xref: /linux/drivers/dma/sh/rcar-dmac.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
122  * @chan: base DMA channel object
123  * @iomem: channel I/O memory base
124  * @index: index of this channel in the controller
125  * @src_xfer_size: size (in bytes) of hardware transfers on the source side
126  * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
127  * @src_slave_addr: slave source memory address
128  * @dst_slave_addr: slave destination memory address
129  * @mid_rid: hardware MID/RID for the DMA client using this channel
130  * @lock: protects the channel CHCR register and the desc members
131  * @desc.free: list of free descriptors
132  * @desc.pending: list of pending descriptors (submitted with tx_submit)
133  * @desc.active: list of active descriptors (activated with issue_pending)
134  * @desc.done: list of completed descriptors
135  * @desc.wait: list of descriptors waiting for an ack
136  * @desc.running: the descriptor being processed (a member of the active list)
137  * @desc.chunks_free: list of free transfer chunk descriptors
138  * @desc.pages: list of pages used by allocated descriptors
139  */
140 struct rcar_dmac_chan {
141 	struct dma_chan chan;
142 	void __iomem *iomem;
143 	unsigned int index;
144 
145 	unsigned int src_xfer_size;
146 	unsigned int dst_xfer_size;
147 	dma_addr_t src_slave_addr;
148 	dma_addr_t dst_slave_addr;
149 	int mid_rid;
150 
151 	spinlock_t lock;
152 
153 	struct {
154 		struct list_head free;
155 		struct list_head pending;
156 		struct list_head active;
157 		struct list_head done;
158 		struct list_head wait;
159 		struct rcar_dmac_desc *running;
160 
161 		struct list_head chunks_free;
162 
163 		struct list_head pages;
164 	} desc;
165 };
166 
167 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
168 
169 /*
170  * struct rcar_dmac - R-Car Gen2 DMA Controller
171  * @engine: base DMA engine object
172  * @dev: the hardware device
173  * @iomem: remapped I/O memory base
174  * @n_channels: number of available channels
175  * @channels: array of DMAC channels
176  * @modules: bitmask of client modules in use
177  */
178 struct rcar_dmac {
179 	struct dma_device engine;
180 	struct device *dev;
181 	void __iomem *iomem;
182 
183 	unsigned int n_channels;
184 	struct rcar_dmac_chan *channels;
185 
186 	DECLARE_BITMAP(modules, 256);
187 };
188 
189 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
190 
191 /* -----------------------------------------------------------------------------
192  * Registers
193  */
194 
195 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
196 
197 #define RCAR_DMAISTA			0x0020
198 #define RCAR_DMASEC			0x0030
199 #define RCAR_DMAOR			0x0060
200 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
201 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
202 #define RCAR_DMAOR_AE			(1 << 2)
203 #define RCAR_DMAOR_DME			(1 << 0)
204 #define RCAR_DMACHCLR			0x0080
205 #define RCAR_DMADPSEC			0x00a0
206 
207 #define RCAR_DMASAR			0x0000
208 #define RCAR_DMADAR			0x0004
209 #define RCAR_DMATCR			0x0008
210 #define RCAR_DMATCR_MASK		0x00ffffff
211 #define RCAR_DMATSR			0x0028
212 #define RCAR_DMACHCR			0x000c
213 #define RCAR_DMACHCR_CAE		(1 << 31)
214 #define RCAR_DMACHCR_CAIE		(1 << 30)
215 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
216 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
217 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
218 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
219 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
220 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
221 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
222 #define RCAR_DMACHCR_DPB		(1 << 22)
223 #define RCAR_DMACHCR_DSE		(1 << 19)
224 #define RCAR_DMACHCR_DSIE		(1 << 18)
225 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
226 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
227 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
228 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
229 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
230 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
231 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
232 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
233 #define RCAR_DMACHCR_DM_INC		(1 << 14)
234 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
235 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
236 #define RCAR_DMACHCR_SM_INC		(1 << 12)
237 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
238 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
239 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
240 #define RCAR_DMACHCR_IE			(1 << 2)
241 #define RCAR_DMACHCR_TE			(1 << 1)
242 #define RCAR_DMACHCR_DE			(1 << 0)
243 #define RCAR_DMATCRB			0x0018
244 #define RCAR_DMATSRB			0x0038
245 #define RCAR_DMACHCRB			0x001c
246 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
247 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
248 #define RCAR_DMACHCRB_DPTR_SHIFT	16
249 #define RCAR_DMACHCRB_DRST		(1 << 15)
250 #define RCAR_DMACHCRB_DTS		(1 << 8)
251 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
252 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
253 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
254 #define RCAR_DMARS			0x0040
255 #define RCAR_DMABUFCR			0x0048
256 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
257 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
258 #define RCAR_DMADPBASE			0x0050
259 #define RCAR_DMADPBASE_MASK		0xfffffff0
260 #define RCAR_DMADPBASE_SEL		(1 << 0)
261 #define RCAR_DMADPCR			0x0054
262 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
263 #define RCAR_DMAFIXSAR			0x0010
264 #define RCAR_DMAFIXDAR			0x0014
265 #define RCAR_DMAFIXDPBASE		0x0060
266 
267 /* Hardcode the MEMCPY transfer size to 4 bytes. */
268 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
269 
270 /* -----------------------------------------------------------------------------
271  * Device access
272  */
273 
274 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
275 {
276 	if (reg == RCAR_DMAOR)
277 		writew(data, dmac->iomem + reg);
278 	else
279 		writel(data, dmac->iomem + reg);
280 }
281 
282 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
283 {
284 	if (reg == RCAR_DMAOR)
285 		return readw(dmac->iomem + reg);
286 	else
287 		return readl(dmac->iomem + reg);
288 }
289 
290 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
291 {
292 	if (reg == RCAR_DMARS)
293 		return readw(chan->iomem + reg);
294 	else
295 		return readl(chan->iomem + reg);
296 }
297 
298 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
299 {
300 	if (reg == RCAR_DMARS)
301 		writew(data, chan->iomem + reg);
302 	else
303 		writel(data, chan->iomem + reg);
304 }
305 
306 /* -----------------------------------------------------------------------------
307  * Initialization and configuration
308  */
309 
310 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
311 {
312 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
313 
314 	return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
315 }
316 
317 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
318 {
319 	struct rcar_dmac_desc *desc = chan->desc.running;
320 	u32 chcr = desc->chcr;
321 
322 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
323 
324 	if (chan->mid_rid >= 0)
325 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
326 
327 	if (desc->hwdescs.use) {
328 		struct rcar_dmac_xfer_chunk *chunk;
329 
330 		dev_dbg(chan->chan.device->dev,
331 			"chan%u: queue desc %p: %u@%pad\n",
332 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
333 
334 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
335 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
336 				     desc->hwdescs.dma >> 32);
337 #endif
338 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
339 				     (desc->hwdescs.dma & 0xfffffff0) |
340 				     RCAR_DMADPBASE_SEL);
341 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
342 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
343 				     RCAR_DMACHCRB_DRST);
344 
345 		/*
346 		 * Errata: When descriptor memory is accessed through an IOMMU
347 		 * the DMADAR register isn't initialized automatically from the
348 		 * first descriptor at beginning of transfer by the DMAC like it
349 		 * should. Initialize it manually with the destination address
350 		 * of the first chunk.
351 		 */
352 		chunk = list_first_entry(&desc->chunks,
353 					 struct rcar_dmac_xfer_chunk, node);
354 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
355 				     chunk->dst_addr & 0xffffffff);
356 
357 		/*
358 		 * Program the descriptor stage interrupt to occur after the end
359 		 * of the first stage.
360 		 */
361 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
362 
363 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
364 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
365 
366 		/*
367 		 * If the descriptor isn't cyclic enable normal descriptor mode
368 		 * and the transfer completion interrupt.
369 		 */
370 		if (!desc->cyclic)
371 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
372 		/*
373 		 * If the descriptor is cyclic and has a callback enable the
374 		 * descriptor stage interrupt in infinite repeat mode.
375 		 */
376 		else if (desc->async_tx.callback)
377 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
378 		/*
379 		 * Otherwise just select infinite repeat mode without any
380 		 * interrupt.
381 		 */
382 		else
383 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
384 	} else {
385 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
386 
387 		dev_dbg(chan->chan.device->dev,
388 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
389 			chan->index, chunk, chunk->size, &chunk->src_addr,
390 			&chunk->dst_addr);
391 
392 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
393 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
394 				     chunk->src_addr >> 32);
395 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
396 				     chunk->dst_addr >> 32);
397 #endif
398 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
399 				     chunk->src_addr & 0xffffffff);
400 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
401 				     chunk->dst_addr & 0xffffffff);
402 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
403 				     chunk->size >> desc->xfer_shift);
404 
405 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
406 	}
407 
408 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
409 }
410 
411 static int rcar_dmac_init(struct rcar_dmac *dmac)
412 {
413 	u16 dmaor;
414 
415 	/* Clear all channels and enable the DMAC globally. */
416 	rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
417 	rcar_dmac_write(dmac, RCAR_DMAOR,
418 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
419 
420 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
421 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
422 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
423 		return -EIO;
424 	}
425 
426 	return 0;
427 }
428 
429 /* -----------------------------------------------------------------------------
430  * Descriptors submission
431  */
432 
433 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
434 {
435 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
436 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
437 	unsigned long flags;
438 	dma_cookie_t cookie;
439 
440 	spin_lock_irqsave(&chan->lock, flags);
441 
442 	cookie = dma_cookie_assign(tx);
443 
444 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
445 		chan->index, tx->cookie, desc);
446 
447 	list_add_tail(&desc->node, &chan->desc.pending);
448 	desc->running = list_first_entry(&desc->chunks,
449 					 struct rcar_dmac_xfer_chunk, node);
450 
451 	spin_unlock_irqrestore(&chan->lock, flags);
452 
453 	return cookie;
454 }
455 
456 /* -----------------------------------------------------------------------------
457  * Descriptors allocation and free
458  */
459 
460 /*
461  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
462  * @chan: the DMA channel
463  * @gfp: allocation flags
464  */
465 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
466 {
467 	struct rcar_dmac_desc_page *page;
468 	unsigned long flags;
469 	LIST_HEAD(list);
470 	unsigned int i;
471 
472 	page = (void *)get_zeroed_page(gfp);
473 	if (!page)
474 		return -ENOMEM;
475 
476 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
477 		struct rcar_dmac_desc *desc = &page->descs[i];
478 
479 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
480 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
481 		INIT_LIST_HEAD(&desc->chunks);
482 
483 		list_add_tail(&desc->node, &list);
484 	}
485 
486 	spin_lock_irqsave(&chan->lock, flags);
487 	list_splice_tail(&list, &chan->desc.free);
488 	list_add_tail(&page->node, &chan->desc.pages);
489 	spin_unlock_irqrestore(&chan->lock, flags);
490 
491 	return 0;
492 }
493 
494 /*
495  * rcar_dmac_desc_put - Release a DMA transfer descriptor
496  * @chan: the DMA channel
497  * @desc: the descriptor
498  *
499  * Put the descriptor and its transfer chunk descriptors back in the channel's
500  * free descriptors lists. The descriptor's chunks list will be reinitialized to
501  * an empty list as a result.
502  *
503  * The descriptor must have been removed from the channel's lists before calling
504  * this function.
505  */
506 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
507 			       struct rcar_dmac_desc *desc)
508 {
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&chan->lock, flags);
512 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
513 	list_add_tail(&desc->node, &chan->desc.free);
514 	spin_unlock_irqrestore(&chan->lock, flags);
515 }
516 
517 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
518 {
519 	struct rcar_dmac_desc *desc, *_desc;
520 	unsigned long flags;
521 	LIST_HEAD(list);
522 
523 	/*
524 	 * We have to temporarily move all descriptors from the wait list to a
525 	 * local list as iterating over the wait list, even with
526 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
527 	 * around the rcar_dmac_desc_put() call.
528 	 */
529 	spin_lock_irqsave(&chan->lock, flags);
530 	list_splice_init(&chan->desc.wait, &list);
531 	spin_unlock_irqrestore(&chan->lock, flags);
532 
533 	list_for_each_entry_safe(desc, _desc, &list, node) {
534 		if (async_tx_test_ack(&desc->async_tx)) {
535 			list_del(&desc->node);
536 			rcar_dmac_desc_put(chan, desc);
537 		}
538 	}
539 
540 	if (list_empty(&list))
541 		return;
542 
543 	/* Put the remaining descriptors back in the wait list. */
544 	spin_lock_irqsave(&chan->lock, flags);
545 	list_splice(&list, &chan->desc.wait);
546 	spin_unlock_irqrestore(&chan->lock, flags);
547 }
548 
549 /*
550  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
551  * @chan: the DMA channel
552  *
553  * Locking: This function must be called in a non-atomic context.
554  *
555  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
556  * be allocated.
557  */
558 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
559 {
560 	struct rcar_dmac_desc *desc;
561 	unsigned long flags;
562 	int ret;
563 
564 	/* Recycle acked descriptors before attempting allocation. */
565 	rcar_dmac_desc_recycle_acked(chan);
566 
567 	spin_lock_irqsave(&chan->lock, flags);
568 
569 	while (list_empty(&chan->desc.free)) {
570 		/*
571 		 * No free descriptors, allocate a page worth of them and try
572 		 * again, as someone else could race us to get the newly
573 		 * allocated descriptors. If the allocation fails return an
574 		 * error.
575 		 */
576 		spin_unlock_irqrestore(&chan->lock, flags);
577 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
578 		if (ret < 0)
579 			return NULL;
580 		spin_lock_irqsave(&chan->lock, flags);
581 	}
582 
583 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
584 	list_del(&desc->node);
585 
586 	spin_unlock_irqrestore(&chan->lock, flags);
587 
588 	return desc;
589 }
590 
591 /*
592  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
593  * @chan: the DMA channel
594  * @gfp: allocation flags
595  */
596 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
597 {
598 	struct rcar_dmac_desc_page *page;
599 	unsigned long flags;
600 	LIST_HEAD(list);
601 	unsigned int i;
602 
603 	page = (void *)get_zeroed_page(gfp);
604 	if (!page)
605 		return -ENOMEM;
606 
607 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
608 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
609 
610 		list_add_tail(&chunk->node, &list);
611 	}
612 
613 	spin_lock_irqsave(&chan->lock, flags);
614 	list_splice_tail(&list, &chan->desc.chunks_free);
615 	list_add_tail(&page->node, &chan->desc.pages);
616 	spin_unlock_irqrestore(&chan->lock, flags);
617 
618 	return 0;
619 }
620 
621 /*
622  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
623  * @chan: the DMA channel
624  *
625  * Locking: This function must be called in a non-atomic context.
626  *
627  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
628  * descriptor can be allocated.
629  */
630 static struct rcar_dmac_xfer_chunk *
631 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
632 {
633 	struct rcar_dmac_xfer_chunk *chunk;
634 	unsigned long flags;
635 	int ret;
636 
637 	spin_lock_irqsave(&chan->lock, flags);
638 
639 	while (list_empty(&chan->desc.chunks_free)) {
640 		/*
641 		 * No free descriptors, allocate a page worth of them and try
642 		 * again, as someone else could race us to get the newly
643 		 * allocated descriptors. If the allocation fails return an
644 		 * error.
645 		 */
646 		spin_unlock_irqrestore(&chan->lock, flags);
647 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
648 		if (ret < 0)
649 			return NULL;
650 		spin_lock_irqsave(&chan->lock, flags);
651 	}
652 
653 	chunk = list_first_entry(&chan->desc.chunks_free,
654 				 struct rcar_dmac_xfer_chunk, node);
655 	list_del(&chunk->node);
656 
657 	spin_unlock_irqrestore(&chan->lock, flags);
658 
659 	return chunk;
660 }
661 
662 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
663 				     struct rcar_dmac_desc *desc, size_t size)
664 {
665 	/*
666 	 * dma_alloc_coherent() allocates memory in page size increments. To
667 	 * avoid reallocating the hardware descriptors when the allocated size
668 	 * wouldn't change align the requested size to a multiple of the page
669 	 * size.
670 	 */
671 	size = PAGE_ALIGN(size);
672 
673 	if (desc->hwdescs.size == size)
674 		return;
675 
676 	if (desc->hwdescs.mem) {
677 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
678 				  desc->hwdescs.mem, desc->hwdescs.dma);
679 		desc->hwdescs.mem = NULL;
680 		desc->hwdescs.size = 0;
681 	}
682 
683 	if (!size)
684 		return;
685 
686 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
687 					       &desc->hwdescs.dma, GFP_NOWAIT);
688 	if (!desc->hwdescs.mem)
689 		return;
690 
691 	desc->hwdescs.size = size;
692 }
693 
694 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
695 				 struct rcar_dmac_desc *desc)
696 {
697 	struct rcar_dmac_xfer_chunk *chunk;
698 	struct rcar_dmac_hw_desc *hwdesc;
699 
700 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
701 
702 	hwdesc = desc->hwdescs.mem;
703 	if (!hwdesc)
704 		return -ENOMEM;
705 
706 	list_for_each_entry(chunk, &desc->chunks, node) {
707 		hwdesc->sar = chunk->src_addr;
708 		hwdesc->dar = chunk->dst_addr;
709 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
710 		hwdesc++;
711 	}
712 
713 	return 0;
714 }
715 
716 /* -----------------------------------------------------------------------------
717  * Stop and reset
718  */
719 
720 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
721 {
722 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
723 
724 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
725 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
726 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
727 }
728 
729 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
730 {
731 	struct rcar_dmac_desc *desc, *_desc;
732 	unsigned long flags;
733 	LIST_HEAD(descs);
734 
735 	spin_lock_irqsave(&chan->lock, flags);
736 
737 	/* Move all non-free descriptors to the local lists. */
738 	list_splice_init(&chan->desc.pending, &descs);
739 	list_splice_init(&chan->desc.active, &descs);
740 	list_splice_init(&chan->desc.done, &descs);
741 	list_splice_init(&chan->desc.wait, &descs);
742 
743 	chan->desc.running = NULL;
744 
745 	spin_unlock_irqrestore(&chan->lock, flags);
746 
747 	list_for_each_entry_safe(desc, _desc, &descs, node) {
748 		list_del(&desc->node);
749 		rcar_dmac_desc_put(chan, desc);
750 	}
751 }
752 
753 static void rcar_dmac_stop(struct rcar_dmac *dmac)
754 {
755 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
756 }
757 
758 static void rcar_dmac_abort(struct rcar_dmac *dmac)
759 {
760 	unsigned int i;
761 
762 	/* Stop all channels. */
763 	for (i = 0; i < dmac->n_channels; ++i) {
764 		struct rcar_dmac_chan *chan = &dmac->channels[i];
765 
766 		/* Stop and reinitialize the channel. */
767 		spin_lock(&chan->lock);
768 		rcar_dmac_chan_halt(chan);
769 		spin_unlock(&chan->lock);
770 
771 		rcar_dmac_chan_reinit(chan);
772 	}
773 }
774 
775 /* -----------------------------------------------------------------------------
776  * Descriptors preparation
777  */
778 
779 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
780 					  struct rcar_dmac_desc *desc)
781 {
782 	static const u32 chcr_ts[] = {
783 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
784 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
785 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
786 		RCAR_DMACHCR_TS_64B,
787 	};
788 
789 	unsigned int xfer_size;
790 	u32 chcr;
791 
792 	switch (desc->direction) {
793 	case DMA_DEV_TO_MEM:
794 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
795 		     | RCAR_DMACHCR_RS_DMARS;
796 		xfer_size = chan->src_xfer_size;
797 		break;
798 
799 	case DMA_MEM_TO_DEV:
800 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
801 		     | RCAR_DMACHCR_RS_DMARS;
802 		xfer_size = chan->dst_xfer_size;
803 		break;
804 
805 	case DMA_MEM_TO_MEM:
806 	default:
807 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
808 		     | RCAR_DMACHCR_RS_AUTO;
809 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
810 		break;
811 	}
812 
813 	desc->xfer_shift = ilog2(xfer_size);
814 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
815 }
816 
817 /*
818  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
819  *
820  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
821  * converted to scatter-gather to guarantee consistent locking and a correct
822  * list manipulation. For slave DMA direction carries the usual meaning, and,
823  * logically, the SG list is RAM and the addr variable contains slave address,
824  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
825  * and the SG list contains only one element and points at the source buffer.
826  */
827 static struct dma_async_tx_descriptor *
828 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
829 		       unsigned int sg_len, dma_addr_t dev_addr,
830 		       enum dma_transfer_direction dir, unsigned long dma_flags,
831 		       bool cyclic)
832 {
833 	struct rcar_dmac_xfer_chunk *chunk;
834 	struct rcar_dmac_desc *desc;
835 	struct scatterlist *sg;
836 	unsigned int nchunks = 0;
837 	unsigned int max_chunk_size;
838 	unsigned int full_size = 0;
839 	bool highmem = false;
840 	unsigned int i;
841 
842 	desc = rcar_dmac_desc_get(chan);
843 	if (!desc)
844 		return NULL;
845 
846 	desc->async_tx.flags = dma_flags;
847 	desc->async_tx.cookie = -EBUSY;
848 
849 	desc->cyclic = cyclic;
850 	desc->direction = dir;
851 
852 	rcar_dmac_chan_configure_desc(chan, desc);
853 
854 	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
855 
856 	/*
857 	 * Allocate and fill the transfer chunk descriptors. We own the only
858 	 * reference to the DMA descriptor, there's no need for locking.
859 	 */
860 	for_each_sg(sgl, sg, sg_len, i) {
861 		dma_addr_t mem_addr = sg_dma_address(sg);
862 		unsigned int len = sg_dma_len(sg);
863 
864 		full_size += len;
865 
866 		while (len) {
867 			unsigned int size = min(len, max_chunk_size);
868 
869 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
870 			/*
871 			 * Prevent individual transfers from crossing 4GB
872 			 * boundaries.
873 			 */
874 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
875 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
876 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
877 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
878 
879 			/*
880 			 * Check if either of the source or destination address
881 			 * can't be expressed in 32 bits. If so we can't use
882 			 * hardware descriptor lists.
883 			 */
884 			if (dev_addr >> 32 || mem_addr >> 32)
885 				highmem = true;
886 #endif
887 
888 			chunk = rcar_dmac_xfer_chunk_get(chan);
889 			if (!chunk) {
890 				rcar_dmac_desc_put(chan, desc);
891 				return NULL;
892 			}
893 
894 			if (dir == DMA_DEV_TO_MEM) {
895 				chunk->src_addr = dev_addr;
896 				chunk->dst_addr = mem_addr;
897 			} else {
898 				chunk->src_addr = mem_addr;
899 				chunk->dst_addr = dev_addr;
900 			}
901 
902 			chunk->size = size;
903 
904 			dev_dbg(chan->chan.device->dev,
905 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
906 				chan->index, chunk, desc, i, sg, size, len,
907 				&chunk->src_addr, &chunk->dst_addr);
908 
909 			mem_addr += size;
910 			if (dir == DMA_MEM_TO_MEM)
911 				dev_addr += size;
912 
913 			len -= size;
914 
915 			list_add_tail(&chunk->node, &desc->chunks);
916 			nchunks++;
917 		}
918 	}
919 
920 	desc->nchunks = nchunks;
921 	desc->size = full_size;
922 
923 	/*
924 	 * Use hardware descriptor lists if possible when more than one chunk
925 	 * needs to be transferred (otherwise they don't make much sense).
926 	 *
927 	 * The highmem check currently covers the whole transfer. As an
928 	 * optimization we could use descriptor lists for consecutive lowmem
929 	 * chunks and direct manual mode for highmem chunks. Whether the
930 	 * performance improvement would be significant enough compared to the
931 	 * additional complexity remains to be investigated.
932 	 */
933 	desc->hwdescs.use = !highmem && nchunks > 1;
934 	if (desc->hwdescs.use) {
935 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
936 			desc->hwdescs.use = false;
937 	}
938 
939 	return &desc->async_tx;
940 }
941 
942 /* -----------------------------------------------------------------------------
943  * DMA engine operations
944  */
945 
946 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
947 {
948 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
949 	int ret;
950 
951 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
952 	INIT_LIST_HEAD(&rchan->desc.pages);
953 
954 	/* Preallocate descriptors. */
955 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
956 	if (ret < 0)
957 		return -ENOMEM;
958 
959 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
960 	if (ret < 0)
961 		return -ENOMEM;
962 
963 	return pm_runtime_get_sync(chan->device->dev);
964 }
965 
966 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
967 {
968 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
969 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
970 	struct rcar_dmac_desc_page *page, *_page;
971 	struct rcar_dmac_desc *desc;
972 	LIST_HEAD(list);
973 
974 	/* Protect against ISR */
975 	spin_lock_irq(&rchan->lock);
976 	rcar_dmac_chan_halt(rchan);
977 	spin_unlock_irq(&rchan->lock);
978 
979 	/* Now no new interrupts will occur */
980 
981 	if (rchan->mid_rid >= 0) {
982 		/* The caller is holding dma_list_mutex */
983 		clear_bit(rchan->mid_rid, dmac->modules);
984 		rchan->mid_rid = -EINVAL;
985 	}
986 
987 	list_splice_init(&rchan->desc.free, &list);
988 	list_splice_init(&rchan->desc.pending, &list);
989 	list_splice_init(&rchan->desc.active, &list);
990 	list_splice_init(&rchan->desc.done, &list);
991 	list_splice_init(&rchan->desc.wait, &list);
992 
993 	list_for_each_entry(desc, &list, node)
994 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
995 
996 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
997 		list_del(&page->node);
998 		free_page((unsigned long)page);
999 	}
1000 
1001 	pm_runtime_put(chan->device->dev);
1002 }
1003 
1004 static struct dma_async_tx_descriptor *
1005 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1006 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1007 {
1008 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1009 	struct scatterlist sgl;
1010 
1011 	if (!len)
1012 		return NULL;
1013 
1014 	sg_init_table(&sgl, 1);
1015 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1016 		    offset_in_page(dma_src));
1017 	sg_dma_address(&sgl) = dma_src;
1018 	sg_dma_len(&sgl) = len;
1019 
1020 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1021 				      DMA_MEM_TO_MEM, flags, false);
1022 }
1023 
1024 static struct dma_async_tx_descriptor *
1025 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026 			unsigned int sg_len, enum dma_transfer_direction dir,
1027 			unsigned long flags, void *context)
1028 {
1029 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030 	dma_addr_t dev_addr;
1031 
1032 	/* Someone calling slave DMA on a generic channel? */
1033 	if (rchan->mid_rid < 0 || !sg_len) {
1034 		dev_warn(chan->device->dev,
1035 			 "%s: bad parameter: len=%d, id=%d\n",
1036 			 __func__, sg_len, rchan->mid_rid);
1037 		return NULL;
1038 	}
1039 
1040 	dev_addr = dir == DMA_DEV_TO_MEM
1041 		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1042 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1043 				      dir, flags, false);
1044 }
1045 
1046 #define RCAR_DMAC_MAX_SG_LEN	32
1047 
1048 static struct dma_async_tx_descriptor *
1049 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1050 			  size_t buf_len, size_t period_len,
1051 			  enum dma_transfer_direction dir, unsigned long flags)
1052 {
1053 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1054 	struct dma_async_tx_descriptor *desc;
1055 	struct scatterlist *sgl;
1056 	dma_addr_t dev_addr;
1057 	unsigned int sg_len;
1058 	unsigned int i;
1059 
1060 	/* Someone calling slave DMA on a generic channel? */
1061 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1062 		dev_warn(chan->device->dev,
1063 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1064 			__func__, buf_len, period_len, rchan->mid_rid);
1065 		return NULL;
1066 	}
1067 
1068 	sg_len = buf_len / period_len;
1069 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1070 		dev_err(chan->device->dev,
1071 			"chan%u: sg length %d exceds limit %d",
1072 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1073 		return NULL;
1074 	}
1075 
1076 	/*
1077 	 * Allocate the sg list dynamically as it would consume too much stack
1078 	 * space.
1079 	 */
1080 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1081 	if (!sgl)
1082 		return NULL;
1083 
1084 	sg_init_table(sgl, sg_len);
1085 
1086 	for (i = 0; i < sg_len; ++i) {
1087 		dma_addr_t src = buf_addr + (period_len * i);
1088 
1089 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1090 			    offset_in_page(src));
1091 		sg_dma_address(&sgl[i]) = src;
1092 		sg_dma_len(&sgl[i]) = period_len;
1093 	}
1094 
1095 	dev_addr = dir == DMA_DEV_TO_MEM
1096 		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1097 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1098 				      dir, flags, true);
1099 
1100 	kfree(sgl);
1101 	return desc;
1102 }
1103 
1104 static int rcar_dmac_device_config(struct dma_chan *chan,
1105 				   struct dma_slave_config *cfg)
1106 {
1107 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1108 
1109 	/*
1110 	 * We could lock this, but you shouldn't be configuring the
1111 	 * channel, while using it...
1112 	 */
1113 	rchan->src_slave_addr = cfg->src_addr;
1114 	rchan->dst_slave_addr = cfg->dst_addr;
1115 	rchan->src_xfer_size = cfg->src_addr_width;
1116 	rchan->dst_xfer_size = cfg->dst_addr_width;
1117 
1118 	return 0;
1119 }
1120 
1121 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1122 {
1123 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124 	unsigned long flags;
1125 
1126 	spin_lock_irqsave(&rchan->lock, flags);
1127 	rcar_dmac_chan_halt(rchan);
1128 	spin_unlock_irqrestore(&rchan->lock, flags);
1129 
1130 	/*
1131 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1132 	 * be running.
1133 	 */
1134 
1135 	rcar_dmac_chan_reinit(rchan);
1136 
1137 	return 0;
1138 }
1139 
1140 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1141 					       dma_cookie_t cookie)
1142 {
1143 	struct rcar_dmac_desc *desc = chan->desc.running;
1144 	struct rcar_dmac_xfer_chunk *running = NULL;
1145 	struct rcar_dmac_xfer_chunk *chunk;
1146 	unsigned int residue = 0;
1147 	unsigned int dptr = 0;
1148 
1149 	if (!desc)
1150 		return 0;
1151 
1152 	/*
1153 	 * If the cookie doesn't correspond to the currently running transfer
1154 	 * then the descriptor hasn't been processed yet, and the residue is
1155 	 * equal to the full descriptor size.
1156 	 */
1157 	if (cookie != desc->async_tx.cookie)
1158 		return desc->size;
1159 
1160 	/*
1161 	 * In descriptor mode the descriptor running pointer is not maintained
1162 	 * by the interrupt handler, find the running descriptor from the
1163 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1164 	 * mode just use the running descriptor pointer.
1165 	 */
1166 	if (desc->hwdescs.use) {
1167 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1168 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1169 		WARN_ON(dptr >= desc->nchunks);
1170 	} else {
1171 		running = desc->running;
1172 	}
1173 
1174 	/* Compute the size of all chunks still to be transferred. */
1175 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1176 		if (chunk == running || ++dptr == desc->nchunks)
1177 			break;
1178 
1179 		residue += chunk->size;
1180 	}
1181 
1182 	/* Add the residue for the current chunk. */
1183 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1184 
1185 	return residue;
1186 }
1187 
1188 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1189 					   dma_cookie_t cookie,
1190 					   struct dma_tx_state *txstate)
1191 {
1192 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1193 	enum dma_status status;
1194 	unsigned long flags;
1195 	unsigned int residue;
1196 
1197 	status = dma_cookie_status(chan, cookie, txstate);
1198 	if (status == DMA_COMPLETE || !txstate)
1199 		return status;
1200 
1201 	spin_lock_irqsave(&rchan->lock, flags);
1202 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1203 	spin_unlock_irqrestore(&rchan->lock, flags);
1204 
1205 	dma_set_residue(txstate, residue);
1206 
1207 	return status;
1208 }
1209 
1210 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1211 {
1212 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1213 	unsigned long flags;
1214 
1215 	spin_lock_irqsave(&rchan->lock, flags);
1216 
1217 	if (list_empty(&rchan->desc.pending))
1218 		goto done;
1219 
1220 	/* Append the pending list to the active list. */
1221 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1222 
1223 	/*
1224 	 * If no transfer is running pick the first descriptor from the active
1225 	 * list and start the transfer.
1226 	 */
1227 	if (!rchan->desc.running) {
1228 		struct rcar_dmac_desc *desc;
1229 
1230 		desc = list_first_entry(&rchan->desc.active,
1231 					struct rcar_dmac_desc, node);
1232 		rchan->desc.running = desc;
1233 
1234 		rcar_dmac_chan_start_xfer(rchan);
1235 	}
1236 
1237 done:
1238 	spin_unlock_irqrestore(&rchan->lock, flags);
1239 }
1240 
1241 /* -----------------------------------------------------------------------------
1242  * IRQ handling
1243  */
1244 
1245 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1246 {
1247 	struct rcar_dmac_desc *desc = chan->desc.running;
1248 	unsigned int stage;
1249 
1250 	if (WARN_ON(!desc || !desc->cyclic)) {
1251 		/*
1252 		 * This should never happen, there should always be a running
1253 		 * cyclic descriptor when a descriptor stage end interrupt is
1254 		 * triggered. Warn and return.
1255 		 */
1256 		return IRQ_NONE;
1257 	}
1258 
1259 	/* Program the interrupt pointer to the next stage. */
1260 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1261 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1262 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1263 
1264 	return IRQ_WAKE_THREAD;
1265 }
1266 
1267 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1268 {
1269 	struct rcar_dmac_desc *desc = chan->desc.running;
1270 	irqreturn_t ret = IRQ_WAKE_THREAD;
1271 
1272 	if (WARN_ON_ONCE(!desc)) {
1273 		/*
1274 		 * This should never happen, there should always be a running
1275 		 * descriptor when a transfer end interrupt is triggered. Warn
1276 		 * and return.
1277 		 */
1278 		return IRQ_NONE;
1279 	}
1280 
1281 	/*
1282 	 * The transfer end interrupt isn't generated for each chunk when using
1283 	 * descriptor mode. Only update the running chunk pointer in
1284 	 * non-descriptor mode.
1285 	 */
1286 	if (!desc->hwdescs.use) {
1287 		/*
1288 		 * If we haven't completed the last transfer chunk simply move
1289 		 * to the next one. Only wake the IRQ thread if the transfer is
1290 		 * cyclic.
1291 		 */
1292 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1293 			desc->running = list_next_entry(desc->running, node);
1294 			if (!desc->cyclic)
1295 				ret = IRQ_HANDLED;
1296 			goto done;
1297 		}
1298 
1299 		/*
1300 		 * We've completed the last transfer chunk. If the transfer is
1301 		 * cyclic, move back to the first one.
1302 		 */
1303 		if (desc->cyclic) {
1304 			desc->running =
1305 				list_first_entry(&desc->chunks,
1306 						 struct rcar_dmac_xfer_chunk,
1307 						 node);
1308 			goto done;
1309 		}
1310 	}
1311 
1312 	/* The descriptor is complete, move it to the done list. */
1313 	list_move_tail(&desc->node, &chan->desc.done);
1314 
1315 	/* Queue the next descriptor, if any. */
1316 	if (!list_empty(&chan->desc.active))
1317 		chan->desc.running = list_first_entry(&chan->desc.active,
1318 						      struct rcar_dmac_desc,
1319 						      node);
1320 	else
1321 		chan->desc.running = NULL;
1322 
1323 done:
1324 	if (chan->desc.running)
1325 		rcar_dmac_chan_start_xfer(chan);
1326 
1327 	return ret;
1328 }
1329 
1330 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1331 {
1332 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1333 	struct rcar_dmac_chan *chan = dev;
1334 	irqreturn_t ret = IRQ_NONE;
1335 	u32 chcr;
1336 
1337 	spin_lock(&chan->lock);
1338 
1339 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1340 	if (chcr & RCAR_DMACHCR_TE)
1341 		mask |= RCAR_DMACHCR_DE;
1342 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1343 
1344 	if (chcr & RCAR_DMACHCR_DSE)
1345 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1346 
1347 	if (chcr & RCAR_DMACHCR_TE)
1348 		ret |= rcar_dmac_isr_transfer_end(chan);
1349 
1350 	spin_unlock(&chan->lock);
1351 
1352 	return ret;
1353 }
1354 
1355 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1356 {
1357 	struct rcar_dmac_chan *chan = dev;
1358 	struct rcar_dmac_desc *desc;
1359 
1360 	spin_lock_irq(&chan->lock);
1361 
1362 	/* For cyclic transfers notify the user after every chunk. */
1363 	if (chan->desc.running && chan->desc.running->cyclic) {
1364 		dma_async_tx_callback callback;
1365 		void *callback_param;
1366 
1367 		desc = chan->desc.running;
1368 		callback = desc->async_tx.callback;
1369 		callback_param = desc->async_tx.callback_param;
1370 
1371 		if (callback) {
1372 			spin_unlock_irq(&chan->lock);
1373 			callback(callback_param);
1374 			spin_lock_irq(&chan->lock);
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Call the callback function for all descriptors on the done list and
1380 	 * move them to the ack wait list.
1381 	 */
1382 	while (!list_empty(&chan->desc.done)) {
1383 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1384 					node);
1385 		dma_cookie_complete(&desc->async_tx);
1386 		list_del(&desc->node);
1387 
1388 		if (desc->async_tx.callback) {
1389 			spin_unlock_irq(&chan->lock);
1390 			/*
1391 			 * We own the only reference to this descriptor, we can
1392 			 * safely dereference it without holding the channel
1393 			 * lock.
1394 			 */
1395 			desc->async_tx.callback(desc->async_tx.callback_param);
1396 			spin_lock_irq(&chan->lock);
1397 		}
1398 
1399 		list_add_tail(&desc->node, &chan->desc.wait);
1400 	}
1401 
1402 	spin_unlock_irq(&chan->lock);
1403 
1404 	/* Recycle all acked descriptors. */
1405 	rcar_dmac_desc_recycle_acked(chan);
1406 
1407 	return IRQ_HANDLED;
1408 }
1409 
1410 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1411 {
1412 	struct rcar_dmac *dmac = data;
1413 
1414 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1415 		return IRQ_NONE;
1416 
1417 	/*
1418 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1419 	 * abort transfers on all channels, and reinitialize the DMAC.
1420 	 */
1421 	rcar_dmac_stop(dmac);
1422 	rcar_dmac_abort(dmac);
1423 	rcar_dmac_init(dmac);
1424 
1425 	return IRQ_HANDLED;
1426 }
1427 
1428 /* -----------------------------------------------------------------------------
1429  * OF xlate and channel filter
1430  */
1431 
1432 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1433 {
1434 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1435 	struct of_phandle_args *dma_spec = arg;
1436 
1437 	/*
1438 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1439 	 * function knows from which device it wants to allocate a channel from,
1440 	 * and would be perfectly capable of selecting the channel it wants.
1441 	 * Forcing it to call dma_request_channel() and iterate through all
1442 	 * channels from all controllers is just pointless.
1443 	 */
1444 	if (chan->device->device_config != rcar_dmac_device_config ||
1445 	    dma_spec->np != chan->device->dev->of_node)
1446 		return false;
1447 
1448 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1449 }
1450 
1451 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1452 					   struct of_dma *ofdma)
1453 {
1454 	struct rcar_dmac_chan *rchan;
1455 	struct dma_chan *chan;
1456 	dma_cap_mask_t mask;
1457 
1458 	if (dma_spec->args_count != 1)
1459 		return NULL;
1460 
1461 	/* Only slave DMA channels can be allocated via DT */
1462 	dma_cap_zero(mask);
1463 	dma_cap_set(DMA_SLAVE, mask);
1464 
1465 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1466 	if (!chan)
1467 		return NULL;
1468 
1469 	rchan = to_rcar_dmac_chan(chan);
1470 	rchan->mid_rid = dma_spec->args[0];
1471 
1472 	return chan;
1473 }
1474 
1475 /* -----------------------------------------------------------------------------
1476  * Power management
1477  */
1478 
1479 #ifdef CONFIG_PM_SLEEP
1480 static int rcar_dmac_sleep_suspend(struct device *dev)
1481 {
1482 	/*
1483 	 * TODO: Wait for the current transfer to complete and stop the device.
1484 	 */
1485 	return 0;
1486 }
1487 
1488 static int rcar_dmac_sleep_resume(struct device *dev)
1489 {
1490 	/* TODO: Resume transfers, if any. */
1491 	return 0;
1492 }
1493 #endif
1494 
1495 #ifdef CONFIG_PM
1496 static int rcar_dmac_runtime_suspend(struct device *dev)
1497 {
1498 	return 0;
1499 }
1500 
1501 static int rcar_dmac_runtime_resume(struct device *dev)
1502 {
1503 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1504 
1505 	return rcar_dmac_init(dmac);
1506 }
1507 #endif
1508 
1509 static const struct dev_pm_ops rcar_dmac_pm = {
1510 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1511 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1512 			   NULL)
1513 };
1514 
1515 /* -----------------------------------------------------------------------------
1516  * Probe and remove
1517  */
1518 
1519 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1520 				struct rcar_dmac_chan *rchan,
1521 				unsigned int index)
1522 {
1523 	struct platform_device *pdev = to_platform_device(dmac->dev);
1524 	struct dma_chan *chan = &rchan->chan;
1525 	char pdev_irqname[5];
1526 	char *irqname;
1527 	int irq;
1528 	int ret;
1529 
1530 	rchan->index = index;
1531 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1532 	rchan->mid_rid = -EINVAL;
1533 
1534 	spin_lock_init(&rchan->lock);
1535 
1536 	INIT_LIST_HEAD(&rchan->desc.free);
1537 	INIT_LIST_HEAD(&rchan->desc.pending);
1538 	INIT_LIST_HEAD(&rchan->desc.active);
1539 	INIT_LIST_HEAD(&rchan->desc.done);
1540 	INIT_LIST_HEAD(&rchan->desc.wait);
1541 
1542 	/* Request the channel interrupt. */
1543 	sprintf(pdev_irqname, "ch%u", index);
1544 	irq = platform_get_irq_byname(pdev, pdev_irqname);
1545 	if (irq < 0) {
1546 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1547 		return -ENODEV;
1548 	}
1549 
1550 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1551 				 dev_name(dmac->dev), index);
1552 	if (!irqname)
1553 		return -ENOMEM;
1554 
1555 	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1556 					rcar_dmac_isr_channel_thread, 0,
1557 					irqname, rchan);
1558 	if (ret) {
1559 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1560 		return ret;
1561 	}
1562 
1563 	/*
1564 	 * Initialize the DMA engine channel and add it to the DMA engine
1565 	 * channels list.
1566 	 */
1567 	chan->device = &dmac->engine;
1568 	dma_cookie_init(chan);
1569 
1570 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1571 
1572 	return 0;
1573 }
1574 
1575 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1576 {
1577 	struct device_node *np = dev->of_node;
1578 	int ret;
1579 
1580 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1581 	if (ret < 0) {
1582 		dev_err(dev, "unable to read dma-channels property\n");
1583 		return ret;
1584 	}
1585 
1586 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1587 		dev_err(dev, "invalid number of channels %u\n",
1588 			dmac->n_channels);
1589 		return -EINVAL;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
1595 static int rcar_dmac_probe(struct platform_device *pdev)
1596 {
1597 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1598 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1599 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1600 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1601 	unsigned int channels_offset = 0;
1602 	struct dma_device *engine;
1603 	struct rcar_dmac *dmac;
1604 	struct resource *mem;
1605 	unsigned int i;
1606 	char *irqname;
1607 	int irq;
1608 	int ret;
1609 
1610 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1611 	if (!dmac)
1612 		return -ENOMEM;
1613 
1614 	dmac->dev = &pdev->dev;
1615 	platform_set_drvdata(pdev, dmac);
1616 
1617 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1618 	if (ret < 0)
1619 		return ret;
1620 
1621 	/*
1622 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1623 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1624 	 * is connected to microTLB 0 on currently supported platforms, so we
1625 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1626 	 * level we can't disable it selectively, so ignore channel 0 for now if
1627 	 * the device is part of an IOMMU group.
1628 	 */
1629 	if (pdev->dev.iommu_group) {
1630 		dmac->n_channels--;
1631 		channels_offset = 1;
1632 	}
1633 
1634 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1635 				      sizeof(*dmac->channels), GFP_KERNEL);
1636 	if (!dmac->channels)
1637 		return -ENOMEM;
1638 
1639 	/* Request resources. */
1640 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1641 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1642 	if (IS_ERR(dmac->iomem))
1643 		return PTR_ERR(dmac->iomem);
1644 
1645 	irq = platform_get_irq_byname(pdev, "error");
1646 	if (irq < 0) {
1647 		dev_err(&pdev->dev, "no error IRQ specified\n");
1648 		return -ENODEV;
1649 	}
1650 
1651 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1652 				 dev_name(dmac->dev));
1653 	if (!irqname)
1654 		return -ENOMEM;
1655 
1656 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1657 			       irqname, dmac);
1658 	if (ret) {
1659 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1660 			irq, ret);
1661 		return ret;
1662 	}
1663 
1664 	/* Enable runtime PM and initialize the device. */
1665 	pm_runtime_enable(&pdev->dev);
1666 	ret = pm_runtime_get_sync(&pdev->dev);
1667 	if (ret < 0) {
1668 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1669 		return ret;
1670 	}
1671 
1672 	ret = rcar_dmac_init(dmac);
1673 	pm_runtime_put(&pdev->dev);
1674 
1675 	if (ret) {
1676 		dev_err(&pdev->dev, "failed to reset device\n");
1677 		goto error;
1678 	}
1679 
1680 	/* Initialize the channels. */
1681 	INIT_LIST_HEAD(&dmac->engine.channels);
1682 
1683 	for (i = 0; i < dmac->n_channels; ++i) {
1684 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1685 					   i + channels_offset);
1686 		if (ret < 0)
1687 			goto error;
1688 	}
1689 
1690 	/* Register the DMAC as a DMA provider for DT. */
1691 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1692 					 NULL);
1693 	if (ret < 0)
1694 		goto error;
1695 
1696 	/*
1697 	 * Register the DMA engine device.
1698 	 *
1699 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1700 	 */
1701 	engine = &dmac->engine;
1702 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1703 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1704 
1705 	engine->dev = &pdev->dev;
1706 	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1707 
1708 	engine->src_addr_widths = widths;
1709 	engine->dst_addr_widths = widths;
1710 	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1711 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1712 
1713 	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1714 	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1715 	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1716 	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1717 	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1718 	engine->device_config = rcar_dmac_device_config;
1719 	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1720 	engine->device_tx_status = rcar_dmac_tx_status;
1721 	engine->device_issue_pending = rcar_dmac_issue_pending;
1722 
1723 	ret = dma_async_device_register(engine);
1724 	if (ret < 0)
1725 		goto error;
1726 
1727 	return 0;
1728 
1729 error:
1730 	of_dma_controller_free(pdev->dev.of_node);
1731 	pm_runtime_disable(&pdev->dev);
1732 	return ret;
1733 }
1734 
1735 static int rcar_dmac_remove(struct platform_device *pdev)
1736 {
1737 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1738 
1739 	of_dma_controller_free(pdev->dev.of_node);
1740 	dma_async_device_unregister(&dmac->engine);
1741 
1742 	pm_runtime_disable(&pdev->dev);
1743 
1744 	return 0;
1745 }
1746 
1747 static void rcar_dmac_shutdown(struct platform_device *pdev)
1748 {
1749 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1750 
1751 	rcar_dmac_stop(dmac);
1752 }
1753 
1754 static const struct of_device_id rcar_dmac_of_ids[] = {
1755 	{ .compatible = "renesas,rcar-dmac", },
1756 	{ /* Sentinel */ }
1757 };
1758 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1759 
1760 static struct platform_driver rcar_dmac_driver = {
1761 	.driver		= {
1762 		.pm	= &rcar_dmac_pm,
1763 		.name	= "rcar-dmac",
1764 		.of_match_table = rcar_dmac_of_ids,
1765 	},
1766 	.probe		= rcar_dmac_probe,
1767 	.remove		= rcar_dmac_remove,
1768 	.shutdown	= rcar_dmac_shutdown,
1769 };
1770 
1771 module_platform_driver(rcar_dmac_driver);
1772 
1773 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1774 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1775 MODULE_LICENSE("GPL v2");
1776