xref: /linux/drivers/dma/qcom/gpi.c (revision 6ce4c5dc5dd2706d1821d8ebdc53afad8182c2d5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19 
20 #define TRE_TYPE_DMA		0x10
21 #define TRE_TYPE_GO		0x20
22 #define TRE_TYPE_CONFIG0	0x22
23 
24 /* TRE flags */
25 #define TRE_FLAGS_CHAIN		BIT(0)
26 #define TRE_FLAGS_IEOB		BIT(8)
27 #define TRE_FLAGS_IEOT		BIT(9)
28 #define TRE_FLAGS_BEI		BIT(10)
29 #define TRE_FLAGS_LINK		BIT(11)
30 #define TRE_FLAGS_TYPE		GENMASK(23, 16)
31 
32 /* SPI CONFIG0 WD0 */
33 #define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
34 #define TRE_SPI_C0_LOOPBACK	BIT(8)
35 #define TRE_SPI_C0_CS		BIT(11)
36 #define TRE_SPI_C0_CPHA		BIT(12)
37 #define TRE_SPI_C0_CPOL		BIT(13)
38 #define TRE_SPI_C0_TX_PACK	BIT(24)
39 #define TRE_SPI_C0_RX_PACK	BIT(25)
40 
41 /* CONFIG0 WD2 */
42 #define TRE_C0_CLK_DIV		GENMASK(11, 0)
43 #define TRE_C0_CLK_SRC		GENMASK(19, 16)
44 
45 /* SPI GO WD0 */
46 #define TRE_SPI_GO_CMD		GENMASK(4, 0)
47 #define TRE_SPI_GO_CS		GENMASK(10, 8)
48 #define TRE_SPI_GO_FRAG		BIT(26)
49 
50 /* GO WD2 */
51 #define TRE_RX_LEN		GENMASK(23, 0)
52 
53 /* I2C Config0 WD0 */
54 #define TRE_I2C_C0_TLOW		GENMASK(7, 0)
55 #define TRE_I2C_C0_THIGH	GENMASK(15, 8)
56 #define TRE_I2C_C0_TCYL		GENMASK(23, 16)
57 #define TRE_I2C_C0_TX_PACK	BIT(24)
58 #define TRE_I2C_C0_RX_PACK      BIT(25)
59 
60 /* I2C GO WD0 */
61 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
62 #define TRE_I2C_GO_ADDR		GENMASK(14, 8)
63 #define TRE_I2C_GO_STRETCH	BIT(26)
64 
65 /* DMA TRE */
66 #define TRE_DMA_LEN		GENMASK(23, 0)
67 
68 /* Register offsets from gpi-top */
69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
71 #define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
72 #define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
73 #define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
74 #define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
75 
76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
77 	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
78 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
79 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
80 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81 
82 #define GPI_CHTYPE_DIR_IN	(0)
83 #define GPI_CHTYPE_DIR_OUT	(1)
84 
85 #define GPI_CHTYPE_PROTO_GPI	(0x2)
86 
87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88 #define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
89 #define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
90 #define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
91 #define GPII_n_CH_CMD(opcode, chid)				 \
92 		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93 		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94 
95 #define GPII_n_CH_CMD_ALLOCATE		(0)
96 #define GPII_n_CH_CMD_START		(1)
97 #define GPII_n_CH_CMD_STOP		(2)
98 #define GPII_n_CH_CMD_RESET		(9)
99 #define GPII_n_CH_CMD_DE_ALLOC		(10)
100 #define GPII_n_CH_CMD_UART_SW_STALE	(32)
101 #define GPII_n_CH_CMD_UART_RFR_READY	(33)
102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103 
104 /* EV Context Array */
105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
107 #define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
108 #define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
109 #define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
110 
111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
112 	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
113 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
114 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115 
116 #define GPI_INTTYPE_IRQ		(1)
117 #define GPI_CHTYPE_GPI_EV	(0x2)
118 
119 enum CNTXT_OFFS {
120 	CNTXT_0_CONFIG = 0x0,
121 	CNTXT_1_R_LENGTH = 0x4,
122 	CNTXT_2_RING_BASE_LSB = 0x8,
123 	CNTXT_3_RING_BASE_MSB = 0xC,
124 	CNTXT_4_RING_RP_LSB = 0x10,
125 	CNTXT_5_RING_RP_MSB = 0x14,
126 	CNTXT_6_RING_WP_LSB = 0x18,
127 	CNTXT_7_RING_WP_MSB = 0x1C,
128 	CNTXT_8_RING_INT_MOD = 0x20,
129 	CNTXT_9_RING_INTVEC = 0x24,
130 	CNTXT_10_RING_MSI_LSB = 0x28,
131 	CNTXT_11_RING_MSI_MSB = 0x2C,
132 	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133 	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134 };
135 
136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137 #define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
138 #define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
139 #define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
140 #define GPII_n_EV_CMD(opcode, chid)				 \
141 		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142 		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143 
144 #define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
145 #define GPII_n_EV_CH_CMD_RESET			(0x09)
146 #define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
147 
148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
149 
150 /* mask type register */
151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
158 
159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
161 
162 /* Mask channel control interrupt register */
163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
165 
166 /* Mask event control interrupt register */
167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
169 
170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
172 
173 /* Mask event interrupt register */
174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
176 
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
179 #define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
180 
181 /* GPII specific Global - Enable bit register */
182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
185 
186 /* GPII general interrupt - Enable bit register */
187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
189 
190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
191 
192 /* GPII Interrupt Type register */
193 #define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
194 #define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
195 
196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
200 
201 #define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
202 
203 /* QOS Registers */
204 #define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205 
206 /* Scratch registers */
207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208 #define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
209 #define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
210 #define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
212 			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
213 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
214 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218 
219 struct __packed gpi_tre {
220 	u32 dword[4];
221 };
222 
223 enum msm_gpi_tce_code {
224 	MSM_GPI_TCE_SUCCESS = 1,
225 	MSM_GPI_TCE_EOT = 2,
226 	MSM_GPI_TCE_EOB = 4,
227 	MSM_GPI_TCE_UNEXP_ERR = 16,
228 };
229 
230 #define CMD_TIMEOUT_MS		(250)
231 
232 #define MAX_CHANNELS_PER_GPII	(2)
233 #define GPI_TX_CHAN		(0)
234 #define GPI_RX_CHAN		(1)
235 #define STATE_IGNORE		(U32_MAX)
236 #define EV_FACTOR		(2)
237 #define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
238 #define CHAN_TRES		64
239 
240 struct __packed xfer_compl_event {
241 	u64 ptr;
242 	u32 length:24;
243 	u8 code;
244 	u16 status;
245 	u8 type;
246 	u8 chid;
247 };
248 
249 struct __packed immediate_data_event {
250 	u8 data_bytes[8];
251 	u8 length:4;
252 	u8 resvd:4;
253 	u16 tre_index;
254 	u8 code;
255 	u16 status;
256 	u8 type;
257 	u8 chid;
258 };
259 
260 struct __packed qup_notif_event {
261 	u32 status;
262 	u32 time;
263 	u32 count:24;
264 	u8 resvd;
265 	u16 resvd1;
266 	u8 type;
267 	u8 chid;
268 };
269 
270 struct __packed gpi_ere {
271 	u32 dword[4];
272 };
273 
274 enum GPI_EV_TYPE {
275 	XFER_COMPLETE_EV_TYPE = 0x22,
276 	IMMEDIATE_DATA_EV_TYPE = 0x30,
277 	QUP_NOTIF_EV_TYPE = 0x31,
278 	STALE_EV_TYPE = 0xFF,
279 };
280 
281 union __packed gpi_event {
282 	struct __packed xfer_compl_event xfer_compl_event;
283 	struct __packed immediate_data_event immediate_data_event;
284 	struct __packed qup_notif_event qup_notif_event;
285 	struct __packed gpi_ere gpi_ere;
286 };
287 
288 enum gpii_irq_settings {
289 	DEFAULT_IRQ_SETTINGS,
290 	MASK_IEOB_SETTINGS,
291 };
292 
293 enum gpi_ev_state {
294 	DEFAULT_EV_CH_STATE = 0,
295 	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296 	EV_STATE_ALLOCATED,
297 	MAX_EV_STATES
298 };
299 
300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301 	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302 	[EV_STATE_ALLOCATED] = "ALLOCATED",
303 };
304 
305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306 				    "INVALID" : gpi_ev_state_str[(_state)])
307 
308 enum gpi_ch_state {
309 	DEFAULT_CH_STATE = 0x0,
310 	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311 	CH_STATE_ALLOCATED = 0x1,
312 	CH_STATE_STARTED = 0x2,
313 	CH_STATE_STOPPED = 0x3,
314 	CH_STATE_STOP_IN_PROC = 0x4,
315 	CH_STATE_ERROR = 0xf,
316 	MAX_CH_STATES
317 };
318 
319 enum gpi_cmd {
320 	GPI_CH_CMD_BEGIN,
321 	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322 	GPI_CH_CMD_START,
323 	GPI_CH_CMD_STOP,
324 	GPI_CH_CMD_RESET,
325 	GPI_CH_CMD_DE_ALLOC,
326 	GPI_CH_CMD_UART_SW_STALE,
327 	GPI_CH_CMD_UART_RFR_READY,
328 	GPI_CH_CMD_UART_RFR_NOT_READY,
329 	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330 	GPI_EV_CMD_BEGIN,
331 	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332 	GPI_EV_CMD_RESET,
333 	GPI_EV_CMD_DEALLOC,
334 	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335 	GPI_MAX_CMD,
336 };
337 
338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339 
340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341 	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342 	[GPI_CH_CMD_START] = "CH START",
343 	[GPI_CH_CMD_STOP] = "CH STOP",
344 	[GPI_CH_CMD_RESET] = "CH_RESET",
345 	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346 	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347 	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348 	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349 	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350 	[GPI_EV_CMD_RESET] = "EV RESET",
351 	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352 };
353 
354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355 				  gpi_cmd_str[(_cmd)])
356 
357 /*
358  * @DISABLE_STATE: no register access allowed
359  * @CONFIG_STATE:  client has configured the channel
360  * @PREP_HARDWARE: register access is allowed
361  *		   however, no processing EVENTS
362  * @ACTIVE_STATE: channels are fully operational
363  * @PREPARE_TERMINATE: graceful termination of channels
364  *		       register access is allowed
365  * @PAUSE_STATE: channels are active, but not processing any events
366  */
367 enum gpi_pm_state {
368 	DISABLE_STATE,
369 	CONFIG_STATE,
370 	PREPARE_HARDWARE,
371 	ACTIVE_STATE,
372 	PREPARE_TERMINATE,
373 	PAUSE_STATE,
374 	MAX_PM_STATE
375 };
376 
377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378 
379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380 	[DISABLE_STATE] = "DISABLE",
381 	[CONFIG_STATE] = "CONFIG",
382 	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
383 	[ACTIVE_STATE] = "ACTIVE",
384 	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
385 	[PAUSE_STATE] = "PAUSE",
386 };
387 
388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389 			      "INVALID" : gpi_pm_state_str[(_state)])
390 
391 static const struct {
392 	enum gpi_cmd gpi_cmd;
393 	u32 opcode;
394 	u32 state;
395 } gpi_cmd_info[GPI_MAX_CMD] = {
396 	{
397 		GPI_CH_CMD_ALLOCATE,
398 		GPII_n_CH_CMD_ALLOCATE,
399 		CH_STATE_ALLOCATED,
400 	},
401 	{
402 		GPI_CH_CMD_START,
403 		GPII_n_CH_CMD_START,
404 		CH_STATE_STARTED,
405 	},
406 	{
407 		GPI_CH_CMD_STOP,
408 		GPII_n_CH_CMD_STOP,
409 		CH_STATE_STOPPED,
410 	},
411 	{
412 		GPI_CH_CMD_RESET,
413 		GPII_n_CH_CMD_RESET,
414 		CH_STATE_ALLOCATED,
415 	},
416 	{
417 		GPI_CH_CMD_DE_ALLOC,
418 		GPII_n_CH_CMD_DE_ALLOC,
419 		CH_STATE_NOT_ALLOCATED,
420 	},
421 	{
422 		GPI_CH_CMD_UART_SW_STALE,
423 		GPII_n_CH_CMD_UART_SW_STALE,
424 		STATE_IGNORE,
425 	},
426 	{
427 		GPI_CH_CMD_UART_RFR_READY,
428 		GPII_n_CH_CMD_UART_RFR_READY,
429 		STATE_IGNORE,
430 	},
431 	{
432 		GPI_CH_CMD_UART_RFR_NOT_READY,
433 		GPII_n_CH_CMD_UART_RFR_NOT_READY,
434 		STATE_IGNORE,
435 	},
436 	{
437 		GPI_EV_CMD_ALLOCATE,
438 		GPII_n_EV_CH_CMD_ALLOCATE,
439 		EV_STATE_ALLOCATED,
440 	},
441 	{
442 		GPI_EV_CMD_RESET,
443 		GPII_n_EV_CH_CMD_RESET,
444 		EV_STATE_ALLOCATED,
445 	},
446 	{
447 		GPI_EV_CMD_DEALLOC,
448 		GPII_n_EV_CH_CMD_DE_ALLOC,
449 		EV_STATE_NOT_ALLOCATED,
450 	},
451 };
452 
453 struct gpi_ring {
454 	void *pre_aligned;
455 	size_t alloc_size;
456 	phys_addr_t phys_addr;
457 	dma_addr_t dma_handle;
458 	void *base;
459 	void *wp;
460 	void *rp;
461 	u32 len;
462 	u32 el_size;
463 	u32 elements;
464 	bool configured;
465 };
466 
467 struct gpi_dev {
468 	struct dma_device dma_device;
469 	struct device *dev;
470 	struct resource *res;
471 	void __iomem *regs;
472 	void __iomem *ee_base; /*ee register base address*/
473 	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474 	u32 gpii_mask; /* gpii instances available for apps */
475 	u32 ev_factor; /* ev ring length factor */
476 	struct gpii *gpiis;
477 };
478 
479 struct gchan {
480 	struct virt_dma_chan vc;
481 	u32 chid;
482 	u32 seid;
483 	u32 protocol;
484 	struct gpii *gpii;
485 	enum gpi_ch_state ch_state;
486 	enum gpi_pm_state pm_state;
487 	void __iomem *ch_cntxt_base_reg;
488 	void __iomem *ch_cntxt_db_reg;
489 	void __iomem *ch_cmd_reg;
490 	u32 dir;
491 	struct gpi_ring ch_ring;
492 	void *config;
493 };
494 
495 struct gpii {
496 	u32 gpii_id;
497 	struct gchan gchan[MAX_CHANNELS_PER_GPII];
498 	struct gpi_dev *gpi_dev;
499 	int irq;
500 	void __iomem *regs; /* points to gpi top */
501 	void __iomem *ev_cntxt_base_reg;
502 	void __iomem *ev_cntxt_db_reg;
503 	void __iomem *ev_ring_rp_lsb_reg;
504 	void __iomem *ev_cmd_reg;
505 	void __iomem *ieob_clr_reg;
506 	struct mutex ctrl_lock;
507 	enum gpi_ev_state ev_state;
508 	bool configured_irq;
509 	enum gpi_pm_state pm_state;
510 	rwlock_t pm_lock;
511 	struct gpi_ring ev_ring;
512 	struct tasklet_struct ev_task; /* event processing tasklet */
513 	struct completion cmd_completion;
514 	enum gpi_cmd gpi_cmd;
515 	u32 cntxt_type_irq_msk;
516 	bool ieob_set;
517 };
518 
519 #define MAX_TRE 3
520 
521 struct gpi_desc {
522 	struct virt_dma_desc vd;
523 	size_t len;
524 	void *db; /* DB register to program */
525 	struct gchan *gchan;
526 	struct gpi_tre tre[MAX_TRE];
527 	u32 num_tre;
528 };
529 
530 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
531 	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
532 };
533 
534 static irqreturn_t gpi_handle_irq(int irq, void *data);
535 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
536 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
537 static void gpi_process_events(struct gpii *gpii);
538 
539 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
540 {
541 	return container_of(dma_chan, struct gchan, vc.chan);
542 }
543 
544 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
545 {
546 	return container_of(vd, struct gpi_desc, vd);
547 }
548 
549 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
550 				      void *addr)
551 {
552 	return ring->phys_addr + (addr - ring->base);
553 }
554 
555 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
556 {
557 	return ring->base + (addr - ring->phys_addr);
558 }
559 
560 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
561 {
562 	return readl_relaxed(addr);
563 }
564 
565 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
566 {
567 	writel_relaxed(val, addr);
568 }
569 
570 /* gpi_write_reg_field - write to specific bit field */
571 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
572 				       u32 mask, u32 shift, u32 val)
573 {
574 	u32 tmp = gpi_read_reg(gpii, addr);
575 
576 	tmp &= ~mask;
577 	val = tmp | ((val << shift) & mask);
578 	gpi_write_reg(gpii, addr, val);
579 }
580 
581 static __always_inline void
582 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
583 {
584 	void __iomem *addr = gpii->regs + offset;
585 	u32 tmp = gpi_read_reg(gpii, addr);
586 
587 	tmp &= ~mask;
588 	tmp |= u32_encode_bits(val, mask);
589 
590 	gpi_write_reg(gpii, addr, tmp);
591 }
592 
593 static void gpi_disable_interrupts(struct gpii *gpii)
594 {
595 	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
596 		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
597 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
598 		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
599 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
600 		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
601 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
602 		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
603 	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
604 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
605 	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
606 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
607 	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
608 		       GPII_n_CNTXT_INTSET_BMSK, 0);
609 
610 	gpii->cntxt_type_irq_msk = 0;
611 	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
612 	gpii->configured_irq = false;
613 }
614 
615 /* configure and enable interrupts */
616 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
617 {
618 	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
619 			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
620 			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
621 			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
622 			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
623 	int ret;
624 
625 	if (!gpii->configured_irq) {
626 		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
627 				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
628 				       "gpi-dma", gpii);
629 		if (ret < 0) {
630 			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
631 				gpii->irq, ret);
632 			return ret;
633 		}
634 	}
635 
636 	if (settings == MASK_IEOB_SETTINGS) {
637 		/*
638 		 * GPII only uses one EV ring per gpii so we can globally
639 		 * enable/disable IEOB interrupt
640 		 */
641 		if (mask)
642 			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
643 		else
644 			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
645 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
646 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
647 	} else {
648 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
649 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
650 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
651 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
652 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
653 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
654 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
655 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
656 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
657 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
658 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
659 		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
660 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
661 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
662 		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
663 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
664 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
665 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
666 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
667 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
668 		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
669 			       GPII_n_CNTXT_INTSET_BMSK, 1);
670 		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
671 
672 		gpii->cntxt_type_irq_msk = enable;
673 	}
674 
675 	gpii->configured_irq = true;
676 	return 0;
677 }
678 
679 /* Sends gpii event or channel command */
680 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
681 			enum gpi_cmd gpi_cmd)
682 {
683 	u32 chid = MAX_CHANNELS_PER_GPII;
684 	unsigned long timeout;
685 	void __iomem *cmd_reg;
686 	u32 cmd;
687 
688 	if (gpi_cmd >= GPI_MAX_CMD)
689 		return -EINVAL;
690 	if (IS_CHAN_CMD(gpi_cmd))
691 		chid = gchan->chid;
692 
693 	dev_dbg(gpii->gpi_dev->dev,
694 		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
695 
696 	/* send opcode and wait for completion */
697 	reinit_completion(&gpii->cmd_completion);
698 	gpii->gpi_cmd = gpi_cmd;
699 
700 	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
701 	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
702 				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
703 	gpi_write_reg(gpii, cmd_reg, cmd);
704 	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
705 					      msecs_to_jiffies(CMD_TIMEOUT_MS));
706 	if (!timeout) {
707 		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
708 			TO_GPI_CMD_STR(gpi_cmd), chid);
709 		return -EIO;
710 	}
711 
712 	/* confirm new ch state is correct , if the cmd is a state change cmd */
713 	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
714 		return 0;
715 
716 	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
717 		return 0;
718 
719 	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
720 		return 0;
721 
722 	return -EIO;
723 }
724 
725 /* program transfer ring DB register */
726 static inline void gpi_write_ch_db(struct gchan *gchan,
727 				   struct gpi_ring *ring, void *wp)
728 {
729 	struct gpii *gpii = gchan->gpii;
730 	phys_addr_t p_wp;
731 
732 	p_wp = to_physical(ring, wp);
733 	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
734 }
735 
736 /* program event ring DB register */
737 static inline void gpi_write_ev_db(struct gpii *gpii,
738 				   struct gpi_ring *ring, void *wp)
739 {
740 	phys_addr_t p_wp;
741 
742 	p_wp = ring->phys_addr + (wp - ring->base);
743 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
744 }
745 
746 /* process transfer completion interrupt */
747 static void gpi_process_ieob(struct gpii *gpii)
748 {
749 	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
750 
751 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
752 	tasklet_hi_schedule(&gpii->ev_task);
753 }
754 
755 /* process channel control interrupt */
756 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
757 {
758 	u32 gpii_id = gpii->gpii_id;
759 	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
760 	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
761 	struct gchan *gchan;
762 	u32 chid, state;
763 
764 	/* clear the status */
765 	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
766 	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
767 
768 	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
769 		if (!(BIT(chid) & ch_irq))
770 			continue;
771 
772 		gchan = &gpii->gchan[chid];
773 		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
774 				     CNTXT_0_CONFIG);
775 		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
776 
777 		/*
778 		 * CH_CMD_DEALLOC cmd always successful. However cmd does
779 		 * not change hardware status. So overwriting software state
780 		 * to default state.
781 		 */
782 		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
783 			state = DEFAULT_CH_STATE;
784 		gchan->ch_state = state;
785 
786 		/*
787 		 * Triggering complete all if ch_state is not a stop in process.
788 		 * Stop in process is a transition state and we will wait for
789 		 * stop interrupt before notifying.
790 		 */
791 		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
792 			complete_all(&gpii->cmd_completion);
793 	}
794 }
795 
796 /* processing gpi general error interrupts */
797 static void gpi_process_gen_err_irq(struct gpii *gpii)
798 {
799 	u32 gpii_id = gpii->gpii_id;
800 	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
801 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
802 
803 	/* clear the status */
804 	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
805 
806 	/* Clear the register */
807 	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
808 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
809 }
810 
811 /* processing gpi level error interrupts */
812 static void gpi_process_glob_err_irq(struct gpii *gpii)
813 {
814 	u32 gpii_id = gpii->gpii_id;
815 	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
816 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
817 
818 	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
819 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
820 
821 	/* only error interrupt should be set */
822 	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
823 		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
824 		return;
825 	}
826 
827 	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
828 	gpi_write_reg(gpii, gpii->regs + offset, 0);
829 }
830 
831 /* gpii interrupt handler */
832 static irqreturn_t gpi_handle_irq(int irq, void *data)
833 {
834 	struct gpii *gpii = data;
835 	u32 gpii_id = gpii->gpii_id;
836 	u32 type, offset;
837 	unsigned long flags;
838 
839 	read_lock_irqsave(&gpii->pm_lock, flags);
840 
841 	/*
842 	 * States are out of sync to receive interrupt
843 	 * while software state is in DISABLE state, bailing out.
844 	 */
845 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
846 		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
847 			TO_GPI_PM_STR(gpii->pm_state));
848 		goto exit_irq;
849 	}
850 
851 	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
852 	type = gpi_read_reg(gpii, gpii->regs + offset);
853 
854 	do {
855 		/* global gpii error */
856 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
857 			gpi_process_glob_err_irq(gpii);
858 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
859 		}
860 
861 		/* transfer complete interrupt */
862 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
863 			gpi_process_ieob(gpii);
864 			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
865 		}
866 
867 		/* event control irq */
868 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
869 			u32 ev_state;
870 			u32 ev_ch_irq;
871 
872 			dev_dbg(gpii->gpi_dev->dev,
873 				"processing EV CTRL interrupt\n");
874 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
875 			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
876 
877 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
878 				(gpii_id);
879 			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
880 			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
881 						CNTXT_0_CONFIG);
882 			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
883 
884 			/*
885 			 * CMD EV_CMD_DEALLOC is always successful. However
886 			 * cmd does not change hardware status. So overwriting
887 			 * software state to default state.
888 			 */
889 			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
890 				ev_state = DEFAULT_EV_CH_STATE;
891 
892 			gpii->ev_state = ev_state;
893 			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
894 				TO_GPI_EV_STATE_STR(gpii->ev_state));
895 			complete_all(&gpii->cmd_completion);
896 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
897 		}
898 
899 		/* channel control irq */
900 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
901 			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
902 			gpi_process_ch_ctrl_irq(gpii);
903 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
904 		}
905 
906 		if (type) {
907 			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
908 			gpi_process_gen_err_irq(gpii);
909 			goto exit_irq;
910 		}
911 
912 		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
913 		type = gpi_read_reg(gpii, gpii->regs + offset);
914 	} while (type);
915 
916 exit_irq:
917 	read_unlock_irqrestore(&gpii->pm_lock, flags);
918 
919 	return IRQ_HANDLED;
920 }
921 
922 /* process DMA Immediate completion data events */
923 static void gpi_process_imed_data_event(struct gchan *gchan,
924 					struct immediate_data_event *imed_event)
925 {
926 	struct gpii *gpii = gchan->gpii;
927 	struct gpi_ring *ch_ring = &gchan->ch_ring;
928 	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
929 	struct dmaengine_result result;
930 	struct gpi_desc *gpi_desc;
931 	struct virt_dma_desc *vd;
932 	unsigned long flags;
933 	u32 chid;
934 
935 	/*
936 	 * If channel not active don't process event
937 	 */
938 	if (gchan->pm_state != ACTIVE_STATE) {
939 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
940 			TO_GPI_PM_STR(gchan->pm_state));
941 		return;
942 	}
943 
944 	spin_lock_irqsave(&gchan->vc.lock, flags);
945 	vd = vchan_next_desc(&gchan->vc);
946 	if (!vd) {
947 		struct gpi_ere *gpi_ere;
948 		struct gpi_tre *gpi_tre;
949 
950 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
951 		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
952 		gpi_ere = (struct gpi_ere *)imed_event;
953 		dev_dbg(gpii->gpi_dev->dev,
954 			"Event: %08x %08x %08x %08x\n",
955 			gpi_ere->dword[0], gpi_ere->dword[1],
956 			gpi_ere->dword[2], gpi_ere->dword[3]);
957 		gpi_tre = tre;
958 		dev_dbg(gpii->gpi_dev->dev,
959 			"Pending TRE: %08x %08x %08x %08x\n",
960 			gpi_tre->dword[0], gpi_tre->dword[1],
961 			gpi_tre->dword[2], gpi_tre->dword[3]);
962 		return;
963 	}
964 	gpi_desc = to_gpi_desc(vd);
965 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
966 
967 	/*
968 	 * RP pointed by Event is to last TRE processed,
969 	 * we need to update ring rp to tre + 1
970 	 */
971 	tre += ch_ring->el_size;
972 	if (tre >= (ch_ring->base + ch_ring->len))
973 		tre = ch_ring->base;
974 	ch_ring->rp = tre;
975 
976 	/* make sure rp updates are immediately visible to all cores */
977 	smp_wmb();
978 
979 	chid = imed_event->chid;
980 	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
981 		if (chid == GPI_RX_CHAN)
982 			goto gpi_free_desc;
983 		else
984 			return;
985 	}
986 
987 	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
988 		result.result = DMA_TRANS_ABORTED;
989 	else
990 		result.result = DMA_TRANS_NOERROR;
991 	result.residue = gpi_desc->len - imed_event->length;
992 
993 	dma_cookie_complete(&vd->tx);
994 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
995 
996 gpi_free_desc:
997 	spin_lock_irqsave(&gchan->vc.lock, flags);
998 	list_del(&vd->node);
999 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1000 	kfree(gpi_desc);
1001 	gpi_desc = NULL;
1002 }
1003 
1004 /* processing transfer completion events */
1005 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1006 					 struct xfer_compl_event *compl_event)
1007 {
1008 	struct gpii *gpii = gchan->gpii;
1009 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1010 	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1011 	struct virt_dma_desc *vd;
1012 	struct gpi_desc *gpi_desc;
1013 	struct dmaengine_result result;
1014 	unsigned long flags;
1015 	u32 chid;
1016 
1017 	/* only process events on active channel */
1018 	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1019 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1020 			TO_GPI_PM_STR(gchan->pm_state));
1021 		return;
1022 	}
1023 
1024 	spin_lock_irqsave(&gchan->vc.lock, flags);
1025 	vd = vchan_next_desc(&gchan->vc);
1026 	if (!vd) {
1027 		struct gpi_ere *gpi_ere;
1028 
1029 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
1030 		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1031 		gpi_ere = (struct gpi_ere *)compl_event;
1032 		dev_err(gpii->gpi_dev->dev,
1033 			"Event: %08x %08x %08x %08x\n",
1034 			gpi_ere->dword[0], gpi_ere->dword[1],
1035 			gpi_ere->dword[2], gpi_ere->dword[3]);
1036 		return;
1037 	}
1038 
1039 	gpi_desc = to_gpi_desc(vd);
1040 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1041 
1042 	/*
1043 	 * RP pointed by Event is to last TRE processed,
1044 	 * we need to update ring rp to ev_rp + 1
1045 	 */
1046 	ev_rp += ch_ring->el_size;
1047 	if (ev_rp >= (ch_ring->base + ch_ring->len))
1048 		ev_rp = ch_ring->base;
1049 	ch_ring->rp = ev_rp;
1050 
1051 	/* update must be visible to other cores */
1052 	smp_wmb();
1053 
1054 	chid = compl_event->chid;
1055 	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1056 		if (chid == GPI_RX_CHAN)
1057 			goto gpi_free_desc;
1058 		else
1059 			return;
1060 	}
1061 
1062 	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1063 		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1064 		result.result = DMA_TRANS_ABORTED;
1065 	} else {
1066 		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1067 		result.result = DMA_TRANS_NOERROR;
1068 	}
1069 	result.residue = gpi_desc->len - compl_event->length;
1070 	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1071 
1072 	dma_cookie_complete(&vd->tx);
1073 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1074 
1075 gpi_free_desc:
1076 	spin_lock_irqsave(&gchan->vc.lock, flags);
1077 	list_del(&vd->node);
1078 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1079 	kfree(gpi_desc);
1080 	gpi_desc = NULL;
1081 }
1082 
1083 /* process all events */
1084 static void gpi_process_events(struct gpii *gpii)
1085 {
1086 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1087 	phys_addr_t cntxt_rp;
1088 	void *rp;
1089 	union gpi_event *gpi_event;
1090 	struct gchan *gchan;
1091 	u32 chid, type;
1092 
1093 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1094 	rp = to_virtual(ev_ring, cntxt_rp);
1095 
1096 	do {
1097 		while (rp != ev_ring->rp) {
1098 			gpi_event = ev_ring->rp;
1099 			chid = gpi_event->xfer_compl_event.chid;
1100 			type = gpi_event->xfer_compl_event.type;
1101 
1102 			dev_dbg(gpii->gpi_dev->dev,
1103 				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1104 				chid, type, gpi_event->gpi_ere.dword[0],
1105 				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1106 				gpi_event->gpi_ere.dword[3]);
1107 
1108 			switch (type) {
1109 			case XFER_COMPLETE_EV_TYPE:
1110 				gchan = &gpii->gchan[chid];
1111 				gpi_process_xfer_compl_event(gchan,
1112 							     &gpi_event->xfer_compl_event);
1113 				break;
1114 			case STALE_EV_TYPE:
1115 				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1116 				break;
1117 			case IMMEDIATE_DATA_EV_TYPE:
1118 				gchan = &gpii->gchan[chid];
1119 				gpi_process_imed_data_event(gchan,
1120 							    &gpi_event->immediate_data_event);
1121 				break;
1122 			case QUP_NOTIF_EV_TYPE:
1123 				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1124 				break;
1125 			default:
1126 				dev_dbg(gpii->gpi_dev->dev,
1127 					"not supported event type:0x%x\n", type);
1128 			}
1129 			gpi_ring_recycle_ev_element(ev_ring);
1130 		}
1131 		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1132 
1133 		/* clear pending IEOB events */
1134 		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1135 
1136 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1137 		rp = to_virtual(ev_ring, cntxt_rp);
1138 
1139 	} while (rp != ev_ring->rp);
1140 }
1141 
1142 /* processing events using tasklet */
1143 static void gpi_ev_tasklet(unsigned long data)
1144 {
1145 	struct gpii *gpii = (struct gpii *)data;
1146 
1147 	read_lock(&gpii->pm_lock);
1148 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
1149 		read_unlock(&gpii->pm_lock);
1150 		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1151 			TO_GPI_PM_STR(gpii->pm_state));
1152 		return;
1153 	}
1154 
1155 	/* process the events */
1156 	gpi_process_events(gpii);
1157 
1158 	/* enable IEOB, switching back to interrupts */
1159 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1160 	read_unlock(&gpii->pm_lock);
1161 }
1162 
1163 /* marks all pending events for the channel as stale */
1164 static void gpi_mark_stale_events(struct gchan *gchan)
1165 {
1166 	struct gpii *gpii = gchan->gpii;
1167 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1168 	u32 cntxt_rp, local_rp;
1169 	void *ev_rp;
1170 
1171 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1172 
1173 	ev_rp = ev_ring->rp;
1174 	local_rp = (u32)to_physical(ev_ring, ev_rp);
1175 	while (local_rp != cntxt_rp) {
1176 		union gpi_event *gpi_event = ev_rp;
1177 		u32 chid = gpi_event->xfer_compl_event.chid;
1178 
1179 		if (chid == gchan->chid)
1180 			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1181 		ev_rp += ev_ring->el_size;
1182 		if (ev_rp >= (ev_ring->base + ev_ring->len))
1183 			ev_rp = ev_ring->base;
1184 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1185 		local_rp = (u32)to_physical(ev_ring, ev_rp);
1186 	}
1187 }
1188 
1189 /* reset sw state and issue channel reset or de-alloc */
1190 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1191 {
1192 	struct gpii *gpii = gchan->gpii;
1193 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1194 	LIST_HEAD(list);
1195 	int ret;
1196 
1197 	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1198 	if (ret) {
1199 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1200 			TO_GPI_CMD_STR(gpi_cmd), ret);
1201 		return ret;
1202 	}
1203 
1204 	/* initialize the local ring ptrs */
1205 	ch_ring->rp = ch_ring->base;
1206 	ch_ring->wp = ch_ring->base;
1207 
1208 	/* visible to other cores */
1209 	smp_wmb();
1210 
1211 	/* check event ring for any stale events */
1212 	write_lock_irq(&gpii->pm_lock);
1213 	gpi_mark_stale_events(gchan);
1214 
1215 	/* remove all async descriptors */
1216 	spin_lock(&gchan->vc.lock);
1217 	vchan_get_all_descriptors(&gchan->vc, &list);
1218 	spin_unlock(&gchan->vc.lock);
1219 	write_unlock_irq(&gpii->pm_lock);
1220 	vchan_dma_desc_free_list(&gchan->vc, &list);
1221 
1222 	return 0;
1223 }
1224 
1225 static int gpi_start_chan(struct gchan *gchan)
1226 {
1227 	struct gpii *gpii = gchan->gpii;
1228 	int ret;
1229 
1230 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1231 	if (ret) {
1232 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1233 			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1234 		return ret;
1235 	}
1236 
1237 	/* gpii CH is active now */
1238 	write_lock_irq(&gpii->pm_lock);
1239 	gchan->pm_state = ACTIVE_STATE;
1240 	write_unlock_irq(&gpii->pm_lock);
1241 
1242 	return 0;
1243 }
1244 
1245 static int gpi_stop_chan(struct gchan *gchan)
1246 {
1247 	struct gpii *gpii = gchan->gpii;
1248 	int ret;
1249 
1250 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1251 	if (ret) {
1252 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1253 			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1254 		return ret;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /* allocate and configure the transfer channel */
1261 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1262 {
1263 	struct gpii *gpii = chan->gpii;
1264 	struct gpi_ring *ring = &chan->ch_ring;
1265 	int ret;
1266 	u32 id = gpii->gpii_id;
1267 	u32 chid = chan->chid;
1268 	u32 pair_chid = !chid;
1269 
1270 	if (send_alloc_cmd) {
1271 		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1272 		if (ret) {
1273 			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1274 				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1275 			return ret;
1276 		}
1277 	}
1278 
1279 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1280 		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1281 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1282 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1283 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1284 		      upper_32_bits(ring->phys_addr));
1285 	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1286 		      upper_32_bits(ring->phys_addr));
1287 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1288 		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1289 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1290 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1291 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1292 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1293 
1294 	/* flush all the writes */
1295 	wmb();
1296 	return 0;
1297 }
1298 
1299 /* allocate and configure event ring */
1300 static int gpi_alloc_ev_chan(struct gpii *gpii)
1301 {
1302 	struct gpi_ring *ring = &gpii->ev_ring;
1303 	void __iomem *base = gpii->ev_cntxt_base_reg;
1304 	int ret;
1305 
1306 	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1307 	if (ret) {
1308 		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1309 			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1310 		return ret;
1311 	}
1312 
1313 	/* program event context */
1314 	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1315 		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1316 	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1317 	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1318 	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1319 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1320 		      upper_32_bits(ring->phys_addr));
1321 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1322 	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1323 	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1324 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1325 	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1326 	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1327 
1328 	/* add events to ring */
1329 	ring->wp = (ring->base + ring->len - ring->el_size);
1330 
1331 	/* flush all the writes */
1332 	wmb();
1333 
1334 	/* gpii is active now */
1335 	write_lock_irq(&gpii->pm_lock);
1336 	gpii->pm_state = ACTIVE_STATE;
1337 	write_unlock_irq(&gpii->pm_lock);
1338 	gpi_write_ev_db(gpii, ring, ring->wp);
1339 
1340 	return 0;
1341 }
1342 
1343 /* calculate # of ERE/TRE available to queue */
1344 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1345 {
1346 	int elements = 0;
1347 
1348 	if (ring->wp < ring->rp) {
1349 		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1350 	} else {
1351 		elements = (ring->rp - ring->base) / ring->el_size;
1352 		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1353 	}
1354 
1355 	return elements;
1356 }
1357 
1358 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1359 {
1360 	if (gpi_ring_num_elements_avail(ring) <= 0)
1361 		return -ENOMEM;
1362 
1363 	*wp = ring->wp;
1364 	ring->wp += ring->el_size;
1365 	if (ring->wp  >= (ring->base + ring->len))
1366 		ring->wp = ring->base;
1367 
1368 	/* visible to other cores */
1369 	smp_wmb();
1370 
1371 	return 0;
1372 }
1373 
1374 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1375 {
1376 	/* Update the WP */
1377 	ring->wp += ring->el_size;
1378 	if (ring->wp  >= (ring->base + ring->len))
1379 		ring->wp = ring->base;
1380 
1381 	/* Update the RP */
1382 	ring->rp += ring->el_size;
1383 	if (ring->rp  >= (ring->base + ring->len))
1384 		ring->rp = ring->base;
1385 
1386 	/* visible to other cores */
1387 	smp_wmb();
1388 }
1389 
1390 static void gpi_free_ring(struct gpi_ring *ring,
1391 			  struct gpii *gpii)
1392 {
1393 	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1394 			  ring->pre_aligned, ring->dma_handle);
1395 	memset(ring, 0, sizeof(*ring));
1396 }
1397 
1398 /* allocate memory for transfer and event rings */
1399 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1400 			  u32 el_size, struct gpii *gpii)
1401 {
1402 	u64 len = elements * el_size;
1403 	int bit;
1404 
1405 	/* ring len must be power of 2 */
1406 	bit = find_last_bit((unsigned long *)&len, 32);
1407 	if (((1 << bit) - 1) & len)
1408 		bit++;
1409 	len = 1 << bit;
1410 	ring->alloc_size = (len + (len - 1));
1411 	dev_dbg(gpii->gpi_dev->dev,
1412 		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1413 		  elements, el_size, (elements * el_size), len,
1414 		  ring->alloc_size);
1415 
1416 	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1417 					       ring->alloc_size,
1418 					       &ring->dma_handle, GFP_KERNEL);
1419 	if (!ring->pre_aligned) {
1420 		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1421 			ring->alloc_size);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	/* align the physical mem */
1426 	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1427 	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1428 	ring->rp = ring->base;
1429 	ring->wp = ring->base;
1430 	ring->len = len;
1431 	ring->el_size = el_size;
1432 	ring->elements = ring->len / ring->el_size;
1433 	memset(ring->base, 0, ring->len);
1434 	ring->configured = true;
1435 
1436 	/* update to other cores */
1437 	smp_wmb();
1438 
1439 	dev_dbg(gpii->gpi_dev->dev,
1440 		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1441 		&ring->dma_handle, &ring->phys_addr, ring->len,
1442 		ring->el_size, ring->elements);
1443 
1444 	return 0;
1445 }
1446 
1447 /* copy tre into transfer ring */
1448 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1449 			   struct gpi_tre *gpi_tre, void **wp)
1450 {
1451 	struct gpi_tre *ch_tre;
1452 	int ret;
1453 
1454 	/* get next tre location we can copy */
1455 	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1456 	if (unlikely(ret)) {
1457 		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1458 		return;
1459 	}
1460 
1461 	/* copy the tre info */
1462 	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1463 	*wp = ch_tre;
1464 }
1465 
1466 /* reset and restart transfer channel */
1467 static int gpi_terminate_all(struct dma_chan *chan)
1468 {
1469 	struct gchan *gchan = to_gchan(chan);
1470 	struct gpii *gpii = gchan->gpii;
1471 	int schid, echid, i;
1472 	int ret = 0;
1473 
1474 	mutex_lock(&gpii->ctrl_lock);
1475 
1476 	/*
1477 	 * treat both channels as a group if its protocol is not UART
1478 	 * STOP, RESET, or START needs to be in lockstep
1479 	 */
1480 	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1481 	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1482 
1483 	/* stop the channel */
1484 	for (i = schid; i < echid; i++) {
1485 		gchan = &gpii->gchan[i];
1486 
1487 		/* disable ch state so no more TRE processing */
1488 		write_lock_irq(&gpii->pm_lock);
1489 		gchan->pm_state = PREPARE_TERMINATE;
1490 		write_unlock_irq(&gpii->pm_lock);
1491 
1492 		/* send command to Stop the channel */
1493 		ret = gpi_stop_chan(gchan);
1494 	}
1495 
1496 	/* reset the channels (clears any pending tre) */
1497 	for (i = schid; i < echid; i++) {
1498 		gchan = &gpii->gchan[i];
1499 
1500 		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1501 		if (ret) {
1502 			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1503 			goto terminate_exit;
1504 		}
1505 
1506 		/* reprogram channel CNTXT */
1507 		ret = gpi_alloc_chan(gchan, false);
1508 		if (ret) {
1509 			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1510 			goto terminate_exit;
1511 		}
1512 	}
1513 
1514 	/* restart the channels */
1515 	for (i = schid; i < echid; i++) {
1516 		gchan = &gpii->gchan[i];
1517 
1518 		ret = gpi_start_chan(gchan);
1519 		if (ret) {
1520 			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1521 			goto terminate_exit;
1522 		}
1523 	}
1524 
1525 terminate_exit:
1526 	mutex_unlock(&gpii->ctrl_lock);
1527 	return ret;
1528 }
1529 
1530 /* pause dma transfer for all channels */
1531 static int gpi_pause(struct dma_chan *chan)
1532 {
1533 	struct gchan *gchan = to_gchan(chan);
1534 	struct gpii *gpii = gchan->gpii;
1535 	int i, ret;
1536 
1537 	mutex_lock(&gpii->ctrl_lock);
1538 
1539 	/*
1540 	 * pause/resume are per gpii not per channel, so
1541 	 * client needs to call pause only once
1542 	 */
1543 	if (gpii->pm_state == PAUSE_STATE) {
1544 		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1545 		mutex_unlock(&gpii->ctrl_lock);
1546 		return 0;
1547 	}
1548 
1549 	/* send stop command to stop the channels */
1550 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1551 		ret = gpi_stop_chan(&gpii->gchan[i]);
1552 		if (ret) {
1553 			mutex_unlock(&gpii->ctrl_lock);
1554 			return ret;
1555 		}
1556 	}
1557 
1558 	disable_irq(gpii->irq);
1559 
1560 	/* Wait for threads to complete out */
1561 	tasklet_kill(&gpii->ev_task);
1562 
1563 	write_lock_irq(&gpii->pm_lock);
1564 	gpii->pm_state = PAUSE_STATE;
1565 	write_unlock_irq(&gpii->pm_lock);
1566 	mutex_unlock(&gpii->ctrl_lock);
1567 
1568 	return 0;
1569 }
1570 
1571 /* resume dma transfer */
1572 static int gpi_resume(struct dma_chan *chan)
1573 {
1574 	struct gchan *gchan = to_gchan(chan);
1575 	struct gpii *gpii = gchan->gpii;
1576 	int i, ret;
1577 
1578 	mutex_lock(&gpii->ctrl_lock);
1579 	if (gpii->pm_state == ACTIVE_STATE) {
1580 		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1581 		mutex_unlock(&gpii->ctrl_lock);
1582 		return 0;
1583 	}
1584 
1585 	enable_irq(gpii->irq);
1586 
1587 	/* send start command to start the channels */
1588 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1589 		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1590 		if (ret) {
1591 			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1592 			mutex_unlock(&gpii->ctrl_lock);
1593 			return ret;
1594 		}
1595 	}
1596 
1597 	write_lock_irq(&gpii->pm_lock);
1598 	gpii->pm_state = ACTIVE_STATE;
1599 	write_unlock_irq(&gpii->pm_lock);
1600 	mutex_unlock(&gpii->ctrl_lock);
1601 
1602 	return 0;
1603 }
1604 
1605 static void gpi_desc_free(struct virt_dma_desc *vd)
1606 {
1607 	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1608 
1609 	kfree(gpi_desc);
1610 	gpi_desc = NULL;
1611 }
1612 
1613 static int
1614 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1615 {
1616 	struct gchan *gchan = to_gchan(chan);
1617 
1618 	if (!config->peripheral_config)
1619 		return -EINVAL;
1620 
1621 	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1622 	if (!gchan->config)
1623 		return -ENOMEM;
1624 
1625 	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1626 
1627 	return 0;
1628 }
1629 
1630 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1631 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1632 {
1633 	struct gpi_i2c_config *i2c = chan->config;
1634 	struct device *dev = chan->gpii->gpi_dev->dev;
1635 	unsigned int tre_idx = 0;
1636 	dma_addr_t address;
1637 	struct gpi_tre *tre;
1638 	unsigned int i;
1639 
1640 	/* first create config tre if applicable */
1641 	if (i2c->set_config) {
1642 		tre = &desc->tre[tre_idx];
1643 		tre_idx++;
1644 
1645 		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1646 		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1647 		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1648 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1649 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1650 
1651 		tre->dword[1] = 0;
1652 
1653 		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1654 
1655 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1656 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1657 	}
1658 
1659 	/* create the GO tre for Tx */
1660 	if (i2c->op == I2C_WRITE) {
1661 		tre = &desc->tre[tre_idx];
1662 		tre_idx++;
1663 
1664 		if (i2c->multi_msg)
1665 			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1666 		else
1667 			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1668 
1669 		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1670 		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1671 
1672 		tre->dword[1] = 0;
1673 		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1674 
1675 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1676 
1677 		if (i2c->multi_msg)
1678 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1679 		else
1680 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1681 	}
1682 
1683 	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1684 		/* create the DMA TRE */
1685 		tre = &desc->tre[tre_idx];
1686 		tre_idx++;
1687 
1688 		address = sg_dma_address(sgl);
1689 		tre->dword[0] = lower_32_bits(address);
1690 		tre->dword[1] = upper_32_bits(address);
1691 
1692 		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1693 
1694 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1695 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1696 	}
1697 
1698 	for (i = 0; i < tre_idx; i++)
1699 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1700 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1701 
1702 	return tre_idx;
1703 }
1704 
1705 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1706 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1707 {
1708 	struct gpi_spi_config *spi = chan->config;
1709 	struct device *dev = chan->gpii->gpi_dev->dev;
1710 	unsigned int tre_idx = 0;
1711 	dma_addr_t address;
1712 	struct gpi_tre *tre;
1713 	unsigned int i;
1714 
1715 	/* first create config tre if applicable */
1716 	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1717 		tre = &desc->tre[tre_idx];
1718 		tre_idx++;
1719 
1720 		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1721 		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1722 		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1723 		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1724 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1725 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1726 
1727 		tre->dword[1] = 0;
1728 
1729 		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1730 		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1731 
1732 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1733 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1734 	}
1735 
1736 	/* create the GO tre for Tx */
1737 	if (direction == DMA_MEM_TO_DEV) {
1738 		tre = &desc->tre[tre_idx];
1739 		tre_idx++;
1740 
1741 		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1742 		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1743 		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1744 
1745 		tre->dword[1] = 0;
1746 
1747 		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1748 
1749 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1750 		if (spi->cmd == SPI_RX) {
1751 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1752 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1753 		} else if (spi->cmd == SPI_TX) {
1754 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1755 		} else { /* SPI_DUPLEX */
1756 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1757 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1758 		}
1759 	}
1760 
1761 	/* create the dma tre */
1762 	tre = &desc->tre[tre_idx];
1763 	tre_idx++;
1764 
1765 	address = sg_dma_address(sgl);
1766 	tre->dword[0] = lower_32_bits(address);
1767 	tre->dword[1] = upper_32_bits(address);
1768 
1769 	tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1770 
1771 	tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1772 	if (direction == DMA_MEM_TO_DEV)
1773 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1774 
1775 	for (i = 0; i < tre_idx; i++)
1776 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1777 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1778 
1779 	return tre_idx;
1780 }
1781 
1782 /* copy tre into transfer ring */
1783 static struct dma_async_tx_descriptor *
1784 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1785 		  unsigned int sg_len, enum dma_transfer_direction direction,
1786 		  unsigned long flags, void *context)
1787 {
1788 	struct gchan *gchan = to_gchan(chan);
1789 	struct gpii *gpii = gchan->gpii;
1790 	struct device *dev = gpii->gpi_dev->dev;
1791 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1792 	struct gpi_desc *gpi_desc;
1793 	u32 nr, nr_tre = 0;
1794 	u8 set_config;
1795 	int i;
1796 
1797 	gpii->ieob_set = false;
1798 	if (!is_slave_direction(direction)) {
1799 		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1800 		return NULL;
1801 	}
1802 
1803 	if (sg_len > 1) {
1804 		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1805 		return NULL;
1806 	}
1807 
1808 	nr_tre = 3;
1809 	set_config = *(u32 *)gchan->config;
1810 	if (!set_config)
1811 		nr_tre = 2;
1812 	if (direction == DMA_DEV_TO_MEM) /* rx */
1813 		nr_tre = 1;
1814 
1815 	/* calculate # of elements required & available */
1816 	nr = gpi_ring_num_elements_avail(ch_ring);
1817 	if (nr < nr_tre) {
1818 		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1819 		return NULL;
1820 	}
1821 
1822 	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1823 	if (!gpi_desc)
1824 		return NULL;
1825 
1826 	/* create TREs for xfer */
1827 	if (gchan->protocol == QCOM_GPI_SPI) {
1828 		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1829 	} else if (gchan->protocol == QCOM_GPI_I2C) {
1830 		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1831 	} else {
1832 		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1833 		kfree(gpi_desc);
1834 		return NULL;
1835 	}
1836 
1837 	/* set up the descriptor */
1838 	gpi_desc->gchan = gchan;
1839 	gpi_desc->len = sg_dma_len(sgl);
1840 	gpi_desc->num_tre  = i;
1841 
1842 	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1843 }
1844 
1845 /* rings transfer ring db to being transfer */
1846 static void gpi_issue_pending(struct dma_chan *chan)
1847 {
1848 	struct gchan *gchan = to_gchan(chan);
1849 	struct gpii *gpii = gchan->gpii;
1850 	unsigned long flags, pm_lock_flags;
1851 	struct virt_dma_desc *vd = NULL;
1852 	struct gpi_desc *gpi_desc;
1853 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1854 	void *tre, *wp = NULL;
1855 	int i;
1856 
1857 	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1858 
1859 	/* move all submitted descriptors to issued list */
1860 	spin_lock_irqsave(&gchan->vc.lock, flags);
1861 	if (vchan_issue_pending(&gchan->vc))
1862 		vd = list_last_entry(&gchan->vc.desc_issued,
1863 				     struct virt_dma_desc, node);
1864 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1865 
1866 	/* nothing to do list is empty */
1867 	if (!vd) {
1868 		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1869 		return;
1870 	}
1871 
1872 	gpi_desc = to_gpi_desc(vd);
1873 	for (i = 0; i < gpi_desc->num_tre; i++) {
1874 		tre = &gpi_desc->tre[i];
1875 		gpi_queue_xfer(gpii, gchan, tre, &wp);
1876 	}
1877 
1878 	gpi_desc->db = ch_ring->wp;
1879 	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1880 	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1881 }
1882 
1883 static int gpi_ch_init(struct gchan *gchan)
1884 {
1885 	struct gpii *gpii = gchan->gpii;
1886 	const int ev_factor = gpii->gpi_dev->ev_factor;
1887 	u32 elements;
1888 	int i = 0, ret = 0;
1889 
1890 	gchan->pm_state = CONFIG_STATE;
1891 
1892 	/* check if both channels are configured before continue */
1893 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1894 		if (gpii->gchan[i].pm_state != CONFIG_STATE)
1895 			goto exit_gpi_init;
1896 
1897 	/* protocol must be same for both channels */
1898 	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1899 		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1900 			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1901 		ret = -EINVAL;
1902 		goto exit_gpi_init;
1903 	}
1904 
1905 	/* allocate memory for event ring */
1906 	elements = CHAN_TRES << ev_factor;
1907 	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1908 			     sizeof(union gpi_event), gpii);
1909 	if (ret)
1910 		goto exit_gpi_init;
1911 
1912 	/* configure interrupts */
1913 	write_lock_irq(&gpii->pm_lock);
1914 	gpii->pm_state = PREPARE_HARDWARE;
1915 	write_unlock_irq(&gpii->pm_lock);
1916 	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1917 	if (ret) {
1918 		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1919 		goto error_config_int;
1920 	}
1921 
1922 	/* allocate event rings */
1923 	ret = gpi_alloc_ev_chan(gpii);
1924 	if (ret) {
1925 		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1926 		goto error_alloc_ev_ring;
1927 	}
1928 
1929 	/* Allocate all channels */
1930 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1931 		ret = gpi_alloc_chan(&gpii->gchan[i], true);
1932 		if (ret) {
1933 			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1934 			goto error_alloc_chan;
1935 		}
1936 	}
1937 
1938 	/* start channels  */
1939 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1940 		ret = gpi_start_chan(&gpii->gchan[i]);
1941 		if (ret) {
1942 			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1943 			goto error_start_chan;
1944 		}
1945 	}
1946 	return ret;
1947 
1948 error_start_chan:
1949 	for (i = i - 1; i >= 0; i--) {
1950 		gpi_stop_chan(&gpii->gchan[i]);
1951 		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1952 	}
1953 	i = 2;
1954 error_alloc_chan:
1955 	for (i = i - 1; i >= 0; i--)
1956 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1957 error_alloc_ev_ring:
1958 	gpi_disable_interrupts(gpii);
1959 error_config_int:
1960 	gpi_free_ring(&gpii->ev_ring, gpii);
1961 exit_gpi_init:
1962 	return ret;
1963 }
1964 
1965 /* release all channel resources */
1966 static void gpi_free_chan_resources(struct dma_chan *chan)
1967 {
1968 	struct gchan *gchan = to_gchan(chan);
1969 	struct gpii *gpii = gchan->gpii;
1970 	enum gpi_pm_state cur_state;
1971 	int ret, i;
1972 
1973 	mutex_lock(&gpii->ctrl_lock);
1974 
1975 	cur_state = gchan->pm_state;
1976 
1977 	/* disable ch state so no more TRE processing for this channel */
1978 	write_lock_irq(&gpii->pm_lock);
1979 	gchan->pm_state = PREPARE_TERMINATE;
1980 	write_unlock_irq(&gpii->pm_lock);
1981 
1982 	/* attempt to do graceful hardware shutdown */
1983 	if (cur_state == ACTIVE_STATE) {
1984 		gpi_stop_chan(gchan);
1985 
1986 		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1987 		if (ret)
1988 			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1989 
1990 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1991 	}
1992 
1993 	/* free all allocated memory */
1994 	gpi_free_ring(&gchan->ch_ring, gpii);
1995 	vchan_free_chan_resources(&gchan->vc);
1996 	kfree(gchan->config);
1997 
1998 	write_lock_irq(&gpii->pm_lock);
1999 	gchan->pm_state = DISABLE_STATE;
2000 	write_unlock_irq(&gpii->pm_lock);
2001 
2002 	/* if other rings are still active exit */
2003 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2004 		if (gpii->gchan[i].ch_ring.configured)
2005 			goto exit_free;
2006 
2007 	/* deallocate EV Ring */
2008 	cur_state = gpii->pm_state;
2009 	write_lock_irq(&gpii->pm_lock);
2010 	gpii->pm_state = PREPARE_TERMINATE;
2011 	write_unlock_irq(&gpii->pm_lock);
2012 
2013 	/* wait for threads to complete out */
2014 	tasklet_kill(&gpii->ev_task);
2015 
2016 	/* send command to de allocate event ring */
2017 	if (cur_state == ACTIVE_STATE)
2018 		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2019 
2020 	gpi_free_ring(&gpii->ev_ring, gpii);
2021 
2022 	/* disable interrupts */
2023 	if (cur_state == ACTIVE_STATE)
2024 		gpi_disable_interrupts(gpii);
2025 
2026 	/* set final state to disable */
2027 	write_lock_irq(&gpii->pm_lock);
2028 	gpii->pm_state = DISABLE_STATE;
2029 	write_unlock_irq(&gpii->pm_lock);
2030 
2031 exit_free:
2032 	mutex_unlock(&gpii->ctrl_lock);
2033 }
2034 
2035 /* allocate channel resources */
2036 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2037 {
2038 	struct gchan *gchan = to_gchan(chan);
2039 	struct gpii *gpii = gchan->gpii;
2040 	int ret;
2041 
2042 	mutex_lock(&gpii->ctrl_lock);
2043 
2044 	/* allocate memory for transfer ring */
2045 	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2046 			     sizeof(struct gpi_tre), gpii);
2047 	if (ret)
2048 		goto xfer_alloc_err;
2049 
2050 	ret = gpi_ch_init(gchan);
2051 
2052 	mutex_unlock(&gpii->ctrl_lock);
2053 
2054 	return ret;
2055 xfer_alloc_err:
2056 	mutex_unlock(&gpii->ctrl_lock);
2057 
2058 	return ret;
2059 }
2060 
2061 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2062 {
2063 	struct gchan *tx_chan, *rx_chan;
2064 	unsigned int gpii;
2065 
2066 	/* check if same seid is already configured for another chid */
2067 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2068 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2069 			continue;
2070 
2071 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2072 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2073 
2074 		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2075 			return gpii;
2076 		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2077 			return gpii;
2078 	}
2079 
2080 	/* no channels configured with same seid, return next avail gpii */
2081 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2082 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2083 			continue;
2084 
2085 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2086 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2087 
2088 		/* check if gpii is configured */
2089 		if (tx_chan->vc.chan.client_count ||
2090 		    rx_chan->vc.chan.client_count)
2091 			continue;
2092 
2093 		/* found a free gpii */
2094 		return gpii;
2095 	}
2096 
2097 	/* no gpii instance available to use */
2098 	return -EIO;
2099 }
2100 
2101 /* gpi_of_dma_xlate: open client requested channel */
2102 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2103 					 struct of_dma *of_dma)
2104 {
2105 	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2106 	u32 seid, chid;
2107 	int gpii;
2108 	struct gchan *gchan;
2109 
2110 	if (args->args_count < 3) {
2111 		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2112 			args->args_count);
2113 		return NULL;
2114 	}
2115 
2116 	chid = args->args[0];
2117 	if (chid >= MAX_CHANNELS_PER_GPII) {
2118 		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2119 		return NULL;
2120 	}
2121 
2122 	seid = args->args[1];
2123 
2124 	/* find next available gpii to use */
2125 	gpii = gpi_find_avail_gpii(gpi_dev, seid);
2126 	if (gpii < 0) {
2127 		dev_err(gpi_dev->dev, "no available gpii instances\n");
2128 		return NULL;
2129 	}
2130 
2131 	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2132 	if (gchan->vc.chan.client_count) {
2133 		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2134 			gpii, chid, gchan->seid);
2135 		return NULL;
2136 	}
2137 
2138 	gchan->seid = seid;
2139 	gchan->protocol = args->args[2];
2140 
2141 	return dma_get_slave_channel(&gchan->vc.chan);
2142 }
2143 
2144 static int gpi_probe(struct platform_device *pdev)
2145 {
2146 	struct gpi_dev *gpi_dev;
2147 	unsigned int i;
2148 	u32 ee_offset;
2149 	int ret;
2150 
2151 	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2152 	if (!gpi_dev)
2153 		return -ENOMEM;
2154 
2155 	gpi_dev->dev = &pdev->dev;
2156 	gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2157 	if (IS_ERR(gpi_dev->regs))
2158 		return PTR_ERR(gpi_dev->regs);
2159 	gpi_dev->ee_base = gpi_dev->regs;
2160 
2161 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2162 				   &gpi_dev->max_gpii);
2163 	if (ret) {
2164 		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2165 		return ret;
2166 	}
2167 
2168 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2169 				   &gpi_dev->gpii_mask);
2170 	if (ret) {
2171 		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2172 		return ret;
2173 	}
2174 
2175 	ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2176 	gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2177 
2178 	gpi_dev->ev_factor = EV_FACTOR;
2179 
2180 	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2181 	if (ret) {
2182 		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2183 		return ret;
2184 	}
2185 
2186 	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2187 				      gpi_dev->max_gpii, GFP_KERNEL);
2188 	if (!gpi_dev->gpiis)
2189 		return -ENOMEM;
2190 
2191 	/* setup all the supported gpii */
2192 	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2193 	for (i = 0; i < gpi_dev->max_gpii; i++) {
2194 		struct gpii *gpii = &gpi_dev->gpiis[i];
2195 		int chan;
2196 
2197 		if (!((1 << i) & gpi_dev->gpii_mask))
2198 			continue;
2199 
2200 		/* set up ev cntxt register map */
2201 		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2202 		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2203 		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2204 		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2205 		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2206 
2207 		/* set up irq */
2208 		ret = platform_get_irq(pdev, i);
2209 		if (ret < 0)
2210 			return ret;
2211 		gpii->irq = ret;
2212 
2213 		/* set up channel specific register info */
2214 		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2215 			struct gchan *gchan = &gpii->gchan[chan];
2216 
2217 			/* set up ch cntxt register map */
2218 			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2219 				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2220 			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2221 				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2222 			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2223 
2224 			/* vchan setup */
2225 			vchan_init(&gchan->vc, &gpi_dev->dma_device);
2226 			gchan->vc.desc_free = gpi_desc_free;
2227 			gchan->chid = chan;
2228 			gchan->gpii = gpii;
2229 			gchan->dir = GPII_CHAN_DIR[chan];
2230 		}
2231 		mutex_init(&gpii->ctrl_lock);
2232 		rwlock_init(&gpii->pm_lock);
2233 		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2234 			     (unsigned long)gpii);
2235 		init_completion(&gpii->cmd_completion);
2236 		gpii->gpii_id = i;
2237 		gpii->regs = gpi_dev->ee_base;
2238 		gpii->gpi_dev = gpi_dev;
2239 	}
2240 
2241 	platform_set_drvdata(pdev, gpi_dev);
2242 
2243 	/* clear and Set capabilities */
2244 	dma_cap_zero(gpi_dev->dma_device.cap_mask);
2245 	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2246 
2247 	/* configure dmaengine apis */
2248 	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2249 	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2250 	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2251 	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2252 	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2253 	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2254 	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2255 	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2256 	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2257 	gpi_dev->dma_device.device_config = gpi_peripheral_config;
2258 	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2259 	gpi_dev->dma_device.dev = gpi_dev->dev;
2260 	gpi_dev->dma_device.device_pause = gpi_pause;
2261 	gpi_dev->dma_device.device_resume = gpi_resume;
2262 
2263 	/* register with dmaengine framework */
2264 	ret = dma_async_device_register(&gpi_dev->dma_device);
2265 	if (ret) {
2266 		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2267 		return ret;
2268 	}
2269 
2270 	ret = of_dma_controller_register(gpi_dev->dev->of_node,
2271 					 gpi_of_dma_xlate, gpi_dev);
2272 	if (ret) {
2273 		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2274 		return ret;
2275 	}
2276 
2277 	return ret;
2278 }
2279 
2280 static const struct of_device_id gpi_of_match[] = {
2281 	{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2282 	{ .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2283 	/*
2284 	 * Do not grow the list for compatible devices. Instead use
2285 	 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2286 	 * (for ee_offset = 0x10000).
2287 	 */
2288 	{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2289 	{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2290 	{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2291 	{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2292 	{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2293 	{ },
2294 };
2295 MODULE_DEVICE_TABLE(of, gpi_of_match);
2296 
2297 static struct platform_driver gpi_driver = {
2298 	.probe = gpi_probe,
2299 	.driver = {
2300 		.name = KBUILD_MODNAME,
2301 		.of_match_table = gpi_of_match,
2302 	},
2303 };
2304 
2305 static int __init gpi_init(void)
2306 {
2307 	return platform_driver_register(&gpi_driver);
2308 }
2309 subsys_initcall(gpi_init)
2310 
2311 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2312 MODULE_LICENSE("GPL v2");
2313