xref: /linux/drivers/dma/ste_dma40.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 
17 #include <plat/ste_dma40.h>
18 
19 #include "ste_dma40_ll.h"
20 
21 #define D40_NAME "dma40"
22 
23 #define D40_PHY_CHAN -1
24 
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28 
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31 
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34 
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38 
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41 
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE		(1 << 31)
44 #define D40_ALLOC_PHY		(1 << 30)
45 #define D40_ALLOC_LOG_FREE	0
46 
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49 
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59 	D40_DMA_STOP		= 0,
60 	D40_DMA_RUN		= 1,
61 	D40_DMA_SUSPEND_REQ	= 2,
62 	D40_DMA_SUSPENDED	= 3
63 };
64 
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @dma_addr: DMA address, if mapped
72  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74  * one buffer to one buffer.
75  */
76 struct d40_lli_pool {
77 	void	*base;
78 	int	 size;
79 	dma_addr_t	dma_addr;
80 	/* Space for dst and src, plus an extra for padding */
81 	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83 
84 /**
85  * struct d40_desc - A descriptor is one DMA job.
86  *
87  * @lli_phy: LLI settings for physical channel. Both src and dst=
88  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89  * lli_len equals one.
90  * @lli_log: Same as above but for logical channels.
91  * @lli_pool: The pool with two entries pre-allocated.
92  * @lli_len: Number of llis of current descriptor.
93  * @lli_current: Number of transferred llis.
94  * @lcla_alloc: Number of LCLA entries allocated.
95  * @txd: DMA engine struct. Used for among other things for communication
96  * during a transfer.
97  * @node: List entry.
98  * @is_in_client_list: true if the client owns this descriptor.
99  * the previous one.
100  *
101  * This descriptor is used for both logical and physical transfers.
102  */
103 struct d40_desc {
104 	/* LLI physical */
105 	struct d40_phy_lli_bidir	 lli_phy;
106 	/* LLI logical */
107 	struct d40_log_lli_bidir	 lli_log;
108 
109 	struct d40_lli_pool		 lli_pool;
110 	int				 lli_len;
111 	int				 lli_current;
112 	int				 lcla_alloc;
113 
114 	struct dma_async_tx_descriptor	 txd;
115 	struct list_head		 node;
116 
117 	bool				 is_in_client_list;
118 	bool				 cyclic;
119 };
120 
121 /**
122  * struct d40_lcla_pool - LCLA pool settings and data.
123  *
124  * @base: The virtual address of LCLA. 18 bit aligned.
125  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
126  * This pointer is only there for clean-up on error.
127  * @pages: The number of pages needed for all physical channels.
128  * Only used later for clean-up on error
129  * @lock: Lock to protect the content in this struct.
130  * @alloc_map: big map over which LCLA entry is own by which job.
131  */
132 struct d40_lcla_pool {
133 	void		*base;
134 	dma_addr_t	dma_addr;
135 	void		*base_unaligned;
136 	int		 pages;
137 	spinlock_t	 lock;
138 	struct d40_desc	**alloc_map;
139 };
140 
141 /**
142  * struct d40_phy_res - struct for handling eventlines mapped to physical
143  * channels.
144  *
145  * @lock: A lock protection this entity.
146  * @num: The physical channel number of this entity.
147  * @allocated_src: Bit mapped to show which src event line's are mapped to
148  * this physical channel. Can also be free or physically allocated.
149  * @allocated_dst: Same as for src but is dst.
150  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
151  * event line number.
152  */
153 struct d40_phy_res {
154 	spinlock_t lock;
155 	int	   num;
156 	u32	   allocated_src;
157 	u32	   allocated_dst;
158 };
159 
160 struct d40_base;
161 
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @configured: whether the dma_cfg configuration is valid
182  * @base: Pointer to the device instance struct.
183  * @src_def_cfg: Default cfg register setting for src.
184  * @dst_def_cfg: Default cfg register setting for dst.
185  * @log_def: Default logical channel settings.
186  * @lcla: Space for one dst src pair for logical channel transfers.
187  * @lcpa: Pointer to dst and src lcpa settings.
188  *
189  * This struct can either "be" a logical or a physical channel.
190  */
191 struct d40_chan {
192 	spinlock_t			 lock;
193 	int				 log_num;
194 	/* ID of the most recent completed transfer */
195 	int				 completed;
196 	int				 pending_tx;
197 	bool				 busy;
198 	struct d40_phy_res		*phy_chan;
199 	struct dma_chan			 chan;
200 	struct tasklet_struct		 tasklet;
201 	struct list_head		 client;
202 	struct list_head		 active;
203 	struct list_head		 queue;
204 	struct stedma40_chan_cfg	 dma_cfg;
205 	bool				 configured;
206 	struct d40_base			*base;
207 	/* Default register configurations */
208 	u32				 src_def_cfg;
209 	u32				 dst_def_cfg;
210 	struct d40_def_lcsp		 log_def;
211 	struct d40_log_lli_full		*lcpa;
212 	/* Runtime reconfiguration */
213 	dma_addr_t			runtime_addr;
214 	enum dma_data_direction		runtime_direction;
215 };
216 
217 /**
218  * struct d40_base - The big global struct, one for each probe'd instance.
219  *
220  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
221  * @execmd_lock: Lock for execute command usage since several channels share
222  * the same physical register.
223  * @dev: The device structure.
224  * @virtbase: The virtual base address of the DMA's register.
225  * @rev: silicon revision detected.
226  * @clk: Pointer to the DMA clock structure.
227  * @phy_start: Physical memory start of the DMA registers.
228  * @phy_size: Size of the DMA register map.
229  * @irq: The IRQ number.
230  * @num_phy_chans: The number of physical channels. Read from HW. This
231  * is the number of available channels for this driver, not counting "Secure
232  * mode" allocated physical channels.
233  * @num_log_chans: The number of logical channels. Calculated from
234  * num_phy_chans.
235  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
236  * @dma_slave: dma_device channels that can do only do slave transfers.
237  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253 	spinlock_t			 interrupt_lock;
254 	spinlock_t			 execmd_lock;
255 	struct device			 *dev;
256 	void __iomem			 *virtbase;
257 	u8				  rev:4;
258 	struct clk			 *clk;
259 	phys_addr_t			  phy_start;
260 	resource_size_t			  phy_size;
261 	int				  irq;
262 	int				  num_phy_chans;
263 	int				  num_log_chans;
264 	struct dma_device		  dma_both;
265 	struct dma_device		  dma_slave;
266 	struct dma_device		  dma_memcpy;
267 	struct d40_chan			 *phy_chans;
268 	struct d40_chan			 *log_chans;
269 	struct d40_chan			**lookup_log_chans;
270 	struct d40_chan			**lookup_phy_chans;
271 	struct stedma40_platform_data	 *plat_data;
272 	/* Physical half channels */
273 	struct d40_phy_res		 *phy_res;
274 	struct d40_lcla_pool		  lcla_pool;
275 	void				 *lcpa_base;
276 	dma_addr_t			  phy_lcpa;
277 	resource_size_t			  lcpa_size;
278 	struct kmem_cache		 *desc_slab;
279 };
280 
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291 	u32 src;
292 	u32 clr;
293 	bool is_error;
294 	int offset;
295 };
296 
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304 	unsigned int reg;
305 	unsigned int val;
306 };
307 
308 static struct device *chan2dev(struct d40_chan *d40c)
309 {
310 	return &d40c->chan.dev->device;
311 }
312 
313 static bool chan_is_physical(struct d40_chan *chan)
314 {
315 	return chan->log_num == D40_PHY_CHAN;
316 }
317 
318 static bool chan_is_logical(struct d40_chan *chan)
319 {
320 	return !chan_is_physical(chan);
321 }
322 
323 static void __iomem *chan_base(struct d40_chan *chan)
324 {
325 	return chan->base->virtbase + D40_DREG_PCBASE +
326 	       chan->phy_chan->num * D40_DREG_PCDELTA;
327 }
328 
329 #define d40_err(dev, format, arg...)		\
330 	dev_err(dev, "[%s] " format, __func__, ## arg)
331 
332 #define chan_err(d40c, format, arg...)		\
333 	d40_err(chan2dev(d40c), format, ## arg)
334 
335 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
336 			      int lli_len)
337 {
338 	bool is_log = chan_is_logical(d40c);
339 	u32 align;
340 	void *base;
341 
342 	if (is_log)
343 		align = sizeof(struct d40_log_lli);
344 	else
345 		align = sizeof(struct d40_phy_lli);
346 
347 	if (lli_len == 1) {
348 		base = d40d->lli_pool.pre_alloc_lli;
349 		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
350 		d40d->lli_pool.base = NULL;
351 	} else {
352 		d40d->lli_pool.size = lli_len * 2 * align;
353 
354 		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
355 		d40d->lli_pool.base = base;
356 
357 		if (d40d->lli_pool.base == NULL)
358 			return -ENOMEM;
359 	}
360 
361 	if (is_log) {
362 		d40d->lli_log.src = PTR_ALIGN(base, align);
363 		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
364 
365 		d40d->lli_pool.dma_addr = 0;
366 	} else {
367 		d40d->lli_phy.src = PTR_ALIGN(base, align);
368 		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
369 
370 		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
371 							 d40d->lli_phy.src,
372 							 d40d->lli_pool.size,
373 							 DMA_TO_DEVICE);
374 
375 		if (dma_mapping_error(d40c->base->dev,
376 				      d40d->lli_pool.dma_addr)) {
377 			kfree(d40d->lli_pool.base);
378 			d40d->lli_pool.base = NULL;
379 			d40d->lli_pool.dma_addr = 0;
380 			return -ENOMEM;
381 		}
382 	}
383 
384 	return 0;
385 }
386 
387 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
388 {
389 	if (d40d->lli_pool.dma_addr)
390 		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
391 				 d40d->lli_pool.size, DMA_TO_DEVICE);
392 
393 	kfree(d40d->lli_pool.base);
394 	d40d->lli_pool.base = NULL;
395 	d40d->lli_pool.size = 0;
396 	d40d->lli_log.src = NULL;
397 	d40d->lli_log.dst = NULL;
398 	d40d->lli_phy.src = NULL;
399 	d40d->lli_phy.dst = NULL;
400 }
401 
402 static int d40_lcla_alloc_one(struct d40_chan *d40c,
403 			      struct d40_desc *d40d)
404 {
405 	unsigned long flags;
406 	int i;
407 	int ret = -EINVAL;
408 	int p;
409 
410 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
411 
412 	p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
413 
414 	/*
415 	 * Allocate both src and dst at the same time, therefore the half
416 	 * start on 1 since 0 can't be used since zero is used as end marker.
417 	 */
418 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
419 		if (!d40c->base->lcla_pool.alloc_map[p + i]) {
420 			d40c->base->lcla_pool.alloc_map[p + i] = d40d;
421 			d40d->lcla_alloc++;
422 			ret = i;
423 			break;
424 		}
425 	}
426 
427 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
428 
429 	return ret;
430 }
431 
432 static int d40_lcla_free_all(struct d40_chan *d40c,
433 			     struct d40_desc *d40d)
434 {
435 	unsigned long flags;
436 	int i;
437 	int ret = -EINVAL;
438 
439 	if (chan_is_physical(d40c))
440 		return 0;
441 
442 	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
443 
444 	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
445 		if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
446 						    D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
447 			d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
448 							D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
449 			d40d->lcla_alloc--;
450 			if (d40d->lcla_alloc == 0) {
451 				ret = 0;
452 				break;
453 			}
454 		}
455 	}
456 
457 	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
458 
459 	return ret;
460 
461 }
462 
463 static void d40_desc_remove(struct d40_desc *d40d)
464 {
465 	list_del(&d40d->node);
466 }
467 
468 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
469 {
470 	struct d40_desc *desc = NULL;
471 
472 	if (!list_empty(&d40c->client)) {
473 		struct d40_desc *d;
474 		struct d40_desc *_d;
475 
476 		list_for_each_entry_safe(d, _d, &d40c->client, node)
477 			if (async_tx_test_ack(&d->txd)) {
478 				d40_pool_lli_free(d40c, d);
479 				d40_desc_remove(d);
480 				desc = d;
481 				memset(desc, 0, sizeof(*desc));
482 				break;
483 			}
484 	}
485 
486 	if (!desc)
487 		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
488 
489 	if (desc)
490 		INIT_LIST_HEAD(&desc->node);
491 
492 	return desc;
493 }
494 
495 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
496 {
497 
498 	d40_pool_lli_free(d40c, d40d);
499 	d40_lcla_free_all(d40c, d40d);
500 	kmem_cache_free(d40c->base->desc_slab, d40d);
501 }
502 
503 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
504 {
505 	list_add_tail(&desc->node, &d40c->active);
506 }
507 
508 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
509 {
510 	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
511 	struct d40_phy_lli *lli_src = desc->lli_phy.src;
512 	void __iomem *base = chan_base(chan);
513 
514 	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
515 	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
516 	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
517 	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
518 
519 	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
520 	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
521 	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
522 	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
523 }
524 
525 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
526 {
527 	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
528 	struct d40_log_lli_bidir *lli = &desc->lli_log;
529 	int lli_current = desc->lli_current;
530 	int lli_len = desc->lli_len;
531 	bool cyclic = desc->cyclic;
532 	int curr_lcla = -EINVAL;
533 	int first_lcla = 0;
534 	bool linkback;
535 
536 	/*
537 	 * We may have partially running cyclic transfers, in case we did't get
538 	 * enough LCLA entries.
539 	 */
540 	linkback = cyclic && lli_current == 0;
541 
542 	/*
543 	 * For linkback, we need one LCLA even with only one link, because we
544 	 * can't link back to the one in LCPA space
545 	 */
546 	if (linkback || (lli_len - lli_current > 1)) {
547 		curr_lcla = d40_lcla_alloc_one(chan, desc);
548 		first_lcla = curr_lcla;
549 	}
550 
551 	/*
552 	 * For linkback, we normally load the LCPA in the loop since we need to
553 	 * link it to the second LCLA and not the first.  However, if we
554 	 * couldn't even get a first LCLA, then we have to run in LCPA and
555 	 * reload manually.
556 	 */
557 	if (!linkback || curr_lcla == -EINVAL) {
558 		unsigned int flags = 0;
559 
560 		if (curr_lcla == -EINVAL)
561 			flags |= LLI_TERM_INT;
562 
563 		d40_log_lli_lcpa_write(chan->lcpa,
564 				       &lli->dst[lli_current],
565 				       &lli->src[lli_current],
566 				       curr_lcla,
567 				       flags);
568 		lli_current++;
569 	}
570 
571 	if (curr_lcla < 0)
572 		goto out;
573 
574 	for (; lli_current < lli_len; lli_current++) {
575 		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
576 					   8 * curr_lcla * 2;
577 		struct d40_log_lli *lcla = pool->base + lcla_offset;
578 		unsigned int flags = 0;
579 		int next_lcla;
580 
581 		if (lli_current + 1 < lli_len)
582 			next_lcla = d40_lcla_alloc_one(chan, desc);
583 		else
584 			next_lcla = linkback ? first_lcla : -EINVAL;
585 
586 		if (cyclic || next_lcla == -EINVAL)
587 			flags |= LLI_TERM_INT;
588 
589 		if (linkback && curr_lcla == first_lcla) {
590 			/* First link goes in both LCPA and LCLA */
591 			d40_log_lli_lcpa_write(chan->lcpa,
592 					       &lli->dst[lli_current],
593 					       &lli->src[lli_current],
594 					       next_lcla, flags);
595 		}
596 
597 		/*
598 		 * One unused LCLA in the cyclic case if the very first
599 		 * next_lcla fails...
600 		 */
601 		d40_log_lli_lcla_write(lcla,
602 				       &lli->dst[lli_current],
603 				       &lli->src[lli_current],
604 				       next_lcla, flags);
605 
606 		dma_sync_single_range_for_device(chan->base->dev,
607 					pool->dma_addr, lcla_offset,
608 					2 * sizeof(struct d40_log_lli),
609 					DMA_TO_DEVICE);
610 
611 		curr_lcla = next_lcla;
612 
613 		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
614 			lli_current++;
615 			break;
616 		}
617 	}
618 
619 out:
620 	desc->lli_current = lli_current;
621 }
622 
623 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
624 {
625 	if (chan_is_physical(d40c)) {
626 		d40_phy_lli_load(d40c, d40d);
627 		d40d->lli_current = d40d->lli_len;
628 	} else
629 		d40_log_lli_to_lcxa(d40c, d40d);
630 }
631 
632 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
633 {
634 	struct d40_desc *d;
635 
636 	if (list_empty(&d40c->active))
637 		return NULL;
638 
639 	d = list_first_entry(&d40c->active,
640 			     struct d40_desc,
641 			     node);
642 	return d;
643 }
644 
645 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
646 {
647 	list_add_tail(&desc->node, &d40c->queue);
648 }
649 
650 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
651 {
652 	struct d40_desc *d;
653 
654 	if (list_empty(&d40c->queue))
655 		return NULL;
656 
657 	d = list_first_entry(&d40c->queue,
658 			     struct d40_desc,
659 			     node);
660 	return d;
661 }
662 
663 static int d40_psize_2_burst_size(bool is_log, int psize)
664 {
665 	if (is_log) {
666 		if (psize == STEDMA40_PSIZE_LOG_1)
667 			return 1;
668 	} else {
669 		if (psize == STEDMA40_PSIZE_PHY_1)
670 			return 1;
671 	}
672 
673 	return 2 << psize;
674 }
675 
676 /*
677  * The dma only supports transmitting packages up to
678  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
679  * dma elements required to send the entire sg list
680  */
681 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
682 {
683 	int dmalen;
684 	u32 max_w = max(data_width1, data_width2);
685 	u32 min_w = min(data_width1, data_width2);
686 	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
687 
688 	if (seg_max > STEDMA40_MAX_SEG_SIZE)
689 		seg_max -= (1 << max_w);
690 
691 	if (!IS_ALIGNED(size, 1 << max_w))
692 		return -EINVAL;
693 
694 	if (size <= seg_max)
695 		dmalen = 1;
696 	else {
697 		dmalen = size / seg_max;
698 		if (dmalen * seg_max < size)
699 			dmalen++;
700 	}
701 	return dmalen;
702 }
703 
704 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
705 			   u32 data_width1, u32 data_width2)
706 {
707 	struct scatterlist *sg;
708 	int i;
709 	int len = 0;
710 	int ret;
711 
712 	for_each_sg(sgl, sg, sg_len, i) {
713 		ret = d40_size_2_dmalen(sg_dma_len(sg),
714 					data_width1, data_width2);
715 		if (ret < 0)
716 			return ret;
717 		len += ret;
718 	}
719 	return len;
720 }
721 
722 /* Support functions for logical channels */
723 
724 static int d40_channel_execute_command(struct d40_chan *d40c,
725 				       enum d40_command command)
726 {
727 	u32 status;
728 	int i;
729 	void __iomem *active_reg;
730 	int ret = 0;
731 	unsigned long flags;
732 	u32 wmask;
733 
734 	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
735 
736 	if (d40c->phy_chan->num % 2 == 0)
737 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
738 	else
739 		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
740 
741 	if (command == D40_DMA_SUSPEND_REQ) {
742 		status = (readl(active_reg) &
743 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
744 			D40_CHAN_POS(d40c->phy_chan->num);
745 
746 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
747 			goto done;
748 	}
749 
750 	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
751 	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
752 	       active_reg);
753 
754 	if (command == D40_DMA_SUSPEND_REQ) {
755 
756 		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
757 			status = (readl(active_reg) &
758 				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
759 				D40_CHAN_POS(d40c->phy_chan->num);
760 
761 			cpu_relax();
762 			/*
763 			 * Reduce the number of bus accesses while
764 			 * waiting for the DMA to suspend.
765 			 */
766 			udelay(3);
767 
768 			if (status == D40_DMA_STOP ||
769 			    status == D40_DMA_SUSPENDED)
770 				break;
771 		}
772 
773 		if (i == D40_SUSPEND_MAX_IT) {
774 			chan_err(d40c,
775 				"unable to suspend the chl %d (log: %d) status %x\n",
776 				d40c->phy_chan->num, d40c->log_num,
777 				status);
778 			dump_stack();
779 			ret = -EBUSY;
780 		}
781 
782 	}
783 done:
784 	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
785 	return ret;
786 }
787 
788 static void d40_term_all(struct d40_chan *d40c)
789 {
790 	struct d40_desc *d40d;
791 
792 	/* Release active descriptors */
793 	while ((d40d = d40_first_active_get(d40c))) {
794 		d40_desc_remove(d40d);
795 		d40_desc_free(d40c, d40d);
796 	}
797 
798 	/* Release queued descriptors waiting for transfer */
799 	while ((d40d = d40_first_queued(d40c))) {
800 		d40_desc_remove(d40d);
801 		d40_desc_free(d40c, d40d);
802 	}
803 
804 
805 	d40c->pending_tx = 0;
806 	d40c->busy = false;
807 }
808 
809 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
810 				   u32 event, int reg)
811 {
812 	void __iomem *addr = chan_base(d40c) + reg;
813 	int tries;
814 
815 	if (!enable) {
816 		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
817 		       | ~D40_EVENTLINE_MASK(event), addr);
818 		return;
819 	}
820 
821 	/*
822 	 * The hardware sometimes doesn't register the enable when src and dst
823 	 * event lines are active on the same logical channel.  Retry to ensure
824 	 * it does.  Usually only one retry is sufficient.
825 	 */
826 	tries = 100;
827 	while (--tries) {
828 		writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
829 		       | ~D40_EVENTLINE_MASK(event), addr);
830 
831 		if (readl(addr) & D40_EVENTLINE_MASK(event))
832 			break;
833 	}
834 
835 	if (tries != 99)
836 		dev_dbg(chan2dev(d40c),
837 			"[%s] workaround enable S%cLNK (%d tries)\n",
838 			__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
839 			100 - tries);
840 
841 	WARN_ON(!tries);
842 }
843 
844 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
845 {
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
849 
850 	/* Enable event line connected to device (or memcpy) */
851 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
852 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
853 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
854 
855 		__d40_config_set_event(d40c, do_enable, event,
856 				       D40_CHAN_REG_SSLNK);
857 	}
858 
859 	if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
860 		u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
861 
862 		__d40_config_set_event(d40c, do_enable, event,
863 				       D40_CHAN_REG_SDLNK);
864 	}
865 
866 	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
867 }
868 
869 static u32 d40_chan_has_events(struct d40_chan *d40c)
870 {
871 	void __iomem *chanbase = chan_base(d40c);
872 	u32 val;
873 
874 	val = readl(chanbase + D40_CHAN_REG_SSLNK);
875 	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
876 
877 	return val;
878 }
879 
880 static u32 d40_get_prmo(struct d40_chan *d40c)
881 {
882 	static const unsigned int phy_map[] = {
883 		[STEDMA40_PCHAN_BASIC_MODE]
884 			= D40_DREG_PRMO_PCHAN_BASIC,
885 		[STEDMA40_PCHAN_MODULO_MODE]
886 			= D40_DREG_PRMO_PCHAN_MODULO,
887 		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
888 			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
889 	};
890 	static const unsigned int log_map[] = {
891 		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
892 			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
893 		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
894 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
895 		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
896 			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
897 	};
898 
899 	if (chan_is_physical(d40c))
900 		return phy_map[d40c->dma_cfg.mode_opt];
901 	else
902 		return log_map[d40c->dma_cfg.mode_opt];
903 }
904 
905 static void d40_config_write(struct d40_chan *d40c)
906 {
907 	u32 addr_base;
908 	u32 var;
909 
910 	/* Odd addresses are even addresses + 4 */
911 	addr_base = (d40c->phy_chan->num % 2) * 4;
912 	/* Setup channel mode to logical or physical */
913 	var = ((u32)(chan_is_logical(d40c)) + 1) <<
914 		D40_CHAN_POS(d40c->phy_chan->num);
915 	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
916 
917 	/* Setup operational mode option register */
918 	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
919 
920 	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
921 
922 	if (chan_is_logical(d40c)) {
923 		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
924 			   & D40_SREG_ELEM_LOG_LIDX_MASK;
925 		void __iomem *chanbase = chan_base(d40c);
926 
927 		/* Set default config for CFG reg */
928 		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
929 		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
930 
931 		/* Set LIDX for lcla */
932 		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
933 		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
934 	}
935 }
936 
937 static u32 d40_residue(struct d40_chan *d40c)
938 {
939 	u32 num_elt;
940 
941 	if (chan_is_logical(d40c))
942 		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
943 			>> D40_MEM_LCSP2_ECNT_POS;
944 	else {
945 		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
946 		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
947 			  >> D40_SREG_ELEM_PHY_ECNT_POS;
948 	}
949 
950 	return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
951 }
952 
953 static bool d40_tx_is_linked(struct d40_chan *d40c)
954 {
955 	bool is_link;
956 
957 	if (chan_is_logical(d40c))
958 		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
959 	else
960 		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
961 			  & D40_SREG_LNK_PHYS_LNK_MASK;
962 
963 	return is_link;
964 }
965 
966 static int d40_pause(struct d40_chan *d40c)
967 {
968 	int res = 0;
969 	unsigned long flags;
970 
971 	if (!d40c->busy)
972 		return 0;
973 
974 	spin_lock_irqsave(&d40c->lock, flags);
975 
976 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
977 	if (res == 0) {
978 		if (chan_is_logical(d40c)) {
979 			d40_config_set_event(d40c, false);
980 			/* Resume the other logical channels if any */
981 			if (d40_chan_has_events(d40c))
982 				res = d40_channel_execute_command(d40c,
983 								  D40_DMA_RUN);
984 		}
985 	}
986 
987 	spin_unlock_irqrestore(&d40c->lock, flags);
988 	return res;
989 }
990 
991 static int d40_resume(struct d40_chan *d40c)
992 {
993 	int res = 0;
994 	unsigned long flags;
995 
996 	if (!d40c->busy)
997 		return 0;
998 
999 	spin_lock_irqsave(&d40c->lock, flags);
1000 
1001 	if (d40c->base->rev == 0)
1002 		if (chan_is_logical(d40c)) {
1003 			res = d40_channel_execute_command(d40c,
1004 							  D40_DMA_SUSPEND_REQ);
1005 			goto no_suspend;
1006 		}
1007 
1008 	/* If bytes left to transfer or linked tx resume job */
1009 	if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1010 
1011 		if (chan_is_logical(d40c))
1012 			d40_config_set_event(d40c, true);
1013 
1014 		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1015 	}
1016 
1017 no_suspend:
1018 	spin_unlock_irqrestore(&d40c->lock, flags);
1019 	return res;
1020 }
1021 
1022 static int d40_terminate_all(struct d40_chan *chan)
1023 {
1024 	unsigned long flags;
1025 	int ret = 0;
1026 
1027 	ret = d40_pause(chan);
1028 	if (!ret && chan_is_physical(chan))
1029 		ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1030 
1031 	spin_lock_irqsave(&chan->lock, flags);
1032 	d40_term_all(chan);
1033 	spin_unlock_irqrestore(&chan->lock, flags);
1034 
1035 	return ret;
1036 }
1037 
1038 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1039 {
1040 	struct d40_chan *d40c = container_of(tx->chan,
1041 					     struct d40_chan,
1042 					     chan);
1043 	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1044 	unsigned long flags;
1045 
1046 	spin_lock_irqsave(&d40c->lock, flags);
1047 
1048 	d40c->chan.cookie++;
1049 
1050 	if (d40c->chan.cookie < 0)
1051 		d40c->chan.cookie = 1;
1052 
1053 	d40d->txd.cookie = d40c->chan.cookie;
1054 
1055 	d40_desc_queue(d40c, d40d);
1056 
1057 	spin_unlock_irqrestore(&d40c->lock, flags);
1058 
1059 	return tx->cookie;
1060 }
1061 
1062 static int d40_start(struct d40_chan *d40c)
1063 {
1064 	if (d40c->base->rev == 0) {
1065 		int err;
1066 
1067 		if (chan_is_logical(d40c)) {
1068 			err = d40_channel_execute_command(d40c,
1069 							  D40_DMA_SUSPEND_REQ);
1070 			if (err)
1071 				return err;
1072 		}
1073 	}
1074 
1075 	if (chan_is_logical(d40c))
1076 		d40_config_set_event(d40c, true);
1077 
1078 	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1079 }
1080 
1081 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1082 {
1083 	struct d40_desc *d40d;
1084 	int err;
1085 
1086 	/* Start queued jobs, if any */
1087 	d40d = d40_first_queued(d40c);
1088 
1089 	if (d40d != NULL) {
1090 		d40c->busy = true;
1091 
1092 		/* Remove from queue */
1093 		d40_desc_remove(d40d);
1094 
1095 		/* Add to active queue */
1096 		d40_desc_submit(d40c, d40d);
1097 
1098 		/* Initiate DMA job */
1099 		d40_desc_load(d40c, d40d);
1100 
1101 		/* Start dma job */
1102 		err = d40_start(d40c);
1103 
1104 		if (err)
1105 			return NULL;
1106 	}
1107 
1108 	return d40d;
1109 }
1110 
1111 /* called from interrupt context */
1112 static void dma_tc_handle(struct d40_chan *d40c)
1113 {
1114 	struct d40_desc *d40d;
1115 
1116 	/* Get first active entry from list */
1117 	d40d = d40_first_active_get(d40c);
1118 
1119 	if (d40d == NULL)
1120 		return;
1121 
1122 	if (d40d->cyclic) {
1123 		/*
1124 		 * If this was a paritially loaded list, we need to reloaded
1125 		 * it, and only when the list is completed.  We need to check
1126 		 * for done because the interrupt will hit for every link, and
1127 		 * not just the last one.
1128 		 */
1129 		if (d40d->lli_current < d40d->lli_len
1130 		    && !d40_tx_is_linked(d40c)
1131 		    && !d40_residue(d40c)) {
1132 			d40_lcla_free_all(d40c, d40d);
1133 			d40_desc_load(d40c, d40d);
1134 			(void) d40_start(d40c);
1135 
1136 			if (d40d->lli_current == d40d->lli_len)
1137 				d40d->lli_current = 0;
1138 		}
1139 	} else {
1140 		d40_lcla_free_all(d40c, d40d);
1141 
1142 		if (d40d->lli_current < d40d->lli_len) {
1143 			d40_desc_load(d40c, d40d);
1144 			/* Start dma job */
1145 			(void) d40_start(d40c);
1146 			return;
1147 		}
1148 
1149 		if (d40_queue_start(d40c) == NULL)
1150 			d40c->busy = false;
1151 	}
1152 
1153 	d40c->pending_tx++;
1154 	tasklet_schedule(&d40c->tasklet);
1155 
1156 }
1157 
1158 static void dma_tasklet(unsigned long data)
1159 {
1160 	struct d40_chan *d40c = (struct d40_chan *) data;
1161 	struct d40_desc *d40d;
1162 	unsigned long flags;
1163 	dma_async_tx_callback callback;
1164 	void *callback_param;
1165 
1166 	spin_lock_irqsave(&d40c->lock, flags);
1167 
1168 	/* Get first active entry from list */
1169 	d40d = d40_first_active_get(d40c);
1170 	if (d40d == NULL)
1171 		goto err;
1172 
1173 	if (!d40d->cyclic)
1174 		d40c->completed = d40d->txd.cookie;
1175 
1176 	/*
1177 	 * If terminating a channel pending_tx is set to zero.
1178 	 * This prevents any finished active jobs to return to the client.
1179 	 */
1180 	if (d40c->pending_tx == 0) {
1181 		spin_unlock_irqrestore(&d40c->lock, flags);
1182 		return;
1183 	}
1184 
1185 	/* Callback to client */
1186 	callback = d40d->txd.callback;
1187 	callback_param = d40d->txd.callback_param;
1188 
1189 	if (!d40d->cyclic) {
1190 		if (async_tx_test_ack(&d40d->txd)) {
1191 			d40_pool_lli_free(d40c, d40d);
1192 			d40_desc_remove(d40d);
1193 			d40_desc_free(d40c, d40d);
1194 		} else {
1195 			if (!d40d->is_in_client_list) {
1196 				d40_desc_remove(d40d);
1197 				d40_lcla_free_all(d40c, d40d);
1198 				list_add_tail(&d40d->node, &d40c->client);
1199 				d40d->is_in_client_list = true;
1200 			}
1201 		}
1202 	}
1203 
1204 	d40c->pending_tx--;
1205 
1206 	if (d40c->pending_tx)
1207 		tasklet_schedule(&d40c->tasklet);
1208 
1209 	spin_unlock_irqrestore(&d40c->lock, flags);
1210 
1211 	if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1212 		callback(callback_param);
1213 
1214 	return;
1215 
1216  err:
1217 	/* Rescue manoeuvre if receiving double interrupts */
1218 	if (d40c->pending_tx > 0)
1219 		d40c->pending_tx--;
1220 	spin_unlock_irqrestore(&d40c->lock, flags);
1221 }
1222 
1223 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1224 {
1225 	static const struct d40_interrupt_lookup il[] = {
1226 		{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1227 		{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1228 		{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1229 		{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1230 		{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1231 		{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1232 		{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1233 		{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1234 		{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1235 		{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1236 	};
1237 
1238 	int i;
1239 	u32 regs[ARRAY_SIZE(il)];
1240 	u32 idx;
1241 	u32 row;
1242 	long chan = -1;
1243 	struct d40_chan *d40c;
1244 	unsigned long flags;
1245 	struct d40_base *base = data;
1246 
1247 	spin_lock_irqsave(&base->interrupt_lock, flags);
1248 
1249 	/* Read interrupt status of both logical and physical channels */
1250 	for (i = 0; i < ARRAY_SIZE(il); i++)
1251 		regs[i] = readl(base->virtbase + il[i].src);
1252 
1253 	for (;;) {
1254 
1255 		chan = find_next_bit((unsigned long *)regs,
1256 				     BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1257 
1258 		/* No more set bits found? */
1259 		if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1260 			break;
1261 
1262 		row = chan / BITS_PER_LONG;
1263 		idx = chan & (BITS_PER_LONG - 1);
1264 
1265 		/* ACK interrupt */
1266 		writel(1 << idx, base->virtbase + il[row].clr);
1267 
1268 		if (il[row].offset == D40_PHY_CHAN)
1269 			d40c = base->lookup_phy_chans[idx];
1270 		else
1271 			d40c = base->lookup_log_chans[il[row].offset + idx];
1272 		spin_lock(&d40c->lock);
1273 
1274 		if (!il[row].is_error)
1275 			dma_tc_handle(d40c);
1276 		else
1277 			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1278 				chan, il[row].offset, idx);
1279 
1280 		spin_unlock(&d40c->lock);
1281 	}
1282 
1283 	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1284 
1285 	return IRQ_HANDLED;
1286 }
1287 
1288 static int d40_validate_conf(struct d40_chan *d40c,
1289 			     struct stedma40_chan_cfg *conf)
1290 {
1291 	int res = 0;
1292 	u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1293 	u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1294 	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1295 
1296 	if (!conf->dir) {
1297 		chan_err(d40c, "Invalid direction.\n");
1298 		res = -EINVAL;
1299 	}
1300 
1301 	if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1302 	    d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1303 	    d40c->runtime_addr == 0) {
1304 
1305 		chan_err(d40c, "Invalid TX channel address (%d)\n",
1306 			 conf->dst_dev_type);
1307 		res = -EINVAL;
1308 	}
1309 
1310 	if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1311 	    d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1312 	    d40c->runtime_addr == 0) {
1313 		chan_err(d40c, "Invalid RX channel address (%d)\n",
1314 			conf->src_dev_type);
1315 		res = -EINVAL;
1316 	}
1317 
1318 	if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1319 	    dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1320 		chan_err(d40c, "Invalid dst\n");
1321 		res = -EINVAL;
1322 	}
1323 
1324 	if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1325 	    src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1326 		chan_err(d40c, "Invalid src\n");
1327 		res = -EINVAL;
1328 	}
1329 
1330 	if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1331 	    dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1332 		chan_err(d40c, "No event line\n");
1333 		res = -EINVAL;
1334 	}
1335 
1336 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1337 	    (src_event_group != dst_event_group)) {
1338 		chan_err(d40c, "Invalid event group\n");
1339 		res = -EINVAL;
1340 	}
1341 
1342 	if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1343 		/*
1344 		 * DMAC HW supports it. Will be added to this driver,
1345 		 * in case any dma client requires it.
1346 		 */
1347 		chan_err(d40c, "periph to periph not supported\n");
1348 		res = -EINVAL;
1349 	}
1350 
1351 	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1352 	    (1 << conf->src_info.data_width) !=
1353 	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1354 	    (1 << conf->dst_info.data_width)) {
1355 		/*
1356 		 * The DMAC hardware only supports
1357 		 * src (burst x width) == dst (burst x width)
1358 		 */
1359 
1360 		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1361 		res = -EINVAL;
1362 	}
1363 
1364 	return res;
1365 }
1366 
1367 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1368 			       int log_event_line, bool is_log)
1369 {
1370 	unsigned long flags;
1371 	spin_lock_irqsave(&phy->lock, flags);
1372 	if (!is_log) {
1373 		/* Physical interrupts are masked per physical full channel */
1374 		if (phy->allocated_src == D40_ALLOC_FREE &&
1375 		    phy->allocated_dst == D40_ALLOC_FREE) {
1376 			phy->allocated_dst = D40_ALLOC_PHY;
1377 			phy->allocated_src = D40_ALLOC_PHY;
1378 			goto found;
1379 		} else
1380 			goto not_found;
1381 	}
1382 
1383 	/* Logical channel */
1384 	if (is_src) {
1385 		if (phy->allocated_src == D40_ALLOC_PHY)
1386 			goto not_found;
1387 
1388 		if (phy->allocated_src == D40_ALLOC_FREE)
1389 			phy->allocated_src = D40_ALLOC_LOG_FREE;
1390 
1391 		if (!(phy->allocated_src & (1 << log_event_line))) {
1392 			phy->allocated_src |= 1 << log_event_line;
1393 			goto found;
1394 		} else
1395 			goto not_found;
1396 	} else {
1397 		if (phy->allocated_dst == D40_ALLOC_PHY)
1398 			goto not_found;
1399 
1400 		if (phy->allocated_dst == D40_ALLOC_FREE)
1401 			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1402 
1403 		if (!(phy->allocated_dst & (1 << log_event_line))) {
1404 			phy->allocated_dst |= 1 << log_event_line;
1405 			goto found;
1406 		} else
1407 			goto not_found;
1408 	}
1409 
1410 not_found:
1411 	spin_unlock_irqrestore(&phy->lock, flags);
1412 	return false;
1413 found:
1414 	spin_unlock_irqrestore(&phy->lock, flags);
1415 	return true;
1416 }
1417 
1418 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1419 			       int log_event_line)
1420 {
1421 	unsigned long flags;
1422 	bool is_free = false;
1423 
1424 	spin_lock_irqsave(&phy->lock, flags);
1425 	if (!log_event_line) {
1426 		phy->allocated_dst = D40_ALLOC_FREE;
1427 		phy->allocated_src = D40_ALLOC_FREE;
1428 		is_free = true;
1429 		goto out;
1430 	}
1431 
1432 	/* Logical channel */
1433 	if (is_src) {
1434 		phy->allocated_src &= ~(1 << log_event_line);
1435 		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1436 			phy->allocated_src = D40_ALLOC_FREE;
1437 	} else {
1438 		phy->allocated_dst &= ~(1 << log_event_line);
1439 		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1440 			phy->allocated_dst = D40_ALLOC_FREE;
1441 	}
1442 
1443 	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1444 		   D40_ALLOC_FREE);
1445 
1446 out:
1447 	spin_unlock_irqrestore(&phy->lock, flags);
1448 
1449 	return is_free;
1450 }
1451 
1452 static int d40_allocate_channel(struct d40_chan *d40c)
1453 {
1454 	int dev_type;
1455 	int event_group;
1456 	int event_line;
1457 	struct d40_phy_res *phys;
1458 	int i;
1459 	int j;
1460 	int log_num;
1461 	bool is_src;
1462 	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1463 
1464 	phys = d40c->base->phy_res;
1465 
1466 	if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1467 		dev_type = d40c->dma_cfg.src_dev_type;
1468 		log_num = 2 * dev_type;
1469 		is_src = true;
1470 	} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1471 		   d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1472 		/* dst event lines are used for logical memcpy */
1473 		dev_type = d40c->dma_cfg.dst_dev_type;
1474 		log_num = 2 * dev_type + 1;
1475 		is_src = false;
1476 	} else
1477 		return -EINVAL;
1478 
1479 	event_group = D40_TYPE_TO_GROUP(dev_type);
1480 	event_line = D40_TYPE_TO_EVENT(dev_type);
1481 
1482 	if (!is_log) {
1483 		if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1484 			/* Find physical half channel */
1485 			for (i = 0; i < d40c->base->num_phy_chans; i++) {
1486 
1487 				if (d40_alloc_mask_set(&phys[i], is_src,
1488 						       0, is_log))
1489 					goto found_phy;
1490 			}
1491 		} else
1492 			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1493 				int phy_num = j  + event_group * 2;
1494 				for (i = phy_num; i < phy_num + 2; i++) {
1495 					if (d40_alloc_mask_set(&phys[i],
1496 							       is_src,
1497 							       0,
1498 							       is_log))
1499 						goto found_phy;
1500 				}
1501 			}
1502 		return -EINVAL;
1503 found_phy:
1504 		d40c->phy_chan = &phys[i];
1505 		d40c->log_num = D40_PHY_CHAN;
1506 		goto out;
1507 	}
1508 	if (dev_type == -1)
1509 		return -EINVAL;
1510 
1511 	/* Find logical channel */
1512 	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1513 		int phy_num = j + event_group * 2;
1514 		/*
1515 		 * Spread logical channels across all available physical rather
1516 		 * than pack every logical channel at the first available phy
1517 		 * channels.
1518 		 */
1519 		if (is_src) {
1520 			for (i = phy_num; i < phy_num + 2; i++) {
1521 				if (d40_alloc_mask_set(&phys[i], is_src,
1522 						       event_line, is_log))
1523 					goto found_log;
1524 			}
1525 		} else {
1526 			for (i = phy_num + 1; i >= phy_num; i--) {
1527 				if (d40_alloc_mask_set(&phys[i], is_src,
1528 						       event_line, is_log))
1529 					goto found_log;
1530 			}
1531 		}
1532 	}
1533 	return -EINVAL;
1534 
1535 found_log:
1536 	d40c->phy_chan = &phys[i];
1537 	d40c->log_num = log_num;
1538 out:
1539 
1540 	if (is_log)
1541 		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1542 	else
1543 		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1544 
1545 	return 0;
1546 
1547 }
1548 
1549 static int d40_config_memcpy(struct d40_chan *d40c)
1550 {
1551 	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1552 
1553 	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1554 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1555 		d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1556 		d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1557 			memcpy[d40c->chan.chan_id];
1558 
1559 	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1560 		   dma_has_cap(DMA_SLAVE, cap)) {
1561 		d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1562 	} else {
1563 		chan_err(d40c, "No memcpy\n");
1564 		return -EINVAL;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 
1571 static int d40_free_dma(struct d40_chan *d40c)
1572 {
1573 
1574 	int res = 0;
1575 	u32 event;
1576 	struct d40_phy_res *phy = d40c->phy_chan;
1577 	bool is_src;
1578 	struct d40_desc *d;
1579 	struct d40_desc *_d;
1580 
1581 
1582 	/* Terminate all queued and active transfers */
1583 	d40_term_all(d40c);
1584 
1585 	/* Release client owned descriptors */
1586 	if (!list_empty(&d40c->client))
1587 		list_for_each_entry_safe(d, _d, &d40c->client, node) {
1588 			d40_pool_lli_free(d40c, d);
1589 			d40_desc_remove(d);
1590 			d40_desc_free(d40c, d);
1591 		}
1592 
1593 	if (phy == NULL) {
1594 		chan_err(d40c, "phy == null\n");
1595 		return -EINVAL;
1596 	}
1597 
1598 	if (phy->allocated_src == D40_ALLOC_FREE &&
1599 	    phy->allocated_dst == D40_ALLOC_FREE) {
1600 		chan_err(d40c, "channel already free\n");
1601 		return -EINVAL;
1602 	}
1603 
1604 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1605 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1606 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1607 		is_src = false;
1608 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1609 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1610 		is_src = true;
1611 	} else {
1612 		chan_err(d40c, "Unknown direction\n");
1613 		return -EINVAL;
1614 	}
1615 
1616 	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1617 	if (res) {
1618 		chan_err(d40c, "suspend failed\n");
1619 		return res;
1620 	}
1621 
1622 	if (chan_is_logical(d40c)) {
1623 		/* Release logical channel, deactivate the event line */
1624 
1625 		d40_config_set_event(d40c, false);
1626 		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1627 
1628 		/*
1629 		 * Check if there are more logical allocation
1630 		 * on this phy channel.
1631 		 */
1632 		if (!d40_alloc_mask_free(phy, is_src, event)) {
1633 			/* Resume the other logical channels if any */
1634 			if (d40_chan_has_events(d40c)) {
1635 				res = d40_channel_execute_command(d40c,
1636 								  D40_DMA_RUN);
1637 				if (res) {
1638 					chan_err(d40c,
1639 						"Executing RUN command\n");
1640 					return res;
1641 				}
1642 			}
1643 			return 0;
1644 		}
1645 	} else {
1646 		(void) d40_alloc_mask_free(phy, is_src, 0);
1647 	}
1648 
1649 	/* Release physical channel */
1650 	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1651 	if (res) {
1652 		chan_err(d40c, "Failed to stop channel\n");
1653 		return res;
1654 	}
1655 	d40c->phy_chan = NULL;
1656 	d40c->configured = false;
1657 	d40c->base->lookup_phy_chans[phy->num] = NULL;
1658 
1659 	return 0;
1660 }
1661 
1662 static bool d40_is_paused(struct d40_chan *d40c)
1663 {
1664 	void __iomem *chanbase = chan_base(d40c);
1665 	bool is_paused = false;
1666 	unsigned long flags;
1667 	void __iomem *active_reg;
1668 	u32 status;
1669 	u32 event;
1670 
1671 	spin_lock_irqsave(&d40c->lock, flags);
1672 
1673 	if (chan_is_physical(d40c)) {
1674 		if (d40c->phy_chan->num % 2 == 0)
1675 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1676 		else
1677 			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1678 
1679 		status = (readl(active_reg) &
1680 			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1681 			D40_CHAN_POS(d40c->phy_chan->num);
1682 		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1683 			is_paused = true;
1684 
1685 		goto _exit;
1686 	}
1687 
1688 	if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1689 	    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1690 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1691 		status = readl(chanbase + D40_CHAN_REG_SDLNK);
1692 	} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1693 		event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1694 		status = readl(chanbase + D40_CHAN_REG_SSLNK);
1695 	} else {
1696 		chan_err(d40c, "Unknown direction\n");
1697 		goto _exit;
1698 	}
1699 
1700 	status = (status & D40_EVENTLINE_MASK(event)) >>
1701 		D40_EVENTLINE_POS(event);
1702 
1703 	if (status != D40_DMA_RUN)
1704 		is_paused = true;
1705 _exit:
1706 	spin_unlock_irqrestore(&d40c->lock, flags);
1707 	return is_paused;
1708 
1709 }
1710 
1711 
1712 static u32 stedma40_residue(struct dma_chan *chan)
1713 {
1714 	struct d40_chan *d40c =
1715 		container_of(chan, struct d40_chan, chan);
1716 	u32 bytes_left;
1717 	unsigned long flags;
1718 
1719 	spin_lock_irqsave(&d40c->lock, flags);
1720 	bytes_left = d40_residue(d40c);
1721 	spin_unlock_irqrestore(&d40c->lock, flags);
1722 
1723 	return bytes_left;
1724 }
1725 
1726 static int
1727 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1728 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1729 		unsigned int sg_len, dma_addr_t src_dev_addr,
1730 		dma_addr_t dst_dev_addr)
1731 {
1732 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1733 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1734 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1735 	int ret;
1736 
1737 	ret = d40_log_sg_to_lli(sg_src, sg_len,
1738 				src_dev_addr,
1739 				desc->lli_log.src,
1740 				chan->log_def.lcsp1,
1741 				src_info->data_width,
1742 				dst_info->data_width);
1743 
1744 	ret = d40_log_sg_to_lli(sg_dst, sg_len,
1745 				dst_dev_addr,
1746 				desc->lli_log.dst,
1747 				chan->log_def.lcsp3,
1748 				dst_info->data_width,
1749 				src_info->data_width);
1750 
1751 	return ret < 0 ? ret : 0;
1752 }
1753 
1754 static int
1755 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1756 		struct scatterlist *sg_src, struct scatterlist *sg_dst,
1757 		unsigned int sg_len, dma_addr_t src_dev_addr,
1758 		dma_addr_t dst_dev_addr)
1759 {
1760 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1761 	struct stedma40_half_channel_info *src_info = &cfg->src_info;
1762 	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1763 	unsigned long flags = 0;
1764 	int ret;
1765 
1766 	if (desc->cyclic)
1767 		flags |= LLI_CYCLIC | LLI_TERM_INT;
1768 
1769 	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1770 				desc->lli_phy.src,
1771 				virt_to_phys(desc->lli_phy.src),
1772 				chan->src_def_cfg,
1773 				src_info, dst_info, flags);
1774 
1775 	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1776 				desc->lli_phy.dst,
1777 				virt_to_phys(desc->lli_phy.dst),
1778 				chan->dst_def_cfg,
1779 				dst_info, src_info, flags);
1780 
1781 	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1782 				   desc->lli_pool.size, DMA_TO_DEVICE);
1783 
1784 	return ret < 0 ? ret : 0;
1785 }
1786 
1787 
1788 static struct d40_desc *
1789 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1790 	      unsigned int sg_len, unsigned long dma_flags)
1791 {
1792 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1793 	struct d40_desc *desc;
1794 	int ret;
1795 
1796 	desc = d40_desc_get(chan);
1797 	if (!desc)
1798 		return NULL;
1799 
1800 	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1801 					cfg->dst_info.data_width);
1802 	if (desc->lli_len < 0) {
1803 		chan_err(chan, "Unaligned size\n");
1804 		goto err;
1805 	}
1806 
1807 	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1808 	if (ret < 0) {
1809 		chan_err(chan, "Could not allocate lli\n");
1810 		goto err;
1811 	}
1812 
1813 
1814 	desc->lli_current = 0;
1815 	desc->txd.flags = dma_flags;
1816 	desc->txd.tx_submit = d40_tx_submit;
1817 
1818 	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1819 
1820 	return desc;
1821 
1822 err:
1823 	d40_desc_free(chan, desc);
1824 	return NULL;
1825 }
1826 
1827 static dma_addr_t
1828 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1829 {
1830 	struct stedma40_platform_data *plat = chan->base->plat_data;
1831 	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1832 	dma_addr_t addr = 0;
1833 
1834 	if (chan->runtime_addr)
1835 		return chan->runtime_addr;
1836 
1837 	if (direction == DMA_FROM_DEVICE)
1838 		addr = plat->dev_rx[cfg->src_dev_type];
1839 	else if (direction == DMA_TO_DEVICE)
1840 		addr = plat->dev_tx[cfg->dst_dev_type];
1841 
1842 	return addr;
1843 }
1844 
1845 static struct dma_async_tx_descriptor *
1846 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1847 	    struct scatterlist *sg_dst, unsigned int sg_len,
1848 	    enum dma_data_direction direction, unsigned long dma_flags)
1849 {
1850 	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1851 	dma_addr_t src_dev_addr = 0;
1852 	dma_addr_t dst_dev_addr = 0;
1853 	struct d40_desc *desc;
1854 	unsigned long flags;
1855 	int ret;
1856 
1857 	if (!chan->phy_chan) {
1858 		chan_err(chan, "Cannot prepare unallocated channel\n");
1859 		return NULL;
1860 	}
1861 
1862 
1863 	spin_lock_irqsave(&chan->lock, flags);
1864 
1865 	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1866 	if (desc == NULL)
1867 		goto err;
1868 
1869 	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1870 		desc->cyclic = true;
1871 
1872 	if (direction != DMA_NONE) {
1873 		dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1874 
1875 		if (direction == DMA_FROM_DEVICE)
1876 			src_dev_addr = dev_addr;
1877 		else if (direction == DMA_TO_DEVICE)
1878 			dst_dev_addr = dev_addr;
1879 	}
1880 
1881 	if (chan_is_logical(chan))
1882 		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1883 				      sg_len, src_dev_addr, dst_dev_addr);
1884 	else
1885 		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1886 				      sg_len, src_dev_addr, dst_dev_addr);
1887 
1888 	if (ret) {
1889 		chan_err(chan, "Failed to prepare %s sg job: %d\n",
1890 			 chan_is_logical(chan) ? "log" : "phy", ret);
1891 		goto err;
1892 	}
1893 
1894 	spin_unlock_irqrestore(&chan->lock, flags);
1895 
1896 	return &desc->txd;
1897 
1898 err:
1899 	if (desc)
1900 		d40_desc_free(chan, desc);
1901 	spin_unlock_irqrestore(&chan->lock, flags);
1902 	return NULL;
1903 }
1904 
1905 bool stedma40_filter(struct dma_chan *chan, void *data)
1906 {
1907 	struct stedma40_chan_cfg *info = data;
1908 	struct d40_chan *d40c =
1909 		container_of(chan, struct d40_chan, chan);
1910 	int err;
1911 
1912 	if (data) {
1913 		err = d40_validate_conf(d40c, info);
1914 		if (!err)
1915 			d40c->dma_cfg = *info;
1916 	} else
1917 		err = d40_config_memcpy(d40c);
1918 
1919 	if (!err)
1920 		d40c->configured = true;
1921 
1922 	return err == 0;
1923 }
1924 EXPORT_SYMBOL(stedma40_filter);
1925 
1926 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1927 {
1928 	bool realtime = d40c->dma_cfg.realtime;
1929 	bool highprio = d40c->dma_cfg.high_priority;
1930 	u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1931 	u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1932 	u32 event = D40_TYPE_TO_EVENT(dev_type);
1933 	u32 group = D40_TYPE_TO_GROUP(dev_type);
1934 	u32 bit = 1 << event;
1935 
1936 	/* Destination event lines are stored in the upper halfword */
1937 	if (!src)
1938 		bit <<= 16;
1939 
1940 	writel(bit, d40c->base->virtbase + prioreg + group * 4);
1941 	writel(bit, d40c->base->virtbase + rtreg + group * 4);
1942 }
1943 
1944 static void d40_set_prio_realtime(struct d40_chan *d40c)
1945 {
1946 	if (d40c->base->rev < 3)
1947 		return;
1948 
1949 	if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1950 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1951 		__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1952 
1953 	if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1954 	    (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1955 		__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1956 }
1957 
1958 /* DMA ENGINE functions */
1959 static int d40_alloc_chan_resources(struct dma_chan *chan)
1960 {
1961 	int err;
1962 	unsigned long flags;
1963 	struct d40_chan *d40c =
1964 		container_of(chan, struct d40_chan, chan);
1965 	bool is_free_phy;
1966 	spin_lock_irqsave(&d40c->lock, flags);
1967 
1968 	d40c->completed = chan->cookie = 1;
1969 
1970 	/* If no dma configuration is set use default configuration (memcpy) */
1971 	if (!d40c->configured) {
1972 		err = d40_config_memcpy(d40c);
1973 		if (err) {
1974 			chan_err(d40c, "Failed to configure memcpy channel\n");
1975 			goto fail;
1976 		}
1977 	}
1978 	is_free_phy = (d40c->phy_chan == NULL);
1979 
1980 	err = d40_allocate_channel(d40c);
1981 	if (err) {
1982 		chan_err(d40c, "Failed to allocate channel\n");
1983 		goto fail;
1984 	}
1985 
1986 	/* Fill in basic CFG register values */
1987 	d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1988 		    &d40c->dst_def_cfg, chan_is_logical(d40c));
1989 
1990 	d40_set_prio_realtime(d40c);
1991 
1992 	if (chan_is_logical(d40c)) {
1993 		d40_log_cfg(&d40c->dma_cfg,
1994 			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1995 
1996 		if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1997 			d40c->lcpa = d40c->base->lcpa_base +
1998 			  d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1999 		else
2000 			d40c->lcpa = d40c->base->lcpa_base +
2001 			  d40c->dma_cfg.dst_dev_type *
2002 			  D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2003 	}
2004 
2005 	/*
2006 	 * Only write channel configuration to the DMA if the physical
2007 	 * resource is free. In case of multiple logical channels
2008 	 * on the same physical resource, only the first write is necessary.
2009 	 */
2010 	if (is_free_phy)
2011 		d40_config_write(d40c);
2012 fail:
2013 	spin_unlock_irqrestore(&d40c->lock, flags);
2014 	return err;
2015 }
2016 
2017 static void d40_free_chan_resources(struct dma_chan *chan)
2018 {
2019 	struct d40_chan *d40c =
2020 		container_of(chan, struct d40_chan, chan);
2021 	int err;
2022 	unsigned long flags;
2023 
2024 	if (d40c->phy_chan == NULL) {
2025 		chan_err(d40c, "Cannot free unallocated channel\n");
2026 		return;
2027 	}
2028 
2029 
2030 	spin_lock_irqsave(&d40c->lock, flags);
2031 
2032 	err = d40_free_dma(d40c);
2033 
2034 	if (err)
2035 		chan_err(d40c, "Failed to free channel\n");
2036 	spin_unlock_irqrestore(&d40c->lock, flags);
2037 }
2038 
2039 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2040 						       dma_addr_t dst,
2041 						       dma_addr_t src,
2042 						       size_t size,
2043 						       unsigned long dma_flags)
2044 {
2045 	struct scatterlist dst_sg;
2046 	struct scatterlist src_sg;
2047 
2048 	sg_init_table(&dst_sg, 1);
2049 	sg_init_table(&src_sg, 1);
2050 
2051 	sg_dma_address(&dst_sg) = dst;
2052 	sg_dma_address(&src_sg) = src;
2053 
2054 	sg_dma_len(&dst_sg) = size;
2055 	sg_dma_len(&src_sg) = size;
2056 
2057 	return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2058 }
2059 
2060 static struct dma_async_tx_descriptor *
2061 d40_prep_memcpy_sg(struct dma_chan *chan,
2062 		   struct scatterlist *dst_sg, unsigned int dst_nents,
2063 		   struct scatterlist *src_sg, unsigned int src_nents,
2064 		   unsigned long dma_flags)
2065 {
2066 	if (dst_nents != src_nents)
2067 		return NULL;
2068 
2069 	return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2070 }
2071 
2072 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2073 							 struct scatterlist *sgl,
2074 							 unsigned int sg_len,
2075 							 enum dma_data_direction direction,
2076 							 unsigned long dma_flags)
2077 {
2078 	if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2079 		return NULL;
2080 
2081 	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2082 }
2083 
2084 static struct dma_async_tx_descriptor *
2085 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2086 		     size_t buf_len, size_t period_len,
2087 		     enum dma_data_direction direction)
2088 {
2089 	unsigned int periods = buf_len / period_len;
2090 	struct dma_async_tx_descriptor *txd;
2091 	struct scatterlist *sg;
2092 	int i;
2093 
2094 	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
2095 	for (i = 0; i < periods; i++) {
2096 		sg_dma_address(&sg[i]) = dma_addr;
2097 		sg_dma_len(&sg[i]) = period_len;
2098 		dma_addr += period_len;
2099 	}
2100 
2101 	sg[periods].offset = 0;
2102 	sg[periods].length = 0;
2103 	sg[periods].page_link =
2104 		((unsigned long)sg | 0x01) & ~0x02;
2105 
2106 	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2107 			  DMA_PREP_INTERRUPT);
2108 
2109 	kfree(sg);
2110 
2111 	return txd;
2112 }
2113 
2114 static enum dma_status d40_tx_status(struct dma_chan *chan,
2115 				     dma_cookie_t cookie,
2116 				     struct dma_tx_state *txstate)
2117 {
2118 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2119 	dma_cookie_t last_used;
2120 	dma_cookie_t last_complete;
2121 	int ret;
2122 
2123 	if (d40c->phy_chan == NULL) {
2124 		chan_err(d40c, "Cannot read status of unallocated channel\n");
2125 		return -EINVAL;
2126 	}
2127 
2128 	last_complete = d40c->completed;
2129 	last_used = chan->cookie;
2130 
2131 	if (d40_is_paused(d40c))
2132 		ret = DMA_PAUSED;
2133 	else
2134 		ret = dma_async_is_complete(cookie, last_complete, last_used);
2135 
2136 	dma_set_tx_state(txstate, last_complete, last_used,
2137 			 stedma40_residue(chan));
2138 
2139 	return ret;
2140 }
2141 
2142 static void d40_issue_pending(struct dma_chan *chan)
2143 {
2144 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2145 	unsigned long flags;
2146 
2147 	if (d40c->phy_chan == NULL) {
2148 		chan_err(d40c, "Channel is not allocated!\n");
2149 		return;
2150 	}
2151 
2152 	spin_lock_irqsave(&d40c->lock, flags);
2153 
2154 	/* Busy means that pending jobs are already being processed */
2155 	if (!d40c->busy)
2156 		(void) d40_queue_start(d40c);
2157 
2158 	spin_unlock_irqrestore(&d40c->lock, flags);
2159 }
2160 
2161 /* Runtime reconfiguration extension */
2162 static void d40_set_runtime_config(struct dma_chan *chan,
2163 			       struct dma_slave_config *config)
2164 {
2165 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2166 	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2167 	enum dma_slave_buswidth config_addr_width;
2168 	dma_addr_t config_addr;
2169 	u32 config_maxburst;
2170 	enum stedma40_periph_data_width addr_width;
2171 	int psize;
2172 
2173 	if (config->direction == DMA_FROM_DEVICE) {
2174 		dma_addr_t dev_addr_rx =
2175 			d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2176 
2177 		config_addr = config->src_addr;
2178 		if (dev_addr_rx)
2179 			dev_dbg(d40c->base->dev,
2180 				"channel has a pre-wired RX address %08x "
2181 				"overriding with %08x\n",
2182 				dev_addr_rx, config_addr);
2183 		if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2184 			dev_dbg(d40c->base->dev,
2185 				"channel was not configured for peripheral "
2186 				"to memory transfer (%d) overriding\n",
2187 				cfg->dir);
2188 		cfg->dir = STEDMA40_PERIPH_TO_MEM;
2189 
2190 		config_addr_width = config->src_addr_width;
2191 		config_maxburst = config->src_maxburst;
2192 
2193 	} else if (config->direction == DMA_TO_DEVICE) {
2194 		dma_addr_t dev_addr_tx =
2195 			d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2196 
2197 		config_addr = config->dst_addr;
2198 		if (dev_addr_tx)
2199 			dev_dbg(d40c->base->dev,
2200 				"channel has a pre-wired TX address %08x "
2201 				"overriding with %08x\n",
2202 				dev_addr_tx, config_addr);
2203 		if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2204 			dev_dbg(d40c->base->dev,
2205 				"channel was not configured for memory "
2206 				"to peripheral transfer (%d) overriding\n",
2207 				cfg->dir);
2208 		cfg->dir = STEDMA40_MEM_TO_PERIPH;
2209 
2210 		config_addr_width = config->dst_addr_width;
2211 		config_maxburst = config->dst_maxburst;
2212 
2213 	} else {
2214 		dev_err(d40c->base->dev,
2215 			"unrecognized channel direction %d\n",
2216 			config->direction);
2217 		return;
2218 	}
2219 
2220 	switch (config_addr_width) {
2221 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2222 		addr_width = STEDMA40_BYTE_WIDTH;
2223 		break;
2224 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2225 		addr_width = STEDMA40_HALFWORD_WIDTH;
2226 		break;
2227 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2228 		addr_width = STEDMA40_WORD_WIDTH;
2229 		break;
2230 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2231 		addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2232 		break;
2233 	default:
2234 		dev_err(d40c->base->dev,
2235 			"illegal peripheral address width "
2236 			"requested (%d)\n",
2237 			config->src_addr_width);
2238 		return;
2239 	}
2240 
2241 	if (chan_is_logical(d40c)) {
2242 		if (config_maxburst >= 16)
2243 			psize = STEDMA40_PSIZE_LOG_16;
2244 		else if (config_maxburst >= 8)
2245 			psize = STEDMA40_PSIZE_LOG_8;
2246 		else if (config_maxburst >= 4)
2247 			psize = STEDMA40_PSIZE_LOG_4;
2248 		else
2249 			psize = STEDMA40_PSIZE_LOG_1;
2250 	} else {
2251 		if (config_maxburst >= 16)
2252 			psize = STEDMA40_PSIZE_PHY_16;
2253 		else if (config_maxburst >= 8)
2254 			psize = STEDMA40_PSIZE_PHY_8;
2255 		else if (config_maxburst >= 4)
2256 			psize = STEDMA40_PSIZE_PHY_4;
2257 		else if (config_maxburst >= 2)
2258 			psize = STEDMA40_PSIZE_PHY_2;
2259 		else
2260 			psize = STEDMA40_PSIZE_PHY_1;
2261 	}
2262 
2263 	/* Set up all the endpoint configs */
2264 	cfg->src_info.data_width = addr_width;
2265 	cfg->src_info.psize = psize;
2266 	cfg->src_info.big_endian = false;
2267 	cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2268 	cfg->dst_info.data_width = addr_width;
2269 	cfg->dst_info.psize = psize;
2270 	cfg->dst_info.big_endian = false;
2271 	cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2272 
2273 	/* Fill in register values */
2274 	if (chan_is_logical(d40c))
2275 		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2276 	else
2277 		d40_phy_cfg(cfg, &d40c->src_def_cfg,
2278 			    &d40c->dst_def_cfg, false);
2279 
2280 	/* These settings will take precedence later */
2281 	d40c->runtime_addr = config_addr;
2282 	d40c->runtime_direction = config->direction;
2283 	dev_dbg(d40c->base->dev,
2284 		"configured channel %s for %s, data width %d, "
2285 		"maxburst %d bytes, LE, no flow control\n",
2286 		dma_chan_name(chan),
2287 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2288 		config_addr_width,
2289 		config_maxburst);
2290 }
2291 
2292 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2293 		       unsigned long arg)
2294 {
2295 	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2296 
2297 	if (d40c->phy_chan == NULL) {
2298 		chan_err(d40c, "Channel is not allocated!\n");
2299 		return -EINVAL;
2300 	}
2301 
2302 	switch (cmd) {
2303 	case DMA_TERMINATE_ALL:
2304 		return d40_terminate_all(d40c);
2305 	case DMA_PAUSE:
2306 		return d40_pause(d40c);
2307 	case DMA_RESUME:
2308 		return d40_resume(d40c);
2309 	case DMA_SLAVE_CONFIG:
2310 		d40_set_runtime_config(chan,
2311 			(struct dma_slave_config *) arg);
2312 		return 0;
2313 	default:
2314 		break;
2315 	}
2316 
2317 	/* Other commands are unimplemented */
2318 	return -ENXIO;
2319 }
2320 
2321 /* Initialization functions */
2322 
2323 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2324 				 struct d40_chan *chans, int offset,
2325 				 int num_chans)
2326 {
2327 	int i = 0;
2328 	struct d40_chan *d40c;
2329 
2330 	INIT_LIST_HEAD(&dma->channels);
2331 
2332 	for (i = offset; i < offset + num_chans; i++) {
2333 		d40c = &chans[i];
2334 		d40c->base = base;
2335 		d40c->chan.device = dma;
2336 
2337 		spin_lock_init(&d40c->lock);
2338 
2339 		d40c->log_num = D40_PHY_CHAN;
2340 
2341 		INIT_LIST_HEAD(&d40c->active);
2342 		INIT_LIST_HEAD(&d40c->queue);
2343 		INIT_LIST_HEAD(&d40c->client);
2344 
2345 		tasklet_init(&d40c->tasklet, dma_tasklet,
2346 			     (unsigned long) d40c);
2347 
2348 		list_add_tail(&d40c->chan.device_node,
2349 			      &dma->channels);
2350 	}
2351 }
2352 
2353 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2354 {
2355 	if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2356 		dev->device_prep_slave_sg = d40_prep_slave_sg;
2357 
2358 	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2359 		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2360 
2361 		/*
2362 		 * This controller can only access address at even
2363 		 * 32bit boundaries, i.e. 2^2
2364 		 */
2365 		dev->copy_align = 2;
2366 	}
2367 
2368 	if (dma_has_cap(DMA_SG, dev->cap_mask))
2369 		dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2370 
2371 	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2372 		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2373 
2374 	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2375 	dev->device_free_chan_resources = d40_free_chan_resources;
2376 	dev->device_issue_pending = d40_issue_pending;
2377 	dev->device_tx_status = d40_tx_status;
2378 	dev->device_control = d40_control;
2379 	dev->dev = base->dev;
2380 }
2381 
2382 static int __init d40_dmaengine_init(struct d40_base *base,
2383 				     int num_reserved_chans)
2384 {
2385 	int err ;
2386 
2387 	d40_chan_init(base, &base->dma_slave, base->log_chans,
2388 		      0, base->num_log_chans);
2389 
2390 	dma_cap_zero(base->dma_slave.cap_mask);
2391 	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2392 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2393 
2394 	d40_ops_init(base, &base->dma_slave);
2395 
2396 	err = dma_async_device_register(&base->dma_slave);
2397 
2398 	if (err) {
2399 		d40_err(base->dev, "Failed to register slave channels\n");
2400 		goto failure1;
2401 	}
2402 
2403 	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2404 		      base->num_log_chans, base->plat_data->memcpy_len);
2405 
2406 	dma_cap_zero(base->dma_memcpy.cap_mask);
2407 	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2408 	dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2409 
2410 	d40_ops_init(base, &base->dma_memcpy);
2411 
2412 	err = dma_async_device_register(&base->dma_memcpy);
2413 
2414 	if (err) {
2415 		d40_err(base->dev,
2416 			"Failed to regsiter memcpy only channels\n");
2417 		goto failure2;
2418 	}
2419 
2420 	d40_chan_init(base, &base->dma_both, base->phy_chans,
2421 		      0, num_reserved_chans);
2422 
2423 	dma_cap_zero(base->dma_both.cap_mask);
2424 	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2425 	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2426 	dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2427 	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2428 
2429 	d40_ops_init(base, &base->dma_both);
2430 	err = dma_async_device_register(&base->dma_both);
2431 
2432 	if (err) {
2433 		d40_err(base->dev,
2434 			"Failed to register logical and physical capable channels\n");
2435 		goto failure3;
2436 	}
2437 	return 0;
2438 failure3:
2439 	dma_async_device_unregister(&base->dma_memcpy);
2440 failure2:
2441 	dma_async_device_unregister(&base->dma_slave);
2442 failure1:
2443 	return err;
2444 }
2445 
2446 /* Initialization functions. */
2447 
2448 static int __init d40_phy_res_init(struct d40_base *base)
2449 {
2450 	int i;
2451 	int num_phy_chans_avail = 0;
2452 	u32 val[2];
2453 	int odd_even_bit = -2;
2454 
2455 	val[0] = readl(base->virtbase + D40_DREG_PRSME);
2456 	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2457 
2458 	for (i = 0; i < base->num_phy_chans; i++) {
2459 		base->phy_res[i].num = i;
2460 		odd_even_bit += 2 * ((i % 2) == 0);
2461 		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2462 			/* Mark security only channels as occupied */
2463 			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2464 			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2465 		} else {
2466 			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2467 			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2468 			num_phy_chans_avail++;
2469 		}
2470 		spin_lock_init(&base->phy_res[i].lock);
2471 	}
2472 
2473 	/* Mark disabled channels as occupied */
2474 	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2475 		int chan = base->plat_data->disabled_channels[i];
2476 
2477 		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2478 		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2479 		num_phy_chans_avail--;
2480 	}
2481 
2482 	dev_info(base->dev, "%d of %d physical DMA channels available\n",
2483 		 num_phy_chans_avail, base->num_phy_chans);
2484 
2485 	/* Verify settings extended vs standard */
2486 	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2487 
2488 	for (i = 0; i < base->num_phy_chans; i++) {
2489 
2490 		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2491 		    (val[0] & 0x3) != 1)
2492 			dev_info(base->dev,
2493 				 "[%s] INFO: channel %d is misconfigured (%d)\n",
2494 				 __func__, i, val[0] & 0x3);
2495 
2496 		val[0] = val[0] >> 2;
2497 	}
2498 
2499 	return num_phy_chans_avail;
2500 }
2501 
2502 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2503 {
2504 	static const struct d40_reg_val dma_id_regs[] = {
2505 		/* Peripheral Id */
2506 		{ .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2507 		{ .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2508 		/*
2509 		 * D40_DREG_PERIPHID2 Depends on HW revision:
2510 		 *  DB8500ed has 0x0008,
2511 		 *  ? has 0x0018,
2512 		 *  DB8500v1 has 0x0028
2513 		 *  DB8500v2 has 0x0038
2514 		 */
2515 		{ .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2516 
2517 		/* PCell Id */
2518 		{ .reg = D40_DREG_CELLID0, .val = 0x000d},
2519 		{ .reg = D40_DREG_CELLID1, .val = 0x00f0},
2520 		{ .reg = D40_DREG_CELLID2, .val = 0x0005},
2521 		{ .reg = D40_DREG_CELLID3, .val = 0x00b1}
2522 	};
2523 	struct stedma40_platform_data *plat_data;
2524 	struct clk *clk = NULL;
2525 	void __iomem *virtbase = NULL;
2526 	struct resource *res = NULL;
2527 	struct d40_base *base = NULL;
2528 	int num_log_chans = 0;
2529 	int num_phy_chans;
2530 	int i;
2531 	u32 val;
2532 	u32 rev;
2533 
2534 	clk = clk_get(&pdev->dev, NULL);
2535 
2536 	if (IS_ERR(clk)) {
2537 		d40_err(&pdev->dev, "No matching clock found\n");
2538 		goto failure;
2539 	}
2540 
2541 	clk_enable(clk);
2542 
2543 	/* Get IO for DMAC base address */
2544 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2545 	if (!res)
2546 		goto failure;
2547 
2548 	if (request_mem_region(res->start, resource_size(res),
2549 			       D40_NAME " I/O base") == NULL)
2550 		goto failure;
2551 
2552 	virtbase = ioremap(res->start, resource_size(res));
2553 	if (!virtbase)
2554 		goto failure;
2555 
2556 	/* HW version check */
2557 	for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2558 		if (dma_id_regs[i].val !=
2559 		    readl(virtbase + dma_id_regs[i].reg)) {
2560 			d40_err(&pdev->dev,
2561 				"Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2562 				dma_id_regs[i].val,
2563 				dma_id_regs[i].reg,
2564 				readl(virtbase + dma_id_regs[i].reg));
2565 			goto failure;
2566 		}
2567 	}
2568 
2569 	/* Get silicon revision and designer */
2570 	val = readl(virtbase + D40_DREG_PERIPHID2);
2571 
2572 	if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2573 	    D40_HW_DESIGNER) {
2574 		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2575 			val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2576 			D40_HW_DESIGNER);
2577 		goto failure;
2578 	}
2579 
2580 	rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2581 		D40_DREG_PERIPHID2_REV_POS;
2582 
2583 	/* The number of physical channels on this HW */
2584 	num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2585 
2586 	dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2587 		 rev, res->start);
2588 
2589 	plat_data = pdev->dev.platform_data;
2590 
2591 	/* Count the number of logical channels in use */
2592 	for (i = 0; i < plat_data->dev_len; i++)
2593 		if (plat_data->dev_rx[i] != 0)
2594 			num_log_chans++;
2595 
2596 	for (i = 0; i < plat_data->dev_len; i++)
2597 		if (plat_data->dev_tx[i] != 0)
2598 			num_log_chans++;
2599 
2600 	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2601 		       (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2602 		       sizeof(struct d40_chan), GFP_KERNEL);
2603 
2604 	if (base == NULL) {
2605 		d40_err(&pdev->dev, "Out of memory\n");
2606 		goto failure;
2607 	}
2608 
2609 	base->rev = rev;
2610 	base->clk = clk;
2611 	base->num_phy_chans = num_phy_chans;
2612 	base->num_log_chans = num_log_chans;
2613 	base->phy_start = res->start;
2614 	base->phy_size = resource_size(res);
2615 	base->virtbase = virtbase;
2616 	base->plat_data = plat_data;
2617 	base->dev = &pdev->dev;
2618 	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2619 	base->log_chans = &base->phy_chans[num_phy_chans];
2620 
2621 	base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2622 				GFP_KERNEL);
2623 	if (!base->phy_res)
2624 		goto failure;
2625 
2626 	base->lookup_phy_chans = kzalloc(num_phy_chans *
2627 					 sizeof(struct d40_chan *),
2628 					 GFP_KERNEL);
2629 	if (!base->lookup_phy_chans)
2630 		goto failure;
2631 
2632 	if (num_log_chans + plat_data->memcpy_len) {
2633 		/*
2634 		 * The max number of logical channels are event lines for all
2635 		 * src devices and dst devices
2636 		 */
2637 		base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2638 						 sizeof(struct d40_chan *),
2639 						 GFP_KERNEL);
2640 		if (!base->lookup_log_chans)
2641 			goto failure;
2642 	}
2643 
2644 	base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2645 					    sizeof(struct d40_desc *) *
2646 					    D40_LCLA_LINK_PER_EVENT_GRP,
2647 					    GFP_KERNEL);
2648 	if (!base->lcla_pool.alloc_map)
2649 		goto failure;
2650 
2651 	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2652 					    0, SLAB_HWCACHE_ALIGN,
2653 					    NULL);
2654 	if (base->desc_slab == NULL)
2655 		goto failure;
2656 
2657 	return base;
2658 
2659 failure:
2660 	if (!IS_ERR(clk)) {
2661 		clk_disable(clk);
2662 		clk_put(clk);
2663 	}
2664 	if (virtbase)
2665 		iounmap(virtbase);
2666 	if (res)
2667 		release_mem_region(res->start,
2668 				   resource_size(res));
2669 	if (virtbase)
2670 		iounmap(virtbase);
2671 
2672 	if (base) {
2673 		kfree(base->lcla_pool.alloc_map);
2674 		kfree(base->lookup_log_chans);
2675 		kfree(base->lookup_phy_chans);
2676 		kfree(base->phy_res);
2677 		kfree(base);
2678 	}
2679 
2680 	return NULL;
2681 }
2682 
2683 static void __init d40_hw_init(struct d40_base *base)
2684 {
2685 
2686 	static const struct d40_reg_val dma_init_reg[] = {
2687 		/* Clock every part of the DMA block from start */
2688 		{ .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2689 
2690 		/* Interrupts on all logical channels */
2691 		{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2692 		{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2693 		{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2694 		{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2695 		{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2696 		{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2697 		{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2698 		{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2699 		{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2700 		{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2701 		{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2702 		{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2703 	};
2704 	int i;
2705 	u32 prmseo[2] = {0, 0};
2706 	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2707 	u32 pcmis = 0;
2708 	u32 pcicr = 0;
2709 
2710 	for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2711 		writel(dma_init_reg[i].val,
2712 		       base->virtbase + dma_init_reg[i].reg);
2713 
2714 	/* Configure all our dma channels to default settings */
2715 	for (i = 0; i < base->num_phy_chans; i++) {
2716 
2717 		activeo[i % 2] = activeo[i % 2] << 2;
2718 
2719 		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2720 		    == D40_ALLOC_PHY) {
2721 			activeo[i % 2] |= 3;
2722 			continue;
2723 		}
2724 
2725 		/* Enable interrupt # */
2726 		pcmis = (pcmis << 1) | 1;
2727 
2728 		/* Clear interrupt # */
2729 		pcicr = (pcicr << 1) | 1;
2730 
2731 		/* Set channel to physical mode */
2732 		prmseo[i % 2] = prmseo[i % 2] << 2;
2733 		prmseo[i % 2] |= 1;
2734 
2735 	}
2736 
2737 	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2738 	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2739 	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2740 	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2741 
2742 	/* Write which interrupt to enable */
2743 	writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2744 
2745 	/* Write which interrupt to clear */
2746 	writel(pcicr, base->virtbase + D40_DREG_PCICR);
2747 
2748 }
2749 
2750 static int __init d40_lcla_allocate(struct d40_base *base)
2751 {
2752 	struct d40_lcla_pool *pool = &base->lcla_pool;
2753 	unsigned long *page_list;
2754 	int i, j;
2755 	int ret = 0;
2756 
2757 	/*
2758 	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2759 	 * To full fill this hardware requirement without wasting 256 kb
2760 	 * we allocate pages until we get an aligned one.
2761 	 */
2762 	page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2763 			    GFP_KERNEL);
2764 
2765 	if (!page_list) {
2766 		ret = -ENOMEM;
2767 		goto failure;
2768 	}
2769 
2770 	/* Calculating how many pages that are required */
2771 	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2772 
2773 	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2774 		page_list[i] = __get_free_pages(GFP_KERNEL,
2775 						base->lcla_pool.pages);
2776 		if (!page_list[i]) {
2777 
2778 			d40_err(base->dev, "Failed to allocate %d pages.\n",
2779 				base->lcla_pool.pages);
2780 
2781 			for (j = 0; j < i; j++)
2782 				free_pages(page_list[j], base->lcla_pool.pages);
2783 			goto failure;
2784 		}
2785 
2786 		if ((virt_to_phys((void *)page_list[i]) &
2787 		     (LCLA_ALIGNMENT - 1)) == 0)
2788 			break;
2789 	}
2790 
2791 	for (j = 0; j < i; j++)
2792 		free_pages(page_list[j], base->lcla_pool.pages);
2793 
2794 	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2795 		base->lcla_pool.base = (void *)page_list[i];
2796 	} else {
2797 		/*
2798 		 * After many attempts and no succees with finding the correct
2799 		 * alignment, try with allocating a big buffer.
2800 		 */
2801 		dev_warn(base->dev,
2802 			 "[%s] Failed to get %d pages @ 18 bit align.\n",
2803 			 __func__, base->lcla_pool.pages);
2804 		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2805 							 base->num_phy_chans +
2806 							 LCLA_ALIGNMENT,
2807 							 GFP_KERNEL);
2808 		if (!base->lcla_pool.base_unaligned) {
2809 			ret = -ENOMEM;
2810 			goto failure;
2811 		}
2812 
2813 		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2814 						 LCLA_ALIGNMENT);
2815 	}
2816 
2817 	pool->dma_addr = dma_map_single(base->dev, pool->base,
2818 					SZ_1K * base->num_phy_chans,
2819 					DMA_TO_DEVICE);
2820 	if (dma_mapping_error(base->dev, pool->dma_addr)) {
2821 		pool->dma_addr = 0;
2822 		ret = -ENOMEM;
2823 		goto failure;
2824 	}
2825 
2826 	writel(virt_to_phys(base->lcla_pool.base),
2827 	       base->virtbase + D40_DREG_LCLA);
2828 failure:
2829 	kfree(page_list);
2830 	return ret;
2831 }
2832 
2833 static int __init d40_probe(struct platform_device *pdev)
2834 {
2835 	int err;
2836 	int ret = -ENOENT;
2837 	struct d40_base *base;
2838 	struct resource *res = NULL;
2839 	int num_reserved_chans;
2840 	u32 val;
2841 
2842 	base = d40_hw_detect_init(pdev);
2843 
2844 	if (!base)
2845 		goto failure;
2846 
2847 	num_reserved_chans = d40_phy_res_init(base);
2848 
2849 	platform_set_drvdata(pdev, base);
2850 
2851 	spin_lock_init(&base->interrupt_lock);
2852 	spin_lock_init(&base->execmd_lock);
2853 
2854 	/* Get IO for logical channel parameter address */
2855 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2856 	if (!res) {
2857 		ret = -ENOENT;
2858 		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2859 		goto failure;
2860 	}
2861 	base->lcpa_size = resource_size(res);
2862 	base->phy_lcpa = res->start;
2863 
2864 	if (request_mem_region(res->start, resource_size(res),
2865 			       D40_NAME " I/O lcpa") == NULL) {
2866 		ret = -EBUSY;
2867 		d40_err(&pdev->dev,
2868 			"Failed to request LCPA region 0x%x-0x%x\n",
2869 			res->start, res->end);
2870 		goto failure;
2871 	}
2872 
2873 	/* We make use of ESRAM memory for this. */
2874 	val = readl(base->virtbase + D40_DREG_LCPA);
2875 	if (res->start != val && val != 0) {
2876 		dev_warn(&pdev->dev,
2877 			 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2878 			 __func__, val, res->start);
2879 	} else
2880 		writel(res->start, base->virtbase + D40_DREG_LCPA);
2881 
2882 	base->lcpa_base = ioremap(res->start, resource_size(res));
2883 	if (!base->lcpa_base) {
2884 		ret = -ENOMEM;
2885 		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2886 		goto failure;
2887 	}
2888 
2889 	ret = d40_lcla_allocate(base);
2890 	if (ret) {
2891 		d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2892 		goto failure;
2893 	}
2894 
2895 	spin_lock_init(&base->lcla_pool.lock);
2896 
2897 	base->irq = platform_get_irq(pdev, 0);
2898 
2899 	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2900 	if (ret) {
2901 		d40_err(&pdev->dev, "No IRQ defined\n");
2902 		goto failure;
2903 	}
2904 
2905 	err = d40_dmaengine_init(base, num_reserved_chans);
2906 	if (err)
2907 		goto failure;
2908 
2909 	d40_hw_init(base);
2910 
2911 	dev_info(base->dev, "initialized\n");
2912 	return 0;
2913 
2914 failure:
2915 	if (base) {
2916 		if (base->desc_slab)
2917 			kmem_cache_destroy(base->desc_slab);
2918 		if (base->virtbase)
2919 			iounmap(base->virtbase);
2920 
2921 		if (base->lcla_pool.dma_addr)
2922 			dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2923 					 SZ_1K * base->num_phy_chans,
2924 					 DMA_TO_DEVICE);
2925 
2926 		if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2927 			free_pages((unsigned long)base->lcla_pool.base,
2928 				   base->lcla_pool.pages);
2929 
2930 		kfree(base->lcla_pool.base_unaligned);
2931 
2932 		if (base->phy_lcpa)
2933 			release_mem_region(base->phy_lcpa,
2934 					   base->lcpa_size);
2935 		if (base->phy_start)
2936 			release_mem_region(base->phy_start,
2937 					   base->phy_size);
2938 		if (base->clk) {
2939 			clk_disable(base->clk);
2940 			clk_put(base->clk);
2941 		}
2942 
2943 		kfree(base->lcla_pool.alloc_map);
2944 		kfree(base->lookup_log_chans);
2945 		kfree(base->lookup_phy_chans);
2946 		kfree(base->phy_res);
2947 		kfree(base);
2948 	}
2949 
2950 	d40_err(&pdev->dev, "probe failed\n");
2951 	return ret;
2952 }
2953 
2954 static struct platform_driver d40_driver = {
2955 	.driver = {
2956 		.owner = THIS_MODULE,
2957 		.name  = D40_NAME,
2958 	},
2959 };
2960 
2961 static int __init stedma40_init(void)
2962 {
2963 	return platform_driver_probe(&d40_driver, d40_probe);
2964 }
2965 subsys_initcall(stedma40_init);
2966