xref: /linux/drivers/dma/qcom/gpi.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19 
20 #define TRE_TYPE_DMA		0x10
21 #define TRE_TYPE_GO		0x20
22 #define TRE_TYPE_CONFIG0	0x22
23 
24 /* TRE flags */
25 #define TRE_FLAGS_CHAIN		BIT(0)
26 #define TRE_FLAGS_IEOB		BIT(8)
27 #define TRE_FLAGS_IEOT		BIT(9)
28 #define TRE_FLAGS_BEI		BIT(10)
29 #define TRE_FLAGS_LINK		BIT(11)
30 #define TRE_FLAGS_TYPE		GENMASK(23, 16)
31 
32 /* SPI CONFIG0 WD0 */
33 #define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
34 #define TRE_SPI_C0_LOOPBACK	BIT(8)
35 #define TRE_SPI_C0_CS		BIT(11)
36 #define TRE_SPI_C0_CPHA		BIT(12)
37 #define TRE_SPI_C0_CPOL		BIT(13)
38 #define TRE_SPI_C0_TX_PACK	BIT(24)
39 #define TRE_SPI_C0_RX_PACK	BIT(25)
40 
41 /* CONFIG0 WD2 */
42 #define TRE_C0_CLK_DIV		GENMASK(11, 0)
43 #define TRE_C0_CLK_SRC		GENMASK(19, 16)
44 
45 /* SPI GO WD0 */
46 #define TRE_SPI_GO_CMD		GENMASK(4, 0)
47 #define TRE_SPI_GO_CS		GENMASK(10, 8)
48 #define TRE_SPI_GO_FRAG		BIT(26)
49 
50 /* GO WD2 */
51 #define TRE_RX_LEN		GENMASK(23, 0)
52 
53 /* I2C Config0 WD0 */
54 #define TRE_I2C_C0_TLOW		GENMASK(7, 0)
55 #define TRE_I2C_C0_THIGH	GENMASK(15, 8)
56 #define TRE_I2C_C0_TCYL		GENMASK(23, 16)
57 #define TRE_I2C_C0_TX_PACK	BIT(24)
58 #define TRE_I2C_C0_RX_PACK      BIT(25)
59 
60 /* I2C GO WD0 */
61 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
62 #define TRE_I2C_GO_ADDR		GENMASK(14, 8)
63 #define TRE_I2C_GO_STRETCH	BIT(26)
64 
65 /* DMA TRE */
66 #define TRE_DMA_LEN		GENMASK(23, 0)
67 
68 /* Register offsets from gpi-top */
69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
71 #define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
72 #define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
73 #define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
74 #define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
75 
76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
77 	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
78 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
79 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
80 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81 
82 #define GPI_CHTYPE_DIR_IN	(0)
83 #define GPI_CHTYPE_DIR_OUT	(1)
84 
85 #define GPI_CHTYPE_PROTO_GPI	(0x2)
86 
87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88 #define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
89 #define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
90 #define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
91 #define GPII_n_CH_CMD(opcode, chid)				 \
92 		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93 		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94 
95 #define GPII_n_CH_CMD_ALLOCATE		(0)
96 #define GPII_n_CH_CMD_START		(1)
97 #define GPII_n_CH_CMD_STOP		(2)
98 #define GPII_n_CH_CMD_RESET		(9)
99 #define GPII_n_CH_CMD_DE_ALLOC		(10)
100 #define GPII_n_CH_CMD_UART_SW_STALE	(32)
101 #define GPII_n_CH_CMD_UART_RFR_READY	(33)
102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103 
104 /* EV Context Array */
105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
107 #define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
108 #define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
109 #define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
110 
111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
112 	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
113 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
114 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115 
116 #define GPI_INTTYPE_IRQ		(1)
117 #define GPI_CHTYPE_GPI_EV	(0x2)
118 
119 enum CNTXT_OFFS {
120 	CNTXT_0_CONFIG = 0x0,
121 	CNTXT_1_R_LENGTH = 0x4,
122 	CNTXT_2_RING_BASE_LSB = 0x8,
123 	CNTXT_3_RING_BASE_MSB = 0xC,
124 	CNTXT_4_RING_RP_LSB = 0x10,
125 	CNTXT_5_RING_RP_MSB = 0x14,
126 	CNTXT_6_RING_WP_LSB = 0x18,
127 	CNTXT_7_RING_WP_MSB = 0x1C,
128 	CNTXT_8_RING_INT_MOD = 0x20,
129 	CNTXT_9_RING_INTVEC = 0x24,
130 	CNTXT_10_RING_MSI_LSB = 0x28,
131 	CNTXT_11_RING_MSI_MSB = 0x2C,
132 	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133 	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134 };
135 
136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137 #define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
138 #define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
139 #define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
140 #define GPII_n_EV_CMD(opcode, chid)				 \
141 		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142 		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143 
144 #define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
145 #define GPII_n_EV_CH_CMD_RESET			(0x09)
146 #define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
147 
148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
149 
150 /* mask type register */
151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
158 
159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
161 
162 /* Mask channel control interrupt register */
163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
165 
166 /* Mask event control interrupt register */
167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
169 
170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
172 
173 /* Mask event interrupt register */
174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
176 
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
179 #define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
180 
181 /* GPII specific Global - Enable bit register */
182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
185 
186 /* GPII general interrupt - Enable bit register */
187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
189 
190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
191 
192 /* GPII Interrupt Type register */
193 #define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
194 #define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
195 
196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
200 
201 #define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
202 
203 /* QOS Registers */
204 #define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205 
206 /* Scratch registers */
207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208 #define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
209 #define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
210 #define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
212 			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
213 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
214 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218 
219 struct __packed gpi_tre {
220 	u32 dword[4];
221 };
222 
223 enum msm_gpi_tce_code {
224 	MSM_GPI_TCE_SUCCESS = 1,
225 	MSM_GPI_TCE_EOT = 2,
226 	MSM_GPI_TCE_EOB = 4,
227 	MSM_GPI_TCE_UNEXP_ERR = 16,
228 };
229 
230 #define CMD_TIMEOUT_MS		(250)
231 
232 #define MAX_CHANNELS_PER_GPII	(2)
233 #define GPI_TX_CHAN		(0)
234 #define GPI_RX_CHAN		(1)
235 #define STATE_IGNORE		(U32_MAX)
236 #define EV_FACTOR		(2)
237 #define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
238 #define CHAN_TRES		64
239 
240 struct __packed xfer_compl_event {
241 	u64 ptr;
242 	u32 length:24;
243 	u8 code;
244 	u16 status;
245 	u8 type;
246 	u8 chid;
247 };
248 
249 struct __packed immediate_data_event {
250 	u8 data_bytes[8];
251 	u8 length:4;
252 	u8 resvd:4;
253 	u16 tre_index;
254 	u8 code;
255 	u16 status;
256 	u8 type;
257 	u8 chid;
258 };
259 
260 struct __packed qup_notif_event {
261 	u32 status;
262 	u32 time;
263 	u32 count:24;
264 	u8 resvd;
265 	u16 resvd1;
266 	u8 type;
267 	u8 chid;
268 };
269 
270 struct __packed gpi_ere {
271 	u32 dword[4];
272 };
273 
274 enum GPI_EV_TYPE {
275 	XFER_COMPLETE_EV_TYPE = 0x22,
276 	IMMEDIATE_DATA_EV_TYPE = 0x30,
277 	QUP_NOTIF_EV_TYPE = 0x31,
278 	STALE_EV_TYPE = 0xFF,
279 };
280 
281 union __packed gpi_event {
282 	struct __packed xfer_compl_event xfer_compl_event;
283 	struct __packed immediate_data_event immediate_data_event;
284 	struct __packed qup_notif_event qup_notif_event;
285 	struct __packed gpi_ere gpi_ere;
286 };
287 
288 enum gpii_irq_settings {
289 	DEFAULT_IRQ_SETTINGS,
290 	MASK_IEOB_SETTINGS,
291 };
292 
293 enum gpi_ev_state {
294 	DEFAULT_EV_CH_STATE = 0,
295 	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296 	EV_STATE_ALLOCATED,
297 	MAX_EV_STATES
298 };
299 
300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301 	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302 	[EV_STATE_ALLOCATED] = "ALLOCATED",
303 };
304 
305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306 				    "INVALID" : gpi_ev_state_str[(_state)])
307 
308 enum gpi_ch_state {
309 	DEFAULT_CH_STATE = 0x0,
310 	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311 	CH_STATE_ALLOCATED = 0x1,
312 	CH_STATE_STARTED = 0x2,
313 	CH_STATE_STOPPED = 0x3,
314 	CH_STATE_STOP_IN_PROC = 0x4,
315 	CH_STATE_ERROR = 0xf,
316 	MAX_CH_STATES
317 };
318 
319 enum gpi_cmd {
320 	GPI_CH_CMD_BEGIN,
321 	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322 	GPI_CH_CMD_START,
323 	GPI_CH_CMD_STOP,
324 	GPI_CH_CMD_RESET,
325 	GPI_CH_CMD_DE_ALLOC,
326 	GPI_CH_CMD_UART_SW_STALE,
327 	GPI_CH_CMD_UART_RFR_READY,
328 	GPI_CH_CMD_UART_RFR_NOT_READY,
329 	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330 	GPI_EV_CMD_BEGIN,
331 	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332 	GPI_EV_CMD_RESET,
333 	GPI_EV_CMD_DEALLOC,
334 	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335 	GPI_MAX_CMD,
336 };
337 
338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339 
340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341 	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342 	[GPI_CH_CMD_START] = "CH START",
343 	[GPI_CH_CMD_STOP] = "CH STOP",
344 	[GPI_CH_CMD_RESET] = "CH_RESET",
345 	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346 	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347 	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348 	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349 	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350 	[GPI_EV_CMD_RESET] = "EV RESET",
351 	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352 };
353 
354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355 				  gpi_cmd_str[(_cmd)])
356 
357 /*
358  * @DISABLE_STATE: no register access allowed
359  * @CONFIG_STATE:  client has configured the channel
360  * @PREP_HARDWARE: register access is allowed
361  *		   however, no processing EVENTS
362  * @ACTIVE_STATE: channels are fully operational
363  * @PREPARE_TERMINATE: graceful termination of channels
364  *		       register access is allowed
365  * @PAUSE_STATE: channels are active, but not processing any events
366  */
367 enum gpi_pm_state {
368 	DISABLE_STATE,
369 	CONFIG_STATE,
370 	PREPARE_HARDWARE,
371 	ACTIVE_STATE,
372 	PREPARE_TERMINATE,
373 	PAUSE_STATE,
374 	MAX_PM_STATE
375 };
376 
377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378 
379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380 	[DISABLE_STATE] = "DISABLE",
381 	[CONFIG_STATE] = "CONFIG",
382 	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
383 	[ACTIVE_STATE] = "ACTIVE",
384 	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
385 	[PAUSE_STATE] = "PAUSE",
386 };
387 
388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389 			      "INVALID" : gpi_pm_state_str[(_state)])
390 
391 static const struct {
392 	enum gpi_cmd gpi_cmd;
393 	u32 opcode;
394 	u32 state;
395 } gpi_cmd_info[GPI_MAX_CMD] = {
396 	{
397 		GPI_CH_CMD_ALLOCATE,
398 		GPII_n_CH_CMD_ALLOCATE,
399 		CH_STATE_ALLOCATED,
400 	},
401 	{
402 		GPI_CH_CMD_START,
403 		GPII_n_CH_CMD_START,
404 		CH_STATE_STARTED,
405 	},
406 	{
407 		GPI_CH_CMD_STOP,
408 		GPII_n_CH_CMD_STOP,
409 		CH_STATE_STOPPED,
410 	},
411 	{
412 		GPI_CH_CMD_RESET,
413 		GPII_n_CH_CMD_RESET,
414 		CH_STATE_ALLOCATED,
415 	},
416 	{
417 		GPI_CH_CMD_DE_ALLOC,
418 		GPII_n_CH_CMD_DE_ALLOC,
419 		CH_STATE_NOT_ALLOCATED,
420 	},
421 	{
422 		GPI_CH_CMD_UART_SW_STALE,
423 		GPII_n_CH_CMD_UART_SW_STALE,
424 		STATE_IGNORE,
425 	},
426 	{
427 		GPI_CH_CMD_UART_RFR_READY,
428 		GPII_n_CH_CMD_UART_RFR_READY,
429 		STATE_IGNORE,
430 	},
431 	{
432 		GPI_CH_CMD_UART_RFR_NOT_READY,
433 		GPII_n_CH_CMD_UART_RFR_NOT_READY,
434 		STATE_IGNORE,
435 	},
436 	{
437 		GPI_EV_CMD_ALLOCATE,
438 		GPII_n_EV_CH_CMD_ALLOCATE,
439 		EV_STATE_ALLOCATED,
440 	},
441 	{
442 		GPI_EV_CMD_RESET,
443 		GPII_n_EV_CH_CMD_RESET,
444 		EV_STATE_ALLOCATED,
445 	},
446 	{
447 		GPI_EV_CMD_DEALLOC,
448 		GPII_n_EV_CH_CMD_DE_ALLOC,
449 		EV_STATE_NOT_ALLOCATED,
450 	},
451 };
452 
453 struct gpi_ring {
454 	void *pre_aligned;
455 	size_t alloc_size;
456 	phys_addr_t phys_addr;
457 	dma_addr_t dma_handle;
458 	void *base;
459 	void *wp;
460 	void *rp;
461 	u32 len;
462 	u32 el_size;
463 	u32 elements;
464 	bool configured;
465 };
466 
467 struct gpi_dev {
468 	struct dma_device dma_device;
469 	struct device *dev;
470 	struct resource *res;
471 	void __iomem *regs;
472 	void __iomem *ee_base; /*ee register base address*/
473 	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474 	u32 gpii_mask; /* gpii instances available for apps */
475 	u32 ev_factor; /* ev ring length factor */
476 	struct gpii *gpiis;
477 };
478 
479 struct reg_info {
480 	char *name;
481 	u32 offset;
482 	u32 val;
483 };
484 
485 struct gchan {
486 	struct virt_dma_chan vc;
487 	u32 chid;
488 	u32 seid;
489 	u32 protocol;
490 	struct gpii *gpii;
491 	enum gpi_ch_state ch_state;
492 	enum gpi_pm_state pm_state;
493 	void __iomem *ch_cntxt_base_reg;
494 	void __iomem *ch_cntxt_db_reg;
495 	void __iomem *ch_cmd_reg;
496 	u32 dir;
497 	struct gpi_ring ch_ring;
498 	void *config;
499 };
500 
501 struct gpii {
502 	u32 gpii_id;
503 	struct gchan gchan[MAX_CHANNELS_PER_GPII];
504 	struct gpi_dev *gpi_dev;
505 	int irq;
506 	void __iomem *regs; /* points to gpi top */
507 	void __iomem *ev_cntxt_base_reg;
508 	void __iomem *ev_cntxt_db_reg;
509 	void __iomem *ev_ring_rp_lsb_reg;
510 	void __iomem *ev_cmd_reg;
511 	void __iomem *ieob_clr_reg;
512 	struct mutex ctrl_lock;
513 	enum gpi_ev_state ev_state;
514 	bool configured_irq;
515 	enum gpi_pm_state pm_state;
516 	rwlock_t pm_lock;
517 	struct gpi_ring ev_ring;
518 	struct tasklet_struct ev_task; /* event processing tasklet */
519 	struct completion cmd_completion;
520 	enum gpi_cmd gpi_cmd;
521 	u32 cntxt_type_irq_msk;
522 	bool ieob_set;
523 };
524 
525 #define MAX_TRE 3
526 
527 struct gpi_desc {
528 	struct virt_dma_desc vd;
529 	size_t len;
530 	void *db; /* DB register to program */
531 	struct gchan *gchan;
532 	struct gpi_tre tre[MAX_TRE];
533 	u32 num_tre;
534 };
535 
536 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
537 	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
538 };
539 
540 static irqreturn_t gpi_handle_irq(int irq, void *data);
541 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
542 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
543 static void gpi_process_events(struct gpii *gpii);
544 
545 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
546 {
547 	return container_of(dma_chan, struct gchan, vc.chan);
548 }
549 
550 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
551 {
552 	return container_of(vd, struct gpi_desc, vd);
553 }
554 
555 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
556 				      void *addr)
557 {
558 	return ring->phys_addr + (addr - ring->base);
559 }
560 
561 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
562 {
563 	return ring->base + (addr - ring->phys_addr);
564 }
565 
566 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
567 {
568 	return readl_relaxed(addr);
569 }
570 
571 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
572 {
573 	writel_relaxed(val, addr);
574 }
575 
576 /* gpi_write_reg_field - write to specific bit field */
577 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
578 				       u32 mask, u32 shift, u32 val)
579 {
580 	u32 tmp = gpi_read_reg(gpii, addr);
581 
582 	tmp &= ~mask;
583 	val = tmp | ((val << shift) & mask);
584 	gpi_write_reg(gpii, addr, val);
585 }
586 
587 static __always_inline void
588 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
589 {
590 	void __iomem *addr = gpii->regs + offset;
591 	u32 tmp = gpi_read_reg(gpii, addr);
592 
593 	tmp &= ~mask;
594 	tmp |= u32_encode_bits(val, mask);
595 
596 	gpi_write_reg(gpii, addr, tmp);
597 }
598 
599 static void gpi_disable_interrupts(struct gpii *gpii)
600 {
601 	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
602 		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
603 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
604 		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
605 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
606 		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
607 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
608 		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
609 	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
610 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
611 	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
612 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
613 	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
614 		       GPII_n_CNTXT_INTSET_BMSK, 0);
615 
616 	gpii->cntxt_type_irq_msk = 0;
617 	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
618 	gpii->configured_irq = false;
619 }
620 
621 /* configure and enable interrupts */
622 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
623 {
624 	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
625 			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
626 			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
627 			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
628 			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
629 	int ret;
630 
631 	if (!gpii->configured_irq) {
632 		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
633 				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
634 				       "gpi-dma", gpii);
635 		if (ret < 0) {
636 			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
637 				gpii->irq, ret);
638 			return ret;
639 		}
640 	}
641 
642 	if (settings == MASK_IEOB_SETTINGS) {
643 		/*
644 		 * GPII only uses one EV ring per gpii so we can globally
645 		 * enable/disable IEOB interrupt
646 		 */
647 		if (mask)
648 			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
649 		else
650 			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
651 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
652 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
653 	} else {
654 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
655 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
656 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
657 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
658 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
659 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
660 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
661 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
662 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
663 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
664 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
665 		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
666 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
667 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
668 		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
669 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
670 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
671 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
672 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
673 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
674 		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
675 			       GPII_n_CNTXT_INTSET_BMSK, 1);
676 		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
677 
678 		gpii->cntxt_type_irq_msk = enable;
679 	}
680 
681 	gpii->configured_irq = true;
682 	return 0;
683 }
684 
685 /* Sends gpii event or channel command */
686 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
687 			enum gpi_cmd gpi_cmd)
688 {
689 	u32 chid = MAX_CHANNELS_PER_GPII;
690 	unsigned long timeout;
691 	void __iomem *cmd_reg;
692 	u32 cmd;
693 
694 	if (gpi_cmd >= GPI_MAX_CMD)
695 		return -EINVAL;
696 	if (IS_CHAN_CMD(gpi_cmd))
697 		chid = gchan->chid;
698 
699 	dev_dbg(gpii->gpi_dev->dev,
700 		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
701 
702 	/* send opcode and wait for completion */
703 	reinit_completion(&gpii->cmd_completion);
704 	gpii->gpi_cmd = gpi_cmd;
705 
706 	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
707 	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
708 				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
709 	gpi_write_reg(gpii, cmd_reg, cmd);
710 	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
711 					      msecs_to_jiffies(CMD_TIMEOUT_MS));
712 	if (!timeout) {
713 		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
714 			TO_GPI_CMD_STR(gpi_cmd), chid);
715 		return -EIO;
716 	}
717 
718 	/* confirm new ch state is correct , if the cmd is a state change cmd */
719 	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
720 		return 0;
721 
722 	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
723 		return 0;
724 
725 	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
726 		return 0;
727 
728 	return -EIO;
729 }
730 
731 /* program transfer ring DB register */
732 static inline void gpi_write_ch_db(struct gchan *gchan,
733 				   struct gpi_ring *ring, void *wp)
734 {
735 	struct gpii *gpii = gchan->gpii;
736 	phys_addr_t p_wp;
737 
738 	p_wp = to_physical(ring, wp);
739 	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
740 }
741 
742 /* program event ring DB register */
743 static inline void gpi_write_ev_db(struct gpii *gpii,
744 				   struct gpi_ring *ring, void *wp)
745 {
746 	phys_addr_t p_wp;
747 
748 	p_wp = ring->phys_addr + (wp - ring->base);
749 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
750 }
751 
752 /* process transfer completion interrupt */
753 static void gpi_process_ieob(struct gpii *gpii)
754 {
755 	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
756 
757 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
758 	tasklet_hi_schedule(&gpii->ev_task);
759 }
760 
761 /* process channel control interrupt */
762 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
763 {
764 	u32 gpii_id = gpii->gpii_id;
765 	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
766 	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
767 	struct gchan *gchan;
768 	u32 chid, state;
769 
770 	/* clear the status */
771 	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
772 	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
773 
774 	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
775 		if (!(BIT(chid) & ch_irq))
776 			continue;
777 
778 		gchan = &gpii->gchan[chid];
779 		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
780 				     CNTXT_0_CONFIG);
781 		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
782 
783 		/*
784 		 * CH_CMD_DEALLOC cmd always successful. However cmd does
785 		 * not change hardware status. So overwriting software state
786 		 * to default state.
787 		 */
788 		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
789 			state = DEFAULT_CH_STATE;
790 		gchan->ch_state = state;
791 
792 		/*
793 		 * Triggering complete all if ch_state is not a stop in process.
794 		 * Stop in process is a transition state and we will wait for
795 		 * stop interrupt before notifying.
796 		 */
797 		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
798 			complete_all(&gpii->cmd_completion);
799 	}
800 }
801 
802 /* processing gpi general error interrupts */
803 static void gpi_process_gen_err_irq(struct gpii *gpii)
804 {
805 	u32 gpii_id = gpii->gpii_id;
806 	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
807 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
808 
809 	/* clear the status */
810 	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
811 
812 	/* Clear the register */
813 	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
814 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
815 }
816 
817 /* processing gpi level error interrupts */
818 static void gpi_process_glob_err_irq(struct gpii *gpii)
819 {
820 	u32 gpii_id = gpii->gpii_id;
821 	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
822 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
823 
824 	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
825 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
826 
827 	/* only error interrupt should be set */
828 	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
829 		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
830 		return;
831 	}
832 
833 	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
834 	gpi_write_reg(gpii, gpii->regs + offset, 0);
835 }
836 
837 /* gpii interrupt handler */
838 static irqreturn_t gpi_handle_irq(int irq, void *data)
839 {
840 	struct gpii *gpii = data;
841 	u32 gpii_id = gpii->gpii_id;
842 	u32 type, offset;
843 	unsigned long flags;
844 
845 	read_lock_irqsave(&gpii->pm_lock, flags);
846 
847 	/*
848 	 * States are out of sync to receive interrupt
849 	 * while software state is in DISABLE state, bailing out.
850 	 */
851 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
852 		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
853 			TO_GPI_PM_STR(gpii->pm_state));
854 		goto exit_irq;
855 	}
856 
857 	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
858 	type = gpi_read_reg(gpii, gpii->regs + offset);
859 
860 	do {
861 		/* global gpii error */
862 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
863 			gpi_process_glob_err_irq(gpii);
864 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
865 		}
866 
867 		/* transfer complete interrupt */
868 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
869 			gpi_process_ieob(gpii);
870 			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
871 		}
872 
873 		/* event control irq */
874 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
875 			u32 ev_state;
876 			u32 ev_ch_irq;
877 
878 			dev_dbg(gpii->gpi_dev->dev,
879 				"processing EV CTRL interrupt\n");
880 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
881 			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
882 
883 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
884 				(gpii_id);
885 			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
886 			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
887 						CNTXT_0_CONFIG);
888 			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
889 
890 			/*
891 			 * CMD EV_CMD_DEALLOC is always successful. However
892 			 * cmd does not change hardware status. So overwriting
893 			 * software state to default state.
894 			 */
895 			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
896 				ev_state = DEFAULT_EV_CH_STATE;
897 
898 			gpii->ev_state = ev_state;
899 			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
900 				TO_GPI_EV_STATE_STR(gpii->ev_state));
901 			complete_all(&gpii->cmd_completion);
902 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
903 		}
904 
905 		/* channel control irq */
906 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
907 			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
908 			gpi_process_ch_ctrl_irq(gpii);
909 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
910 		}
911 
912 		if (type) {
913 			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
914 			gpi_process_gen_err_irq(gpii);
915 			goto exit_irq;
916 		}
917 
918 		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
919 		type = gpi_read_reg(gpii, gpii->regs + offset);
920 	} while (type);
921 
922 exit_irq:
923 	read_unlock_irqrestore(&gpii->pm_lock, flags);
924 
925 	return IRQ_HANDLED;
926 }
927 
928 /* process DMA Immediate completion data events */
929 static void gpi_process_imed_data_event(struct gchan *gchan,
930 					struct immediate_data_event *imed_event)
931 {
932 	struct gpii *gpii = gchan->gpii;
933 	struct gpi_ring *ch_ring = &gchan->ch_ring;
934 	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
935 	struct dmaengine_result result;
936 	struct gpi_desc *gpi_desc;
937 	struct virt_dma_desc *vd;
938 	unsigned long flags;
939 	u32 chid;
940 
941 	/*
942 	 * If channel not active don't process event
943 	 */
944 	if (gchan->pm_state != ACTIVE_STATE) {
945 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
946 			TO_GPI_PM_STR(gchan->pm_state));
947 		return;
948 	}
949 
950 	spin_lock_irqsave(&gchan->vc.lock, flags);
951 	vd = vchan_next_desc(&gchan->vc);
952 	if (!vd) {
953 		struct gpi_ere *gpi_ere;
954 		struct gpi_tre *gpi_tre;
955 
956 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
957 		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
958 		gpi_ere = (struct gpi_ere *)imed_event;
959 		dev_dbg(gpii->gpi_dev->dev,
960 			"Event: %08x %08x %08x %08x\n",
961 			gpi_ere->dword[0], gpi_ere->dword[1],
962 			gpi_ere->dword[2], gpi_ere->dword[3]);
963 		gpi_tre = tre;
964 		dev_dbg(gpii->gpi_dev->dev,
965 			"Pending TRE: %08x %08x %08x %08x\n",
966 			gpi_tre->dword[0], gpi_tre->dword[1],
967 			gpi_tre->dword[2], gpi_tre->dword[3]);
968 		return;
969 	}
970 	gpi_desc = to_gpi_desc(vd);
971 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
972 
973 	/*
974 	 * RP pointed by Event is to last TRE processed,
975 	 * we need to update ring rp to tre + 1
976 	 */
977 	tre += ch_ring->el_size;
978 	if (tre >= (ch_ring->base + ch_ring->len))
979 		tre = ch_ring->base;
980 	ch_ring->rp = tre;
981 
982 	/* make sure rp updates are immediately visible to all cores */
983 	smp_wmb();
984 
985 	chid = imed_event->chid;
986 	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
987 		if (chid == GPI_RX_CHAN)
988 			goto gpi_free_desc;
989 		else
990 			return;
991 	}
992 
993 	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
994 		result.result = DMA_TRANS_ABORTED;
995 	else
996 		result.result = DMA_TRANS_NOERROR;
997 	result.residue = gpi_desc->len - imed_event->length;
998 
999 	dma_cookie_complete(&vd->tx);
1000 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1001 
1002 gpi_free_desc:
1003 	spin_lock_irqsave(&gchan->vc.lock, flags);
1004 	list_del(&vd->node);
1005 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1006 	kfree(gpi_desc);
1007 	gpi_desc = NULL;
1008 }
1009 
1010 /* processing transfer completion events */
1011 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1012 					 struct xfer_compl_event *compl_event)
1013 {
1014 	struct gpii *gpii = gchan->gpii;
1015 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1016 	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1017 	struct virt_dma_desc *vd;
1018 	struct gpi_desc *gpi_desc;
1019 	struct dmaengine_result result;
1020 	unsigned long flags;
1021 	u32 chid;
1022 
1023 	/* only process events on active channel */
1024 	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1025 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1026 			TO_GPI_PM_STR(gchan->pm_state));
1027 		return;
1028 	}
1029 
1030 	spin_lock_irqsave(&gchan->vc.lock, flags);
1031 	vd = vchan_next_desc(&gchan->vc);
1032 	if (!vd) {
1033 		struct gpi_ere *gpi_ere;
1034 
1035 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
1036 		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1037 		gpi_ere = (struct gpi_ere *)compl_event;
1038 		dev_err(gpii->gpi_dev->dev,
1039 			"Event: %08x %08x %08x %08x\n",
1040 			gpi_ere->dword[0], gpi_ere->dword[1],
1041 			gpi_ere->dword[2], gpi_ere->dword[3]);
1042 		return;
1043 	}
1044 
1045 	gpi_desc = to_gpi_desc(vd);
1046 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1047 
1048 	/*
1049 	 * RP pointed by Event is to last TRE processed,
1050 	 * we need to update ring rp to ev_rp + 1
1051 	 */
1052 	ev_rp += ch_ring->el_size;
1053 	if (ev_rp >= (ch_ring->base + ch_ring->len))
1054 		ev_rp = ch_ring->base;
1055 	ch_ring->rp = ev_rp;
1056 
1057 	/* update must be visible to other cores */
1058 	smp_wmb();
1059 
1060 	chid = compl_event->chid;
1061 	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1062 		if (chid == GPI_RX_CHAN)
1063 			goto gpi_free_desc;
1064 		else
1065 			return;
1066 	}
1067 
1068 	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1069 		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1070 		result.result = DMA_TRANS_ABORTED;
1071 	} else {
1072 		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1073 		result.result = DMA_TRANS_NOERROR;
1074 	}
1075 	result.residue = gpi_desc->len - compl_event->length;
1076 	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1077 
1078 	dma_cookie_complete(&vd->tx);
1079 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1080 
1081 gpi_free_desc:
1082 	spin_lock_irqsave(&gchan->vc.lock, flags);
1083 	list_del(&vd->node);
1084 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1085 	kfree(gpi_desc);
1086 	gpi_desc = NULL;
1087 }
1088 
1089 /* process all events */
1090 static void gpi_process_events(struct gpii *gpii)
1091 {
1092 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1093 	phys_addr_t cntxt_rp;
1094 	void *rp;
1095 	union gpi_event *gpi_event;
1096 	struct gchan *gchan;
1097 	u32 chid, type;
1098 
1099 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1100 	rp = to_virtual(ev_ring, cntxt_rp);
1101 
1102 	do {
1103 		while (rp != ev_ring->rp) {
1104 			gpi_event = ev_ring->rp;
1105 			chid = gpi_event->xfer_compl_event.chid;
1106 			type = gpi_event->xfer_compl_event.type;
1107 
1108 			dev_dbg(gpii->gpi_dev->dev,
1109 				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1110 				chid, type, gpi_event->gpi_ere.dword[0],
1111 				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1112 				gpi_event->gpi_ere.dword[3]);
1113 
1114 			switch (type) {
1115 			case XFER_COMPLETE_EV_TYPE:
1116 				gchan = &gpii->gchan[chid];
1117 				gpi_process_xfer_compl_event(gchan,
1118 							     &gpi_event->xfer_compl_event);
1119 				break;
1120 			case STALE_EV_TYPE:
1121 				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1122 				break;
1123 			case IMMEDIATE_DATA_EV_TYPE:
1124 				gchan = &gpii->gchan[chid];
1125 				gpi_process_imed_data_event(gchan,
1126 							    &gpi_event->immediate_data_event);
1127 				break;
1128 			case QUP_NOTIF_EV_TYPE:
1129 				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1130 				break;
1131 			default:
1132 				dev_dbg(gpii->gpi_dev->dev,
1133 					"not supported event type:0x%x\n", type);
1134 			}
1135 			gpi_ring_recycle_ev_element(ev_ring);
1136 		}
1137 		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1138 
1139 		/* clear pending IEOB events */
1140 		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1141 
1142 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1143 		rp = to_virtual(ev_ring, cntxt_rp);
1144 
1145 	} while (rp != ev_ring->rp);
1146 }
1147 
1148 /* processing events using tasklet */
1149 static void gpi_ev_tasklet(unsigned long data)
1150 {
1151 	struct gpii *gpii = (struct gpii *)data;
1152 
1153 	read_lock_bh(&gpii->pm_lock);
1154 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
1155 		read_unlock_bh(&gpii->pm_lock);
1156 		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1157 			TO_GPI_PM_STR(gpii->pm_state));
1158 		return;
1159 	}
1160 
1161 	/* process the events */
1162 	gpi_process_events(gpii);
1163 
1164 	/* enable IEOB, switching back to interrupts */
1165 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1166 	read_unlock_bh(&gpii->pm_lock);
1167 }
1168 
1169 /* marks all pending events for the channel as stale */
1170 static void gpi_mark_stale_events(struct gchan *gchan)
1171 {
1172 	struct gpii *gpii = gchan->gpii;
1173 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1174 	u32 cntxt_rp, local_rp;
1175 	void *ev_rp;
1176 
1177 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1178 
1179 	ev_rp = ev_ring->rp;
1180 	local_rp = (u32)to_physical(ev_ring, ev_rp);
1181 	while (local_rp != cntxt_rp) {
1182 		union gpi_event *gpi_event = ev_rp;
1183 		u32 chid = gpi_event->xfer_compl_event.chid;
1184 
1185 		if (chid == gchan->chid)
1186 			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1187 		ev_rp += ev_ring->el_size;
1188 		if (ev_rp >= (ev_ring->base + ev_ring->len))
1189 			ev_rp = ev_ring->base;
1190 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1191 		local_rp = (u32)to_physical(ev_ring, ev_rp);
1192 	}
1193 }
1194 
1195 /* reset sw state and issue channel reset or de-alloc */
1196 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1197 {
1198 	struct gpii *gpii = gchan->gpii;
1199 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1200 	unsigned long flags;
1201 	LIST_HEAD(list);
1202 	int ret;
1203 
1204 	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1205 	if (ret) {
1206 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1207 			TO_GPI_CMD_STR(gpi_cmd), ret);
1208 		return ret;
1209 	}
1210 
1211 	/* initialize the local ring ptrs */
1212 	ch_ring->rp = ch_ring->base;
1213 	ch_ring->wp = ch_ring->base;
1214 
1215 	/* visible to other cores */
1216 	smp_wmb();
1217 
1218 	/* check event ring for any stale events */
1219 	write_lock_irq(&gpii->pm_lock);
1220 	gpi_mark_stale_events(gchan);
1221 
1222 	/* remove all async descriptors */
1223 	spin_lock_irqsave(&gchan->vc.lock, flags);
1224 	vchan_get_all_descriptors(&gchan->vc, &list);
1225 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1226 	write_unlock_irq(&gpii->pm_lock);
1227 	vchan_dma_desc_free_list(&gchan->vc, &list);
1228 
1229 	return 0;
1230 }
1231 
1232 static int gpi_start_chan(struct gchan *gchan)
1233 {
1234 	struct gpii *gpii = gchan->gpii;
1235 	int ret;
1236 
1237 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1238 	if (ret) {
1239 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1240 			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1241 		return ret;
1242 	}
1243 
1244 	/* gpii CH is active now */
1245 	write_lock_irq(&gpii->pm_lock);
1246 	gchan->pm_state = ACTIVE_STATE;
1247 	write_unlock_irq(&gpii->pm_lock);
1248 
1249 	return 0;
1250 }
1251 
1252 static int gpi_stop_chan(struct gchan *gchan)
1253 {
1254 	struct gpii *gpii = gchan->gpii;
1255 	int ret;
1256 
1257 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1258 	if (ret) {
1259 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1260 			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1261 		return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 /* allocate and configure the transfer channel */
1268 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1269 {
1270 	struct gpii *gpii = chan->gpii;
1271 	struct gpi_ring *ring = &chan->ch_ring;
1272 	int ret;
1273 	u32 id = gpii->gpii_id;
1274 	u32 chid = chan->chid;
1275 	u32 pair_chid = !chid;
1276 
1277 	if (send_alloc_cmd) {
1278 		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1279 		if (ret) {
1280 			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1281 				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1282 			return ret;
1283 		}
1284 	}
1285 
1286 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1287 		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1288 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1289 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1290 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1291 		      upper_32_bits(ring->phys_addr));
1292 	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1293 		      upper_32_bits(ring->phys_addr));
1294 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1295 		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1296 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1297 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1298 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1299 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1300 
1301 	/* flush all the writes */
1302 	wmb();
1303 	return 0;
1304 }
1305 
1306 /* allocate and configure event ring */
1307 static int gpi_alloc_ev_chan(struct gpii *gpii)
1308 {
1309 	struct gpi_ring *ring = &gpii->ev_ring;
1310 	void __iomem *base = gpii->ev_cntxt_base_reg;
1311 	int ret;
1312 
1313 	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1314 	if (ret) {
1315 		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1316 			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1317 		return ret;
1318 	}
1319 
1320 	/* program event context */
1321 	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1322 		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1323 	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1324 	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1325 	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1326 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1327 		      upper_32_bits(ring->phys_addr));
1328 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1329 	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1330 	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1331 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1332 	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1333 	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1334 
1335 	/* add events to ring */
1336 	ring->wp = (ring->base + ring->len - ring->el_size);
1337 
1338 	/* flush all the writes */
1339 	wmb();
1340 
1341 	/* gpii is active now */
1342 	write_lock_irq(&gpii->pm_lock);
1343 	gpii->pm_state = ACTIVE_STATE;
1344 	write_unlock_irq(&gpii->pm_lock);
1345 	gpi_write_ev_db(gpii, ring, ring->wp);
1346 
1347 	return 0;
1348 }
1349 
1350 /* calculate # of ERE/TRE available to queue */
1351 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1352 {
1353 	int elements = 0;
1354 
1355 	if (ring->wp < ring->rp) {
1356 		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1357 	} else {
1358 		elements = (ring->rp - ring->base) / ring->el_size;
1359 		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1360 	}
1361 
1362 	return elements;
1363 }
1364 
1365 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1366 {
1367 	if (gpi_ring_num_elements_avail(ring) <= 0)
1368 		return -ENOMEM;
1369 
1370 	*wp = ring->wp;
1371 	ring->wp += ring->el_size;
1372 	if (ring->wp  >= (ring->base + ring->len))
1373 		ring->wp = ring->base;
1374 
1375 	/* visible to other cores */
1376 	smp_wmb();
1377 
1378 	return 0;
1379 }
1380 
1381 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1382 {
1383 	/* Update the WP */
1384 	ring->wp += ring->el_size;
1385 	if (ring->wp  >= (ring->base + ring->len))
1386 		ring->wp = ring->base;
1387 
1388 	/* Update the RP */
1389 	ring->rp += ring->el_size;
1390 	if (ring->rp  >= (ring->base + ring->len))
1391 		ring->rp = ring->base;
1392 
1393 	/* visible to other cores */
1394 	smp_wmb();
1395 }
1396 
1397 static void gpi_free_ring(struct gpi_ring *ring,
1398 			  struct gpii *gpii)
1399 {
1400 	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1401 			  ring->pre_aligned, ring->dma_handle);
1402 	memset(ring, 0, sizeof(*ring));
1403 }
1404 
1405 /* allocate memory for transfer and event rings */
1406 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1407 			  u32 el_size, struct gpii *gpii)
1408 {
1409 	u64 len = elements * el_size;
1410 	int bit;
1411 
1412 	/* ring len must be power of 2 */
1413 	bit = find_last_bit((unsigned long *)&len, 32);
1414 	if (((1 << bit) - 1) & len)
1415 		bit++;
1416 	len = 1 << bit;
1417 	ring->alloc_size = (len + (len - 1));
1418 	dev_dbg(gpii->gpi_dev->dev,
1419 		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1420 		  elements, el_size, (elements * el_size), len,
1421 		  ring->alloc_size);
1422 
1423 	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1424 					       ring->alloc_size,
1425 					       &ring->dma_handle, GFP_KERNEL);
1426 	if (!ring->pre_aligned) {
1427 		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1428 			ring->alloc_size);
1429 		return -ENOMEM;
1430 	}
1431 
1432 	/* align the physical mem */
1433 	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1434 	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1435 	ring->rp = ring->base;
1436 	ring->wp = ring->base;
1437 	ring->len = len;
1438 	ring->el_size = el_size;
1439 	ring->elements = ring->len / ring->el_size;
1440 	memset(ring->base, 0, ring->len);
1441 	ring->configured = true;
1442 
1443 	/* update to other cores */
1444 	smp_wmb();
1445 
1446 	dev_dbg(gpii->gpi_dev->dev,
1447 		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1448 		&ring->dma_handle, &ring->phys_addr, ring->len,
1449 		ring->el_size, ring->elements);
1450 
1451 	return 0;
1452 }
1453 
1454 /* copy tre into transfer ring */
1455 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1456 			   struct gpi_tre *gpi_tre, void **wp)
1457 {
1458 	struct gpi_tre *ch_tre;
1459 	int ret;
1460 
1461 	/* get next tre location we can copy */
1462 	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1463 	if (unlikely(ret)) {
1464 		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1465 		return;
1466 	}
1467 
1468 	/* copy the tre info */
1469 	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1470 	*wp = ch_tre;
1471 }
1472 
1473 /* reset and restart transfer channel */
1474 static int gpi_terminate_all(struct dma_chan *chan)
1475 {
1476 	struct gchan *gchan = to_gchan(chan);
1477 	struct gpii *gpii = gchan->gpii;
1478 	int schid, echid, i;
1479 	int ret = 0;
1480 
1481 	mutex_lock(&gpii->ctrl_lock);
1482 
1483 	/*
1484 	 * treat both channels as a group if its protocol is not UART
1485 	 * STOP, RESET, or START needs to be in lockstep
1486 	 */
1487 	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1488 	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1489 
1490 	/* stop the channel */
1491 	for (i = schid; i < echid; i++) {
1492 		gchan = &gpii->gchan[i];
1493 
1494 		/* disable ch state so no more TRE processing */
1495 		write_lock_irq(&gpii->pm_lock);
1496 		gchan->pm_state = PREPARE_TERMINATE;
1497 		write_unlock_irq(&gpii->pm_lock);
1498 
1499 		/* send command to Stop the channel */
1500 		ret = gpi_stop_chan(gchan);
1501 	}
1502 
1503 	/* reset the channels (clears any pending tre) */
1504 	for (i = schid; i < echid; i++) {
1505 		gchan = &gpii->gchan[i];
1506 
1507 		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1508 		if (ret) {
1509 			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1510 			goto terminate_exit;
1511 		}
1512 
1513 		/* reprogram channel CNTXT */
1514 		ret = gpi_alloc_chan(gchan, false);
1515 		if (ret) {
1516 			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1517 			goto terminate_exit;
1518 		}
1519 	}
1520 
1521 	/* restart the channels */
1522 	for (i = schid; i < echid; i++) {
1523 		gchan = &gpii->gchan[i];
1524 
1525 		ret = gpi_start_chan(gchan);
1526 		if (ret) {
1527 			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1528 			goto terminate_exit;
1529 		}
1530 	}
1531 
1532 terminate_exit:
1533 	mutex_unlock(&gpii->ctrl_lock);
1534 	return ret;
1535 }
1536 
1537 /* pause dma transfer for all channels */
1538 static int gpi_pause(struct dma_chan *chan)
1539 {
1540 	struct gchan *gchan = to_gchan(chan);
1541 	struct gpii *gpii = gchan->gpii;
1542 	int i, ret;
1543 
1544 	mutex_lock(&gpii->ctrl_lock);
1545 
1546 	/*
1547 	 * pause/resume are per gpii not per channel, so
1548 	 * client needs to call pause only once
1549 	 */
1550 	if (gpii->pm_state == PAUSE_STATE) {
1551 		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1552 		mutex_unlock(&gpii->ctrl_lock);
1553 		return 0;
1554 	}
1555 
1556 	/* send stop command to stop the channels */
1557 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1558 		ret = gpi_stop_chan(&gpii->gchan[i]);
1559 		if (ret) {
1560 			mutex_unlock(&gpii->ctrl_lock);
1561 			return ret;
1562 		}
1563 	}
1564 
1565 	disable_irq(gpii->irq);
1566 
1567 	/* Wait for threads to complete out */
1568 	tasklet_kill(&gpii->ev_task);
1569 
1570 	write_lock_irq(&gpii->pm_lock);
1571 	gpii->pm_state = PAUSE_STATE;
1572 	write_unlock_irq(&gpii->pm_lock);
1573 	mutex_unlock(&gpii->ctrl_lock);
1574 
1575 	return 0;
1576 }
1577 
1578 /* resume dma transfer */
1579 static int gpi_resume(struct dma_chan *chan)
1580 {
1581 	struct gchan *gchan = to_gchan(chan);
1582 	struct gpii *gpii = gchan->gpii;
1583 	int i, ret;
1584 
1585 	mutex_lock(&gpii->ctrl_lock);
1586 	if (gpii->pm_state == ACTIVE_STATE) {
1587 		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1588 		mutex_unlock(&gpii->ctrl_lock);
1589 		return 0;
1590 	}
1591 
1592 	enable_irq(gpii->irq);
1593 
1594 	/* send start command to start the channels */
1595 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1596 		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1597 		if (ret) {
1598 			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1599 			mutex_unlock(&gpii->ctrl_lock);
1600 			return ret;
1601 		}
1602 	}
1603 
1604 	write_lock_irq(&gpii->pm_lock);
1605 	gpii->pm_state = ACTIVE_STATE;
1606 	write_unlock_irq(&gpii->pm_lock);
1607 	mutex_unlock(&gpii->ctrl_lock);
1608 
1609 	return 0;
1610 }
1611 
1612 static void gpi_desc_free(struct virt_dma_desc *vd)
1613 {
1614 	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1615 
1616 	kfree(gpi_desc);
1617 	gpi_desc = NULL;
1618 }
1619 
1620 static int
1621 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1622 {
1623 	struct gchan *gchan = to_gchan(chan);
1624 
1625 	if (!config->peripheral_config)
1626 		return -EINVAL;
1627 
1628 	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1629 	if (!gchan->config)
1630 		return -ENOMEM;
1631 
1632 	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1633 
1634 	return 0;
1635 }
1636 
1637 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1638 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1639 {
1640 	struct gpi_i2c_config *i2c = chan->config;
1641 	struct device *dev = chan->gpii->gpi_dev->dev;
1642 	unsigned int tre_idx = 0;
1643 	dma_addr_t address;
1644 	struct gpi_tre *tre;
1645 	unsigned int i;
1646 
1647 	/* first create config tre if applicable */
1648 	if (i2c->set_config) {
1649 		tre = &desc->tre[tre_idx];
1650 		tre_idx++;
1651 
1652 		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1653 		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1654 		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1655 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1656 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1657 
1658 		tre->dword[1] = 0;
1659 
1660 		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1661 
1662 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1663 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1664 	}
1665 
1666 	/* create the GO tre for Tx */
1667 	if (i2c->op == I2C_WRITE) {
1668 		tre = &desc->tre[tre_idx];
1669 		tre_idx++;
1670 
1671 		if (i2c->multi_msg)
1672 			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1673 		else
1674 			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1675 
1676 		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1677 		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1678 
1679 		tre->dword[1] = 0;
1680 		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1681 
1682 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1683 
1684 		if (i2c->multi_msg)
1685 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1686 		else
1687 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1688 	}
1689 
1690 	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1691 		/* create the DMA TRE */
1692 		tre = &desc->tre[tre_idx];
1693 		tre_idx++;
1694 
1695 		address = sg_dma_address(sgl);
1696 		tre->dword[0] = lower_32_bits(address);
1697 		tre->dword[1] = upper_32_bits(address);
1698 
1699 		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1700 
1701 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1702 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1703 	}
1704 
1705 	for (i = 0; i < tre_idx; i++)
1706 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1707 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1708 
1709 	return tre_idx;
1710 }
1711 
1712 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1713 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1714 {
1715 	struct gpi_spi_config *spi = chan->config;
1716 	struct device *dev = chan->gpii->gpi_dev->dev;
1717 	unsigned int tre_idx = 0;
1718 	dma_addr_t address;
1719 	struct gpi_tre *tre;
1720 	unsigned int i;
1721 
1722 	/* first create config tre if applicable */
1723 	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1724 		tre = &desc->tre[tre_idx];
1725 		tre_idx++;
1726 
1727 		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1728 		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1729 		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1730 		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1731 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1732 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1733 
1734 		tre->dword[1] = 0;
1735 
1736 		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1737 		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1738 
1739 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1740 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1741 	}
1742 
1743 	/* create the GO tre for Tx */
1744 	if (direction == DMA_MEM_TO_DEV) {
1745 		tre = &desc->tre[tre_idx];
1746 		tre_idx++;
1747 
1748 		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1749 		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1750 		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1751 
1752 		tre->dword[1] = 0;
1753 
1754 		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1755 
1756 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1757 		if (spi->cmd == SPI_RX)
1758 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1759 		else
1760 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1761 	}
1762 
1763 	/* create the dma tre */
1764 	tre = &desc->tre[tre_idx];
1765 	tre_idx++;
1766 
1767 	address = sg_dma_address(sgl);
1768 	tre->dword[0] = lower_32_bits(address);
1769 	tre->dword[1] = upper_32_bits(address);
1770 
1771 	tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1772 
1773 	tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1774 	if (direction == DMA_MEM_TO_DEV)
1775 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1776 
1777 	for (i = 0; i < tre_idx; i++)
1778 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1779 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1780 
1781 	return tre_idx;
1782 }
1783 
1784 /* copy tre into transfer ring */
1785 static struct dma_async_tx_descriptor *
1786 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1787 		  unsigned int sg_len, enum dma_transfer_direction direction,
1788 		  unsigned long flags, void *context)
1789 {
1790 	struct gchan *gchan = to_gchan(chan);
1791 	struct gpii *gpii = gchan->gpii;
1792 	struct device *dev = gpii->gpi_dev->dev;
1793 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1794 	struct gpi_desc *gpi_desc;
1795 	u32 nr, nr_tre = 0;
1796 	u8 set_config;
1797 	int i;
1798 
1799 	gpii->ieob_set = false;
1800 	if (!is_slave_direction(direction)) {
1801 		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1802 		return NULL;
1803 	}
1804 
1805 	if (sg_len > 1) {
1806 		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1807 		return NULL;
1808 	}
1809 
1810 	nr_tre = 3;
1811 	set_config = *(u32 *)gchan->config;
1812 	if (!set_config)
1813 		nr_tre = 2;
1814 	if (direction == DMA_DEV_TO_MEM) /* rx */
1815 		nr_tre = 1;
1816 
1817 	/* calculate # of elements required & available */
1818 	nr = gpi_ring_num_elements_avail(ch_ring);
1819 	if (nr < nr_tre) {
1820 		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1821 		return NULL;
1822 	}
1823 
1824 	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1825 	if (!gpi_desc)
1826 		return NULL;
1827 
1828 	/* create TREs for xfer */
1829 	if (gchan->protocol == QCOM_GPI_SPI) {
1830 		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1831 	} else if (gchan->protocol == QCOM_GPI_I2C) {
1832 		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1833 	} else {
1834 		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1835 		kfree(gpi_desc);
1836 		return NULL;
1837 	}
1838 
1839 	/* set up the descriptor */
1840 	gpi_desc->gchan = gchan;
1841 	gpi_desc->len = sg_dma_len(sgl);
1842 	gpi_desc->num_tre  = i;
1843 
1844 	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1845 }
1846 
1847 /* rings transfer ring db to being transfer */
1848 static void gpi_issue_pending(struct dma_chan *chan)
1849 {
1850 	struct gchan *gchan = to_gchan(chan);
1851 	struct gpii *gpii = gchan->gpii;
1852 	unsigned long flags, pm_lock_flags;
1853 	struct virt_dma_desc *vd = NULL;
1854 	struct gpi_desc *gpi_desc;
1855 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1856 	void *tre, *wp = NULL;
1857 	int i;
1858 
1859 	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1860 
1861 	/* move all submitted discriptors to issued list */
1862 	spin_lock_irqsave(&gchan->vc.lock, flags);
1863 	if (vchan_issue_pending(&gchan->vc))
1864 		vd = list_last_entry(&gchan->vc.desc_issued,
1865 				     struct virt_dma_desc, node);
1866 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1867 
1868 	/* nothing to do list is empty */
1869 	if (!vd) {
1870 		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1871 		return;
1872 	}
1873 
1874 	gpi_desc = to_gpi_desc(vd);
1875 	for (i = 0; i < gpi_desc->num_tre; i++) {
1876 		tre = &gpi_desc->tre[i];
1877 		gpi_queue_xfer(gpii, gchan, tre, &wp);
1878 	}
1879 
1880 	gpi_desc->db = ch_ring->wp;
1881 	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1882 	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1883 }
1884 
1885 static int gpi_ch_init(struct gchan *gchan)
1886 {
1887 	struct gpii *gpii = gchan->gpii;
1888 	const int ev_factor = gpii->gpi_dev->ev_factor;
1889 	u32 elements;
1890 	int i = 0, ret = 0;
1891 
1892 	gchan->pm_state = CONFIG_STATE;
1893 
1894 	/* check if both channels are configured before continue */
1895 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1896 		if (gpii->gchan[i].pm_state != CONFIG_STATE)
1897 			goto exit_gpi_init;
1898 
1899 	/* protocol must be same for both channels */
1900 	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1901 		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1902 			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1903 		ret = -EINVAL;
1904 		goto exit_gpi_init;
1905 	}
1906 
1907 	/* allocate memory for event ring */
1908 	elements = CHAN_TRES << ev_factor;
1909 	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1910 			     sizeof(union gpi_event), gpii);
1911 	if (ret)
1912 		goto exit_gpi_init;
1913 
1914 	/* configure interrupts */
1915 	write_lock_irq(&gpii->pm_lock);
1916 	gpii->pm_state = PREPARE_HARDWARE;
1917 	write_unlock_irq(&gpii->pm_lock);
1918 	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1919 	if (ret) {
1920 		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1921 		goto error_config_int;
1922 	}
1923 
1924 	/* allocate event rings */
1925 	ret = gpi_alloc_ev_chan(gpii);
1926 	if (ret) {
1927 		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1928 		goto error_alloc_ev_ring;
1929 	}
1930 
1931 	/* Allocate all channels */
1932 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1933 		ret = gpi_alloc_chan(&gpii->gchan[i], true);
1934 		if (ret) {
1935 			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1936 			goto error_alloc_chan;
1937 		}
1938 	}
1939 
1940 	/* start channels  */
1941 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1942 		ret = gpi_start_chan(&gpii->gchan[i]);
1943 		if (ret) {
1944 			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1945 			goto error_start_chan;
1946 		}
1947 	}
1948 	return ret;
1949 
1950 error_start_chan:
1951 	for (i = i - 1; i >= 0; i--) {
1952 		gpi_stop_chan(&gpii->gchan[i]);
1953 		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1954 	}
1955 	i = 2;
1956 error_alloc_chan:
1957 	for (i = i - 1; i >= 0; i--)
1958 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1959 error_alloc_ev_ring:
1960 	gpi_disable_interrupts(gpii);
1961 error_config_int:
1962 	gpi_free_ring(&gpii->ev_ring, gpii);
1963 exit_gpi_init:
1964 	mutex_unlock(&gpii->ctrl_lock);
1965 	return ret;
1966 }
1967 
1968 /* release all channel resources */
1969 static void gpi_free_chan_resources(struct dma_chan *chan)
1970 {
1971 	struct gchan *gchan = to_gchan(chan);
1972 	struct gpii *gpii = gchan->gpii;
1973 	enum gpi_pm_state cur_state;
1974 	int ret, i;
1975 
1976 	mutex_lock(&gpii->ctrl_lock);
1977 
1978 	cur_state = gchan->pm_state;
1979 
1980 	/* disable ch state so no more TRE processing for this channel */
1981 	write_lock_irq(&gpii->pm_lock);
1982 	gchan->pm_state = PREPARE_TERMINATE;
1983 	write_unlock_irq(&gpii->pm_lock);
1984 
1985 	/* attempt to do graceful hardware shutdown */
1986 	if (cur_state == ACTIVE_STATE) {
1987 		gpi_stop_chan(gchan);
1988 
1989 		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1990 		if (ret)
1991 			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1992 
1993 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1994 	}
1995 
1996 	/* free all allocated memory */
1997 	gpi_free_ring(&gchan->ch_ring, gpii);
1998 	vchan_free_chan_resources(&gchan->vc);
1999 	kfree(gchan->config);
2000 
2001 	write_lock_irq(&gpii->pm_lock);
2002 	gchan->pm_state = DISABLE_STATE;
2003 	write_unlock_irq(&gpii->pm_lock);
2004 
2005 	/* if other rings are still active exit */
2006 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2007 		if (gpii->gchan[i].ch_ring.configured)
2008 			goto exit_free;
2009 
2010 	/* deallocate EV Ring */
2011 	cur_state = gpii->pm_state;
2012 	write_lock_irq(&gpii->pm_lock);
2013 	gpii->pm_state = PREPARE_TERMINATE;
2014 	write_unlock_irq(&gpii->pm_lock);
2015 
2016 	/* wait for threads to complete out */
2017 	tasklet_kill(&gpii->ev_task);
2018 
2019 	/* send command to de allocate event ring */
2020 	if (cur_state == ACTIVE_STATE)
2021 		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2022 
2023 	gpi_free_ring(&gpii->ev_ring, gpii);
2024 
2025 	/* disable interrupts */
2026 	if (cur_state == ACTIVE_STATE)
2027 		gpi_disable_interrupts(gpii);
2028 
2029 	/* set final state to disable */
2030 	write_lock_irq(&gpii->pm_lock);
2031 	gpii->pm_state = DISABLE_STATE;
2032 	write_unlock_irq(&gpii->pm_lock);
2033 
2034 exit_free:
2035 	mutex_unlock(&gpii->ctrl_lock);
2036 }
2037 
2038 /* allocate channel resources */
2039 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2040 {
2041 	struct gchan *gchan = to_gchan(chan);
2042 	struct gpii *gpii = gchan->gpii;
2043 	int ret;
2044 
2045 	mutex_lock(&gpii->ctrl_lock);
2046 
2047 	/* allocate memory for transfer ring */
2048 	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2049 			     sizeof(struct gpi_tre), gpii);
2050 	if (ret)
2051 		goto xfer_alloc_err;
2052 
2053 	ret = gpi_ch_init(gchan);
2054 
2055 	mutex_unlock(&gpii->ctrl_lock);
2056 
2057 	return ret;
2058 xfer_alloc_err:
2059 	mutex_unlock(&gpii->ctrl_lock);
2060 
2061 	return ret;
2062 }
2063 
2064 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2065 {
2066 	struct gchan *tx_chan, *rx_chan;
2067 	unsigned int gpii;
2068 
2069 	/* check if same seid is already configured for another chid */
2070 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2071 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2072 			continue;
2073 
2074 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2075 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2076 
2077 		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2078 			return gpii;
2079 		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2080 			return gpii;
2081 	}
2082 
2083 	/* no channels configured with same seid, return next avail gpii */
2084 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2085 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2086 			continue;
2087 
2088 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2089 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2090 
2091 		/* check if gpii is configured */
2092 		if (tx_chan->vc.chan.client_count ||
2093 		    rx_chan->vc.chan.client_count)
2094 			continue;
2095 
2096 		/* found a free gpii */
2097 		return gpii;
2098 	}
2099 
2100 	/* no gpii instance available to use */
2101 	return -EIO;
2102 }
2103 
2104 /* gpi_of_dma_xlate: open client requested channel */
2105 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2106 					 struct of_dma *of_dma)
2107 {
2108 	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2109 	u32 seid, chid;
2110 	int gpii;
2111 	struct gchan *gchan;
2112 
2113 	if (args->args_count < 3) {
2114 		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2115 			args->args_count);
2116 		return NULL;
2117 	}
2118 
2119 	chid = args->args[0];
2120 	if (chid >= MAX_CHANNELS_PER_GPII) {
2121 		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2122 		return NULL;
2123 	}
2124 
2125 	seid = args->args[1];
2126 
2127 	/* find next available gpii to use */
2128 	gpii = gpi_find_avail_gpii(gpi_dev, seid);
2129 	if (gpii < 0) {
2130 		dev_err(gpi_dev->dev, "no available gpii instances\n");
2131 		return NULL;
2132 	}
2133 
2134 	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2135 	if (gchan->vc.chan.client_count) {
2136 		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2137 			gpii, chid, gchan->seid);
2138 		return NULL;
2139 	}
2140 
2141 	gchan->seid = seid;
2142 	gchan->protocol = args->args[2];
2143 
2144 	return dma_get_slave_channel(&gchan->vc.chan);
2145 }
2146 
2147 static int gpi_probe(struct platform_device *pdev)
2148 {
2149 	struct gpi_dev *gpi_dev;
2150 	unsigned int i;
2151 	int ret;
2152 
2153 	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2154 	if (!gpi_dev)
2155 		return -ENOMEM;
2156 
2157 	gpi_dev->dev = &pdev->dev;
2158 	gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2159 	gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res);
2160 	if (IS_ERR(gpi_dev->regs))
2161 		return PTR_ERR(gpi_dev->regs);
2162 	gpi_dev->ee_base = gpi_dev->regs;
2163 
2164 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2165 				   &gpi_dev->max_gpii);
2166 	if (ret) {
2167 		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2168 		return ret;
2169 	}
2170 
2171 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2172 				   &gpi_dev->gpii_mask);
2173 	if (ret) {
2174 		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2175 		return ret;
2176 	}
2177 
2178 	gpi_dev->ev_factor = EV_FACTOR;
2179 
2180 	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2181 	if (ret) {
2182 		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2183 		return ret;
2184 	}
2185 
2186 	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2187 				      gpi_dev->max_gpii, GFP_KERNEL);
2188 	if (!gpi_dev->gpiis)
2189 		return -ENOMEM;
2190 
2191 	/* setup all the supported gpii */
2192 	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2193 	for (i = 0; i < gpi_dev->max_gpii; i++) {
2194 		struct gpii *gpii = &gpi_dev->gpiis[i];
2195 		int chan;
2196 
2197 		if (!((1 << i) & gpi_dev->gpii_mask))
2198 			continue;
2199 
2200 		/* set up ev cntxt register map */
2201 		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2202 		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2203 		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2204 		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2205 		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2206 
2207 		/* set up irq */
2208 		ret = platform_get_irq(pdev, i);
2209 		if (ret < 0)
2210 			return ret;
2211 		gpii->irq = ret;
2212 
2213 		/* set up channel specific register info */
2214 		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2215 			struct gchan *gchan = &gpii->gchan[chan];
2216 
2217 			/* set up ch cntxt register map */
2218 			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2219 				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2220 			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2221 				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2222 			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2223 
2224 			/* vchan setup */
2225 			vchan_init(&gchan->vc, &gpi_dev->dma_device);
2226 			gchan->vc.desc_free = gpi_desc_free;
2227 			gchan->chid = chan;
2228 			gchan->gpii = gpii;
2229 			gchan->dir = GPII_CHAN_DIR[chan];
2230 		}
2231 		mutex_init(&gpii->ctrl_lock);
2232 		rwlock_init(&gpii->pm_lock);
2233 		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2234 			     (unsigned long)gpii);
2235 		init_completion(&gpii->cmd_completion);
2236 		gpii->gpii_id = i;
2237 		gpii->regs = gpi_dev->ee_base;
2238 		gpii->gpi_dev = gpi_dev;
2239 	}
2240 
2241 	platform_set_drvdata(pdev, gpi_dev);
2242 
2243 	/* clear and Set capabilities */
2244 	dma_cap_zero(gpi_dev->dma_device.cap_mask);
2245 	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2246 
2247 	/* configure dmaengine apis */
2248 	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2249 	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2250 	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2251 	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2252 	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2253 	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2254 	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2255 	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2256 	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2257 	gpi_dev->dma_device.device_config = gpi_peripheral_config;
2258 	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2259 	gpi_dev->dma_device.dev = gpi_dev->dev;
2260 	gpi_dev->dma_device.device_pause = gpi_pause;
2261 	gpi_dev->dma_device.device_resume = gpi_resume;
2262 
2263 	/* register with dmaengine framework */
2264 	ret = dma_async_device_register(&gpi_dev->dma_device);
2265 	if (ret) {
2266 		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2267 		return ret;
2268 	}
2269 
2270 	ret = of_dma_controller_register(gpi_dev->dev->of_node,
2271 					 gpi_of_dma_xlate, gpi_dev);
2272 	if (ret) {
2273 		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2274 		return ret;
2275 	}
2276 
2277 	return ret;
2278 }
2279 
2280 static const struct of_device_id gpi_of_match[] = {
2281 	{ .compatible = "qcom,sdm845-gpi-dma" },
2282 	{ .compatible = "qcom,sm8150-gpi-dma" },
2283 	{ .compatible = "qcom,sm8250-gpi-dma" },
2284 	{ },
2285 };
2286 MODULE_DEVICE_TABLE(of, gpi_of_match);
2287 
2288 static struct platform_driver gpi_driver = {
2289 	.probe = gpi_probe,
2290 	.driver = {
2291 		.name = KBUILD_MODNAME,
2292 		.of_match_table = gpi_of_match,
2293 	},
2294 };
2295 
2296 static int __init gpi_init(void)
2297 {
2298 	return platform_driver_register(&gpi_driver);
2299 }
2300 subsys_initcall(gpi_init)
2301 
2302 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2303 MODULE_LICENSE("GPL v2");
2304