_free(d40c, d);
481 				d40_desc_remove(d);
482 				desc = d;
483 				memset(desc, 0, sizeof(*desc));
484 				break;
485 			}
486 	}
487 
488 	if (!desc)
489 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
490 
491 	if (desc)
492 		INIT_LIST_HEAD(&desc->node);
493 
494 	return desc;
495 }
496 
497 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
498 {
499 
500 	d40_pool_lli_free(d40c, d40d);
501 	d40_lcla_free_all(d40c, d40d);
502 	kmem_cache_free(d40c->base->desc_slab, d40d);
503 }
504 
505 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
506 {
507 	list_add_tail(&desc->node, &d40c->active);
508 }
509 
510 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
511 {
512 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
513 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
514 	void __iomem *base = chan_base(chan);
515 
516 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
517 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
518 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
519 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
520 
521 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
522 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
523 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
524 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
525 }
526 
527 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
528 {
529 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
530 	struct d40_log_lli_bidir *lli = &desc->lli_log;
531 	int lli_current = desc->lli_current;
532 	int lli_len = desc->lli_len;
533 	bool cyclic = desc->cyclic;
534 	int curr_lcla = -EINVAL;
535 	int first_lcla = 0;
536 	bool linkback;
537 
538 	/*
539 	 * We may have partially running cyclic transfers, in case we did't get
540 	 * enough LCLA entries.
541 	 */
542 	linkback = cyclic && lli_current == 0;
543 
544 	/*
545 	 * For linkback, we need one LCLA even with only one link, because we
546 	 * can't link back to the one in LCPA space
547 	 */
548 	if (linkback || (lli_len - lli_current > 1)) {
549 		curr_lcla = d40_lcla_alloc_one(chan, desc);
550 		first_lcla = curr_lcla;
551 	}
552 
553 	/*
554 	 * For linkback, we normally load the LCPA in the loop since we need to
555 	 * link it to the second LCLA and not the first.  However, if we
556 	 * couldn't even get a first LCLA, then we have to run in LCPA and
557 	 * reload manually.
558 	 */
559 	if (!linkback || curr_lcla == -EINVAL) {
560 		unsigned int flags = 0;
561 
562 		if (curr_lcla == -EINVAL)
563 			flags |= LLI_TERM_INT;
564 
565 		d40_log_lli_lcpa_write(chan->lcpa,
566 				       &lli->dst[lli_current],
567 				       &lli->src[lli_current],
568 				       curr_lcla,
569 				       flags);
570 		lli_current++;
571 	}
572 
573 	if (curr_lcla < 0)
574 		goto out;
575 
576 	for (; lli_current < lli_len; lli_current++) {
577 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
578 					   8 * curr_lcla * 2;
579 		struct d40_log_lli *lcla = pool->base + lcla_offset;
580 		unsigned int flags = 0;
581 		int next_lcla;
582 
583 		if (lli_current + 1 < lli_len)
584 			next_lcla = d40_lcla_alloc_one(chan, desc);
585 		else
586 			next_lcla = linkback ? first_lcla : -EINVAL;
587 
588 		if (cyclic || next_lcla == -EINVAL)
589 			flags |= LLI_TERM_INT;
590 
591 		if (linkback && curr_lcla == first_lcla) {
592 			/* First link goes in both LCPA and LCLA */
593 			d40_log_lli_lcpa_write(chan->lcpa,
594 					       &lli->dst[lli_current],
595 					       &lli->src[lli_current],
596 					       next_lcla, flags);
597 		}
598 
599 		/*
600 		 * One unused LCLA in the cyclic case if the very first
601 		 * next_lcla fails...
602 		 */
603 		d40_log_lli_lcla_write(lcla,
604 				       &lli->dst[lli_current],
605 				       &lli->src[lli_current],
606 				       next_lcla, flags);
607 
608 		dma_sync_single_range_for_device(chan->base->dev,
609 					pool->dma_addr, lcla_offset,
610 					2 * sizeof(struct d40_log_lli),
611 					DMA_TO_DEVICE);
612 
613 		curr_lcla = next_lcla;
614 
615 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
616 			lli_current++;
617 			break;
618 		}
619 	}
620 
621 out:
622 	desc->lli_current = lli_current;
623 }
624 
625 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
626 {
627 	if (chan_is_physical(d40c)) {
628 		d40_phy_lli_load(d40c, d40d);
629 		d40d->lli_current = d40d->lli_len;
630 	} else
631 		d40_log_lli_to_lcxa(d40c, d40d);
632 }
633 
634 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
635 {
636 	struct d40_desc *d;
637 
638 	if (list_empty(&d40c->active))
639 		return NULL;
640 
641 	d = list_first_entry(&d40c->active,
642 			     struct d40_desc,
643 			     node);
644 	return d;
645 }
646 
647 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
648 {
649 	list_add_tail(&desc->node, &d40c->pending_queue);
650 }
651 
652 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
653 {
654 	struct d40_desc *d;
655 
656 	if (list_empty(&d40c->pending_queue))
657 		return NULL;
658 
659 	d = list_first_entry(&d40c->pending_queue,
660 			     struct d40_desc,
661 			     node);
662 	return d;
663 }
664 
665 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
666 {
667 	struct d40_desc *d;
668 
669 	if (list_empty(&d40c->queue))
670 		return NULL;
671 
672 	d = list_first_entry(&d40c->queue,
673 			     struct d40_desc,
674 			     node);
675 	return d;
676 }
677 
678 static int d40_psize_2_burst_size(bool is_log, int psize)
679 {
680 	if (is_log) {
681 		if (psize == STEDMA40_PSIZE_LOG_1)
682 			return 1;
683 	} else {
684 		if (psize == STEDMA40_PSIZE_PHY_1)
685 			return 1;
686 	}
687 
688 	return 2 << psize;
689 }
690 
691 /*
692  * The dma only supports transmitting packages up to
693  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
694  * dma elements required to send the entire sg list
695  */
696 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
697 {
698 	int dmalen;
699 	u32 max_w = max(data_width1, data_width2);
700 	u32 min_w = min(data_width1, data_width2);
701 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
702 
703 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
704 		seg_max -= (1 << max_w);
705 
706 	if (!IS_ALIGNED(size, 1 << max_w))
707 		return -EINVAL;
708 
709 	if (size <= seg_max)
710 		dmalen = 1;
711 	else {
712 		dmalen = size / seg_max;
713 		if (dmalen * seg_max < size)
714 			dmalen++;
715 	}
716 	return dmalen;
717 }
718 
719 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
720 			   u32 data_width1, u32 data_width2)
721 {
722 	struct scatterlist *sg;
723 	int i;
724 	int len = 0;
725 	int ret;
726 
727 	for_each_sg(sgl, sg, sg_len, i) {
728 		ret = d40_size_2_dmalen(sg_dma_len(sg),
729 					data_width1, data_width2);
730 		if (ret < 0)
731 			return ret;
732 		len += ret;
733 	}
734 	return len;
735 }
736 
737 /* Support functions for logical channels */
738 
739 static int d40_channel_execute_command(struct d40_chan *d40c,
740 				       enum d40_command command)
741 {
742 	u32 status;
743 	int i;
744 	void __iomem *active_reg;
745 	int ret = 0;
746 	unsigned long flags;
747 	u32 wmask;
748 
749 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
750 
751 	if (d40c->phy_chan->num % 2 == 0)
752 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
753 	else
754 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
755 
756 	if (command == D40_DMA_SUSPEND_REQ) {
757 		status = (readl(active_reg) &
758 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
759 			D40_CHAN_POS(d40c->phy_chan->num);
760 
761 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
762 			goto done;
763 	}
764 
765 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
766 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
767 	       active_reg);
768 
769 	if (command == D40_DMA_SUSPEND_REQ) {
770 
771 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
772 			status = (readl(active_reg) &
773 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
774 				D40_CHAN_POS(d40c->phy_chan->num);
775 
776 			cpu_relax();
777 			/*
778 			 * Reduce the number of bus accesses while
779 			 * waiting for the DMA to suspend.
780 			 */
781 			udelay(3);
782 
783 			if (status == D40_DMA_STOP ||
784 			    status == D40_DMA_SUSPENDED)
785 				break;
786 		}
787 
788 		if (i == D40_SUSPEND_MAX_IT) {
789 			chan_err(d40c,
790 				"unable to suspend the chl %d (log: %d) status %x\n",
791 				d40c->phy_chan->num, d40c->log_num,
792 				status);
793 			dump_stack();
794 			ret = -EBUSY;
795 		}
796 
797 	}
798 done:
799 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
800 	return ret;
801 }
802 
803 static void d40_term_all(struct d40_chan *d40c)
804 {
805 	struct d40_desc *d40d;
806 
807 	/* Release active descriptors */
808 	while ((d40d = d40_first_active_get(d40c))) {
809 		d40_desc_remove(d40d);
810 		d40_desc_free(d40c, d40d);
811 	}
812 
813 	/* Release queued descriptors waiting for transfer */
814 	while ((d40d = d40_first_queued(d40c))) {
815 		d40_desc_remove(d40d);
816 		d40_desc_free(d40c, d40d);
817 	}
818 
819 	/* Release pending descriptors */
820 	while ((d40d = d40_first_pending(d40c))) {
821 		d40_desc_remove(d40d);
822 		d40_desc_free(d40c, d40d);
823 	}
824 
825 	d40c->pending_tx = 0;
826 	d40c->busy = false;
827 }
828 
829 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
830 				   u32 event, int reg)
831 {
832 	void __iomem *addr = chan_base(d40c) + reg;
833 	int tries;
834 
835 	if (!enable) {
836 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
837 		       | ~D40_EVENTLINE_MASK(event), addr);
838 		return;
839 	}
840 
841 	/*
842 	 * The hardware sometimes doesn't register the enable when src and dst
843 	 * event lines are active on the same logical channel.  Retry to ensure
844 	 * it does.  Usually only one retry is sufficient.
845 	 */
846 	tries = 100;
847 	while (--tries) {
848 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
849 		       | ~D40_EVENTLINE_MASK(event), addr);
850 
851 		if (readl(addr) & D40_EVENTLINE_MASK(event))
852 			break;
853 	}
854 
855 	if (tries != 99)
856 		dev_dbg(chan2dev(d40c),
857 			"[%s] workaround enable S%cLNK (%d tries)\n",
858 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
859 			100 - tries);
860 
861 	WARN_ON(!tries);
862 }
863 
864 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
865 {
866 	unsigned long flags;
867 
868 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
869 
870 	/* Enable event line connected to device (or memcpy) */
871 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
872 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
873 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
874 
875 		__d40_config_set_event(d40c, do_enable, event,
876 				       D40_CHAN_REG_SSLNK);
877 	}
878 
879 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
880 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
881 
882 		__d40_config_set_event(d40c, do_enable, event,
883 				       D40_CHAN_REG_SDLNK);
884 	}
885 
886 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
887 }
888 
889 static u32 d40_chan_has_events(struct d40_chan *d40c)
890 {
891 	void __iomem *chanbase = chan_base(d40c);
892 	u32 val;
893 
894 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
895 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
896 
897 	return val;
898 }
899 
900 static u32 d40_get_prmo(struct d40_chan *d40c)
901 {
902 	static const unsigned int phy_map[] = {
903 		[STEDMA40_PCHAN_BASIC_MODE]
904 			= D40_DREG_PRMO_PCHAN_BASIC,
905 		[STEDMA40_PCHAN_MODULO_MODE]
906 			= D40_DREG_PRMO_PCHAN_MODULO,
907 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
908 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
909 	};
910 	static const unsigned int log_map[] = {
911 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
912 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
913 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
914 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
915 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
916 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
917 	};
918 
919 	if (chan_is_physical(d40c))
920 		return phy_map[d40c->dma_cfg.mode_opt];
921 	else
922 		return log_map[d40c->dma_cfg.mode_opt];
923 }
924 
925 static void d40_config_write(struct d40_chan *d40c)
926 {
927 	u32 addr_base;
928 	u32 var;
929 
930 	/* Odd addresses are even addresses + 4 */
931 	addr_base = (d40c->phy_chan->num % 2) * 4;
932 	/* Setup channel mode to logical or physical */
933 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
934 		D40_CHAN_POS(d40c->phy_chan->num);
935 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
936 
937 	/* Setup operational mode option register */
938 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
939 
940 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
941 
942 	if (chan_is_logical(d40c)) {
943 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
944 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
945 		void __iomem *chanbase = chan_base(d40c);
946 
947 		/* Set default config for CFG reg */
948 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
949 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
950 
951 		/* Set LIDX for lcla */
952 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
953 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
954 	}
955 }
956 
957 static u32 d40_residue(struct d40_chan *d40c)
958 {
959 	u32 num_elt;
960 
961 	if (chan_is_logical(d40c))
962 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
963 			>> D40_MEM_LCSP2_ECNT_POS;
964 	else {
965 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
966 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
967 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
968 	}
969 
970 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
971 }
972 
973 static bool d40_tx_is_linked(struct d40_chan *d40c)
974 {
975 	bool is_link;
976 
977 	if (chan_is_logical(d40c))
978 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
979 	else
980 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
981 			  & D40_SREG_LNK_PHYS_LNK_MASK;
982 
983 	return is_link;
984 }
985 
986 static int d40_pause(struct d40_chan *d40c)
987 {
988 	int res = 0;
989 	unsigned long flags;
990 
991 	if (!d40c->busy)
992 		return 0;
993 
994 	spin_lock_irqsave(&d40c->lock, flags);
995 
996 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
997 	if (res == 0) {
998 		if (chan_is_logical(d40c)) {
999 			d40_config_set_event(d40c, false);
1000 			/* Resume the other logical channels if any */
1001 			if (d40_chan_has_events(d40c))
1002 				res = d40_channel_execute_command(d40c,
1003 								  D40_DMA_RUN);
1004 		}
1005 	}
1006 
1007 	spin_unlock_irqrestore(&d40c->lock, flags);
1008 	return res;
1009 }
1010 
1011 static int d40_resume(struct d40_chan *d40c)
1012 {
1013 	int res = 0;
1014 	unsigned long flags;
1015 
1016 	if (!d40c->busy)
1017 		return 0;
1018 
1019 	spin_lock_irqsave(&d40c->lock, flags);
1020 
1021 	if (d40c->base->rev == 0)
1022 		if (chan_is_logical(d40c)) {
1023 			res = d40_channel_execute_command(d40c,
1024 							  D40_DMA_SUSPEND_REQ);
1025 			goto no_suspend;
1026 		}
1027 
1028 	/* If bytes left to transfer or linked tx resume job */
1029 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1030 
1031 		if (chan_is_logical(d40c))
1032 			d40_config_set_event(d40c, true);
1033 
1034 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1035 	}
1036 
1037 no_suspend:
1038 	spin_unlock_irqrestore(&d40c->lock, flags);
1039 	return res;
1040 }
1041 
1042 static int d40_terminate_all(struct d40_chan *chan)
1043 {
1044 	unsigned long flags;
1045 	int ret = 0;
1046 
1047 	ret = d40_pause(chan);
1048 	if (!ret && chan_is_physical(chan))
1049 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1050 
1051 	spin_lock_irqsave(&chan->lock, flags);
1052 	d40_term_all(chan);
1053 	spin_unlock_irqrestore(&chan->lock, flags);
1054 
1055 	return ret;
1056 }
1057 
1058 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1059 {
1060 	struct d40_chan *d40c = container_of(tx->chan,
1061 					     struct d40_chan,
1062 					     chan);
1063 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1064 	unsigned long flags;
1065 
1066 	spin_lock_irqsave(&d40c->lock, flags);
1067 
1068 	d40c->chan.cookie++;
1069 
1070 	if (d40c->chan.cookie < 0)
1071 		d40c->chan.cookie = 1;
1072 
1073 	d40d->txd.cookie = d40c->chan.cookie;
1074 
1075 	d40_desc_queue(d40c, d40d);
1076 
1077 	spin_unlock_irqrestore(&d40c->lock, flags);
1078 
1079 	return tx->cookie;
1080 }
1081 
1082 static int d40_start(struct d40_chan *d40c)
1083 {
1084 	if (d40c->base->rev == 0) {
1085 		int err;
1086 
1087 		if (chan_is_logical(d40c)) {
1088 			err = d40_channel_execute_command(d40c,
1089 							  D40_DMA_SUSPEND_REQ);
1090 			if (err)
1091 				return err;
1092 		}
1093 	}
1094 
1095 	if (chan_is_logical(d40c))
1096 		d40_config_set_event(d40c, true);
1097 
1098 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1099 }
1100 
1101 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1102 {
1103 	struct d40_desc *d40d;
1104 	int err;
1105 
1106 	/* Start queued jobs, if any */
1107 	d40d = d40_first_queued(d40c);
1108 
1109 	if (d40d != NULL) {
1110 		d40c->busy = true;
1111 
1112 		/* Remove from queue */
1113 		d40_desc_remove(d40d);
1114 
1115 		/* Add to active queue */
1116 		d40_desc_submit(d40c, d40d);
1117 
1118 		/* Initiate DMA job */
1119 		d40_desc_load(d40c, d40d);
1120 
1121 		/* Start dma job */
1122 		err = d40_start(d40c);
1123 
1124 		if (err)
1125 			return NULL;
1126 	}
1127 
1128 	return d40d;
1129 }
1130 
1131 /* called from interrupt context */
1132 static void dma_tc_handle(struct d40_chan *d40c)
1133 {
1134 	struct d40_desc *d40d;
1135 
1136 	/* Get first active entry from list */
1137 	d40d = d40_first_active_get(d40c);
1138 
1139 	if (d40d == NULL)
1140 		return;
1141 
1142 	if (d40d->cyclic) {
1143 		/*
1144 		 * If this was a paritially loaded list, we need to reloaded
1145 		 * it, and only when the list is completed.  We need to check
1146 		 * for done because the interrupt will hit for every link, and
1147 		 * not just the last one.
1148 		 */
1149 		if (d40d->lli_current < d40d->lli_len
1150 		    && !d40_tx_is_linked(d40c)
1151 		    && !d40_residue(d40c)) {
1152 			d40_lcla_free_all(d40c, d40d);
1153 			d40_desc_load(d40c, d40d);
1154 			(void) d40_start(d40c);
1155 
1156 			if (d40d->lli_current == d40d->lli_len)
1157 				d40d->lli_current = 0;
1158 		}
1159 	} else {
1160 		d40_lcla_free_all(d40c, d40d);
1161 
1162 		if (d40d->lli_current < d40d->lli_len) {
1163 			d40_desc_load(d40c, d40d);
1164 			/* Start dma job */
1165 			(void) d40_start(d40c);
1166 			return;
1167 		}
1168 
1169 		if (d40_queue_start(d40c) == NULL)
1170 			d40c->busy = false;
1171 	}
1172 
1173 	d40c->pending_tx++;
1174 	tasklet_schedule(&d40c->tasklet);
1175 
1176 }
1177 
1178 static void dma_tasklet(unsigned long data)
1179 {
1180 	struct d40_chan *d40c = (struct d40_chan *) data;
1181 	struct d40_desc *d40d;
1182 	unsigned long flags;
1183 	dma_async_tx_callback callback;
1184 	void *callback_param;
1185 
1186 	spin_lock_irqsave(&d40c->lock, flags);
1187 
1188 	/* Get first active entry from list */
1189 	d40d = d40_first_active_get(d40c);
1190 	if (d40d == NULL)
1191 		goto err;
1192 
1193 	if (!d40d->cyclic)
1194 		d40c->completed = d40d->txd.cookie;
1195 
1196 	/*
1197 	 * If terminating a channel pending_tx is set to zero.
1198 	 * This prevents any finished active jobs to return to the client.
1199 	 */
1200 	if (d40c->pending_tx == 0) {
1201 		spin_unlock_irqrestore(&d40c->lock, flags);
1202 		return;
1203 	}
1204 
1205 	/* Callback to client */
1206 	callback = d40d->txd.callback;
1207 	callback_param = d40d->txd.callback_param;
1208 
1209 	if (!d40d->cyclic) {
1210 		if (async_tx_test_ack(&d40d->txd)) {
1211 			d40_pool_lli_free(d40c, d40d);
1212 			d40_desc_remove(d40d);
1213 			d40_desc_free(d40c, d40d);
1214 		} else {
1215 			if (!d40d->is_in_client_list) {
1216 				d40_desc_remove(d40d);
1217 				d40_lcla_free_all(d40c, d40d);
1218 				list_add_tail(&d40d->node, &d40c->client);
1219 				d40d->is_in_client_list = true;
1220 			}
1221 		}
1222 	}
1223 
1224 	d40c->pending_tx--;
1225 
1226 	if (d40c->pending_tx)
1227 		tasklet_schedule(&d40c->tasklet);
1228 
1229 	spin_unlock_irqrestore(&d40c->lock, flags);
1230 
1231 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1232 		callback(callback_param);
1233 
1234 	return;
1235 
1236  err:
1237 	/* Rescue manoeuvre if receiving double interrupts */
1238 	if (d40c->pending_tx > 0)
1239 		d40c->pending_tx--;
1240 	spin_unlock_irqrestore(&d40c->lock, flags);
1241 }
1242 
1243 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1244 {
1245 	static const struct d40_interrupt_lookup il[] = {
1246 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1247 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1248 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1249 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1250 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1251 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1252 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1253 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1254 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1255 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1256 	};
1257 
1258 	int i;
1259 	u32 regs[ARRAY_SIZE(il)];
1260 	u32 idx;
1261 	u32 row;
1262 	long chan = -1;
1263 	struct d40_chan *d40c;
1264 	unsigned long flags;
1265 	struct d40_base *base = data;
1266 
1267 	spin_lock_irqsave(&base->interrupt_lock, flags);
1268 
1269 	/* Read interrupt status of both logical and physical channels */
1270 	for (i = 0; i < ARRAY_SIZE(il); i++)
1271 		regs[i] = readl(base->virtbase + il[i].src);
1272 
1273 	for (;;) {
1274 
1275 		chan = find_next_bit((unsigned long *)regs,
1276 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1277 
1278 		/* No more set bits found? */
1279 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1280 			break;
1281 
1282 		row = chan / BITS_PER_LONG;
1283 		idx = chan & (BITS_PER_LONG - 1);
1284 
1285 		/* ACK interrupt */
1286 		writel(1 << idx, base->virtbase + il[row].clr);
1287 
1288 		if (il[row].offset == D40_PHY_CHAN)
1289 			d40c = base->lookup_phy_chans[idx];
1290 		else
1291 			d40c = base->lookup_log_chans[il[row].offset + idx];
1292 		spin_lock(&d40c->lock);
1293 
1294 		if (!il[row].is_error)
1295 			dma_tc_handle(d40c);
1296 		else
1297 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1298 				chan, il[row].offset, idx);
1299 
1300 		spin_unlock(&d40c->lock);
1301 	}
1302 
1303 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1304 
1305 	return IRQ_HANDLED;
1306 }
1307 
1308 static int d40_validate_conf(struct d40_chan *d40c,
1309 			     struct stedma40_chan_cfg *conf)
1310 {
1311 	int res = 0;
1312 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1313 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1314 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1315 
1316 	if (!conf->dir) {
1317 		chan_err(d40c, "Invalid direction.\n");
1318 		res = -EINVAL;
1319 	}
1320 
1321 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1322 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1323 	    d40c->runtime_addr == 0) {
1324 
1325 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1326 			 conf->dst_dev_type);
1327 		res = -EINVAL;
1328 	}
1329 
1330 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1331 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1332 	    d40c->runtime_addr == 0) {
1333 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1334 			conf->src_dev_type);
1335 		res = -EINVAL;
1336 	}
1337 
1338 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1339 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1340 		chan_err(d40c, "Invalid dst\n");
1341 		res = -EINVAL;
1342 	}
1343 
1344 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1345 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1346 		chan_err(d40c, "Invalid src\n");
1347 		res = -EINVAL;
1348 	}
1349 
1350 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1351 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1352 		chan_err(d40c, "No event line\n");
1353 		res = -EINVAL;
1354 	}
1355 
1356 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1357 	    (src_event_group != dst_event_group)) {
1358 		chan_err(d40c, "Invalid event group\n");
1359 		res = -EINVAL;
1360 	}
1361 
1362 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1363 		/*
1364 		 * DMAC HW supports it. Will be added to this driver,
1365 		 * in case any dma client requires it.
1366 		 */
1367 		chan_err(d40c, "periph to periph not supported\n");
1368 		res = -EINVAL;
1369 	}
1370 
1371 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1372 	    (1 << conf->src_info.data_width) !=
1373 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1374 	    (1 << conf->dst_info.data_width)) {
1375 		/*
1376 		 * The DMAC hardware only supports
1377 		 * src (burst x width) == dst (burst x width)
1378 		 */
1379 
1380 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1381 		res = -EINVAL;
1382 	}
1383 
1384 	return res;
1385 }
1386 
1387 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1388 			       int log_event_line, bool is_log)
1389 {
1390 	unsigned long flags;
1391 	spin_lock_irqsave(&phy->lock, flags);
1392 	if (!is_log) {
1393 		/* Physical interrupts are masked per physical full channel */
1394 		if (phy->allocated_src == D40_ALLOC_FREE &&
1395 		    phy->allocated_dst == D40_ALLOC_FREE) {
1396 			phy->allocated_dst = D40_ALLOC_PHY;
1397 			phy->allocated_src = D40_ALLOC_PHY;
1398 			goto found;
1399 		} else
1400 			goto not_found;
1401 	}
1402 
1403 	/* Logical channel */
1404 	if (is_src) {
1405 		if (phy->allocated_src == D40_ALLOC_PHY)
1406 			goto not_found;
1407 
1408 		if (phy->allocated_src == D40_ALLOC_FREE)
1409 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1410 
1411 		if (!(phy->allocated_src & (1 << log_event_line))) {
1412 			phy->allocated_src |= 1 << log_event_line;
1413 			goto found;
1414 		} else
1415 			goto not_found;
1416 	} else {
1417 		if (phy->allocated_dst == D40_ALLOC_PHY)
1418 			goto not_found;
1419 
1420 		if (phy->allocated_dst == D40_ALLOC_FREE)
1421 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1422 
1423 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1424 			phy->allocated_dst |= 1 << log_event_line;
1425 			goto found;
1426 		} else
1427 			goto not_found;
1428 	}
1429 
1430 not_found:
1431 	spin_unlock_irqrestore(&phy->lock, flags);
1432 	return false;
1433 found:
1434 	spin_unlock_irqrestore(&phy->lock, flags);
1435 	return true;
1436 }
1437 
1438 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1439 			       int log_event_line)
1440 {
1441 	unsigned long flags;
1442 	bool is_free = false;
1443 
1444 	spin_lock_irqsave(&phy->lock, flags);
1445 	if (!log_event_line) {
1446 		phy->allocated_dst = D40_ALLOC_FREE;
1447 		phy->allocated_src = D40_ALLOC_FREE;
1448 		is_free = true;
1449 		goto out;
1450 	}
1451 
1452 	/* Logical channel */
1453 	if (is_src) {
1454 		phy->allocated_src &= ~(1 << log_event_line);
1455 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1456 			phy->allocated_src = D40_ALLOC_FREE;
1457 	} else {
1458 		phy->allocated_dst &= ~(1 << log_event_line);
1459 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1460 			phy->allocated_dst = D40_ALLOC_FREE;
1461 	}
1462 
1463 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1464 		   D40_ALLOC_FREE);
1465 
1466 out:
1467 	spin_unlock_irqrestore(&phy->lock, flags);
1468 
1469 	return is_free;
1470 }
1471 
1472 static int d40_allocate_channel(struct d40_chan *d40c)
1473 {
1474 	int dev_type;
1475 	int event_group;
1476 	int event_line;
1477 	struct d40_phy_res *phys;
1478 	int i;
1479 	int j;
1480 	int log_num;
1481 	bool is_src;
1482 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1483 
1484 	phys = d40c->base->phy_res;
1485 
1486 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1487 		dev_type = d40c->dma_cfg.src_dev_type;
1488 		log_num = 2 * dev_type;
1489 		is_src = true;
1490 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1491 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1492 		/* dst event lines are used for logical memcpy */
1493 		dev_type = d40c->dma_cfg.dst_dev_type;
1494 		log_num = 2 * dev_type + 1;
1495 		is_src = false;
1496 	} else
1497 		return -EINVAL;
1498 
1499 	event_group = D40_TYPE_TO_GROUP(dev_type);
1500 	event_line = D40_TYPE_TO_EVENT(dev_type);
1501 
1502 	if (!is_log) {
1503 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1504 			/* Find physical half channel */
1505 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1506 
1507 				if (d40_alloc_mask_set(&phys[i], is_src,
1508 						       0, is_log))
1509 					goto found_phy;
1510 			}
1511 		} else
1512 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1513 				int phy_num = j  + event_group * 2;
1514 				for (i = phy_num; i < phy_num + 2; i++) {
1515 					if (d40_alloc_mask_set(&phys[i],
1516 							       is_src,
1517 							       0,
1518 							       is_log))
1519 						goto found_phy;
1520 				}
1521 			}
1522 		return -EINVAL;
1523 found_phy:
1524 		d40c->phy_chan = &phys[i];
1525 		d40c->log_num = D40_PHY_CHAN;
1526 		goto out;
1527 	}
1528 	if (dev_type == -1)
1529 		return -EINVAL;
1530 
1531 	/* Find logical channel */
1532 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1533 		int phy_num = j + event_group * 2;
1534 		/*
1535 		 * Spread logical channels across all available physical rather
1536 		 * than pack every logical channel at the first available phy
1537 		 * channels.
1538 		 */
1539 		if (is_src) {
1540 			for (i = phy_num; i < phy_num + 2; i++) {
1541 				if (d40_alloc_mask_set(&phys[i], is_src,
1542 						       event_line, is_log))
1543 					goto found_log;
1544 			}
1545 		} else {
1546 			for (i = phy_num + 1; i >= phy_num; i--) {
1547 				if (d40_alloc_mask_set(&phys[i], is_src,
1548 						       event_line, is_log))
1549 					goto found_log;
1550 			}
1551 		}
1552 	}
1553 	return -EINVAL;
1554 
1555 found_log:
1556 	d40c->phy_chan = &phys[i];
1557 	d40c->log_num = log_num;
1558 out:
1559 
1560 	if (is_log)
1561 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1562 	else
1563 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1564 
1565 	return 0;
1566 
1567 }
1568 
1569 static int d40_config_memcpy(struct d40_chan *d40c)
1570 {
1571 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1572 
1573 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1574 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1575 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1576 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1577 			memcpy[d40c->chan.chan_id];
1578 
1579 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1580 		   dma_has_cap(DMA_SLAVE, cap)) {
1581 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1582 	} else {
1583 		chan_err(d40c, "No memcpy\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 
1591 static int d40_free_dma(struct d40_chan *d40c)
1592 {
1593 
1594 	int res = 0;
1595 	u32 event;
1596 	struct d40_phy_res *phy = d40c->phy_chan;
1597 	bool is_src;
1598 	struct d40_desc *d;
1599 	struct d40_desc *_d;
1600 
1601 
1602 	/* Terminate all queued and active transfers */
1603 	d40_term_all(d40c);
1604 
1605 	/* Release client owned descriptors */
1606 	if (!list_empty(&d40c->client))
1607 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1608 			d40_pool_lli_free(d40c, d);
1609 			d40_desc_remove(d);
1610 			d40_desc_free(d40c, d);
1611 		}
1612 
1613 	if (phy == NULL) {
1614 		chan_err(d40c, "phy == null\n");
1615 		return -EINVAL;
1616 	}
1617 
1618 	if (phy->allocated_src == D40_ALLOC_FREE &&
1619 	    phy->allocated_dst == D40_ALLOC_FREE) {
1620 		chan_err(d40c, "channel already free\n");
1621 		return -EINVAL;
1622 	}
1623 
1624 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1625 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1626 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1627 		is_src = false;
1628 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1629 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1630 		is_src = true;
1631 	} else {
1632 		chan_err(d40c, "Unknown direction\n");
1633 		return -EINVAL;
1634 	}
1635 
1636 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1637 	if (res) {
1638 		chan_err(d40c, "suspend failed\n");
1639 		return res;
1640 	}
1641 
1642 	if (chan_is_logical(d40c)) {
1643 		/* Release logical channel, deactivate the event line */
1644 
1645 		d40_config_set_event(d40c, false);
1646 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1647 
1648 		/*
1649 		 * Check if there are more logical allocation
1650 		 * on this phy channel.
1651 		 */
1652 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1653 			/* Resume the other logical channels if any */
1654 			if (d40_chan_has_events(d40c)) {
1655 				res = d40_channel_execute_command(d40c,
1656 								  D40_DMA_RUN);
1657 				if (res) {
1658 					chan_err(d40c,
1659 						"Executing RUN command\n");
1660 					return res;
1661 				}
1662 			}
1663 			return 0;
1664 		}
1665 	} else {
1666 		(void) d40_alloc_mask_free(phy, is_src, 0);
1667 	}
1668 
1669 	/* Release physical channel */
1670 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1671 	if (res) {
1672 		chan_err(d40c, "Failed to stop channel\n");
1673 		return res;
1674 	}
1675 	d40c->phy_chan = NULL;
1676 	d40c->configured = false;
1677 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1678 
1679 	return 0;
1680 }
1681 
1682 static bool d40_is_paused(struct d40_chan *d40c)
1683 {
1684 	void __iomem *chanbase = chan_base(d40c);
1685 	bool is_paused = false;
1686 	unsigned long flags;
1687 	void __iomem *active_reg;
1688 	u32 status;
1689 	u32 event;
1690 
1691 	spin_lock_irqsave(&d40c->lock, flags);
1692 
1693 	if (chan_is_physical(d40c)) {
1694 		if (d40c->phy_chan->num % 2 == 0)
1695 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1696 		else
1697 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1698 
1699 		status = (readl(active_reg) &
1700 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1701 			D40_CHAN_POS(d40c->phy_chan->num);
1702 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1703 			is_paused = true;
1704 
1705 		goto _exit;
1706 	}
1707 
1708 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1709 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1710 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1711 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1712 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1713 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1714 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1715 	} else {
1716 		chan_err(d40c, "Unknown direction\n");
1717 		goto _exit;
1718 	}
1719 
1720 	status = (status & D40_EVENTLINE_MASK(event)) >>
1721 		D40_EVENTLINE_POS(event);
1722 
1723 	if (status != D40_DMA_RUN)
1724 		is_paused = true;
1725 _exit:
1726 	spin_unlock_irqrestore(&d40c->lock, flags);
1727 	return is_paused;
1728 
1729 }
1730 
1731 
1732 static u32 stedma40_residue(struct dma_chan *chan)
1733 {
1734 	struct d40_chan *d40c =
1735 		container_of(chan, struct d40_chan, chan);
1736 	u32 bytes_left;
1737 	unsigned long flags;
1738 
1739 	spin_lock_irqsave(&d40c->lock, flags);
1740 	bytes_left = d40_residue(d40c);
1741 	spin_unlock_irqrestore(&d40c->lock, flags);
1742 
1743 	return bytes_left;
1744 }
1745 
1746 static int
1747 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1748 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1749 		unsigned int sg_len, dma_addr_t src_dev_addr,
1750 		dma_addr_t dst_dev_addr)
1751 {
1752 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1753 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1754 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1755 	int ret;
1756 
1757 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1758 				src_dev_addr,
1759 				desc->lli_log.src,
1760 				chan->log_def.lcsp1,
1761 				src_info->data_width,
1762 				dst_info->data_width);
1763 
1764 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1765 				dst_dev_addr,
1766 				desc->lli_log.dst,
1767 				chan->log_def.lcsp3,
1768 				dst_info->data_width,
1769 				src_info->data_width);
1770 
1771 	return ret < 0 ? ret : 0;
1772 }
1773 
1774 static int
1775 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1776 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1777 		unsigned int sg_len, dma_addr_t src_dev_addr,
1778 		dma_addr_t dst_dev_addr)
1779 {
1780 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1781 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1782 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1783 	unsigned long flags = 0;
1784 	int ret;
1785 
1786 	if (desc->cyclic)
1787 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1788 
1789 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1790 				desc->lli_phy.src,
1791 				virt_to_phys(desc->lli_phy.src),
1792 				chan->src_def_cfg,
1793 				src_info, dst_info, flags);
1794 
1795 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1796 				desc->lli_phy.dst,
1797 				virt_to_phys(desc->lli_phy.dst),
1798 				chan->dst_def_cfg,
1799 				dst_info, src_info, flags);
1800 
1801 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1802 				   desc->lli_pool.size, DMA_TO_DEVICE);
1803 
1804 	return ret < 0 ? ret : 0;
1805 }
1806 
1807 
1808 static struct d40_desc *
1809 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1810 	      unsigned int sg_len, unsigned long dma_flags)
1811 {
1812 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1813 	struct d40_desc *desc;
1814 	int ret;
1815 
1816 	desc = d40_desc_get(chan);
1817 	if (!desc)
1818 		return NULL;
1819 
1820 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1821 					cfg->dst_info.data_width);
1822 	if (desc->lli_len < 0) {
1823 		chan_err(chan, "Unaligned size\n");
1824 		goto err;
1825 	}
1826 
1827 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1828 	if (ret < 0) {
1829 		chan_err(chan, "Could not allocate lli\n");
1830 		goto err;
1831 	}
1832 
1833 
1834 	desc->lli_current = 0;
1835 	desc->txd.flags = dma_flags;
1836 	desc->txd.tx_submit = d40_tx_submit;
1837 
1838 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1839 
1840 	return desc;
1841 
1842 err:
1843 	d40_desc_free(chan, desc);
1844 	return NULL;
1845 }
1846 
1847 static dma_addr_t
1848 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1849 {
1850 	struct stedma40_platform_data *plat = chan->base->plat_data;
1851 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1852 	dma_addr_t addr = 0;
1853 
1854 	if (chan->runtime_addr)
1855 		return chan->runtime_addr;
1856 
1857 	if (direction == DMA_FROM_DEVICE)
1858 		addr = plat->dev_rx[cfg->src_dev_type];
1859 	else if (direction == DMA_TO_DEVICE)
1860 		addr = plat->dev_tx[cfg->dst_dev_type];
1861 
1862 	return addr;
1863 }
1864 
1865 static struct dma_async_tx_descriptor *
1866 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1867 	    struct scatterlist *sg_dst, unsigned int sg_len,
1868 	    enum dma_data_direction direction, unsigned long dma_flags)
1869 {
1870 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1871 	dma_addr_t src_dev_addr = 0;
1872 	dma_addr_t dst_dev_addr = 0;
1873 	struct d40_desc *desc;
1874 	unsigned long flags;
1875 	int ret;
1876 
1877 	if (!chan->phy_chan) {
1878 		chan_err(chan, "Cannot prepare unallocated channel\n");
1879 		return NULL;
1880 	}
1881 
1882 
1883 	spin_lock_irqsave(&chan->lock, flags);
1884 
1885 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1886 	if (desc == NULL)
1887 		goto err;
1888 
1889 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1890 		desc->cyclic = true;
1891 
1892 	if (direction != DMA_NONE) {
1893 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1894 
1895 		if (direction == DMA_FROM_DEVICE)
1896 			src_dev_addr = dev_addr;
1897 		else if (direction == DMA_TO_DEVICE)
1898 			dst_dev_addr = dev_addr;
1899 	}
1900 
1901 	if (chan_is_logical(chan))
1902 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1903 				      sg_len, src_dev_addr, dst_dev_addr);
1904 	else
1905 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1906 				      sg_len, src_dev_addr, dst_dev_addr);
1907 
1908 	if (ret) {
1909 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
1910 			 chan_is_logical(chan) ? "log" : "phy", ret);
1911 		goto err;
1912 	}
1913 
1914 	spin_unlock_irqrestore(&chan->lock, flags);
1915 
1916 	return &desc->txd;
1917 
1918 err:
1919 	if (desc)
1920 		d40_desc_free(chan, desc);
1921 	spin_unlock_irqrestore(&chan->lock, flags);
1922 	return NULL;
1923 }
1924 
1925 bool stedma40_filter(struct dma_chan *chan, void *data)
1926 {
1927 	struct stedma40_chan_cfg *info = data;
1928 	struct d40_chan *d40c =
1929 		container_of(chan, struct d40_chan, chan);
1930 	int err;
1931 
1932 	if (data) {
1933 		err = d40_validate_conf(d40c, info);
1934 		if (!err)
1935 			d40c->dma_cfg = *info;
1936 	} else
1937 		err = d40_config_memcpy(d40c);
1938 
1939 	if (!err)
1940 		d40c->configured = true;
1941 
1942 	return err == 0;
1943 }
1944 EXPORT_SYMBOL(stedma40_filter);
1945 
1946 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1947 {
1948 	bool realtime = d40c->dma_cfg.realtime;
1949 	bool highprio = d40c->dma_cfg.high_priority;
1950 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1951 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1952 	u32 event = D40_TYPE_TO_EVENT(dev_type);
1953 	u32 group = D40_TYPE_TO_GROUP(dev_type);
1954 	u32 bit = 1 << event;
1955 
1956 	/* Destination event lines are stored in the upper halfword */
1957 	if (!src)
1958 		bit <<= 16;
1959 
1960 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
1961 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
1962 }
1963 
1964 static void d40_set_prio_realtime(struct d40_chan *d40c)
1965 {
1966 	if (d40c->base->rev < 3)
1967 		return;
1968 
1969 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1970 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1971 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1972 
1973 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1974 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1975 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1976 }
1977 
1978 /* DMA ENGINE functions */
1979 static int d40_alloc_chan_resources(struct dma_chan *chan)
1980 {
1981 	int err;
1982 	unsigned long flags;
1983 	struct d40_chan *d40c =
1984 		container_of(chan, struct d40_chan, chan);
1985 	bool is_free_phy;
1986 	spin_lock_irqsave(&d40c->lock, flags);
1987 
1988 	d40c->completed = chan->cookie = 1;
1989 
1990 	/* If no dma configuration is set use default configuration (memcpy) */
1991 	if (!d40c->configured) {
1992 		err = d40_config_memcpy(d40c);
1993 		if (err) {
1994 			chan_err(d40c, "Failed to configure memcpy channel\n");
1995 			goto fail;
1996 		}
1997 	}
1998 	is_free_phy = (d40c->phy_chan == NULL);
1999 
2000 	err = d40_allocate_channel(d40c);
2001 	if (err) {
2002 		chan_err(d40c, "Failed to allocate channel\n");
2003 		goto fail;
2004 	}
2005 
2006 	/* Fill in basic CFG register values */
2007 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2008 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
2009 
2010 	d40_set_prio_realtime(d40c);
2011 
2012 	if (chan_is_logical(d40c)) {
2013 		d40_log_cfg(&d40c->dma_cfg,
2014 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2015 
2016 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2017 			d40c->lcpa = d40c->base->lcpa_base +
2018 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2019 		else
2020 			d40c->lcpa = d40c->base->lcpa_base +
2021 			  d40c->dma_cfg.dst_dev_type *
2022 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2023 	}
2024 
2025 	/*
2026 	 * Only write channel configuration to the DMA if the physical
2027 	 * resource is free. In case of multiple logical channels
2028 	 * on the same physical resource, only the first write is necessary.
2029 	 */
2030 	if (is_free_phy)
2031 		d40_config_write(d40c);
2032 fail:
2033 	spin_unlock_irqrestore(&d40c->lock, flags);
2034 	return err;
2035 }
2036 
2037 static void d40_free_chan_resources(struct dma_chan *chan)
2038 {
2039 	struct d40_chan *d40c =
2040 		container_of(chan, struct d40_chan, chan);
2041 	int err;
2042 	unsigned long flags;
2043 
2044 	if (d40c->phy_chan == NULL) {
2045 		chan_err(d40c, "Cannot free unallocated channel\n");
2046 		return;
2047 	}
2048 
2049 
2050 	spin_lock_irqsave(&d40c->lock, flags);
2051 
2052 	err = d40_free_dma(d40c);
2053 
2054 	if (err)
2055 		chan_err(d40c, "Failed to free channel\n");
2056 	spin_unlock_irqrestore(&d40c->lock, flags);
2057 }
2058 
2059 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2060 						       dma_addr_t dst,
2061 						       dma_addr_t src,
2062 						       size_t size,
2063 						       unsigned long dma_flags)
2064 {
2065 	struct scatterlist dst_sg;
2066 	struct scatterlist src_sg;
2067 
2068 	sg_init_table(&dst_sg, 1);
2069 	sg_init_table(&src_sg, 1);
2070 
2071 	sg_dma_address(&dst_sg) = dst;
2072 	sg_dma_address(&src_sg) = src;
2073 
2074 	sg_dma_len(&dst_sg) = size;
2075 	sg_dma_len(&src_sg) = size;
2076 
2077 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2078 }
2079 
2080 static struct dma_async_tx_descriptor *
2081 d40_prep_memcpy_sg(struct dma_chan *chan,
2082 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2083 		   struct scatterlist *src_sg, unsigned int src_nents,
2084 		   unsigned long dma_flags)
2085 {
2086 	if (dst_nents != src_nents)
2087 		return NULL;
2088 
2089 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2090 }
2091 
2092 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2093 							 struct scatterlist *sgl,
2094 							 unsigned int sg_len,
2095 							 enum dma_data_direction direction,
2096 							 unsigned long dma_flags)
2097 {
2098 	if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2099 		return NULL;
2100 
2101 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2102 }
2103 
2104 static struct dma_async_tx_descriptor *
2105 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2106 		     size_t buf_len, size_t period_len,
2107 		     enum dma_data_direction direction)
2108 {
2109 	unsigned int periods = buf_len / period_len;
2110 	struct dma_async_tx_descriptor *txd;
2111 	struct scatterlist *sg;
2112 	int i;
2113 
2114 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2115 	for (i = 0; i < periods; i++) {
2116 		sg_dma_address(&sg[i]) = dma_addr;
2117 		sg_dma_len(&sg[i]) = period_len;
2118 		dma_addr += period_len;
2119 	}
2120 
2121 	sg[periods].offset = 0;
2122 	sg[periods].length = 0;
2123 	sg[periods].page_link =
2124 		((unsigned long)sg | 0x01) & ~0x02;
2125 
2126 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2127 			  DMA_PREP_INTERRUPT);
2128 
2129 	kfree(sg);
2130 
2131 	return txd;
2132 }
2133 
2134 static enum dma_status d40_tx_status(struct dma_chan *chan,
2135 				     dma_cookie_t cookie,
2136 				     struct dma_tx_state *txstate)
2137 {
2138 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2139 	dma_cookie_t last_used;
2140 	dma_cookie_t last_complete;
2141 	int ret;
2142 
2143 	if (d40c->phy_chan == NULL) {
2144 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	last_complete = d40c->completed;
2149 	last_used = chan->cookie;
2150 
2151 	if (d40_is_paused(d40c))
2152 		ret = DMA_PAUSED;
2153 	else
2154 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2155 
2156 	dma_set_tx_state(txstate, last_complete, last_used,
2157 			 stedma40_residue(chan));
2158 
2159 	return ret;
2160 }
2161 
2162 static void d40_issue_pending(struct dma_chan *chan)
2163 {
2164 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2165 	unsigned long flags;
2166 
2167 	if (d40c->phy_chan == NULL) {
2168 		chan_err(d40c, "Channel is not allocated!\n");
2169 		return;
2170 	}
2171 
2172 	spin_lock_irqsave(&d40c->lock, flags);
2173 
2174 	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2175 
2176 	/* Busy means that queued jobs are already being processed */
2177 	if (!d40c->busy)
2178 		(void) d40_queue_start(d40c);
2179 
2180 	spin_unlock_irqrestore(&d40c->lock, flags);
2181 }
2182 
2183 static int
2184 dma40_config_to_halfchannel(struct d40_chan *d40c,
2185 			    struct stedma40_half_channel_info *info,
2186 			    enum dma_slave_buswidth width,
2187 			    u32 maxburst)
2188 {
2189 	enum stedma40_periph_data_width addr_width;
2190 	int psize;
2191 
2192 	switch (width) {
2193 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2194 		addr_width = STEDMA40_BYTE_WIDTH;
2195 		break;
2196 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2197 		addr_width = STEDMA40_HALFWORD_WIDTH;
2198 		break;
2199 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2200 		addr_width = STEDMA40_WORD_WIDTH;
2201 		break;
2202 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2203 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2204 		break;
2205 	default:
2206 		dev_err(d40c->base->dev,
2207 			"illegal peripheral address width "
2208 			"requested (%d)\n",
2209 			width);
2210 		return -EINVAL;
2211 	}
2212 
2213 	if (chan_is_logical(d40c)) {
2214 		if (maxburst >= 16)
2215 			psize = STEDMA40_PSIZE_LOG_16;
2216 		else if (maxburst >= 8)
2217 			psize = STEDMA40_PSIZE_LOG_8;
2218 		else if (maxburst >= 4)
2219 			psize = STEDMA40_PSIZE_LOG_4;
2220 		else
2221 			psize = STEDMA40_PSIZE_LOG_1;
2222 	} else {
2223 		if (maxburst >= 16)
2224 			psize = STEDMA40_PSIZE_PHY_16;
2225 		else if (maxburst >= 8)
2226 			psize = STEDMA40_PSIZE_PHY_8;
2227 		else if (maxburst >= 4)
2228 			psize = STEDMA40_PSIZE_PHY_4;
2229 		else
2230 			psize = STEDMA40_PSIZE_PHY_1;
2231 	}
2232 
2233 	info->data_width = addr_width;
2234 	info->psize = psize;
2235 	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2236 
2237 	return 0;
2238 }
2239 
2240 /* Runtime reconfiguration extension */
2241 static int d40_set_runtime_config(struct dma_chan *chan,
2242 				  struct dma_slave_config *config)
2243 {
2244 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2245 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2246 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2247 	dma_addr_t config_addr;
2248 	u32 src_maxburst, dst_maxburst;
2249 	int ret;
2250 
2251 	src_addr_width = config->src_addr_width;
2252 	src_maxburst = config->src_maxburst;
2253 	dst_addr_width = config->dst_addr_width;
2254 	dst_maxburst = config->dst_maxburst;
2255 
2256 	if (config->direction == DMA_FROM_DEVICE) {
2257 		dma_addr_t dev_addr_rx =
2258 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2259 
2260 		config_addr = config->src_addr;
2261 		if (dev_addr_rx)
2262 			dev_dbg(d40c->base->dev,
2263 				"channel has a pre-wired RX address %08x "
2264 				"overriding with %08x\n",
2265 				dev_addr_rx, config_addr);
2266 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2267 			dev_dbg(d40c->base->dev,
2268 				"channel was not configured for peripheral "
2269 				"to memory transfer (%d) overriding\n",
2270 				cfg->dir);
2271 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2272 
2273 		/* Configure the memory side */
2274 		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2275 			dst_addr_width = src_addr_width;
2276 		if (dst_maxburst == 0)
2277 			dst_maxburst = src_maxburst;
2278 
2279 	} else if (config->direction == DMA_TO_DEVICE) {
2280 		dma_addr_t dev_addr_tx =
2281 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2282 
2283 		config_addr = config->dst_addr;
2284 		if (dev_addr_tx)
2285 			dev_dbg(d40c->base->dev,
2286 				"channel has a pre-wired TX address %08x "
2287 				"overriding with %08x\n",
2288 				dev_addr_tx, config_addr);
2289 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2290 			dev_dbg(d40c->base->dev,
2291 				"channel was not configured for memory "
2292 				"to peripheral transfer (%d) overriding\n",
2293 				cfg->dir);
2294 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2295 
2296 		/* Configure the memory side */
2297 		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2298 			src_addr_width = dst_addr_width;
2299 		if (src_maxburst == 0)
2300 			src_maxburst = dst_maxburst;
2301 	} else {
2302 		dev_err(d40c->base->dev,
2303 			"unrecognized channel direction %d\n",
2304 			config->direction);
2305 		return -EINVAL;
2306 	}
2307 
2308 	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2309 		dev_err(d40c->base->dev,
2310 			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2311 			src_maxburst,
2312 			src_addr_width,
2313 			dst_maxburst,
2314 			dst_addr_width);
2315 		return -EINVAL;
2316 	}
2317 
2318 	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2319 					  src_addr_width,
2320 					  src_maxburst);
2321 	if (ret)
2322 		return ret;
2323 
2324 	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2325 					  dst_addr_width,
2326 					  dst_maxburst);
2327 	if (ret)
2328 		return ret;
2329 
2330 	/* Fill in register values */
2331 	if (chan_is_logical(d40c))
2332 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2333 	else
2334 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2335 			    &d40c->dst_def_cfg, false);
2336 
2337 	/* These settings will take precedence later */
2338 	d40c->runtime_addr = config_addr;
2339 	d40c->runtime_direction = config->direction;
2340 	dev_dbg(d40c->base->dev,
2341 		"configured channel %s for %s, data width %d/%d, "
2342 		"maxburst %d/%d elements, LE, no flow control\n",
2343 		dma_chan_name(chan),
2344 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2345 		src_addr_width, dst_addr_width,
2346 		src_maxburst, dst_maxburst);
2347 
2348 	return 0;
2349 }
2350 
2351 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2352 		       unsigned long arg)
2353 {
2354 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2355 
2356 	if (d40c->phy_chan == NULL) {
2357 		chan_err(d40c, "Channel is not allocated!\n");
2358 		return -EINVAL;
2359 	}
2360 
2361 	switch (cmd) {
2362 	case DMA_TERMINATE_ALL:
2363 		return d40_terminate_all(d40c);
2364 	case DMA_PAUSE:
2365 		return d40_pause(d40c);
2366 	case DMA_RESUME:
2367 		return d40_resume(d40c);
2368 	case DMA_SLAVE_CONFIG:
2369 		return d40_set_runtime_config(chan,
2370 			(struct dma_slave_config *) arg);
2371 	default:
2372 		break;
2373 	}
2374 
2375 	/* Other commands are unimplemented */
2376 	return -ENXIO;
2377 }
2378 
2379 /* Initialization functions */
2380 
2381 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2382 				 struct d40_chan *chans, int offset,
2383 				 int num_chans)
2384 {
2385 	int i = 0;
2386 	struct d40_chan *d40c;
2387 
2388 	INIT_LIST_HEAD(&dma->channels);
2389 
2390 	for (i = offset; i < offset + num_chans; i++) {
2391 		d40c = &chans[i];
2392 		d40c->base = base;
2393 		d40c->chan.device = dma;
2394 
2395 		spin_lock_init(&d40c->lock);
2396 
2397 		d40c->log_num = D40_PHY_CHAN;
2398 
2399 		INIT_LIST_HEAD(&d40c->active);
2400 		INIT_LIST_HEAD(&d40c->queue);
2401 		INIT_LIST_HEAD(&d40c->pending_queue);
2402 		INIT_LIST_HEAD(&d40c->client);
2403 
2404 		tasklet_init(&d40c->tasklet, dma_tasklet,
2405 			     (unsigned long) d40c);
2406 
2407 		list_add_tail(&d40c->chan.device_node,
2408 			      &dma->channels);
2409 	}
2410 }
2411 
2412 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2413 {
2414 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2415 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2416 
2417 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2418 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2419 
2420 		/*
2421 		 * This controller can only access address at even
2422 		 * 32bit boundaries, i.e. 2^2
2423 		 */
2424 		dev->copy_align = 2;
2425 	}
2426 
2427 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2428 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2429 
2430 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2431 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2432 
2433 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2434 	dev->device_free_chan_resources = d40_free_chan_resources;
2435 	dev->device_issue_pending = d40_issue_pending;
2436 	dev->device_tx_status = d40_tx_status;
2437 	dev->device_control = d40_control;
2438 	dev->dev = base->dev;
2439 }
2440 
2441 static int __init d40_dmaengine_init(struct d40_base *base,
2442 				     int num_reserved_chans)
2443 {
2444 	int err ;
2445 
2446 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2447 		      0, base->num_log_chans);
2448 
2449 	dma_cap_zero(base->dma_slave.cap_mask);
2450 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2451 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2452 
2453 	d40_ops_init(base, &base->dma_slave);
2454 
2455 	err = dma_async_device_register(&base->dma_slave);
2456 
2457 	if (err) {
2458 		d40_err(base->dev, "Failed to register slave channels\n");
2459 		goto failure1;
2460 	}
2461 
2462 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2463 		      base->num_log_chans, base->plat_data->memcpy_len);
2464 
2465 	dma_cap_zero(base->dma_memcpy.cap_mask);
2466 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2467 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2468 
2469 	d40_ops_init(base, &base->dma_memcpy);
2470 
2471 	err = dma_async_device_register(&base->dma_memcpy);
2472 
2473 	if (err) {
2474 		d40_err(base->dev,
2475 			"Failed to regsiter memcpy only channels\n");
2476 		goto failure2;
2477 	}
2478 
2479 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2480 		      0, num_reserved_chans);
2481 
2482 	dma_cap_zero(base->dma_both.cap_mask);
2483 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2484 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2485 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2486 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2487 
2488 	d40_ops_init(base, &base->dma_both);
2489 	err = dma_async_device_register(&base->dma_both);
2490 
2491 	if (err) {
2492 		d40_err(base->dev,
2493 			"Failed to register logical and physical capable channels\n");
2494 		goto failure3;
2495 	}
2496 	return 0;
2497 failure3:
2498 	dma_async_device_unregister(&base->dma_memcpy);
2499 failure2:
2500 	dma_async_device_unregister(&base->dma_slave);
2501 failure1:
2502 	return err;
2503 }
2504 
2505 /* Initialization functions. */
2506 
2507 static int __init d40_phy_res_init(struct d40_base *base)
2508 {
2509 	int i;
2510 	int num_phy_chans_avail = 0;
2511 	u32 val[2];
2512 	int odd_even_bit = -2;
2513 
2514 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2515 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2516 
2517 	for (i = 0; i < base->num_phy_chans; i++) {
2518 		base->phy_res[i].num = i;
2519 		odd_even_bit += 2 * ((i % 2) == 0);
2520 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2521 			/* Mark security only channels as occupied */
2522 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2523 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2524 		} else {
2525 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2526 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2527 			num_phy_chans_avail++;
2528 		}
2529 		spin_lock_init(&base->phy_res[i].lock);
2530 	}
2531 
2532 	/* Mark disabled channels as occupied */
2533 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2534 		int chan = base->plat_data->disabled_channels[i];
2535 
2536 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2537 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2538 		num_phy_chans_avail--;
2539 	}
2540 
2541 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2542 		 num_phy_chans_avail, base->num_phy_chans);
2543 
2544 	/* Verify settings extended vs standard */
2545 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2546 
2547 	for (i = 0; i < base->num_phy_chans; i++) {
2548 
2549 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2550 		    (val[0] & 0x3) != 1)
2551 			dev_info(base->dev,
2552 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2553 				 __func__, i, val[0] & 0x3);
2554 
2555 		val[0] = val[0] >> 2;
2556 	}
2557 
2558 	return num_phy_chans_avail;
2559 }
2560 
2561 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2562 {
2563 	struct stedma40_platform_data *plat_data;
2564 	struct clk *clk = NULL;
2565 	void __iomem *virtbase = NULL;
2566 	struct resource *res = NULL;
2567 	struct d40_base *base = NULL;
2568 	int num_log_chans = 0;
2569 	int num_phy_chans;
2570 	int i;
2571 	u32 pid;
2572 	u32 cid;
2573 	u8 rev;
2574 
2575 	clk = clk_get(&pdev->dev, NULL);
2576 
2577 	if (IS_ERR(clk)) {
2578 		d40_err(&pdev->dev, "No matching clock found\n");
2579 		goto failure;
2580 	}
2581 
2582 	clk_enable(clk);
2583 
2584 	/* Get IO for DMAC base address */
2585 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2586 	if (!res)
2587 		goto failure;
2588 
2589 	if (request_mem_region(res->start, resource_size(res),
2590 			       D40_NAME " I/O base") == NULL)
2591 		goto failure;
2592 
2593 	virtbase = ioremap(res->start, resource_size(res));
2594 	if (!virtbase)
2595 		goto failure;
2596 
2597 	/* This is just a regular AMBA PrimeCell ID actually */
2598 	for (pid = 0, i = 0; i < 4; i++)
2599 		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2600 			& 255) << (i * 8);
2601 	for (cid = 0, i = 0; i < 4; i++)
2602 		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2603 			& 255) << (i * 8);
2604 
2605 	if (cid != AMBA_CID) {
2606 		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2607 		goto failure;
2608 	}
2609 	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2610 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2611 			AMBA_MANF_BITS(pid),
2612 			AMBA_VENDOR_ST);
2613 		goto failure;
2614 	}
2615 	/*
2616 	 * HW revision:
2617 	 * DB8500ed has revision 0
2618 	 * ? has revision 1
2619 	 * DB8500v1 has revision 2
2620 	 * DB8500v2 has revision 3
2621 	 */
2622 	rev = AMBA_REV_BITS(pid);
2623 
2624 	/* The number of physical channels on this HW */
2625 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2626 
2627 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2628 		 rev, res->start);
2629 
2630 	plat_data = pdev->dev.platform_data;
2631 
2632 	/* Count the number of logical channels in use */
2633 	for (i = 0; i < plat_data->dev_len; i++)
2634 		if (plat_data->dev_rx[i] != 0)
2635 			num_log_chans++;
2636 
2637 	for (i = 0; i < plat_data->dev_len; i++)
2638 		if (plat_data->dev_tx[i] != 0)
2639 			num_log_chans++;
2640 
2641 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2642 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2643 		       sizeof(struct d40_chan), GFP_KERNEL);
2644 
2645 	if (base == NULL) {
2646 		d40_err(&pdev->dev, "Out of memory\n");
2647 		goto failure;
2648 	}
2649 
2650 	base->rev = rev;
2651 	base->clk = clk;
2652 	base->num_phy_chans = num_phy_chans;
2653 	base->num_log_chans = num_log_chans;
2654 	base->phy_start = res->start;
2655 	base->phy_size = resource_size(res);
2656 	base->virtbase = virtbase;
2657 	base->plat_data = plat_data;
2658 	base->dev = &pdev->dev;
2659 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2660 	base->log_chans = &base->phy_chans[num_phy_chans];
2661 
2662 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2663 				GFP_KERNEL);
2664 	if (!base->phy_res)
2665 		goto failure;
2666 
2667 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2668 					 sizeof(struct d40_chan *),
2669 					 GFP_KERNEL);
2670 	if (!base->lookup_phy_chans)
2671 		goto failure;
2672 
2673 	if (num_log_chans + plat_data->memcpy_len) {
2674 		/*
2675 		 * The max number of logical channels are event lines for all
2676 		 * src devices and dst devices
2677 		 */
2678 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2679 						 sizeof(struct d40_chan *),
2680 						 GFP_KERNEL);
2681 		if (!base->lookup_log_chans)
2682 			goto failure;
2683 	}
2684 
2685 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2686 					    sizeof(struct d40_desc *) *
2687 					    D40_LCLA_LINK_PER_EVENT_GRP,
2688 					    GFP_KERNEL);
2689 	if (!base->lcla_pool.alloc_map)
2690 		goto failure;
2691 
2692 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2693 					    0, SLAB_HWCACHE_ALIGN,
2694 					    NULL);
2695 	if (base->desc_slab == NULL)
2696 		goto failure;
2697 
2698 	return base;
2699 
2700 failure:
2701 	if (!IS_ERR(clk)) {
2702 		clk_disable(clk);
2703 		clk_put(clk);
2704 	}
2705 	if (virtbase)
2706 		iounmap(virtbase);
2707 	if (res)
2708 		release_mem_region(res->start,
2709 				   resource_size(res));
2710 	if (virtbase)
2711 		iounmap(virtbase);
2712 
2713 	if (base) {
2714 		kfree(base->lcla_pool.alloc_map);
2715 		kfree(base->lookup_log_chans);
2716 		kfree(base->lookup_phy_chans);
2717 		kfree(base->phy_res);
2718 		kfree(base);
2719 	}
2720 
2721 	return NULL;
2722 }
2723 
2724 static void __init d40_hw_init(struct d40_base *base)
2725 {
2726 
2727 	static const struct d40_reg_val dma_init_reg[] = {
2728 		/* Clock every part of the DMA block from start */
2729 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2730 
2731 		/* Interrupts on all logical channels */
2732 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2733 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2734 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2735 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2736 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2737 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2738 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2739 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2740 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2741 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2742 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2743 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2744 	};
2745 	int i;
2746 	u32 prmseo[2] = {0, 0};
2747 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2748 	u32 pcmis = 0;
2749 	u32 pcicr = 0;
2750 
2751 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2752 		writel(dma_init_reg[i].val,
2753 		       base->virtbase + dma_init_reg[i].reg);
2754 
2755 	/* Configure all our dma channels to default settings */
2756 	for (i = 0; i < base->num_phy_chans; i++) {
2757 
2758 		activeo[i % 2] = activeo[i % 2] << 2;
2759 
2760 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2761 		    == D40_ALLOC_PHY) {
2762 			activeo[i % 2] |= 3;
2763 			continue;
2764 		}
2765 
2766 		/* Enable interrupt # */
2767 		pcmis = (pcmis << 1) | 1;
2768 
2769 		/* Clear interrupt # */
2770 		pcicr = (pcicr << 1) | 1;
2771 
2772 		/* Set channel to physical mode */
2773 		prmseo[i % 2] = prmseo[i % 2] << 2;
2774 		prmseo[i % 2] |= 1;
2775 
2776 	}
2777 
2778 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2779 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2780 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2781 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2782 
2783 	/* Write which interrupt to enable */
2784 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2785 
2786 	/* Write which interrupt to clear */
2787 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2788 
2789 }
2790 
2791 static int __init d40_lcla_allocate(struct d40_base *base)
2792 {
2793 	struct d40_lcla_pool *pool = &base->lcla_pool;
2794 	unsigned long *page_list;
2795 	int i, j;
2796 	int ret = 0;
2797 
2798 	/*
2799 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2800 	 * To full fill this hardware requirement without wasting 256 kb
2801 	 * we allocate pages until we get an aligned one.
2802 	 */
2803 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2804 			    GFP_KERNEL);
2805 
2806 	if (!page_list) {
2807 		ret = -ENOMEM;
2808 		goto failure;
2809 	}
2810 
2811 	/* Calculating how many pages that are required */
2812 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2813 
2814 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2815 		page_list[i] = __get_free_pages(GFP_KERNEL,
2816 						base->lcla_pool.pages);
2817 		if (!page_list[i]) {
2818 
2819 			d40_err(base->dev, "Failed to allocate %d pages.\n",
2820 				base->lcla_pool.pages);
2821 
2822 			for (j = 0; j < i; j++)
2823 				free_pages(page_list[j], base->lcla_pool.pages);
2824 			goto failure;
2825 		}
2826 
2827 		if ((virt_to_phys((void *)page_list[i]) &
2828 		     (LCLA_ALIGNMENT - 1)) == 0)
2829 			break;
2830 	}
2831 
2832 	for (j = 0; j < i; j++)
2833 		free_pages(page_list[j], base->lcla_pool.pages);
2834 
2835 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2836 		base->lcla_pool.base = (void *)page_list[i];
2837 	} else {
2838 		/*
2839 		 * After many attempts and no succees with finding the correct
2840 		 * alignment, try with allocating a big buffer.
2841 		 */
2842 		dev_warn(base->dev,
2843 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2844 			 __func__, base->lcla_pool.pages);
2845 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2846 							 base->num_phy_chans +
2847 							 LCLA_ALIGNMENT,
2848 							 GFP_KERNEL);
2849 		if (!base->lcla_pool.base_unaligned) {
2850 			ret = -ENOMEM;
2851 			goto failure;
2852 		}
2853 
2854 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2855 						 LCLA_ALIGNMENT);
2856 	}
2857 
2858 	pool->dma_addr = dma_map_single(base->dev, pool->base,
2859 					SZ_1K * base->num_phy_chans,
2860 					DMA_TO_DEVICE);
2861 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
2862 		pool->dma_addr = 0;
2863 		ret = -ENOMEM;
2864 		goto failure;
2865 	}
2866 
2867 	writel(virt_to_phys(base->lcla_pool.base),
2868 	       base->virtbase + D40_DREG_LCLA);
2869 failure:
2870 	kfree(page_list);
2871 	return ret;
2872 }
2873 
2874 static int __init d40_probe(struct platform_device *pdev)
2875 {
2876 	int err;
2877 	int ret = -ENOENT;
2878 	struct d40_base *base;
2879 	struct resource *res = NULL;
2880 	int num_reserved_chans;
2881 	u32 val;
2882 
2883 	base = d40_hw_detect_init(pdev);
2884 
2885 	if (!base)
2886 		goto failure;
2887 
2888 	num_reserved_chans = d40_phy_res_init(base);
2889 
2890 	platform_set_drvdata(pdev, base);
2891 
2892 	spin_lock_init(&base->interrupt_lock);
2893 	spin_lock_init(&base->execmd_lock);
2894 
2895 	/* Get IO for logical channel parameter address */
2896 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2897 	if (!res) {
2898 		ret = -ENOENT;
2899 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2900 		goto failure;
2901 	}
2902 	base->lcpa_size = resource_size(res);
2903 	base->phy_lcpa = res->start;
2904 
2905 	if (request_mem_region(res->start, resource_size(res),
2906 			       D40_NAME " I/O lcpa") == NULL) {
2907 		ret = -EBUSY;
2908 		d40_err(&pdev->dev,
2909 			"Failed to request LCPA region 0x%x-0x%x\n",
2910 			res->start, res->end);
2911 		goto failure;
2912 	}
2913 
2914 	/* We make use of ESRAM memory for this. */
2915 	val = readl(base->virtbase + D40_DREG_LCPA);
2916 	if (res->start != val && val != 0) {
2917 		dev_warn(&pdev->dev,
2918 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2919 			 __func__, val, res->start);
2920 	} else
2921 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2922 
2923 	base->lcpa_base = ioremap(res->start, resource_size(res));
2924 	if (!base->lcpa_base) {
2925 		ret = -ENOMEM;
2926 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2927 		goto failure;
2928 	}
2929 
2930 	ret = d40_lcla_allocate(base);
2931 	if (ret) {
2932 		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2933 		goto failure;
2934 	}
2935 
2936 	spin_lock_init(&base->lcla_pool.lock);
2937 
2938 	base->irq = platform_get_irq(pdev, 0);
2939 
2940 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2941 	if (ret) {
2942 		d40_err(&pdev->dev, "No IRQ defined\n");
2943 		goto failure;
2944 	}
2945 
2946 	err = d40_dmaengine_init(base, num_reserved_chans);
2947 	if (err)
2948 		goto failure;
2949 
2950 	d40_hw_init(base);
2951 
2952 	dev_info(base->dev, "initialized\n");
2953 	return 0;
2954 
2955 failure:
2956 	if (base) {
2957 		if (base->desc_slab)
2958 			kmem_cache_destroy(base->desc_slab);
2959 		if (base->virtbase)
2960 			iounmap(base->virtbase);
2961 
2962 		if (base->lcla_pool.dma_addr)
2963 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2964 					 SZ_1K * base->num_phy_chans,
2965 					 DMA_TO_DEVICE);
2966 
2967 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2968 			free_pages((unsigned long)base->lcla_pool.base,
2969 				   base->lcla_pool.pages);
2970 
2971 		kfree(base->lcla_pool.base_unaligned);
2972 
2973 		if (base->phy_lcpa)
2974 			release_mem_region(base->phy_lcpa,
2975 					   base->lcpa_size);
2976 		if (base->phy_start)
2977 			release_mem_region(base->phy_start,
2978 					   base->phy_size);
2979 		if (base->clk) {
2980 			clk_disable(base->clk);
2981 			clk_put(base->clk);
2982 		}
2983 
2984 		kfree(base->lcla_pool.alloc_map);
2985 		kfree(base->lookup_log_chans);
2986 		kfree(base->lookup_phy_chans);
2987 		kfree(base->phy_res);
2988 		kfree(base);
2989 	}
2990 
2991 	d40_err(&pdev->dev, "probe failed\n");
2992 	return ret;
2993 }
2994 
2995 static struct platform_driver d40_driver = {
2996 	.driver = {
2997 		.owner = THIS_MODULE,
2998 		.name  = D40_NAME,
2999 	},
3000 };
3001 
3002 static int __init stedma40_init(void)
3003 {
3004 	return platform_driver_probe(&d40_driver, d40_probe);
3005 }
3006 subsys_initcall(stedma40_init);
3007