1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas R-Car Gen2/Gen3 DMA Controller Driver 4 * 5 * Copyright (C) 2014-2019 Renesas Electronics Inc. 6 * 7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/of.h> 18 #include <linux/of_dma.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 25 #include "../dmaengine.h" 26 27 /* 28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer 29 * @node: entry in the parent's chunks list 30 * @src_addr: device source address 31 * @dst_addr: device destination address 32 * @size: transfer size in bytes 33 */ 34 struct rcar_dmac_xfer_chunk { 35 struct list_head node; 36 37 dma_addr_t src_addr; 38 dma_addr_t dst_addr; 39 u32 size; 40 }; 41 42 /* 43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk 44 * @sar: value of the SAR register (source address) 45 * @dar: value of the DAR register (destination address) 46 * @tcr: value of the TCR register (transfer count) 47 */ 48 struct rcar_dmac_hw_desc { 49 u32 sar; 50 u32 dar; 51 u32 tcr; 52 u32 reserved; 53 } __attribute__((__packed__)); 54 55 /* 56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor 57 * @async_tx: base DMA asynchronous transaction descriptor 58 * @direction: direction of the DMA transfer 59 * @xfer_shift: log2 of the transfer size 60 * @chcr: value of the channel configuration register for this transfer 61 * @node: entry in the channel's descriptors lists 62 * @chunks: list of transfer chunks for this transfer 63 * @running: the transfer chunk being currently processed 64 * @nchunks: number of transfer chunks for this transfer 65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors 66 * @hwdescs.mem: hardware descriptors memory for the transfer 67 * @hwdescs.dma: device address of the hardware descriptors memory 68 * @hwdescs.size: size of the hardware descriptors in bytes 69 * @size: transfer size in bytes 70 * @cyclic: when set indicates that the DMA transfer is cyclic 71 */ 72 struct rcar_dmac_desc { 73 struct dma_async_tx_descriptor async_tx; 74 enum dma_transfer_direction direction; 75 unsigned int xfer_shift; 76 u32 chcr; 77 78 struct list_head node; 79 struct list_head chunks; 80 struct rcar_dmac_xfer_chunk *running; 81 unsigned int nchunks; 82 83 struct { 84 bool use; 85 struct rcar_dmac_hw_desc *mem; 86 dma_addr_t dma; 87 size_t size; 88 } hwdescs; 89 90 unsigned int size; 91 bool cyclic; 92 }; 93 94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx) 95 96 /* 97 * struct rcar_dmac_desc_page - One page worth of descriptors 98 * @node: entry in the channel's pages list 99 * @descs: array of DMA descriptors 100 * @chunks: array of transfer chunk descriptors 101 */ 102 struct rcar_dmac_desc_page { 103 struct list_head node; 104 105 union { 106 DECLARE_FLEX_ARRAY(struct rcar_dmac_desc, descs); 107 DECLARE_FLEX_ARRAY(struct rcar_dmac_xfer_chunk, chunks); 108 }; 109 }; 110 111 #define RCAR_DMAC_DESCS_PER_PAGE \ 112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \ 113 sizeof(struct rcar_dmac_desc)) 114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \ 115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \ 116 sizeof(struct rcar_dmac_xfer_chunk)) 117 118 /* 119 * struct rcar_dmac_chan_slave - Slave configuration 120 * @slave_addr: slave memory address 121 * @xfer_size: size (in bytes) of hardware transfers 122 */ 123 struct rcar_dmac_chan_slave { 124 phys_addr_t slave_addr; 125 unsigned int xfer_size; 126 }; 127 128 /* 129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address 130 * @addr: slave dma address 131 * @dir: direction of mapping 132 * @slave: slave configuration that is mapped 133 */ 134 struct rcar_dmac_chan_map { 135 dma_addr_t addr; 136 enum dma_data_direction dir; 137 struct rcar_dmac_chan_slave slave; 138 }; 139 140 /* 141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel 142 * @chan: base DMA channel object 143 * @iomem: channel I/O memory base 144 * @index: index of this channel in the controller 145 * @irq: channel IRQ 146 * @src: slave memory address and size on the source side 147 * @dst: slave memory address and size on the destination side 148 * @mid_rid: hardware MID/RID for the DMA client using this channel 149 * @lock: protects the channel CHCR register and the desc members 150 * @desc.free: list of free descriptors 151 * @desc.pending: list of pending descriptors (submitted with tx_submit) 152 * @desc.active: list of active descriptors (activated with issue_pending) 153 * @desc.done: list of completed descriptors 154 * @desc.wait: list of descriptors waiting for an ack 155 * @desc.running: the descriptor being processed (a member of the active list) 156 * @desc.chunks_free: list of free transfer chunk descriptors 157 * @desc.pages: list of pages used by allocated descriptors 158 */ 159 struct rcar_dmac_chan { 160 struct dma_chan chan; 161 void __iomem *iomem; 162 unsigned int index; 163 int irq; 164 165 struct rcar_dmac_chan_slave src; 166 struct rcar_dmac_chan_slave dst; 167 struct rcar_dmac_chan_map map; 168 int mid_rid; 169 170 spinlock_t lock; 171 172 struct { 173 struct list_head free; 174 struct list_head pending; 175 struct list_head active; 176 struct list_head done; 177 struct list_head wait; 178 struct rcar_dmac_desc *running; 179 180 struct list_head chunks_free; 181 182 struct list_head pages; 183 } desc; 184 }; 185 186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan) 187 188 /* 189 * struct rcar_dmac - R-Car Gen2 DMA Controller 190 * @engine: base DMA engine object 191 * @dev: the hardware device 192 * @dmac_base: remapped base register block 193 * @chan_base: remapped channel register block (optional) 194 * @n_channels: number of available channels 195 * @channels: array of DMAC channels 196 * @channels_mask: bitfield of which DMA channels are managed by this driver 197 * @modules: bitmask of client modules in use 198 */ 199 struct rcar_dmac { 200 struct dma_device engine; 201 struct device *dev; 202 void __iomem *dmac_base; 203 void __iomem *chan_base; 204 205 unsigned int n_channels; 206 struct rcar_dmac_chan *channels; 207 u32 channels_mask; 208 209 DECLARE_BITMAP(modules, 256); 210 }; 211 212 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine) 213 214 #define for_each_rcar_dmac_chan(i, dmac, chan) \ 215 for (i = 0, chan = &(dmac)->channels[0]; i < (dmac)->n_channels; i++, chan++) \ 216 if (!((dmac)->channels_mask & BIT(i))) continue; else 217 218 /* 219 * struct rcar_dmac_of_data - This driver's OF data 220 * @chan_offset_base: DMAC channels base offset 221 * @chan_offset_stride: DMAC channels offset stride 222 */ 223 struct rcar_dmac_of_data { 224 u32 chan_offset_base; 225 u32 chan_offset_stride; 226 }; 227 228 /* ----------------------------------------------------------------------------- 229 * Registers 230 */ 231 232 #define RCAR_DMAISTA 0x0020 233 #define RCAR_DMASEC 0x0030 234 #define RCAR_DMAOR 0x0060 235 #define RCAR_DMAOR_PRI_FIXED (0 << 8) 236 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8) 237 #define RCAR_DMAOR_AE (1 << 2) 238 #define RCAR_DMAOR_DME (1 << 0) 239 #define RCAR_DMACHCLR 0x0080 /* Not on R-Car Gen4 */ 240 #define RCAR_DMADPSEC 0x00a0 241 242 #define RCAR_DMASAR 0x0000 243 #define RCAR_DMADAR 0x0004 244 #define RCAR_DMATCR 0x0008 245 #define RCAR_DMATCR_MASK 0x00ffffff 246 #define RCAR_DMATSR 0x0028 247 #define RCAR_DMACHCR 0x000c 248 #define RCAR_DMACHCR_CAE (1 << 31) 249 #define RCAR_DMACHCR_CAIE (1 << 30) 250 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28) 251 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28) 252 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28) 253 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28) 254 #define RCAR_DMACHCR_RPT_SAR (1 << 27) 255 #define RCAR_DMACHCR_RPT_DAR (1 << 26) 256 #define RCAR_DMACHCR_RPT_TCR (1 << 25) 257 #define RCAR_DMACHCR_DPB (1 << 22) 258 #define RCAR_DMACHCR_DSE (1 << 19) 259 #define RCAR_DMACHCR_DSIE (1 << 18) 260 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3)) 261 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3)) 262 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3)) 263 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3)) 264 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3)) 265 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3)) 266 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3)) 267 #define RCAR_DMACHCR_DM_FIXED (0 << 14) 268 #define RCAR_DMACHCR_DM_INC (1 << 14) 269 #define RCAR_DMACHCR_DM_DEC (2 << 14) 270 #define RCAR_DMACHCR_SM_FIXED (0 << 12) 271 #define RCAR_DMACHCR_SM_INC (1 << 12) 272 #define RCAR_DMACHCR_SM_DEC (2 << 12) 273 #define RCAR_DMACHCR_RS_AUTO (4 << 8) 274 #define RCAR_DMACHCR_RS_DMARS (8 << 8) 275 #define RCAR_DMACHCR_IE (1 << 2) 276 #define RCAR_DMACHCR_TE (1 << 1) 277 #define RCAR_DMACHCR_DE (1 << 0) 278 #define RCAR_DMATCRB 0x0018 279 #define RCAR_DMATSRB 0x0038 280 #define RCAR_DMACHCRB 0x001c 281 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24) 282 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16) 283 #define RCAR_DMACHCRB_DPTR_SHIFT 16 284 #define RCAR_DMACHCRB_DRST (1 << 15) 285 #define RCAR_DMACHCRB_DTS (1 << 8) 286 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4) 287 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4) 288 #define RCAR_DMACHCRB_PRI(n) ((n) << 0) 289 #define RCAR_DMARS 0x0040 290 #define RCAR_DMABUFCR 0x0048 291 #define RCAR_DMABUFCR_MBU(n) ((n) << 16) 292 #define RCAR_DMABUFCR_ULB(n) ((n) << 0) 293 #define RCAR_DMADPBASE 0x0050 294 #define RCAR_DMADPBASE_MASK 0xfffffff0 295 #define RCAR_DMADPBASE_SEL (1 << 0) 296 #define RCAR_DMADPCR 0x0054 297 #define RCAR_DMADPCR_DIPT(n) ((n) << 24) 298 #define RCAR_DMAFIXSAR 0x0010 299 #define RCAR_DMAFIXDAR 0x0014 300 #define RCAR_DMAFIXDPBASE 0x0060 301 302 /* For R-Car Gen4 */ 303 #define RCAR_GEN4_DMACHCLR 0x0100 304 305 /* Hardcode the MEMCPY transfer size to 4 bytes. */ 306 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4 307 308 /* ----------------------------------------------------------------------------- 309 * Device access 310 */ 311 312 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data) 313 { 314 if (reg == RCAR_DMAOR) 315 writew(data, dmac->dmac_base + reg); 316 else 317 writel(data, dmac->dmac_base + reg); 318 } 319 320 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg) 321 { 322 if (reg == RCAR_DMAOR) 323 return readw(dmac->dmac_base + reg); 324 else 325 return readl(dmac->dmac_base + reg); 326 } 327 328 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg) 329 { 330 if (reg == RCAR_DMARS) 331 return readw(chan->iomem + reg); 332 else 333 return readl(chan->iomem + reg); 334 } 335 336 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data) 337 { 338 if (reg == RCAR_DMARS) 339 writew(data, chan->iomem + reg); 340 else 341 writel(data, chan->iomem + reg); 342 } 343 344 static void rcar_dmac_chan_clear(struct rcar_dmac *dmac, 345 struct rcar_dmac_chan *chan) 346 { 347 if (dmac->chan_base) 348 rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1); 349 else 350 rcar_dmac_write(dmac, RCAR_DMACHCLR, BIT(chan->index)); 351 } 352 353 static void rcar_dmac_chan_clear_all(struct rcar_dmac *dmac) 354 { 355 struct rcar_dmac_chan *chan; 356 unsigned int i; 357 358 if (dmac->chan_base) { 359 for_each_rcar_dmac_chan(i, dmac, chan) 360 rcar_dmac_chan_write(chan, RCAR_GEN4_DMACHCLR, 1); 361 } else { 362 rcar_dmac_write(dmac, RCAR_DMACHCLR, dmac->channels_mask); 363 } 364 } 365 366 /* ----------------------------------------------------------------------------- 367 * Initialization and configuration 368 */ 369 370 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan) 371 { 372 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 373 374 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)); 375 } 376 377 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan) 378 { 379 struct rcar_dmac_desc *desc = chan->desc.running; 380 u32 chcr = desc->chcr; 381 382 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan)); 383 384 if (chan->mid_rid >= 0) 385 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid); 386 387 if (desc->hwdescs.use) { 388 struct rcar_dmac_xfer_chunk *chunk = 389 list_first_entry(&desc->chunks, 390 struct rcar_dmac_xfer_chunk, node); 391 392 dev_dbg(chan->chan.device->dev, 393 "chan%u: queue desc %p: %u@%pad\n", 394 chan->index, desc, desc->nchunks, &desc->hwdescs.dma); 395 396 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 397 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR, 398 chunk->src_addr >> 32); 399 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR, 400 chunk->dst_addr >> 32); 401 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE, 402 desc->hwdescs.dma >> 32); 403 #endif 404 rcar_dmac_chan_write(chan, RCAR_DMADPBASE, 405 (desc->hwdescs.dma & 0xfffffff0) | 406 RCAR_DMADPBASE_SEL); 407 rcar_dmac_chan_write(chan, RCAR_DMACHCRB, 408 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) | 409 RCAR_DMACHCRB_DRST); 410 411 /* 412 * Errata: When descriptor memory is accessed through an IOMMU 413 * the DMADAR register isn't initialized automatically from the 414 * first descriptor at beginning of transfer by the DMAC like it 415 * should. Initialize it manually with the destination address 416 * of the first chunk. 417 */ 418 rcar_dmac_chan_write(chan, RCAR_DMADAR, 419 chunk->dst_addr & 0xffffffff); 420 421 /* 422 * Program the descriptor stage interrupt to occur after the end 423 * of the first stage. 424 */ 425 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1)); 426 427 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR 428 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB; 429 430 /* 431 * If the descriptor isn't cyclic enable normal descriptor mode 432 * and the transfer completion interrupt. 433 */ 434 if (!desc->cyclic) 435 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE; 436 /* 437 * If the descriptor is cyclic and has a callback enable the 438 * descriptor stage interrupt in infinite repeat mode. 439 */ 440 else if (desc->async_tx.callback) 441 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE; 442 /* 443 * Otherwise just select infinite repeat mode without any 444 * interrupt. 445 */ 446 else 447 chcr |= RCAR_DMACHCR_DPM_INFINITE; 448 } else { 449 struct rcar_dmac_xfer_chunk *chunk = desc->running; 450 451 dev_dbg(chan->chan.device->dev, 452 "chan%u: queue chunk %p: %u@%pad -> %pad\n", 453 chan->index, chunk, chunk->size, &chunk->src_addr, 454 &chunk->dst_addr); 455 456 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 457 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR, 458 chunk->src_addr >> 32); 459 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR, 460 chunk->dst_addr >> 32); 461 #endif 462 rcar_dmac_chan_write(chan, RCAR_DMASAR, 463 chunk->src_addr & 0xffffffff); 464 rcar_dmac_chan_write(chan, RCAR_DMADAR, 465 chunk->dst_addr & 0xffffffff); 466 rcar_dmac_chan_write(chan, RCAR_DMATCR, 467 chunk->size >> desc->xfer_shift); 468 469 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE; 470 } 471 472 rcar_dmac_chan_write(chan, RCAR_DMACHCR, 473 chcr | RCAR_DMACHCR_DE | RCAR_DMACHCR_CAIE); 474 } 475 476 static int rcar_dmac_init(struct rcar_dmac *dmac) 477 { 478 u16 dmaor; 479 480 /* Clear all channels and enable the DMAC globally. */ 481 rcar_dmac_chan_clear_all(dmac); 482 rcar_dmac_write(dmac, RCAR_DMAOR, 483 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME); 484 485 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR); 486 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) { 487 dev_warn(dmac->dev, "DMAOR initialization failed.\n"); 488 return -EIO; 489 } 490 491 return 0; 492 } 493 494 /* ----------------------------------------------------------------------------- 495 * Descriptors submission 496 */ 497 498 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx) 499 { 500 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan); 501 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx); 502 unsigned long flags; 503 dma_cookie_t cookie; 504 505 spin_lock_irqsave(&chan->lock, flags); 506 507 cookie = dma_cookie_assign(tx); 508 509 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n", 510 chan->index, tx->cookie, desc); 511 512 list_add_tail(&desc->node, &chan->desc.pending); 513 desc->running = list_first_entry(&desc->chunks, 514 struct rcar_dmac_xfer_chunk, node); 515 516 spin_unlock_irqrestore(&chan->lock, flags); 517 518 return cookie; 519 } 520 521 /* ----------------------------------------------------------------------------- 522 * Descriptors allocation and free 523 */ 524 525 /* 526 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors 527 * @chan: the DMA channel 528 * @gfp: allocation flags 529 */ 530 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) 531 { 532 struct rcar_dmac_desc_page *page; 533 unsigned long flags; 534 LIST_HEAD(list); 535 unsigned int i; 536 537 page = (void *)get_zeroed_page(gfp); 538 if (!page) 539 return -ENOMEM; 540 541 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) { 542 struct rcar_dmac_desc *desc = &page->descs[i]; 543 544 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 545 desc->async_tx.tx_submit = rcar_dmac_tx_submit; 546 INIT_LIST_HEAD(&desc->chunks); 547 548 list_add_tail(&desc->node, &list); 549 } 550 551 spin_lock_irqsave(&chan->lock, flags); 552 list_splice_tail(&list, &chan->desc.free); 553 list_add_tail(&page->node, &chan->desc.pages); 554 spin_unlock_irqrestore(&chan->lock, flags); 555 556 return 0; 557 } 558 559 /* 560 * rcar_dmac_desc_put - Release a DMA transfer descriptor 561 * @chan: the DMA channel 562 * @desc: the descriptor 563 * 564 * Put the descriptor and its transfer chunk descriptors back in the channel's 565 * free descriptors lists. The descriptor's chunks list will be reinitialized to 566 * an empty list as a result. 567 * 568 * The descriptor must have been removed from the channel's lists before calling 569 * this function. 570 */ 571 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan, 572 struct rcar_dmac_desc *desc) 573 { 574 unsigned long flags; 575 576 spin_lock_irqsave(&chan->lock, flags); 577 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free); 578 list_add(&desc->node, &chan->desc.free); 579 spin_unlock_irqrestore(&chan->lock, flags); 580 } 581 582 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan) 583 { 584 struct rcar_dmac_desc *desc, *_desc; 585 unsigned long flags; 586 LIST_HEAD(list); 587 588 /* 589 * We have to temporarily move all descriptors from the wait list to a 590 * local list as iterating over the wait list, even with 591 * list_for_each_entry_safe, isn't safe if we release the channel lock 592 * around the rcar_dmac_desc_put() call. 593 */ 594 spin_lock_irqsave(&chan->lock, flags); 595 list_splice_init(&chan->desc.wait, &list); 596 spin_unlock_irqrestore(&chan->lock, flags); 597 598 list_for_each_entry_safe(desc, _desc, &list, node) { 599 if (async_tx_test_ack(&desc->async_tx)) { 600 list_del(&desc->node); 601 rcar_dmac_desc_put(chan, desc); 602 } 603 } 604 605 if (list_empty(&list)) 606 return; 607 608 /* Put the remaining descriptors back in the wait list. */ 609 spin_lock_irqsave(&chan->lock, flags); 610 list_splice(&list, &chan->desc.wait); 611 spin_unlock_irqrestore(&chan->lock, flags); 612 } 613 614 /* 615 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer 616 * @chan: the DMA channel 617 * 618 * Locking: This function must be called in a non-atomic context. 619 * 620 * Return: A pointer to the allocated descriptor or NULL if no descriptor can 621 * be allocated. 622 */ 623 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan) 624 { 625 struct rcar_dmac_desc *desc; 626 unsigned long flags; 627 int ret; 628 629 /* Recycle acked descriptors before attempting allocation. */ 630 rcar_dmac_desc_recycle_acked(chan); 631 632 spin_lock_irqsave(&chan->lock, flags); 633 634 while (list_empty(&chan->desc.free)) { 635 /* 636 * No free descriptors, allocate a page worth of them and try 637 * again, as someone else could race us to get the newly 638 * allocated descriptors. If the allocation fails return an 639 * error. 640 */ 641 spin_unlock_irqrestore(&chan->lock, flags); 642 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT); 643 if (ret < 0) 644 return NULL; 645 spin_lock_irqsave(&chan->lock, flags); 646 } 647 648 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node); 649 list_del(&desc->node); 650 651 spin_unlock_irqrestore(&chan->lock, flags); 652 653 return desc; 654 } 655 656 /* 657 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks 658 * @chan: the DMA channel 659 * @gfp: allocation flags 660 */ 661 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp) 662 { 663 struct rcar_dmac_desc_page *page; 664 unsigned long flags; 665 LIST_HEAD(list); 666 unsigned int i; 667 668 page = (void *)get_zeroed_page(gfp); 669 if (!page) 670 return -ENOMEM; 671 672 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) { 673 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i]; 674 675 list_add_tail(&chunk->node, &list); 676 } 677 678 spin_lock_irqsave(&chan->lock, flags); 679 list_splice_tail(&list, &chan->desc.chunks_free); 680 list_add_tail(&page->node, &chan->desc.pages); 681 spin_unlock_irqrestore(&chan->lock, flags); 682 683 return 0; 684 } 685 686 /* 687 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer 688 * @chan: the DMA channel 689 * 690 * Locking: This function must be called in a non-atomic context. 691 * 692 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no 693 * descriptor can be allocated. 694 */ 695 static struct rcar_dmac_xfer_chunk * 696 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan) 697 { 698 struct rcar_dmac_xfer_chunk *chunk; 699 unsigned long flags; 700 int ret; 701 702 spin_lock_irqsave(&chan->lock, flags); 703 704 while (list_empty(&chan->desc.chunks_free)) { 705 /* 706 * No free descriptors, allocate a page worth of them and try 707 * again, as someone else could race us to get the newly 708 * allocated descriptors. If the allocation fails return an 709 * error. 710 */ 711 spin_unlock_irqrestore(&chan->lock, flags); 712 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT); 713 if (ret < 0) 714 return NULL; 715 spin_lock_irqsave(&chan->lock, flags); 716 } 717 718 chunk = list_first_entry(&chan->desc.chunks_free, 719 struct rcar_dmac_xfer_chunk, node); 720 list_del(&chunk->node); 721 722 spin_unlock_irqrestore(&chan->lock, flags); 723 724 return chunk; 725 } 726 727 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan, 728 struct rcar_dmac_desc *desc, size_t size) 729 { 730 /* 731 * dma_alloc_coherent() allocates memory in page size increments. To 732 * avoid reallocating the hardware descriptors when the allocated size 733 * wouldn't change align the requested size to a multiple of the page 734 * size. 735 */ 736 size = PAGE_ALIGN(size); 737 738 if (desc->hwdescs.size == size) 739 return; 740 741 if (desc->hwdescs.mem) { 742 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size, 743 desc->hwdescs.mem, desc->hwdescs.dma); 744 desc->hwdescs.mem = NULL; 745 desc->hwdescs.size = 0; 746 } 747 748 if (!size) 749 return; 750 751 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size, 752 &desc->hwdescs.dma, GFP_NOWAIT); 753 if (!desc->hwdescs.mem) 754 return; 755 756 desc->hwdescs.size = size; 757 } 758 759 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan, 760 struct rcar_dmac_desc *desc) 761 { 762 struct rcar_dmac_xfer_chunk *chunk; 763 struct rcar_dmac_hw_desc *hwdesc; 764 765 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc)); 766 767 hwdesc = desc->hwdescs.mem; 768 if (!hwdesc) 769 return -ENOMEM; 770 771 list_for_each_entry(chunk, &desc->chunks, node) { 772 hwdesc->sar = chunk->src_addr; 773 hwdesc->dar = chunk->dst_addr; 774 hwdesc->tcr = chunk->size >> desc->xfer_shift; 775 hwdesc++; 776 } 777 778 return 0; 779 } 780 781 /* ----------------------------------------------------------------------------- 782 * Stop and reset 783 */ 784 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan *chan) 785 { 786 u32 chcr; 787 unsigned int i; 788 789 /* 790 * Ensure that the setting of the DE bit is actually 0 after 791 * clearing it. 792 */ 793 for (i = 0; i < 1024; i++) { 794 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 795 if (!(chcr & RCAR_DMACHCR_DE)) 796 return; 797 udelay(1); 798 } 799 800 dev_err(chan->chan.device->dev, "CHCR DE check error\n"); 801 } 802 803 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan *chan) 804 { 805 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 806 807 /* set DE=0 and flush remaining data */ 808 rcar_dmac_chan_write(chan, RCAR_DMACHCR, (chcr & ~RCAR_DMACHCR_DE)); 809 810 /* make sure all remaining data was flushed */ 811 rcar_dmac_chcr_de_barrier(chan); 812 } 813 814 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan) 815 { 816 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 817 818 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE | 819 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE | 820 RCAR_DMACHCR_CAE | RCAR_DMACHCR_CAIE); 821 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr); 822 rcar_dmac_chcr_de_barrier(chan); 823 } 824 825 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan) 826 { 827 struct rcar_dmac_desc *desc, *_desc; 828 unsigned long flags; 829 LIST_HEAD(descs); 830 831 spin_lock_irqsave(&chan->lock, flags); 832 833 /* Move all non-free descriptors to the local lists. */ 834 list_splice_init(&chan->desc.pending, &descs); 835 list_splice_init(&chan->desc.active, &descs); 836 list_splice_init(&chan->desc.done, &descs); 837 list_splice_init(&chan->desc.wait, &descs); 838 839 chan->desc.running = NULL; 840 841 spin_unlock_irqrestore(&chan->lock, flags); 842 843 list_for_each_entry_safe(desc, _desc, &descs, node) { 844 list_del(&desc->node); 845 rcar_dmac_desc_put(chan, desc); 846 } 847 } 848 849 static void rcar_dmac_stop_all_chan(struct rcar_dmac *dmac) 850 { 851 struct rcar_dmac_chan *chan; 852 unsigned int i; 853 854 /* Stop all channels. */ 855 for_each_rcar_dmac_chan(i, dmac, chan) { 856 /* Stop and reinitialize the channel. */ 857 spin_lock_irq(&chan->lock); 858 rcar_dmac_chan_halt(chan); 859 spin_unlock_irq(&chan->lock); 860 } 861 } 862 863 static int rcar_dmac_chan_pause(struct dma_chan *chan) 864 { 865 unsigned long flags; 866 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 867 868 spin_lock_irqsave(&rchan->lock, flags); 869 rcar_dmac_clear_chcr_de(rchan); 870 spin_unlock_irqrestore(&rchan->lock, flags); 871 872 return 0; 873 } 874 875 /* ----------------------------------------------------------------------------- 876 * Descriptors preparation 877 */ 878 879 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan, 880 struct rcar_dmac_desc *desc) 881 { 882 static const u32 chcr_ts[] = { 883 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B, 884 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B, 885 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B, 886 RCAR_DMACHCR_TS_64B, 887 }; 888 889 unsigned int xfer_size; 890 u32 chcr; 891 892 switch (desc->direction) { 893 case DMA_DEV_TO_MEM: 894 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED 895 | RCAR_DMACHCR_RS_DMARS; 896 xfer_size = chan->src.xfer_size; 897 break; 898 899 case DMA_MEM_TO_DEV: 900 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC 901 | RCAR_DMACHCR_RS_DMARS; 902 xfer_size = chan->dst.xfer_size; 903 break; 904 905 case DMA_MEM_TO_MEM: 906 default: 907 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC 908 | RCAR_DMACHCR_RS_AUTO; 909 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE; 910 break; 911 } 912 913 desc->xfer_shift = ilog2(xfer_size); 914 desc->chcr = chcr | chcr_ts[desc->xfer_shift]; 915 } 916 917 /* 918 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list 919 * 920 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also 921 * converted to scatter-gather to guarantee consistent locking and a correct 922 * list manipulation. For slave DMA direction carries the usual meaning, and, 923 * logically, the SG list is RAM and the addr variable contains slave address, 924 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM 925 * and the SG list contains only one element and points at the source buffer. 926 */ 927 static struct dma_async_tx_descriptor * 928 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl, 929 unsigned int sg_len, dma_addr_t dev_addr, 930 enum dma_transfer_direction dir, unsigned long dma_flags, 931 bool cyclic) 932 { 933 struct rcar_dmac_xfer_chunk *chunk; 934 struct rcar_dmac_desc *desc; 935 struct scatterlist *sg; 936 unsigned int nchunks = 0; 937 unsigned int max_chunk_size; 938 unsigned int full_size = 0; 939 bool cross_boundary = false; 940 unsigned int i; 941 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 942 u32 high_dev_addr; 943 u32 high_mem_addr; 944 #endif 945 946 desc = rcar_dmac_desc_get(chan); 947 if (!desc) 948 return NULL; 949 950 desc->async_tx.flags = dma_flags; 951 desc->async_tx.cookie = -EBUSY; 952 953 desc->cyclic = cyclic; 954 desc->direction = dir; 955 956 rcar_dmac_chan_configure_desc(chan, desc); 957 958 max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift; 959 960 /* 961 * Allocate and fill the transfer chunk descriptors. We own the only 962 * reference to the DMA descriptor, there's no need for locking. 963 */ 964 for_each_sg(sgl, sg, sg_len, i) { 965 dma_addr_t mem_addr = sg_dma_address(sg); 966 unsigned int len = sg_dma_len(sg); 967 968 full_size += len; 969 970 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 971 if (i == 0) { 972 high_dev_addr = dev_addr >> 32; 973 high_mem_addr = mem_addr >> 32; 974 } 975 976 if ((dev_addr >> 32 != high_dev_addr) || 977 (mem_addr >> 32 != high_mem_addr)) 978 cross_boundary = true; 979 #endif 980 while (len) { 981 unsigned int size = min(len, max_chunk_size); 982 983 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 984 /* 985 * Prevent individual transfers from crossing 4GB 986 * boundaries. 987 */ 988 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) { 989 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr; 990 cross_boundary = true; 991 } 992 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) { 993 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr; 994 cross_boundary = true; 995 } 996 #endif 997 998 chunk = rcar_dmac_xfer_chunk_get(chan); 999 if (!chunk) { 1000 rcar_dmac_desc_put(chan, desc); 1001 return NULL; 1002 } 1003 1004 if (dir == DMA_DEV_TO_MEM) { 1005 chunk->src_addr = dev_addr; 1006 chunk->dst_addr = mem_addr; 1007 } else { 1008 chunk->src_addr = mem_addr; 1009 chunk->dst_addr = dev_addr; 1010 } 1011 1012 chunk->size = size; 1013 1014 dev_dbg(chan->chan.device->dev, 1015 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n", 1016 chan->index, chunk, desc, i, sg, size, len, 1017 &chunk->src_addr, &chunk->dst_addr); 1018 1019 mem_addr += size; 1020 if (dir == DMA_MEM_TO_MEM) 1021 dev_addr += size; 1022 1023 len -= size; 1024 1025 list_add_tail(&chunk->node, &desc->chunks); 1026 nchunks++; 1027 } 1028 } 1029 1030 desc->nchunks = nchunks; 1031 desc->size = full_size; 1032 1033 /* 1034 * Use hardware descriptor lists if possible when more than one chunk 1035 * needs to be transferred (otherwise they don't make much sense). 1036 * 1037 * Source/Destination address should be located in same 4GiB region 1038 * in the 40bit address space when it uses Hardware descriptor, 1039 * and cross_boundary is checking it. 1040 */ 1041 desc->hwdescs.use = !cross_boundary && nchunks > 1; 1042 if (desc->hwdescs.use) { 1043 if (rcar_dmac_fill_hwdesc(chan, desc) < 0) 1044 desc->hwdescs.use = false; 1045 } 1046 1047 return &desc->async_tx; 1048 } 1049 1050 /* ----------------------------------------------------------------------------- 1051 * DMA engine operations 1052 */ 1053 1054 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan) 1055 { 1056 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1057 int ret; 1058 1059 INIT_LIST_HEAD(&rchan->desc.chunks_free); 1060 INIT_LIST_HEAD(&rchan->desc.pages); 1061 1062 /* Preallocate descriptors. */ 1063 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL); 1064 if (ret < 0) 1065 return -ENOMEM; 1066 1067 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL); 1068 if (ret < 0) 1069 return -ENOMEM; 1070 1071 return pm_runtime_get_sync(chan->device->dev); 1072 } 1073 1074 static void rcar_dmac_free_chan_resources(struct dma_chan *chan) 1075 { 1076 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1077 struct rcar_dmac *dmac = to_rcar_dmac(chan->device); 1078 struct rcar_dmac_chan_map *map = &rchan->map; 1079 struct rcar_dmac_desc_page *page, *_page; 1080 struct rcar_dmac_desc *desc; 1081 LIST_HEAD(list); 1082 1083 /* Protect against ISR */ 1084 spin_lock_irq(&rchan->lock); 1085 rcar_dmac_chan_halt(rchan); 1086 spin_unlock_irq(&rchan->lock); 1087 1088 /* 1089 * Now no new interrupts will occur, but one might already be 1090 * running. Wait for it to finish before freeing resources. 1091 */ 1092 synchronize_irq(rchan->irq); 1093 1094 if (rchan->mid_rid >= 0) { 1095 /* The caller is holding dma_list_mutex */ 1096 clear_bit(rchan->mid_rid, dmac->modules); 1097 rchan->mid_rid = -EINVAL; 1098 } 1099 1100 list_splice_init(&rchan->desc.free, &list); 1101 list_splice_init(&rchan->desc.pending, &list); 1102 list_splice_init(&rchan->desc.active, &list); 1103 list_splice_init(&rchan->desc.done, &list); 1104 list_splice_init(&rchan->desc.wait, &list); 1105 1106 rchan->desc.running = NULL; 1107 1108 list_for_each_entry(desc, &list, node) 1109 rcar_dmac_realloc_hwdesc(rchan, desc, 0); 1110 1111 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) { 1112 list_del(&page->node); 1113 free_page((unsigned long)page); 1114 } 1115 1116 /* Remove slave mapping if present. */ 1117 if (map->slave.xfer_size) { 1118 dma_unmap_resource(chan->device->dev, map->addr, 1119 map->slave.xfer_size, map->dir, 0); 1120 map->slave.xfer_size = 0; 1121 } 1122 1123 pm_runtime_put(chan->device->dev); 1124 } 1125 1126 static struct dma_async_tx_descriptor * 1127 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest, 1128 dma_addr_t dma_src, size_t len, unsigned long flags) 1129 { 1130 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1131 struct scatterlist sgl; 1132 1133 if (!len) 1134 return NULL; 1135 1136 sg_init_table(&sgl, 1); 1137 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len, 1138 offset_in_page(dma_src)); 1139 sg_dma_address(&sgl) = dma_src; 1140 sg_dma_len(&sgl) = len; 1141 1142 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest, 1143 DMA_MEM_TO_MEM, flags, false); 1144 } 1145 1146 static int rcar_dmac_map_slave_addr(struct dma_chan *chan, 1147 enum dma_transfer_direction dir) 1148 { 1149 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1150 struct rcar_dmac_chan_map *map = &rchan->map; 1151 phys_addr_t dev_addr; 1152 size_t dev_size; 1153 enum dma_data_direction dev_dir; 1154 1155 if (dir == DMA_DEV_TO_MEM) { 1156 dev_addr = rchan->src.slave_addr; 1157 dev_size = rchan->src.xfer_size; 1158 dev_dir = DMA_TO_DEVICE; 1159 } else { 1160 dev_addr = rchan->dst.slave_addr; 1161 dev_size = rchan->dst.xfer_size; 1162 dev_dir = DMA_FROM_DEVICE; 1163 } 1164 1165 /* Reuse current map if possible. */ 1166 if (dev_addr == map->slave.slave_addr && 1167 dev_size == map->slave.xfer_size && 1168 dev_dir == map->dir) 1169 return 0; 1170 1171 /* Remove old mapping if present. */ 1172 if (map->slave.xfer_size) 1173 dma_unmap_resource(chan->device->dev, map->addr, 1174 map->slave.xfer_size, map->dir, 0); 1175 map->slave.xfer_size = 0; 1176 1177 /* Create new slave address map. */ 1178 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size, 1179 dev_dir, 0); 1180 1181 if (dma_mapping_error(chan->device->dev, map->addr)) { 1182 dev_err(chan->device->dev, 1183 "chan%u: failed to map %zx@%pap", rchan->index, 1184 dev_size, &dev_addr); 1185 return -EIO; 1186 } 1187 1188 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n", 1189 rchan->index, dev_size, &dev_addr, &map->addr, 1190 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE"); 1191 1192 map->slave.slave_addr = dev_addr; 1193 map->slave.xfer_size = dev_size; 1194 map->dir = dev_dir; 1195 1196 return 0; 1197 } 1198 1199 static struct dma_async_tx_descriptor * 1200 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1201 unsigned int sg_len, enum dma_transfer_direction dir, 1202 unsigned long flags, void *context) 1203 { 1204 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1205 1206 /* Someone calling slave DMA on a generic channel? */ 1207 if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) { 1208 dev_warn(chan->device->dev, 1209 "%s: bad parameter: len=%d, id=%d\n", 1210 __func__, sg_len, rchan->mid_rid); 1211 return NULL; 1212 } 1213 1214 if (rcar_dmac_map_slave_addr(chan, dir)) 1215 return NULL; 1216 1217 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr, 1218 dir, flags, false); 1219 } 1220 1221 #define RCAR_DMAC_MAX_SG_LEN 32 1222 1223 static struct dma_async_tx_descriptor * 1224 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, 1225 size_t buf_len, size_t period_len, 1226 enum dma_transfer_direction dir, unsigned long flags) 1227 { 1228 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1229 struct dma_async_tx_descriptor *desc; 1230 struct scatterlist *sgl; 1231 unsigned int sg_len; 1232 unsigned int i; 1233 1234 /* Someone calling slave DMA on a generic channel? */ 1235 if (rchan->mid_rid < 0 || buf_len < period_len) { 1236 dev_warn(chan->device->dev, 1237 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n", 1238 __func__, buf_len, period_len, rchan->mid_rid); 1239 return NULL; 1240 } 1241 1242 if (rcar_dmac_map_slave_addr(chan, dir)) 1243 return NULL; 1244 1245 sg_len = buf_len / period_len; 1246 if (sg_len > RCAR_DMAC_MAX_SG_LEN) { 1247 dev_err(chan->device->dev, 1248 "chan%u: sg length %d exceeds limit %d", 1249 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN); 1250 return NULL; 1251 } 1252 1253 /* 1254 * Allocate the sg list dynamically as it would consume too much stack 1255 * space. 1256 */ 1257 sgl = kmalloc_array(sg_len, sizeof(*sgl), GFP_NOWAIT); 1258 if (!sgl) 1259 return NULL; 1260 1261 sg_init_table(sgl, sg_len); 1262 1263 for (i = 0; i < sg_len; ++i) { 1264 dma_addr_t src = buf_addr + (period_len * i); 1265 1266 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len, 1267 offset_in_page(src)); 1268 sg_dma_address(&sgl[i]) = src; 1269 sg_dma_len(&sgl[i]) = period_len; 1270 } 1271 1272 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr, 1273 dir, flags, true); 1274 1275 kfree(sgl); 1276 return desc; 1277 } 1278 1279 static int rcar_dmac_device_config(struct dma_chan *chan, 1280 struct dma_slave_config *cfg) 1281 { 1282 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1283 1284 /* 1285 * We could lock this, but you shouldn't be configuring the 1286 * channel, while using it... 1287 */ 1288 rchan->src.slave_addr = cfg->src_addr; 1289 rchan->dst.slave_addr = cfg->dst_addr; 1290 rchan->src.xfer_size = cfg->src_addr_width; 1291 rchan->dst.xfer_size = cfg->dst_addr_width; 1292 1293 return 0; 1294 } 1295 1296 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan) 1297 { 1298 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1299 unsigned long flags; 1300 1301 spin_lock_irqsave(&rchan->lock, flags); 1302 rcar_dmac_chan_halt(rchan); 1303 spin_unlock_irqrestore(&rchan->lock, flags); 1304 1305 /* 1306 * FIXME: No new interrupt can occur now, but the IRQ thread might still 1307 * be running. 1308 */ 1309 1310 rcar_dmac_chan_reinit(rchan); 1311 1312 return 0; 1313 } 1314 1315 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan, 1316 dma_cookie_t cookie) 1317 { 1318 struct rcar_dmac_desc *desc = chan->desc.running; 1319 struct rcar_dmac_xfer_chunk *running = NULL; 1320 struct rcar_dmac_xfer_chunk *chunk; 1321 enum dma_status status; 1322 unsigned int residue = 0; 1323 unsigned int dptr = 0; 1324 unsigned int chcrb; 1325 unsigned int tcrb; 1326 unsigned int i; 1327 1328 if (!desc) 1329 return 0; 1330 1331 /* 1332 * If the cookie corresponds to a descriptor that has been completed 1333 * there is no residue. The same check has already been performed by the 1334 * caller but without holding the channel lock, so the descriptor could 1335 * now be complete. 1336 */ 1337 status = dma_cookie_status(&chan->chan, cookie, NULL); 1338 if (status == DMA_COMPLETE) 1339 return 0; 1340 1341 /* 1342 * If the cookie doesn't correspond to the currently running transfer 1343 * then the descriptor hasn't been processed yet, and the residue is 1344 * equal to the full descriptor size. 1345 * Also, a client driver is possible to call this function before 1346 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running" 1347 * will be the next descriptor, and the done list will appear. So, if 1348 * the argument cookie matches the done list's cookie, we can assume 1349 * the residue is zero. 1350 */ 1351 if (cookie != desc->async_tx.cookie) { 1352 list_for_each_entry(desc, &chan->desc.done, node) { 1353 if (cookie == desc->async_tx.cookie) 1354 return 0; 1355 } 1356 list_for_each_entry(desc, &chan->desc.pending, node) { 1357 if (cookie == desc->async_tx.cookie) 1358 return desc->size; 1359 } 1360 list_for_each_entry(desc, &chan->desc.active, node) { 1361 if (cookie == desc->async_tx.cookie) 1362 return desc->size; 1363 } 1364 1365 /* 1366 * No descriptor found for the cookie, there's thus no residue. 1367 * This shouldn't happen if the calling driver passes a correct 1368 * cookie value. 1369 */ 1370 WARN(1, "No descriptor for cookie!"); 1371 return 0; 1372 } 1373 1374 /* 1375 * We need to read two registers. 1376 * Make sure the control register does not skip to next chunk 1377 * while reading the counter. 1378 * Trying it 3 times should be enough: Initial read, retry, retry 1379 * for the paranoid. 1380 */ 1381 for (i = 0; i < 3; i++) { 1382 chcrb = rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & 1383 RCAR_DMACHCRB_DPTR_MASK; 1384 tcrb = rcar_dmac_chan_read(chan, RCAR_DMATCRB); 1385 /* Still the same? */ 1386 if (chcrb == (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & 1387 RCAR_DMACHCRB_DPTR_MASK)) 1388 break; 1389 } 1390 WARN_ONCE(i >= 3, "residue might be not continuous!"); 1391 1392 /* 1393 * In descriptor mode the descriptor running pointer is not maintained 1394 * by the interrupt handler, find the running descriptor from the 1395 * descriptor pointer field in the CHCRB register. In non-descriptor 1396 * mode just use the running descriptor pointer. 1397 */ 1398 if (desc->hwdescs.use) { 1399 dptr = chcrb >> RCAR_DMACHCRB_DPTR_SHIFT; 1400 if (dptr == 0) 1401 dptr = desc->nchunks; 1402 dptr--; 1403 WARN_ON(dptr >= desc->nchunks); 1404 } else { 1405 running = desc->running; 1406 } 1407 1408 /* Compute the size of all chunks still to be transferred. */ 1409 list_for_each_entry_reverse(chunk, &desc->chunks, node) { 1410 if (chunk == running || ++dptr == desc->nchunks) 1411 break; 1412 1413 residue += chunk->size; 1414 } 1415 1416 /* Add the residue for the current chunk. */ 1417 residue += tcrb << desc->xfer_shift; 1418 1419 return residue; 1420 } 1421 1422 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan, 1423 dma_cookie_t cookie, 1424 struct dma_tx_state *txstate) 1425 { 1426 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1427 enum dma_status status; 1428 unsigned long flags; 1429 unsigned int residue; 1430 bool cyclic; 1431 1432 status = dma_cookie_status(chan, cookie, txstate); 1433 if (status == DMA_COMPLETE || !txstate) 1434 return status; 1435 1436 spin_lock_irqsave(&rchan->lock, flags); 1437 residue = rcar_dmac_chan_get_residue(rchan, cookie); 1438 cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false; 1439 spin_unlock_irqrestore(&rchan->lock, flags); 1440 1441 /* if there's no residue, the cookie is complete */ 1442 if (!residue && !cyclic) 1443 return DMA_COMPLETE; 1444 1445 dma_set_residue(txstate, residue); 1446 1447 return status; 1448 } 1449 1450 static void rcar_dmac_issue_pending(struct dma_chan *chan) 1451 { 1452 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1453 unsigned long flags; 1454 1455 spin_lock_irqsave(&rchan->lock, flags); 1456 1457 if (list_empty(&rchan->desc.pending)) 1458 goto done; 1459 1460 /* Append the pending list to the active list. */ 1461 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active); 1462 1463 /* 1464 * If no transfer is running pick the first descriptor from the active 1465 * list and start the transfer. 1466 */ 1467 if (!rchan->desc.running) { 1468 struct rcar_dmac_desc *desc; 1469 1470 desc = list_first_entry(&rchan->desc.active, 1471 struct rcar_dmac_desc, node); 1472 rchan->desc.running = desc; 1473 1474 rcar_dmac_chan_start_xfer(rchan); 1475 } 1476 1477 done: 1478 spin_unlock_irqrestore(&rchan->lock, flags); 1479 } 1480 1481 static void rcar_dmac_device_synchronize(struct dma_chan *chan) 1482 { 1483 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan); 1484 1485 synchronize_irq(rchan->irq); 1486 } 1487 1488 /* ----------------------------------------------------------------------------- 1489 * IRQ handling 1490 */ 1491 1492 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan) 1493 { 1494 struct rcar_dmac_desc *desc = chan->desc.running; 1495 unsigned int stage; 1496 1497 if (WARN_ON(!desc || !desc->cyclic)) { 1498 /* 1499 * This should never happen, there should always be a running 1500 * cyclic descriptor when a descriptor stage end interrupt is 1501 * triggered. Warn and return. 1502 */ 1503 return IRQ_NONE; 1504 } 1505 1506 /* Program the interrupt pointer to the next stage. */ 1507 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) & 1508 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT; 1509 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage)); 1510 1511 return IRQ_WAKE_THREAD; 1512 } 1513 1514 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan) 1515 { 1516 struct rcar_dmac_desc *desc = chan->desc.running; 1517 irqreturn_t ret = IRQ_WAKE_THREAD; 1518 1519 if (WARN_ON_ONCE(!desc)) { 1520 /* 1521 * This should never happen, there should always be a running 1522 * descriptor when a transfer end interrupt is triggered. Warn 1523 * and return. 1524 */ 1525 return IRQ_NONE; 1526 } 1527 1528 /* 1529 * The transfer end interrupt isn't generated for each chunk when using 1530 * descriptor mode. Only update the running chunk pointer in 1531 * non-descriptor mode. 1532 */ 1533 if (!desc->hwdescs.use) { 1534 /* 1535 * If we haven't completed the last transfer chunk simply move 1536 * to the next one. Only wake the IRQ thread if the transfer is 1537 * cyclic. 1538 */ 1539 if (!list_is_last(&desc->running->node, &desc->chunks)) { 1540 desc->running = list_next_entry(desc->running, node); 1541 if (!desc->cyclic) 1542 ret = IRQ_HANDLED; 1543 goto done; 1544 } 1545 1546 /* 1547 * We've completed the last transfer chunk. If the transfer is 1548 * cyclic, move back to the first one. 1549 */ 1550 if (desc->cyclic) { 1551 desc->running = 1552 list_first_entry(&desc->chunks, 1553 struct rcar_dmac_xfer_chunk, 1554 node); 1555 goto done; 1556 } 1557 } 1558 1559 /* The descriptor is complete, move it to the done list. */ 1560 list_move_tail(&desc->node, &chan->desc.done); 1561 1562 /* Queue the next descriptor, if any. */ 1563 if (!list_empty(&chan->desc.active)) 1564 chan->desc.running = list_first_entry(&chan->desc.active, 1565 struct rcar_dmac_desc, 1566 node); 1567 else 1568 chan->desc.running = NULL; 1569 1570 done: 1571 if (chan->desc.running) 1572 rcar_dmac_chan_start_xfer(chan); 1573 1574 return ret; 1575 } 1576 1577 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev) 1578 { 1579 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE; 1580 struct rcar_dmac_chan *chan = dev; 1581 irqreturn_t ret = IRQ_NONE; 1582 bool reinit = false; 1583 u32 chcr; 1584 1585 spin_lock(&chan->lock); 1586 1587 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR); 1588 if (chcr & RCAR_DMACHCR_CAE) { 1589 struct rcar_dmac *dmac = to_rcar_dmac(chan->chan.device); 1590 1591 /* 1592 * We don't need to call rcar_dmac_chan_halt() 1593 * because channel is already stopped in error case. 1594 * We need to clear register and check DE bit as recovery. 1595 */ 1596 rcar_dmac_chan_clear(dmac, chan); 1597 rcar_dmac_chcr_de_barrier(chan); 1598 reinit = true; 1599 goto spin_lock_end; 1600 } 1601 1602 if (chcr & RCAR_DMACHCR_TE) 1603 mask |= RCAR_DMACHCR_DE; 1604 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask); 1605 if (mask & RCAR_DMACHCR_DE) 1606 rcar_dmac_chcr_de_barrier(chan); 1607 1608 if (chcr & RCAR_DMACHCR_DSE) 1609 ret |= rcar_dmac_isr_desc_stage_end(chan); 1610 1611 if (chcr & RCAR_DMACHCR_TE) 1612 ret |= rcar_dmac_isr_transfer_end(chan); 1613 1614 spin_lock_end: 1615 spin_unlock(&chan->lock); 1616 1617 if (reinit) { 1618 dev_err(chan->chan.device->dev, "Channel Address Error\n"); 1619 1620 rcar_dmac_chan_reinit(chan); 1621 ret = IRQ_HANDLED; 1622 } 1623 1624 return ret; 1625 } 1626 1627 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev) 1628 { 1629 struct rcar_dmac_chan *chan = dev; 1630 struct rcar_dmac_desc *desc; 1631 struct dmaengine_desc_callback cb; 1632 1633 spin_lock_irq(&chan->lock); 1634 1635 /* For cyclic transfers notify the user after every chunk. */ 1636 if (chan->desc.running && chan->desc.running->cyclic) { 1637 desc = chan->desc.running; 1638 dmaengine_desc_get_callback(&desc->async_tx, &cb); 1639 1640 if (dmaengine_desc_callback_valid(&cb)) { 1641 spin_unlock_irq(&chan->lock); 1642 dmaengine_desc_callback_invoke(&cb, NULL); 1643 spin_lock_irq(&chan->lock); 1644 } 1645 } 1646 1647 /* 1648 * Call the callback function for all descriptors on the done list and 1649 * move them to the ack wait list. 1650 */ 1651 while (!list_empty(&chan->desc.done)) { 1652 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc, 1653 node); 1654 dma_cookie_complete(&desc->async_tx); 1655 list_del(&desc->node); 1656 1657 dmaengine_desc_get_callback(&desc->async_tx, &cb); 1658 if (dmaengine_desc_callback_valid(&cb)) { 1659 spin_unlock_irq(&chan->lock); 1660 /* 1661 * We own the only reference to this descriptor, we can 1662 * safely dereference it without holding the channel 1663 * lock. 1664 */ 1665 dmaengine_desc_callback_invoke(&cb, NULL); 1666 spin_lock_irq(&chan->lock); 1667 } 1668 1669 list_add_tail(&desc->node, &chan->desc.wait); 1670 } 1671 1672 spin_unlock_irq(&chan->lock); 1673 1674 /* Recycle all acked descriptors. */ 1675 rcar_dmac_desc_recycle_acked(chan); 1676 1677 return IRQ_HANDLED; 1678 } 1679 1680 /* ----------------------------------------------------------------------------- 1681 * OF xlate and channel filter 1682 */ 1683 1684 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg) 1685 { 1686 struct rcar_dmac *dmac = to_rcar_dmac(chan->device); 1687 struct of_phandle_args *dma_spec = arg; 1688 1689 /* 1690 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate 1691 * function knows from which device it wants to allocate a channel from, 1692 * and would be perfectly capable of selecting the channel it wants. 1693 * Forcing it to call dma_request_channel() and iterate through all 1694 * channels from all controllers is just pointless. 1695 */ 1696 if (chan->device->device_config != rcar_dmac_device_config) 1697 return false; 1698 1699 return !test_and_set_bit(dma_spec->args[0], dmac->modules); 1700 } 1701 1702 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec, 1703 struct of_dma *ofdma) 1704 { 1705 struct rcar_dmac_chan *rchan; 1706 struct dma_chan *chan; 1707 dma_cap_mask_t mask; 1708 1709 if (dma_spec->args_count != 1) 1710 return NULL; 1711 1712 /* Only slave DMA channels can be allocated via DT */ 1713 dma_cap_zero(mask); 1714 dma_cap_set(DMA_SLAVE, mask); 1715 1716 chan = __dma_request_channel(&mask, rcar_dmac_chan_filter, dma_spec, 1717 ofdma->of_node); 1718 if (!chan) 1719 return NULL; 1720 1721 rchan = to_rcar_dmac_chan(chan); 1722 rchan->mid_rid = dma_spec->args[0]; 1723 1724 return chan; 1725 } 1726 1727 /* ----------------------------------------------------------------------------- 1728 * Power management 1729 */ 1730 1731 #ifdef CONFIG_PM 1732 static int rcar_dmac_runtime_suspend(struct device *dev) 1733 { 1734 return 0; 1735 } 1736 1737 static int rcar_dmac_runtime_resume(struct device *dev) 1738 { 1739 struct rcar_dmac *dmac = dev_get_drvdata(dev); 1740 1741 return rcar_dmac_init(dmac); 1742 } 1743 #endif 1744 1745 static const struct dev_pm_ops rcar_dmac_pm = { 1746 /* 1747 * TODO for system sleep/resume: 1748 * - Wait for the current transfer to complete and stop the device, 1749 * - Resume transfers, if any. 1750 */ 1751 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1752 pm_runtime_force_resume) 1753 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume, 1754 NULL) 1755 }; 1756 1757 /* ----------------------------------------------------------------------------- 1758 * Probe and remove 1759 */ 1760 1761 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac, 1762 struct rcar_dmac_chan *rchan) 1763 { 1764 struct platform_device *pdev = to_platform_device(dmac->dev); 1765 struct dma_chan *chan = &rchan->chan; 1766 char pdev_irqname[5]; 1767 char *irqname; 1768 int ret; 1769 1770 rchan->mid_rid = -EINVAL; 1771 1772 spin_lock_init(&rchan->lock); 1773 1774 INIT_LIST_HEAD(&rchan->desc.free); 1775 INIT_LIST_HEAD(&rchan->desc.pending); 1776 INIT_LIST_HEAD(&rchan->desc.active); 1777 INIT_LIST_HEAD(&rchan->desc.done); 1778 INIT_LIST_HEAD(&rchan->desc.wait); 1779 1780 /* Request the channel interrupt. */ 1781 sprintf(pdev_irqname, "ch%u", rchan->index); 1782 rchan->irq = platform_get_irq_byname(pdev, pdev_irqname); 1783 if (rchan->irq < 0) 1784 return -ENODEV; 1785 1786 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u", 1787 dev_name(dmac->dev), rchan->index); 1788 if (!irqname) 1789 return -ENOMEM; 1790 1791 /* 1792 * Initialize the DMA engine channel and add it to the DMA engine 1793 * channels list. 1794 */ 1795 chan->device = &dmac->engine; 1796 dma_cookie_init(chan); 1797 1798 list_add_tail(&chan->device_node, &dmac->engine.channels); 1799 1800 ret = devm_request_threaded_irq(dmac->dev, rchan->irq, 1801 rcar_dmac_isr_channel, 1802 rcar_dmac_isr_channel_thread, 0, 1803 irqname, rchan); 1804 if (ret) { 1805 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", 1806 rchan->irq, ret); 1807 return ret; 1808 } 1809 1810 return 0; 1811 } 1812 1813 #define RCAR_DMAC_MAX_CHANNELS 32 1814 1815 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac) 1816 { 1817 struct device_node *np = dev->of_node; 1818 int ret; 1819 1820 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels); 1821 if (ret < 0) { 1822 dev_err(dev, "unable to read dma-channels property\n"); 1823 return ret; 1824 } 1825 1826 /* The hardware and driver don't support more than 32 bits in CHCLR */ 1827 if (dmac->n_channels <= 0 || 1828 dmac->n_channels >= RCAR_DMAC_MAX_CHANNELS) { 1829 dev_err(dev, "invalid number of channels %u\n", 1830 dmac->n_channels); 1831 return -EINVAL; 1832 } 1833 1834 /* 1835 * If the driver is unable to read dma-channel-mask property, 1836 * the driver assumes that it can use all channels. 1837 */ 1838 dmac->channels_mask = GENMASK(dmac->n_channels - 1, 0); 1839 of_property_read_u32(np, "dma-channel-mask", &dmac->channels_mask); 1840 1841 /* If the property has out-of-channel mask, this driver clears it */ 1842 dmac->channels_mask &= GENMASK(dmac->n_channels - 1, 0); 1843 1844 return 0; 1845 } 1846 1847 static int rcar_dmac_probe(struct platform_device *pdev) 1848 { 1849 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE | 1850 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES | 1851 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES | 1852 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES; 1853 const struct rcar_dmac_of_data *data; 1854 struct rcar_dmac_chan *chan; 1855 struct dma_device *engine; 1856 void __iomem *chan_base; 1857 struct rcar_dmac *dmac; 1858 unsigned int i; 1859 int ret; 1860 1861 data = of_device_get_match_data(&pdev->dev); 1862 if (!data) 1863 return -EINVAL; 1864 1865 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); 1866 if (!dmac) 1867 return -ENOMEM; 1868 1869 dmac->dev = &pdev->dev; 1870 platform_set_drvdata(pdev, dmac); 1871 ret = dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK); 1872 if (ret) 1873 return ret; 1874 1875 ret = dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40)); 1876 if (ret) 1877 return ret; 1878 1879 ret = rcar_dmac_parse_of(&pdev->dev, dmac); 1880 if (ret < 0) 1881 return ret; 1882 1883 /* 1884 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be 1885 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0 1886 * is connected to microTLB 0 on currently supported platforms, so we 1887 * can't use it with the IPMMU. As the IOMMU API operates at the device 1888 * level we can't disable it selectively, so ignore channel 0 for now if 1889 * the device is part of an IOMMU group. 1890 */ 1891 if (device_iommu_mapped(&pdev->dev)) 1892 dmac->channels_mask &= ~BIT(0); 1893 1894 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels, 1895 sizeof(*dmac->channels), GFP_KERNEL); 1896 if (!dmac->channels) 1897 return -ENOMEM; 1898 1899 /* Request resources. */ 1900 dmac->dmac_base = devm_platform_ioremap_resource(pdev, 0); 1901 if (IS_ERR(dmac->dmac_base)) 1902 return PTR_ERR(dmac->dmac_base); 1903 1904 if (!data->chan_offset_base) { 1905 dmac->chan_base = devm_platform_ioremap_resource(pdev, 1); 1906 if (IS_ERR(dmac->chan_base)) 1907 return PTR_ERR(dmac->chan_base); 1908 1909 chan_base = dmac->chan_base; 1910 } else { 1911 chan_base = dmac->dmac_base + data->chan_offset_base; 1912 } 1913 1914 for_each_rcar_dmac_chan(i, dmac, chan) { 1915 chan->index = i; 1916 chan->iomem = chan_base + i * data->chan_offset_stride; 1917 } 1918 1919 /* Enable runtime PM and initialize the device. */ 1920 pm_runtime_enable(&pdev->dev); 1921 ret = pm_runtime_resume_and_get(&pdev->dev); 1922 if (ret < 0) { 1923 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret); 1924 goto err_pm_disable; 1925 } 1926 1927 ret = rcar_dmac_init(dmac); 1928 pm_runtime_put(&pdev->dev); 1929 1930 if (ret) { 1931 dev_err(&pdev->dev, "failed to reset device\n"); 1932 goto err_pm_disable; 1933 } 1934 1935 /* Initialize engine */ 1936 engine = &dmac->engine; 1937 1938 dma_cap_set(DMA_MEMCPY, engine->cap_mask); 1939 dma_cap_set(DMA_SLAVE, engine->cap_mask); 1940 1941 engine->dev = &pdev->dev; 1942 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE); 1943 1944 engine->src_addr_widths = widths; 1945 engine->dst_addr_widths = widths; 1946 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1947 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1948 1949 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources; 1950 engine->device_free_chan_resources = rcar_dmac_free_chan_resources; 1951 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy; 1952 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg; 1953 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic; 1954 engine->device_config = rcar_dmac_device_config; 1955 engine->device_pause = rcar_dmac_chan_pause; 1956 engine->device_terminate_all = rcar_dmac_chan_terminate_all; 1957 engine->device_tx_status = rcar_dmac_tx_status; 1958 engine->device_issue_pending = rcar_dmac_issue_pending; 1959 engine->device_synchronize = rcar_dmac_device_synchronize; 1960 1961 INIT_LIST_HEAD(&engine->channels); 1962 1963 for_each_rcar_dmac_chan(i, dmac, chan) { 1964 ret = rcar_dmac_chan_probe(dmac, chan); 1965 if (ret < 0) 1966 goto err_pm_disable; 1967 } 1968 1969 /* Register the DMAC as a DMA provider for DT. */ 1970 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate, 1971 NULL); 1972 if (ret < 0) 1973 goto err_pm_disable; 1974 1975 /* 1976 * Register the DMA engine device. 1977 * 1978 * Default transfer size of 32 bytes requires 32-byte alignment. 1979 */ 1980 ret = dma_async_device_register(engine); 1981 if (ret < 0) 1982 goto err_dma_free; 1983 1984 return 0; 1985 1986 err_dma_free: 1987 of_dma_controller_free(pdev->dev.of_node); 1988 err_pm_disable: 1989 pm_runtime_disable(&pdev->dev); 1990 return ret; 1991 } 1992 1993 static void rcar_dmac_remove(struct platform_device *pdev) 1994 { 1995 struct rcar_dmac *dmac = platform_get_drvdata(pdev); 1996 1997 of_dma_controller_free(pdev->dev.of_node); 1998 dma_async_device_unregister(&dmac->engine); 1999 2000 pm_runtime_disable(&pdev->dev); 2001 } 2002 2003 static void rcar_dmac_shutdown(struct platform_device *pdev) 2004 { 2005 struct rcar_dmac *dmac = platform_get_drvdata(pdev); 2006 2007 rcar_dmac_stop_all_chan(dmac); 2008 } 2009 2010 static const struct rcar_dmac_of_data rcar_dmac_data = { 2011 .chan_offset_base = 0x8000, 2012 .chan_offset_stride = 0x80, 2013 }; 2014 2015 static const struct rcar_dmac_of_data rcar_gen4_dmac_data = { 2016 .chan_offset_base = 0x0, 2017 .chan_offset_stride = 0x1000, 2018 }; 2019 2020 static const struct of_device_id rcar_dmac_of_ids[] = { 2021 { 2022 .compatible = "renesas,rcar-dmac", 2023 .data = &rcar_dmac_data, 2024 }, { 2025 .compatible = "renesas,rcar-gen4-dmac", 2026 .data = &rcar_gen4_dmac_data, 2027 }, { 2028 .compatible = "renesas,dmac-r8a779a0", 2029 .data = &rcar_gen4_dmac_data, 2030 }, 2031 { /* Sentinel */ } 2032 }; 2033 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids); 2034 2035 static struct platform_driver rcar_dmac_driver = { 2036 .driver = { 2037 .pm = &rcar_dmac_pm, 2038 .name = "rcar-dmac", 2039 .of_match_table = rcar_dmac_of_ids, 2040 }, 2041 .probe = rcar_dmac_probe, 2042 .remove_new = rcar_dmac_remove, 2043 .shutdown = rcar_dmac_shutdown, 2044 }; 2045 2046 module_platform_driver(rcar_dmac_driver); 2047 2048 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver"); 2049 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); 2050 MODULE_LICENSE("GPL v2"); 2051