1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <dt-bindings/dma/qcom-gpi.h> 8 #include <linux/bitfield.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/of_dma.h> 13 #include <linux/platform_device.h> 14 #include <linux/dma/qcom-gpi-dma.h> 15 #include <linux/scatterlist.h> 16 #include <linux/slab.h> 17 #include "../dmaengine.h" 18 #include "../virt-dma.h" 19 20 #define TRE_TYPE_DMA 0x10 21 #define TRE_TYPE_GO 0x20 22 #define TRE_TYPE_CONFIG0 0x22 23 24 /* TRE flags */ 25 #define TRE_FLAGS_CHAIN BIT(0) 26 #define TRE_FLAGS_IEOB BIT(8) 27 #define TRE_FLAGS_IEOT BIT(9) 28 #define TRE_FLAGS_BEI BIT(10) 29 #define TRE_FLAGS_LINK BIT(11) 30 #define TRE_FLAGS_TYPE GENMASK(23, 16) 31 32 /* SPI CONFIG0 WD0 */ 33 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0) 34 #define TRE_SPI_C0_LOOPBACK BIT(8) 35 #define TRE_SPI_C0_CS BIT(11) 36 #define TRE_SPI_C0_CPHA BIT(12) 37 #define TRE_SPI_C0_CPOL BIT(13) 38 #define TRE_SPI_C0_TX_PACK BIT(24) 39 #define TRE_SPI_C0_RX_PACK BIT(25) 40 41 /* CONFIG0 WD2 */ 42 #define TRE_C0_CLK_DIV GENMASK(11, 0) 43 #define TRE_C0_CLK_SRC GENMASK(19, 16) 44 45 /* SPI GO WD0 */ 46 #define TRE_SPI_GO_CMD GENMASK(4, 0) 47 #define TRE_SPI_GO_CS GENMASK(10, 8) 48 #define TRE_SPI_GO_FRAG BIT(26) 49 50 /* GO WD2 */ 51 #define TRE_RX_LEN GENMASK(23, 0) 52 53 /* I2C Config0 WD0 */ 54 #define TRE_I2C_C0_TLOW GENMASK(7, 0) 55 #define TRE_I2C_C0_THIGH GENMASK(15, 8) 56 #define TRE_I2C_C0_TCYL GENMASK(23, 16) 57 #define TRE_I2C_C0_TX_PACK BIT(24) 58 #define TRE_I2C_C0_RX_PACK BIT(25) 59 60 /* I2C GO WD0 */ 61 #define TRE_I2C_GO_CMD GENMASK(4, 0) 62 #define TRE_I2C_GO_ADDR GENMASK(14, 8) 63 #define TRE_I2C_GO_STRETCH BIT(26) 64 65 /* DMA TRE */ 66 #define TRE_DMA_LEN GENMASK(23, 0) 67 68 /* Register offsets from gpi-top */ 69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k))) 70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 71 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20) 72 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14) 73 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3) 74 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0) 75 76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \ 77 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \ 78 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \ 79 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \ 80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto)) 81 82 #define GPI_CHTYPE_DIR_IN (0) 83 #define GPI_CHTYPE_DIR_OUT (1) 84 85 #define GPI_CHTYPE_PROTO_GPI (0x2) 86 87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k))) 88 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n))) 89 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24) 90 #define GPII_n_CH_CMD_CHID GENMASK(7, 0) 91 #define GPII_n_CH_CMD(opcode, chid) \ 92 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \ 93 FIELD_PREP(GPII_n_CH_CMD_CHID, chid)) 94 95 #define GPII_n_CH_CMD_ALLOCATE (0) 96 #define GPII_n_CH_CMD_START (1) 97 #define GPII_n_CH_CMD_STOP (2) 98 #define GPII_n_CH_CMD_RESET (9) 99 #define GPII_n_CH_CMD_DE_ALLOC (10) 100 #define GPII_n_CH_CMD_UART_SW_STALE (32) 101 #define GPII_n_CH_CMD_UART_RFR_READY (33) 102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34) 103 104 /* EV Context Array */ 105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k))) 106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 107 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20) 108 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16) 109 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0) 110 111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \ 112 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \ 113 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \ 114 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype)) 115 116 #define GPI_INTTYPE_IRQ (1) 117 #define GPI_CHTYPE_GPI_EV (0x2) 118 119 enum CNTXT_OFFS { 120 CNTXT_0_CONFIG = 0x0, 121 CNTXT_1_R_LENGTH = 0x4, 122 CNTXT_2_RING_BASE_LSB = 0x8, 123 CNTXT_3_RING_BASE_MSB = 0xC, 124 CNTXT_4_RING_RP_LSB = 0x10, 125 CNTXT_5_RING_RP_MSB = 0x14, 126 CNTXT_6_RING_WP_LSB = 0x18, 127 CNTXT_7_RING_WP_MSB = 0x1C, 128 CNTXT_8_RING_INT_MOD = 0x20, 129 CNTXT_9_RING_INTVEC = 0x24, 130 CNTXT_10_RING_MSI_LSB = 0x28, 131 CNTXT_11_RING_MSI_MSB = 0x2C, 132 CNTXT_12_RING_RP_UPDATE_LSB = 0x30, 133 CNTXT_13_RING_RP_UPDATE_MSB = 0x34, 134 }; 135 136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k))) 137 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n))) 138 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24) 139 #define GPII_n_EV_CMD_CHID GENMASK(7, 0) 140 #define GPII_n_EV_CMD(opcode, chid) \ 141 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \ 142 FIELD_PREP(GPII_n_EV_CMD_CHID, chid)) 143 144 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00) 145 #define GPII_n_EV_CH_CMD_RESET (0x09) 146 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A) 147 148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n))) 149 150 /* mask type register */ 151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n))) 152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0) 153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6) 154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3) 155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2) 156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1) 157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0) 158 159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n))) 160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n))) 161 162 /* Mask channel control interrupt register */ 163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n))) 164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0) 165 166 /* Mask event control interrupt register */ 167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n))) 168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0) 169 170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n))) 171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n))) 172 173 /* Mask event interrupt register */ 174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n))) 175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0) 176 177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n))) 178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n))) 179 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0) 180 181 /* GPII specific Global - Enable bit register */ 182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n))) 183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n))) 184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n))) 185 186 /* GPII general interrupt - Enable bit register */ 187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n))) 188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0) 189 190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n))) 191 192 /* GPII Interrupt Type register */ 193 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n))) 194 #define GPII_n_CNTXT_INTSET_BMSK BIT(0) 195 196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n))) 197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n))) 198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n))) 199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n))) 200 201 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n))) 202 203 /* QOS Registers */ 204 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k))) 205 206 /* Scratch registers */ 207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k))) 208 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0) 209 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4) 210 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16) 211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \ 212 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \ 213 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \ 214 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid)) 215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k))) 216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k))) 217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k))) 218 219 struct __packed gpi_tre { 220 u32 dword[4]; 221 }; 222 223 enum msm_gpi_tce_code { 224 MSM_GPI_TCE_SUCCESS = 1, 225 MSM_GPI_TCE_EOT = 2, 226 MSM_GPI_TCE_EOB = 4, 227 MSM_GPI_TCE_UNEXP_ERR = 16, 228 }; 229 230 #define CMD_TIMEOUT_MS (250) 231 232 #define MAX_CHANNELS_PER_GPII (2) 233 #define GPI_TX_CHAN (0) 234 #define GPI_RX_CHAN (1) 235 #define STATE_IGNORE (U32_MAX) 236 #define EV_FACTOR (2) 237 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */ 238 #define CHAN_TRES 64 239 240 struct __packed xfer_compl_event { 241 u64 ptr; 242 u32 length:24; 243 u8 code; 244 u16 status; 245 u8 type; 246 u8 chid; 247 }; 248 249 struct __packed immediate_data_event { 250 u8 data_bytes[8]; 251 u8 length:4; 252 u8 resvd:4; 253 u16 tre_index; 254 u8 code; 255 u16 status; 256 u8 type; 257 u8 chid; 258 }; 259 260 struct __packed qup_notif_event { 261 u32 status; 262 u32 time; 263 u32 count:24; 264 u8 resvd; 265 u16 resvd1; 266 u8 type; 267 u8 chid; 268 }; 269 270 struct __packed gpi_ere { 271 u32 dword[4]; 272 }; 273 274 enum GPI_EV_TYPE { 275 XFER_COMPLETE_EV_TYPE = 0x22, 276 IMMEDIATE_DATA_EV_TYPE = 0x30, 277 QUP_NOTIF_EV_TYPE = 0x31, 278 STALE_EV_TYPE = 0xFF, 279 }; 280 281 union __packed gpi_event { 282 struct __packed xfer_compl_event xfer_compl_event; 283 struct __packed immediate_data_event immediate_data_event; 284 struct __packed qup_notif_event qup_notif_event; 285 struct __packed gpi_ere gpi_ere; 286 }; 287 288 enum gpii_irq_settings { 289 DEFAULT_IRQ_SETTINGS, 290 MASK_IEOB_SETTINGS, 291 }; 292 293 enum gpi_ev_state { 294 DEFAULT_EV_CH_STATE = 0, 295 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE, 296 EV_STATE_ALLOCATED, 297 MAX_EV_STATES 298 }; 299 300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = { 301 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED", 302 [EV_STATE_ALLOCATED] = "ALLOCATED", 303 }; 304 305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \ 306 "INVALID" : gpi_ev_state_str[(_state)]) 307 308 enum gpi_ch_state { 309 DEFAULT_CH_STATE = 0x0, 310 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE, 311 CH_STATE_ALLOCATED = 0x1, 312 CH_STATE_STARTED = 0x2, 313 CH_STATE_STOPPED = 0x3, 314 CH_STATE_STOP_IN_PROC = 0x4, 315 CH_STATE_ERROR = 0xf, 316 MAX_CH_STATES 317 }; 318 319 enum gpi_cmd { 320 GPI_CH_CMD_BEGIN, 321 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN, 322 GPI_CH_CMD_START, 323 GPI_CH_CMD_STOP, 324 GPI_CH_CMD_RESET, 325 GPI_CH_CMD_DE_ALLOC, 326 GPI_CH_CMD_UART_SW_STALE, 327 GPI_CH_CMD_UART_RFR_READY, 328 GPI_CH_CMD_UART_RFR_NOT_READY, 329 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY, 330 GPI_EV_CMD_BEGIN, 331 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN, 332 GPI_EV_CMD_RESET, 333 GPI_EV_CMD_DEALLOC, 334 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC, 335 GPI_MAX_CMD, 336 }; 337 338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END) 339 340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = { 341 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE", 342 [GPI_CH_CMD_START] = "CH START", 343 [GPI_CH_CMD_STOP] = "CH STOP", 344 [GPI_CH_CMD_RESET] = "CH_RESET", 345 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC", 346 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE", 347 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY", 348 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY", 349 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE", 350 [GPI_EV_CMD_RESET] = "EV RESET", 351 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC", 352 }; 353 354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \ 355 gpi_cmd_str[(_cmd)]) 356 357 /* 358 * @DISABLE_STATE: no register access allowed 359 * @CONFIG_STATE: client has configured the channel 360 * @PREP_HARDWARE: register access is allowed 361 * however, no processing EVENTS 362 * @ACTIVE_STATE: channels are fully operational 363 * @PREPARE_TERMINATE: graceful termination of channels 364 * register access is allowed 365 * @PAUSE_STATE: channels are active, but not processing any events 366 */ 367 enum gpi_pm_state { 368 DISABLE_STATE, 369 CONFIG_STATE, 370 PREPARE_HARDWARE, 371 ACTIVE_STATE, 372 PREPARE_TERMINATE, 373 PAUSE_STATE, 374 MAX_PM_STATE 375 }; 376 377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE) 378 379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = { 380 [DISABLE_STATE] = "DISABLE", 381 [CONFIG_STATE] = "CONFIG", 382 [PREPARE_HARDWARE] = "PREPARE HARDWARE", 383 [ACTIVE_STATE] = "ACTIVE", 384 [PREPARE_TERMINATE] = "PREPARE TERMINATE", 385 [PAUSE_STATE] = "PAUSE", 386 }; 387 388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \ 389 "INVALID" : gpi_pm_state_str[(_state)]) 390 391 static const struct { 392 enum gpi_cmd gpi_cmd; 393 u32 opcode; 394 u32 state; 395 } gpi_cmd_info[GPI_MAX_CMD] = { 396 { 397 GPI_CH_CMD_ALLOCATE, 398 GPII_n_CH_CMD_ALLOCATE, 399 CH_STATE_ALLOCATED, 400 }, 401 { 402 GPI_CH_CMD_START, 403 GPII_n_CH_CMD_START, 404 CH_STATE_STARTED, 405 }, 406 { 407 GPI_CH_CMD_STOP, 408 GPII_n_CH_CMD_STOP, 409 CH_STATE_STOPPED, 410 }, 411 { 412 GPI_CH_CMD_RESET, 413 GPII_n_CH_CMD_RESET, 414 CH_STATE_ALLOCATED, 415 }, 416 { 417 GPI_CH_CMD_DE_ALLOC, 418 GPII_n_CH_CMD_DE_ALLOC, 419 CH_STATE_NOT_ALLOCATED, 420 }, 421 { 422 GPI_CH_CMD_UART_SW_STALE, 423 GPII_n_CH_CMD_UART_SW_STALE, 424 STATE_IGNORE, 425 }, 426 { 427 GPI_CH_CMD_UART_RFR_READY, 428 GPII_n_CH_CMD_UART_RFR_READY, 429 STATE_IGNORE, 430 }, 431 { 432 GPI_CH_CMD_UART_RFR_NOT_READY, 433 GPII_n_CH_CMD_UART_RFR_NOT_READY, 434 STATE_IGNORE, 435 }, 436 { 437 GPI_EV_CMD_ALLOCATE, 438 GPII_n_EV_CH_CMD_ALLOCATE, 439 EV_STATE_ALLOCATED, 440 }, 441 { 442 GPI_EV_CMD_RESET, 443 GPII_n_EV_CH_CMD_RESET, 444 EV_STATE_ALLOCATED, 445 }, 446 { 447 GPI_EV_CMD_DEALLOC, 448 GPII_n_EV_CH_CMD_DE_ALLOC, 449 EV_STATE_NOT_ALLOCATED, 450 }, 451 }; 452 453 struct gpi_ring { 454 void *pre_aligned; 455 size_t alloc_size; 456 phys_addr_t phys_addr; 457 dma_addr_t dma_handle; 458 void *base; 459 void *wp; 460 void *rp; 461 u32 len; 462 u32 el_size; 463 u32 elements; 464 bool configured; 465 }; 466 467 struct gpi_dev { 468 struct dma_device dma_device; 469 struct device *dev; 470 struct resource *res; 471 void __iomem *regs; 472 void __iomem *ee_base; /*ee register base address*/ 473 u32 max_gpii; /* maximum # of gpii instances available per gpi block */ 474 u32 gpii_mask; /* gpii instances available for apps */ 475 u32 ev_factor; /* ev ring length factor */ 476 struct gpii *gpiis; 477 }; 478 479 struct gchan { 480 struct virt_dma_chan vc; 481 u32 chid; 482 u32 seid; 483 u32 protocol; 484 struct gpii *gpii; 485 enum gpi_ch_state ch_state; 486 enum gpi_pm_state pm_state; 487 void __iomem *ch_cntxt_base_reg; 488 void __iomem *ch_cntxt_db_reg; 489 void __iomem *ch_cmd_reg; 490 u32 dir; 491 struct gpi_ring ch_ring; 492 void *config; 493 }; 494 495 struct gpii { 496 u32 gpii_id; 497 struct gchan gchan[MAX_CHANNELS_PER_GPII]; 498 struct gpi_dev *gpi_dev; 499 int irq; 500 void __iomem *regs; /* points to gpi top */ 501 void __iomem *ev_cntxt_base_reg; 502 void __iomem *ev_cntxt_db_reg; 503 void __iomem *ev_ring_rp_lsb_reg; 504 void __iomem *ev_cmd_reg; 505 void __iomem *ieob_clr_reg; 506 struct mutex ctrl_lock; 507 enum gpi_ev_state ev_state; 508 bool configured_irq; 509 enum gpi_pm_state pm_state; 510 rwlock_t pm_lock; 511 struct gpi_ring ev_ring; 512 struct tasklet_struct ev_task; /* event processing tasklet */ 513 struct completion cmd_completion; 514 enum gpi_cmd gpi_cmd; 515 u32 cntxt_type_irq_msk; 516 bool ieob_set; 517 }; 518 519 #define MAX_TRE 3 520 521 struct gpi_desc { 522 struct virt_dma_desc vd; 523 size_t len; 524 void *db; /* DB register to program */ 525 struct gchan *gchan; 526 struct gpi_tre tre[MAX_TRE]; 527 u32 num_tre; 528 }; 529 530 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = { 531 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN 532 }; 533 534 static irqreturn_t gpi_handle_irq(int irq, void *data); 535 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring); 536 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp); 537 static void gpi_process_events(struct gpii *gpii); 538 539 static inline struct gchan *to_gchan(struct dma_chan *dma_chan) 540 { 541 return container_of(dma_chan, struct gchan, vc.chan); 542 } 543 544 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd) 545 { 546 return container_of(vd, struct gpi_desc, vd); 547 } 548 549 static inline phys_addr_t to_physical(const struct gpi_ring *const ring, 550 void *addr) 551 { 552 return ring->phys_addr + (addr - ring->base); 553 } 554 555 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr) 556 { 557 return ring->base + (addr - ring->phys_addr); 558 } 559 560 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr) 561 { 562 return readl_relaxed(addr); 563 } 564 565 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val) 566 { 567 writel_relaxed(val, addr); 568 } 569 570 /* gpi_write_reg_field - write to specific bit field */ 571 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr, 572 u32 mask, u32 shift, u32 val) 573 { 574 u32 tmp = gpi_read_reg(gpii, addr); 575 576 tmp &= ~mask; 577 val = tmp | ((val << shift) & mask); 578 gpi_write_reg(gpii, addr, val); 579 } 580 581 static __always_inline void 582 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val) 583 { 584 void __iomem *addr = gpii->regs + offset; 585 u32 tmp = gpi_read_reg(gpii, addr); 586 587 tmp &= ~mask; 588 tmp |= u32_encode_bits(val, mask); 589 590 gpi_write_reg(gpii, addr, tmp); 591 } 592 593 static void gpi_disable_interrupts(struct gpii *gpii) 594 { 595 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 596 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0); 597 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 598 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0); 599 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 600 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0); 601 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 602 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0); 603 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 604 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 605 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 606 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 607 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 608 GPII_n_CNTXT_INTSET_BMSK, 0); 609 610 gpii->cntxt_type_irq_msk = 0; 611 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii); 612 gpii->configured_irq = false; 613 } 614 615 /* configure and enable interrupts */ 616 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask) 617 { 618 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL | 619 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB | 620 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB | 621 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL | 622 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 623 int ret; 624 625 if (!gpii->configured_irq) { 626 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq, 627 gpi_handle_irq, IRQF_TRIGGER_HIGH, 628 "gpi-dma", gpii); 629 if (ret < 0) { 630 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n", 631 gpii->irq, ret); 632 return ret; 633 } 634 } 635 636 if (settings == MASK_IEOB_SETTINGS) { 637 /* 638 * GPII only uses one EV ring per gpii so we can globally 639 * enable/disable IEOB interrupt 640 */ 641 if (mask) 642 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 643 else 644 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB); 645 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 646 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk); 647 } else { 648 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 649 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable); 650 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 651 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 652 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK); 653 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 654 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 655 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK); 656 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 657 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 658 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK); 659 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 660 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 661 GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 662 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 663 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 664 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0); 665 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0); 666 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0); 667 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0); 668 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 669 GPII_n_CNTXT_INTSET_BMSK, 1); 670 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0); 671 672 gpii->cntxt_type_irq_msk = enable; 673 } 674 675 gpii->configured_irq = true; 676 return 0; 677 } 678 679 /* Sends gpii event or channel command */ 680 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan, 681 enum gpi_cmd gpi_cmd) 682 { 683 u32 chid = MAX_CHANNELS_PER_GPII; 684 unsigned long timeout; 685 void __iomem *cmd_reg; 686 u32 cmd; 687 688 if (gpi_cmd >= GPI_MAX_CMD) 689 return -EINVAL; 690 if (IS_CHAN_CMD(gpi_cmd)) 691 chid = gchan->chid; 692 693 dev_dbg(gpii->gpi_dev->dev, 694 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); 695 696 /* send opcode and wait for completion */ 697 reinit_completion(&gpii->cmd_completion); 698 gpii->gpi_cmd = gpi_cmd; 699 700 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg; 701 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) : 702 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0); 703 gpi_write_reg(gpii, cmd_reg, cmd); 704 timeout = wait_for_completion_timeout(&gpii->cmd_completion, 705 msecs_to_jiffies(CMD_TIMEOUT_MS)); 706 if (!timeout) { 707 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n", 708 TO_GPI_CMD_STR(gpi_cmd), chid); 709 return -EIO; 710 } 711 712 /* confirm new ch state is correct , if the cmd is a state change cmd */ 713 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE) 714 return 0; 715 716 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state) 717 return 0; 718 719 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state) 720 return 0; 721 722 return -EIO; 723 } 724 725 /* program transfer ring DB register */ 726 static inline void gpi_write_ch_db(struct gchan *gchan, 727 struct gpi_ring *ring, void *wp) 728 { 729 struct gpii *gpii = gchan->gpii; 730 phys_addr_t p_wp; 731 732 p_wp = to_physical(ring, wp); 733 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp); 734 } 735 736 /* program event ring DB register */ 737 static inline void gpi_write_ev_db(struct gpii *gpii, 738 struct gpi_ring *ring, void *wp) 739 { 740 phys_addr_t p_wp; 741 742 p_wp = ring->phys_addr + (wp - ring->base); 743 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp); 744 } 745 746 /* process transfer completion interrupt */ 747 static void gpi_process_ieob(struct gpii *gpii) 748 { 749 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 750 751 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0); 752 tasklet_hi_schedule(&gpii->ev_task); 753 } 754 755 /* process channel control interrupt */ 756 static void gpi_process_ch_ctrl_irq(struct gpii *gpii) 757 { 758 u32 gpii_id = gpii->gpii_id; 759 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id); 760 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 761 struct gchan *gchan; 762 u32 chid, state; 763 764 /* clear the status */ 765 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id); 766 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq); 767 768 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) { 769 if (!(BIT(chid) & ch_irq)) 770 continue; 771 772 gchan = &gpii->gchan[chid]; 773 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg + 774 CNTXT_0_CONFIG); 775 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state); 776 777 /* 778 * CH_CMD_DEALLOC cmd always successful. However cmd does 779 * not change hardware status. So overwriting software state 780 * to default state. 781 */ 782 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC) 783 state = DEFAULT_CH_STATE; 784 gchan->ch_state = state; 785 786 /* 787 * Triggering complete all if ch_state is not a stop in process. 788 * Stop in process is a transition state and we will wait for 789 * stop interrupt before notifying. 790 */ 791 if (gchan->ch_state != CH_STATE_STOP_IN_PROC) 792 complete_all(&gpii->cmd_completion); 793 } 794 } 795 796 /* processing gpi general error interrupts */ 797 static void gpi_process_gen_err_irq(struct gpii *gpii) 798 { 799 u32 gpii_id = gpii->gpii_id; 800 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id); 801 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 802 803 /* clear the status */ 804 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts); 805 806 /* Clear the register */ 807 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id); 808 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 809 } 810 811 /* processing gpi level error interrupts */ 812 static void gpi_process_glob_err_irq(struct gpii *gpii) 813 { 814 u32 gpii_id = gpii->gpii_id; 815 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id); 816 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 817 818 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id); 819 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 820 821 /* only error interrupt should be set */ 822 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) { 823 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts); 824 return; 825 } 826 827 offset = GPII_n_ERROR_LOG_OFFS(gpii_id); 828 gpi_write_reg(gpii, gpii->regs + offset, 0); 829 } 830 831 /* gpii interrupt handler */ 832 static irqreturn_t gpi_handle_irq(int irq, void *data) 833 { 834 struct gpii *gpii = data; 835 u32 gpii_id = gpii->gpii_id; 836 u32 type, offset; 837 unsigned long flags; 838 839 read_lock_irqsave(&gpii->pm_lock, flags); 840 841 /* 842 * States are out of sync to receive interrupt 843 * while software state is in DISABLE state, bailing out. 844 */ 845 if (!REG_ACCESS_VALID(gpii->pm_state)) { 846 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n", 847 TO_GPI_PM_STR(gpii->pm_state)); 848 goto exit_irq; 849 } 850 851 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 852 type = gpi_read_reg(gpii, gpii->regs + offset); 853 854 do { 855 /* global gpii error */ 856 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) { 857 gpi_process_glob_err_irq(gpii); 858 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB); 859 } 860 861 /* transfer complete interrupt */ 862 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) { 863 gpi_process_ieob(gpii); 864 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 865 } 866 867 /* event control irq */ 868 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) { 869 u32 ev_state; 870 u32 ev_ch_irq; 871 872 dev_dbg(gpii->gpi_dev->dev, 873 "processing EV CTRL interrupt\n"); 874 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id); 875 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 876 877 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS 878 (gpii_id); 879 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq); 880 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg + 881 CNTXT_0_CONFIG); 882 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state); 883 884 /* 885 * CMD EV_CMD_DEALLOC is always successful. However 886 * cmd does not change hardware status. So overwriting 887 * software state to default state. 888 */ 889 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC) 890 ev_state = DEFAULT_EV_CH_STATE; 891 892 gpii->ev_state = ev_state; 893 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n", 894 TO_GPI_EV_STATE_STR(gpii->ev_state)); 895 complete_all(&gpii->cmd_completion); 896 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL); 897 } 898 899 /* channel control irq */ 900 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) { 901 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n"); 902 gpi_process_ch_ctrl_irq(gpii); 903 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 904 } 905 906 if (type) { 907 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type); 908 gpi_process_gen_err_irq(gpii); 909 goto exit_irq; 910 } 911 912 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 913 type = gpi_read_reg(gpii, gpii->regs + offset); 914 } while (type); 915 916 exit_irq: 917 read_unlock_irqrestore(&gpii->pm_lock, flags); 918 919 return IRQ_HANDLED; 920 } 921 922 /* process DMA Immediate completion data events */ 923 static void gpi_process_imed_data_event(struct gchan *gchan, 924 struct immediate_data_event *imed_event) 925 { 926 struct gpii *gpii = gchan->gpii; 927 struct gpi_ring *ch_ring = &gchan->ch_ring; 928 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index); 929 struct dmaengine_result result; 930 struct gpi_desc *gpi_desc; 931 struct virt_dma_desc *vd; 932 unsigned long flags; 933 u32 chid; 934 935 /* 936 * If channel not active don't process event 937 */ 938 if (gchan->pm_state != ACTIVE_STATE) { 939 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 940 TO_GPI_PM_STR(gchan->pm_state)); 941 return; 942 } 943 944 spin_lock_irqsave(&gchan->vc.lock, flags); 945 vd = vchan_next_desc(&gchan->vc); 946 if (!vd) { 947 struct gpi_ere *gpi_ere; 948 struct gpi_tre *gpi_tre; 949 950 spin_unlock_irqrestore(&gchan->vc.lock, flags); 951 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n"); 952 gpi_ere = (struct gpi_ere *)imed_event; 953 dev_dbg(gpii->gpi_dev->dev, 954 "Event: %08x %08x %08x %08x\n", 955 gpi_ere->dword[0], gpi_ere->dword[1], 956 gpi_ere->dword[2], gpi_ere->dword[3]); 957 gpi_tre = tre; 958 dev_dbg(gpii->gpi_dev->dev, 959 "Pending TRE: %08x %08x %08x %08x\n", 960 gpi_tre->dword[0], gpi_tre->dword[1], 961 gpi_tre->dword[2], gpi_tre->dword[3]); 962 return; 963 } 964 gpi_desc = to_gpi_desc(vd); 965 spin_unlock_irqrestore(&gchan->vc.lock, flags); 966 967 /* 968 * RP pointed by Event is to last TRE processed, 969 * we need to update ring rp to tre + 1 970 */ 971 tre += ch_ring->el_size; 972 if (tre >= (ch_ring->base + ch_ring->len)) 973 tre = ch_ring->base; 974 ch_ring->rp = tre; 975 976 /* make sure rp updates are immediately visible to all cores */ 977 smp_wmb(); 978 979 chid = imed_event->chid; 980 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 981 if (chid == GPI_RX_CHAN) 982 goto gpi_free_desc; 983 else 984 return; 985 } 986 987 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR) 988 result.result = DMA_TRANS_ABORTED; 989 else 990 result.result = DMA_TRANS_NOERROR; 991 result.residue = gpi_desc->len - imed_event->length; 992 993 dma_cookie_complete(&vd->tx); 994 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 995 996 gpi_free_desc: 997 spin_lock_irqsave(&gchan->vc.lock, flags); 998 list_del(&vd->node); 999 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1000 kfree(gpi_desc); 1001 gpi_desc = NULL; 1002 } 1003 1004 /* processing transfer completion events */ 1005 static void gpi_process_xfer_compl_event(struct gchan *gchan, 1006 struct xfer_compl_event *compl_event) 1007 { 1008 struct gpii *gpii = gchan->gpii; 1009 struct gpi_ring *ch_ring = &gchan->ch_ring; 1010 void *ev_rp = to_virtual(ch_ring, compl_event->ptr); 1011 struct virt_dma_desc *vd; 1012 struct gpi_desc *gpi_desc; 1013 struct dmaengine_result result; 1014 unsigned long flags; 1015 u32 chid; 1016 1017 /* only process events on active channel */ 1018 if (unlikely(gchan->pm_state != ACTIVE_STATE)) { 1019 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 1020 TO_GPI_PM_STR(gchan->pm_state)); 1021 return; 1022 } 1023 1024 spin_lock_irqsave(&gchan->vc.lock, flags); 1025 vd = vchan_next_desc(&gchan->vc); 1026 if (!vd) { 1027 struct gpi_ere *gpi_ere; 1028 1029 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1030 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n"); 1031 gpi_ere = (struct gpi_ere *)compl_event; 1032 dev_err(gpii->gpi_dev->dev, 1033 "Event: %08x %08x %08x %08x\n", 1034 gpi_ere->dword[0], gpi_ere->dword[1], 1035 gpi_ere->dword[2], gpi_ere->dword[3]); 1036 return; 1037 } 1038 1039 gpi_desc = to_gpi_desc(vd); 1040 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1041 1042 /* 1043 * RP pointed by Event is to last TRE processed, 1044 * we need to update ring rp to ev_rp + 1 1045 */ 1046 ev_rp += ch_ring->el_size; 1047 if (ev_rp >= (ch_ring->base + ch_ring->len)) 1048 ev_rp = ch_ring->base; 1049 ch_ring->rp = ev_rp; 1050 1051 /* update must be visible to other cores */ 1052 smp_wmb(); 1053 1054 chid = compl_event->chid; 1055 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 1056 if (chid == GPI_RX_CHAN) 1057 goto gpi_free_desc; 1058 else 1059 return; 1060 } 1061 1062 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) { 1063 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n"); 1064 result.result = DMA_TRANS_ABORTED; 1065 } else { 1066 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n"); 1067 result.result = DMA_TRANS_NOERROR; 1068 } 1069 result.residue = gpi_desc->len - compl_event->length; 1070 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue); 1071 1072 dma_cookie_complete(&vd->tx); 1073 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 1074 1075 gpi_free_desc: 1076 spin_lock_irqsave(&gchan->vc.lock, flags); 1077 list_del(&vd->node); 1078 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1079 kfree(gpi_desc); 1080 gpi_desc = NULL; 1081 } 1082 1083 /* process all events */ 1084 static void gpi_process_events(struct gpii *gpii) 1085 { 1086 struct gpi_ring *ev_ring = &gpii->ev_ring; 1087 phys_addr_t cntxt_rp; 1088 void *rp; 1089 union gpi_event *gpi_event; 1090 struct gchan *gchan; 1091 u32 chid, type; 1092 1093 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1094 rp = to_virtual(ev_ring, cntxt_rp); 1095 1096 do { 1097 while (rp != ev_ring->rp) { 1098 gpi_event = ev_ring->rp; 1099 chid = gpi_event->xfer_compl_event.chid; 1100 type = gpi_event->xfer_compl_event.type; 1101 1102 dev_dbg(gpii->gpi_dev->dev, 1103 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n", 1104 chid, type, gpi_event->gpi_ere.dword[0], 1105 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2], 1106 gpi_event->gpi_ere.dword[3]); 1107 1108 switch (type) { 1109 case XFER_COMPLETE_EV_TYPE: 1110 gchan = &gpii->gchan[chid]; 1111 gpi_process_xfer_compl_event(gchan, 1112 &gpi_event->xfer_compl_event); 1113 break; 1114 case STALE_EV_TYPE: 1115 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n"); 1116 break; 1117 case IMMEDIATE_DATA_EV_TYPE: 1118 gchan = &gpii->gchan[chid]; 1119 gpi_process_imed_data_event(gchan, 1120 &gpi_event->immediate_data_event); 1121 break; 1122 case QUP_NOTIF_EV_TYPE: 1123 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n"); 1124 break; 1125 default: 1126 dev_dbg(gpii->gpi_dev->dev, 1127 "not supported event type:0x%x\n", type); 1128 } 1129 gpi_ring_recycle_ev_element(ev_ring); 1130 } 1131 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp); 1132 1133 /* clear pending IEOB events */ 1134 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 1135 1136 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1137 rp = to_virtual(ev_ring, cntxt_rp); 1138 1139 } while (rp != ev_ring->rp); 1140 } 1141 1142 /* processing events using tasklet */ 1143 static void gpi_ev_tasklet(unsigned long data) 1144 { 1145 struct gpii *gpii = (struct gpii *)data; 1146 1147 read_lock(&gpii->pm_lock); 1148 if (!REG_ACCESS_VALID(gpii->pm_state)) { 1149 read_unlock(&gpii->pm_lock); 1150 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n", 1151 TO_GPI_PM_STR(gpii->pm_state)); 1152 return; 1153 } 1154 1155 /* process the events */ 1156 gpi_process_events(gpii); 1157 1158 /* enable IEOB, switching back to interrupts */ 1159 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1); 1160 read_unlock(&gpii->pm_lock); 1161 } 1162 1163 /* marks all pending events for the channel as stale */ 1164 static void gpi_mark_stale_events(struct gchan *gchan) 1165 { 1166 struct gpii *gpii = gchan->gpii; 1167 struct gpi_ring *ev_ring = &gpii->ev_ring; 1168 u32 cntxt_rp, local_rp; 1169 void *ev_rp; 1170 1171 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1172 1173 ev_rp = ev_ring->rp; 1174 local_rp = (u32)to_physical(ev_ring, ev_rp); 1175 while (local_rp != cntxt_rp) { 1176 union gpi_event *gpi_event = ev_rp; 1177 u32 chid = gpi_event->xfer_compl_event.chid; 1178 1179 if (chid == gchan->chid) 1180 gpi_event->xfer_compl_event.type = STALE_EV_TYPE; 1181 ev_rp += ev_ring->el_size; 1182 if (ev_rp >= (ev_ring->base + ev_ring->len)) 1183 ev_rp = ev_ring->base; 1184 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1185 local_rp = (u32)to_physical(ev_ring, ev_rp); 1186 } 1187 } 1188 1189 /* reset sw state and issue channel reset or de-alloc */ 1190 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd) 1191 { 1192 struct gpii *gpii = gchan->gpii; 1193 struct gpi_ring *ch_ring = &gchan->ch_ring; 1194 LIST_HEAD(list); 1195 int ret; 1196 1197 ret = gpi_send_cmd(gpii, gchan, gpi_cmd); 1198 if (ret) { 1199 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1200 TO_GPI_CMD_STR(gpi_cmd), ret); 1201 return ret; 1202 } 1203 1204 /* initialize the local ring ptrs */ 1205 ch_ring->rp = ch_ring->base; 1206 ch_ring->wp = ch_ring->base; 1207 1208 /* visible to other cores */ 1209 smp_wmb(); 1210 1211 /* check event ring for any stale events */ 1212 write_lock_irq(&gpii->pm_lock); 1213 gpi_mark_stale_events(gchan); 1214 1215 /* remove all async descriptors */ 1216 spin_lock(&gchan->vc.lock); 1217 vchan_get_all_descriptors(&gchan->vc, &list); 1218 spin_unlock(&gchan->vc.lock); 1219 write_unlock_irq(&gpii->pm_lock); 1220 vchan_dma_desc_free_list(&gchan->vc, &list); 1221 1222 return 0; 1223 } 1224 1225 static int gpi_start_chan(struct gchan *gchan) 1226 { 1227 struct gpii *gpii = gchan->gpii; 1228 int ret; 1229 1230 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START); 1231 if (ret) { 1232 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1233 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret); 1234 return ret; 1235 } 1236 1237 /* gpii CH is active now */ 1238 write_lock_irq(&gpii->pm_lock); 1239 gchan->pm_state = ACTIVE_STATE; 1240 write_unlock_irq(&gpii->pm_lock); 1241 1242 return 0; 1243 } 1244 1245 static int gpi_stop_chan(struct gchan *gchan) 1246 { 1247 struct gpii *gpii = gchan->gpii; 1248 int ret; 1249 1250 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP); 1251 if (ret) { 1252 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1253 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret); 1254 return ret; 1255 } 1256 1257 return 0; 1258 } 1259 1260 /* allocate and configure the transfer channel */ 1261 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd) 1262 { 1263 struct gpii *gpii = chan->gpii; 1264 struct gpi_ring *ring = &chan->ch_ring; 1265 int ret; 1266 u32 id = gpii->gpii_id; 1267 u32 chid = chan->chid; 1268 u32 pair_chid = !chid; 1269 1270 if (send_alloc_cmd) { 1271 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE); 1272 if (ret) { 1273 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1274 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret); 1275 return ret; 1276 } 1277 } 1278 1279 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG, 1280 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI)); 1281 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len); 1282 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr); 1283 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB, 1284 upper_32_bits(ring->phys_addr)); 1285 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1286 upper_32_bits(ring->phys_addr)); 1287 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid), 1288 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid)); 1289 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0); 1290 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0); 1291 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0); 1292 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1); 1293 1294 /* flush all the writes */ 1295 wmb(); 1296 return 0; 1297 } 1298 1299 /* allocate and configure event ring */ 1300 static int gpi_alloc_ev_chan(struct gpii *gpii) 1301 { 1302 struct gpi_ring *ring = &gpii->ev_ring; 1303 void __iomem *base = gpii->ev_cntxt_base_reg; 1304 int ret; 1305 1306 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE); 1307 if (ret) { 1308 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n", 1309 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret); 1310 return ret; 1311 } 1312 1313 /* program event context */ 1314 gpi_write_reg(gpii, base + CNTXT_0_CONFIG, 1315 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV)); 1316 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len); 1317 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr)); 1318 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); 1319 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1320 upper_32_bits(ring->phys_addr)); 1321 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1322 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0); 1323 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0); 1324 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1325 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0); 1326 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0); 1327 1328 /* add events to ring */ 1329 ring->wp = (ring->base + ring->len - ring->el_size); 1330 1331 /* flush all the writes */ 1332 wmb(); 1333 1334 /* gpii is active now */ 1335 write_lock_irq(&gpii->pm_lock); 1336 gpii->pm_state = ACTIVE_STATE; 1337 write_unlock_irq(&gpii->pm_lock); 1338 gpi_write_ev_db(gpii, ring, ring->wp); 1339 1340 return 0; 1341 } 1342 1343 /* calculate # of ERE/TRE available to queue */ 1344 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring) 1345 { 1346 int elements = 0; 1347 1348 if (ring->wp < ring->rp) { 1349 elements = ((ring->rp - ring->wp) / ring->el_size) - 1; 1350 } else { 1351 elements = (ring->rp - ring->base) / ring->el_size; 1352 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; 1353 } 1354 1355 return elements; 1356 } 1357 1358 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp) 1359 { 1360 if (gpi_ring_num_elements_avail(ring) <= 0) 1361 return -ENOMEM; 1362 1363 *wp = ring->wp; 1364 ring->wp += ring->el_size; 1365 if (ring->wp >= (ring->base + ring->len)) 1366 ring->wp = ring->base; 1367 1368 /* visible to other cores */ 1369 smp_wmb(); 1370 1371 return 0; 1372 } 1373 1374 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring) 1375 { 1376 /* Update the WP */ 1377 ring->wp += ring->el_size; 1378 if (ring->wp >= (ring->base + ring->len)) 1379 ring->wp = ring->base; 1380 1381 /* Update the RP */ 1382 ring->rp += ring->el_size; 1383 if (ring->rp >= (ring->base + ring->len)) 1384 ring->rp = ring->base; 1385 1386 /* visible to other cores */ 1387 smp_wmb(); 1388 } 1389 1390 static void gpi_free_ring(struct gpi_ring *ring, 1391 struct gpii *gpii) 1392 { 1393 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size, 1394 ring->pre_aligned, ring->dma_handle); 1395 memset(ring, 0, sizeof(*ring)); 1396 } 1397 1398 /* allocate memory for transfer and event rings */ 1399 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements, 1400 u32 el_size, struct gpii *gpii) 1401 { 1402 u64 len = elements * el_size; 1403 int bit; 1404 1405 /* ring len must be power of 2 */ 1406 bit = find_last_bit((unsigned long *)&len, 32); 1407 if (((1 << bit) - 1) & len) 1408 bit++; 1409 len = 1 << bit; 1410 ring->alloc_size = (len + (len - 1)); 1411 dev_dbg(gpii->gpi_dev->dev, 1412 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n", 1413 elements, el_size, (elements * el_size), len, 1414 ring->alloc_size); 1415 1416 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev, 1417 ring->alloc_size, 1418 &ring->dma_handle, GFP_KERNEL); 1419 if (!ring->pre_aligned) { 1420 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n", 1421 ring->alloc_size); 1422 return -ENOMEM; 1423 } 1424 1425 /* align the physical mem */ 1426 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1); 1427 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle); 1428 ring->rp = ring->base; 1429 ring->wp = ring->base; 1430 ring->len = len; 1431 ring->el_size = el_size; 1432 ring->elements = ring->len / ring->el_size; 1433 memset(ring->base, 0, ring->len); 1434 ring->configured = true; 1435 1436 /* update to other cores */ 1437 smp_wmb(); 1438 1439 dev_dbg(gpii->gpi_dev->dev, 1440 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n", 1441 &ring->dma_handle, &ring->phys_addr, ring->len, 1442 ring->el_size, ring->elements); 1443 1444 return 0; 1445 } 1446 1447 /* copy tre into transfer ring */ 1448 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan, 1449 struct gpi_tre *gpi_tre, void **wp) 1450 { 1451 struct gpi_tre *ch_tre; 1452 int ret; 1453 1454 /* get next tre location we can copy */ 1455 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre); 1456 if (unlikely(ret)) { 1457 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n"); 1458 return; 1459 } 1460 1461 /* copy the tre info */ 1462 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre)); 1463 *wp = ch_tre; 1464 } 1465 1466 /* reset and restart transfer channel */ 1467 static int gpi_terminate_all(struct dma_chan *chan) 1468 { 1469 struct gchan *gchan = to_gchan(chan); 1470 struct gpii *gpii = gchan->gpii; 1471 int schid, echid, i; 1472 int ret = 0; 1473 1474 mutex_lock(&gpii->ctrl_lock); 1475 1476 /* 1477 * treat both channels as a group if its protocol is not UART 1478 * STOP, RESET, or START needs to be in lockstep 1479 */ 1480 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0; 1481 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII; 1482 1483 /* stop the channel */ 1484 for (i = schid; i < echid; i++) { 1485 gchan = &gpii->gchan[i]; 1486 1487 /* disable ch state so no more TRE processing */ 1488 write_lock_irq(&gpii->pm_lock); 1489 gchan->pm_state = PREPARE_TERMINATE; 1490 write_unlock_irq(&gpii->pm_lock); 1491 1492 /* send command to Stop the channel */ 1493 ret = gpi_stop_chan(gchan); 1494 } 1495 1496 /* reset the channels (clears any pending tre) */ 1497 for (i = schid; i < echid; i++) { 1498 gchan = &gpii->gchan[i]; 1499 1500 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET); 1501 if (ret) { 1502 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret); 1503 goto terminate_exit; 1504 } 1505 1506 /* reprogram channel CNTXT */ 1507 ret = gpi_alloc_chan(gchan, false); 1508 if (ret) { 1509 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret); 1510 goto terminate_exit; 1511 } 1512 } 1513 1514 /* restart the channels */ 1515 for (i = schid; i < echid; i++) { 1516 gchan = &gpii->gchan[i]; 1517 1518 ret = gpi_start_chan(gchan); 1519 if (ret) { 1520 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret); 1521 goto terminate_exit; 1522 } 1523 } 1524 1525 terminate_exit: 1526 mutex_unlock(&gpii->ctrl_lock); 1527 return ret; 1528 } 1529 1530 /* pause dma transfer for all channels */ 1531 static int gpi_pause(struct dma_chan *chan) 1532 { 1533 struct gchan *gchan = to_gchan(chan); 1534 struct gpii *gpii = gchan->gpii; 1535 int i, ret; 1536 1537 mutex_lock(&gpii->ctrl_lock); 1538 1539 /* 1540 * pause/resume are per gpii not per channel, so 1541 * client needs to call pause only once 1542 */ 1543 if (gpii->pm_state == PAUSE_STATE) { 1544 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n"); 1545 mutex_unlock(&gpii->ctrl_lock); 1546 return 0; 1547 } 1548 1549 /* send stop command to stop the channels */ 1550 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1551 ret = gpi_stop_chan(&gpii->gchan[i]); 1552 if (ret) { 1553 mutex_unlock(&gpii->ctrl_lock); 1554 return ret; 1555 } 1556 } 1557 1558 disable_irq(gpii->irq); 1559 1560 /* Wait for threads to complete out */ 1561 tasklet_kill(&gpii->ev_task); 1562 1563 write_lock_irq(&gpii->pm_lock); 1564 gpii->pm_state = PAUSE_STATE; 1565 write_unlock_irq(&gpii->pm_lock); 1566 mutex_unlock(&gpii->ctrl_lock); 1567 1568 return 0; 1569 } 1570 1571 /* resume dma transfer */ 1572 static int gpi_resume(struct dma_chan *chan) 1573 { 1574 struct gchan *gchan = to_gchan(chan); 1575 struct gpii *gpii = gchan->gpii; 1576 int i, ret; 1577 1578 mutex_lock(&gpii->ctrl_lock); 1579 if (gpii->pm_state == ACTIVE_STATE) { 1580 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n"); 1581 mutex_unlock(&gpii->ctrl_lock); 1582 return 0; 1583 } 1584 1585 enable_irq(gpii->irq); 1586 1587 /* send start command to start the channels */ 1588 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1589 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START); 1590 if (ret) { 1591 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret); 1592 mutex_unlock(&gpii->ctrl_lock); 1593 return ret; 1594 } 1595 } 1596 1597 write_lock_irq(&gpii->pm_lock); 1598 gpii->pm_state = ACTIVE_STATE; 1599 write_unlock_irq(&gpii->pm_lock); 1600 mutex_unlock(&gpii->ctrl_lock); 1601 1602 return 0; 1603 } 1604 1605 static void gpi_desc_free(struct virt_dma_desc *vd) 1606 { 1607 struct gpi_desc *gpi_desc = to_gpi_desc(vd); 1608 1609 kfree(gpi_desc); 1610 gpi_desc = NULL; 1611 } 1612 1613 static int 1614 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config) 1615 { 1616 struct gchan *gchan = to_gchan(chan); 1617 1618 if (!config->peripheral_config) 1619 return -EINVAL; 1620 1621 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT); 1622 if (!gchan->config) 1623 return -ENOMEM; 1624 1625 memcpy(gchan->config, config->peripheral_config, config->peripheral_size); 1626 1627 return 0; 1628 } 1629 1630 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc, 1631 struct scatterlist *sgl, enum dma_transfer_direction direction) 1632 { 1633 struct gpi_i2c_config *i2c = chan->config; 1634 struct device *dev = chan->gpii->gpi_dev->dev; 1635 unsigned int tre_idx = 0; 1636 dma_addr_t address; 1637 struct gpi_tre *tre; 1638 unsigned int i; 1639 1640 /* first create config tre if applicable */ 1641 if (i2c->set_config) { 1642 tre = &desc->tre[tre_idx]; 1643 tre_idx++; 1644 1645 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW); 1646 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH); 1647 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL); 1648 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK); 1649 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK); 1650 1651 tre->dword[1] = 0; 1652 1653 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV); 1654 1655 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1656 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1657 } 1658 1659 /* create the GO tre for Tx */ 1660 if (i2c->op == I2C_WRITE) { 1661 tre = &desc->tre[tre_idx]; 1662 tre_idx++; 1663 1664 if (i2c->multi_msg) 1665 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD); 1666 else 1667 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD); 1668 1669 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR); 1670 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH); 1671 1672 tre->dword[1] = 0; 1673 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN); 1674 1675 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1676 1677 if (i2c->multi_msg) 1678 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1679 else 1680 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1681 } 1682 1683 if (i2c->op == I2C_READ || i2c->multi_msg == false) { 1684 /* create the DMA TRE */ 1685 tre = &desc->tre[tre_idx]; 1686 tre_idx++; 1687 1688 address = sg_dma_address(sgl); 1689 tre->dword[0] = lower_32_bits(address); 1690 tre->dword[1] = upper_32_bits(address); 1691 1692 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1693 1694 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1695 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1696 } 1697 1698 for (i = 0; i < tre_idx; i++) 1699 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1700 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1701 1702 return tre_idx; 1703 } 1704 1705 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc, 1706 struct scatterlist *sgl, enum dma_transfer_direction direction) 1707 { 1708 struct gpi_spi_config *spi = chan->config; 1709 struct device *dev = chan->gpii->gpi_dev->dev; 1710 unsigned int tre_idx = 0; 1711 dma_addr_t address; 1712 struct gpi_tre *tre; 1713 unsigned int i; 1714 1715 /* first create config tre if applicable */ 1716 if (direction == DMA_MEM_TO_DEV && spi->set_config) { 1717 tre = &desc->tre[tre_idx]; 1718 tre_idx++; 1719 1720 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ); 1721 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK); 1722 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL); 1723 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA); 1724 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK); 1725 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK); 1726 1727 tre->dword[1] = 0; 1728 1729 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV); 1730 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC); 1731 1732 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1733 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1734 } 1735 1736 /* create the GO tre for Tx */ 1737 if (direction == DMA_MEM_TO_DEV) { 1738 tre = &desc->tre[tre_idx]; 1739 tre_idx++; 1740 1741 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG); 1742 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS); 1743 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD); 1744 1745 tre->dword[1] = 0; 1746 1747 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN); 1748 1749 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1750 if (spi->cmd == SPI_RX) { 1751 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB); 1752 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1753 } else if (spi->cmd == SPI_TX) { 1754 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1755 } else { /* SPI_DUPLEX */ 1756 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1757 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1758 } 1759 } 1760 1761 /* create the dma tre */ 1762 tre = &desc->tre[tre_idx]; 1763 tre_idx++; 1764 1765 address = sg_dma_address(sgl); 1766 tre->dword[0] = lower_32_bits(address); 1767 tre->dword[1] = upper_32_bits(address); 1768 1769 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1770 1771 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1772 if (direction == DMA_MEM_TO_DEV) 1773 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1774 1775 for (i = 0; i < tre_idx; i++) 1776 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1777 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1778 1779 return tre_idx; 1780 } 1781 1782 /* copy tre into transfer ring */ 1783 static struct dma_async_tx_descriptor * 1784 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1785 unsigned int sg_len, enum dma_transfer_direction direction, 1786 unsigned long flags, void *context) 1787 { 1788 struct gchan *gchan = to_gchan(chan); 1789 struct gpii *gpii = gchan->gpii; 1790 struct device *dev = gpii->gpi_dev->dev; 1791 struct gpi_ring *ch_ring = &gchan->ch_ring; 1792 struct gpi_desc *gpi_desc; 1793 u32 nr, nr_tre = 0; 1794 u8 set_config; 1795 int i; 1796 1797 gpii->ieob_set = false; 1798 if (!is_slave_direction(direction)) { 1799 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction); 1800 return NULL; 1801 } 1802 1803 if (sg_len > 1) { 1804 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len); 1805 return NULL; 1806 } 1807 1808 nr_tre = 3; 1809 set_config = *(u32 *)gchan->config; 1810 if (!set_config) 1811 nr_tre = 2; 1812 if (direction == DMA_DEV_TO_MEM) /* rx */ 1813 nr_tre = 1; 1814 1815 /* calculate # of elements required & available */ 1816 nr = gpi_ring_num_elements_avail(ch_ring); 1817 if (nr < nr_tre) { 1818 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre); 1819 return NULL; 1820 } 1821 1822 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT); 1823 if (!gpi_desc) 1824 return NULL; 1825 1826 /* create TREs for xfer */ 1827 if (gchan->protocol == QCOM_GPI_SPI) { 1828 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction); 1829 } else if (gchan->protocol == QCOM_GPI_I2C) { 1830 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction); 1831 } else { 1832 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol); 1833 kfree(gpi_desc); 1834 return NULL; 1835 } 1836 1837 /* set up the descriptor */ 1838 gpi_desc->gchan = gchan; 1839 gpi_desc->len = sg_dma_len(sgl); 1840 gpi_desc->num_tre = i; 1841 1842 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags); 1843 } 1844 1845 /* rings transfer ring db to being transfer */ 1846 static void gpi_issue_pending(struct dma_chan *chan) 1847 { 1848 struct gchan *gchan = to_gchan(chan); 1849 struct gpii *gpii = gchan->gpii; 1850 unsigned long flags, pm_lock_flags; 1851 struct virt_dma_desc *vd = NULL; 1852 struct gpi_desc *gpi_desc; 1853 struct gpi_ring *ch_ring = &gchan->ch_ring; 1854 void *tre, *wp = NULL; 1855 int i; 1856 1857 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags); 1858 1859 /* move all submitted descriptors to issued list */ 1860 spin_lock_irqsave(&gchan->vc.lock, flags); 1861 if (vchan_issue_pending(&gchan->vc)) 1862 vd = list_last_entry(&gchan->vc.desc_issued, 1863 struct virt_dma_desc, node); 1864 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1865 1866 /* nothing to do list is empty */ 1867 if (!vd) { 1868 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1869 return; 1870 } 1871 1872 gpi_desc = to_gpi_desc(vd); 1873 for (i = 0; i < gpi_desc->num_tre; i++) { 1874 tre = &gpi_desc->tre[i]; 1875 gpi_queue_xfer(gpii, gchan, tre, &wp); 1876 } 1877 1878 gpi_desc->db = ch_ring->wp; 1879 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db); 1880 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1881 } 1882 1883 static int gpi_ch_init(struct gchan *gchan) 1884 { 1885 struct gpii *gpii = gchan->gpii; 1886 const int ev_factor = gpii->gpi_dev->ev_factor; 1887 u32 elements; 1888 int i = 0, ret = 0; 1889 1890 gchan->pm_state = CONFIG_STATE; 1891 1892 /* check if both channels are configured before continue */ 1893 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 1894 if (gpii->gchan[i].pm_state != CONFIG_STATE) 1895 goto exit_gpi_init; 1896 1897 /* protocol must be same for both channels */ 1898 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) { 1899 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n", 1900 gpii->gchan[0].protocol, gpii->gchan[1].protocol); 1901 ret = -EINVAL; 1902 goto exit_gpi_init; 1903 } 1904 1905 /* allocate memory for event ring */ 1906 elements = CHAN_TRES << ev_factor; 1907 ret = gpi_alloc_ring(&gpii->ev_ring, elements, 1908 sizeof(union gpi_event), gpii); 1909 if (ret) 1910 goto exit_gpi_init; 1911 1912 /* configure interrupts */ 1913 write_lock_irq(&gpii->pm_lock); 1914 gpii->pm_state = PREPARE_HARDWARE; 1915 write_unlock_irq(&gpii->pm_lock); 1916 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0); 1917 if (ret) { 1918 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret); 1919 goto error_config_int; 1920 } 1921 1922 /* allocate event rings */ 1923 ret = gpi_alloc_ev_chan(gpii); 1924 if (ret) { 1925 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret); 1926 goto error_alloc_ev_ring; 1927 } 1928 1929 /* Allocate all channels */ 1930 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1931 ret = gpi_alloc_chan(&gpii->gchan[i], true); 1932 if (ret) { 1933 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret); 1934 goto error_alloc_chan; 1935 } 1936 } 1937 1938 /* start channels */ 1939 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1940 ret = gpi_start_chan(&gpii->gchan[i]); 1941 if (ret) { 1942 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret); 1943 goto error_start_chan; 1944 } 1945 } 1946 return ret; 1947 1948 error_start_chan: 1949 for (i = i - 1; i >= 0; i--) { 1950 gpi_stop_chan(&gpii->gchan[i]); 1951 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1952 } 1953 i = 2; 1954 error_alloc_chan: 1955 for (i = i - 1; i >= 0; i--) 1956 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1957 error_alloc_ev_ring: 1958 gpi_disable_interrupts(gpii); 1959 error_config_int: 1960 gpi_free_ring(&gpii->ev_ring, gpii); 1961 exit_gpi_init: 1962 return ret; 1963 } 1964 1965 /* release all channel resources */ 1966 static void gpi_free_chan_resources(struct dma_chan *chan) 1967 { 1968 struct gchan *gchan = to_gchan(chan); 1969 struct gpii *gpii = gchan->gpii; 1970 enum gpi_pm_state cur_state; 1971 int ret, i; 1972 1973 mutex_lock(&gpii->ctrl_lock); 1974 1975 cur_state = gchan->pm_state; 1976 1977 /* disable ch state so no more TRE processing for this channel */ 1978 write_lock_irq(&gpii->pm_lock); 1979 gchan->pm_state = PREPARE_TERMINATE; 1980 write_unlock_irq(&gpii->pm_lock); 1981 1982 /* attempt to do graceful hardware shutdown */ 1983 if (cur_state == ACTIVE_STATE) { 1984 gpi_stop_chan(gchan); 1985 1986 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1987 if (ret) 1988 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret); 1989 1990 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1991 } 1992 1993 /* free all allocated memory */ 1994 gpi_free_ring(&gchan->ch_ring, gpii); 1995 vchan_free_chan_resources(&gchan->vc); 1996 kfree(gchan->config); 1997 1998 write_lock_irq(&gpii->pm_lock); 1999 gchan->pm_state = DISABLE_STATE; 2000 write_unlock_irq(&gpii->pm_lock); 2001 2002 /* if other rings are still active exit */ 2003 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 2004 if (gpii->gchan[i].ch_ring.configured) 2005 goto exit_free; 2006 2007 /* deallocate EV Ring */ 2008 cur_state = gpii->pm_state; 2009 write_lock_irq(&gpii->pm_lock); 2010 gpii->pm_state = PREPARE_TERMINATE; 2011 write_unlock_irq(&gpii->pm_lock); 2012 2013 /* wait for threads to complete out */ 2014 tasklet_kill(&gpii->ev_task); 2015 2016 /* send command to de allocate event ring */ 2017 if (cur_state == ACTIVE_STATE) 2018 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC); 2019 2020 gpi_free_ring(&gpii->ev_ring, gpii); 2021 2022 /* disable interrupts */ 2023 if (cur_state == ACTIVE_STATE) 2024 gpi_disable_interrupts(gpii); 2025 2026 /* set final state to disable */ 2027 write_lock_irq(&gpii->pm_lock); 2028 gpii->pm_state = DISABLE_STATE; 2029 write_unlock_irq(&gpii->pm_lock); 2030 2031 exit_free: 2032 mutex_unlock(&gpii->ctrl_lock); 2033 } 2034 2035 /* allocate channel resources */ 2036 static int gpi_alloc_chan_resources(struct dma_chan *chan) 2037 { 2038 struct gchan *gchan = to_gchan(chan); 2039 struct gpii *gpii = gchan->gpii; 2040 int ret; 2041 2042 mutex_lock(&gpii->ctrl_lock); 2043 2044 /* allocate memory for transfer ring */ 2045 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES, 2046 sizeof(struct gpi_tre), gpii); 2047 if (ret) 2048 goto xfer_alloc_err; 2049 2050 ret = gpi_ch_init(gchan); 2051 2052 mutex_unlock(&gpii->ctrl_lock); 2053 2054 return ret; 2055 xfer_alloc_err: 2056 mutex_unlock(&gpii->ctrl_lock); 2057 2058 return ret; 2059 } 2060 2061 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid) 2062 { 2063 struct gchan *tx_chan, *rx_chan; 2064 unsigned int gpii; 2065 2066 /* check if same seid is already configured for another chid */ 2067 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2068 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2069 continue; 2070 2071 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2072 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2073 2074 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid) 2075 return gpii; 2076 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid) 2077 return gpii; 2078 } 2079 2080 /* no channels configured with same seid, return next avail gpii */ 2081 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2082 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2083 continue; 2084 2085 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2086 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2087 2088 /* check if gpii is configured */ 2089 if (tx_chan->vc.chan.client_count || 2090 rx_chan->vc.chan.client_count) 2091 continue; 2092 2093 /* found a free gpii */ 2094 return gpii; 2095 } 2096 2097 /* no gpii instance available to use */ 2098 return -EIO; 2099 } 2100 2101 /* gpi_of_dma_xlate: open client requested channel */ 2102 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args, 2103 struct of_dma *of_dma) 2104 { 2105 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data; 2106 u32 seid, chid; 2107 int gpii; 2108 struct gchan *gchan; 2109 2110 if (args->args_count < 3) { 2111 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n", 2112 args->args_count); 2113 return NULL; 2114 } 2115 2116 chid = args->args[0]; 2117 if (chid >= MAX_CHANNELS_PER_GPII) { 2118 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid); 2119 return NULL; 2120 } 2121 2122 seid = args->args[1]; 2123 2124 /* find next available gpii to use */ 2125 gpii = gpi_find_avail_gpii(gpi_dev, seid); 2126 if (gpii < 0) { 2127 dev_err(gpi_dev->dev, "no available gpii instances\n"); 2128 return NULL; 2129 } 2130 2131 gchan = &gpi_dev->gpiis[gpii].gchan[chid]; 2132 if (gchan->vc.chan.client_count) { 2133 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n", 2134 gpii, chid, gchan->seid); 2135 return NULL; 2136 } 2137 2138 gchan->seid = seid; 2139 gchan->protocol = args->args[2]; 2140 2141 return dma_get_slave_channel(&gchan->vc.chan); 2142 } 2143 2144 static int gpi_probe(struct platform_device *pdev) 2145 { 2146 struct gpi_dev *gpi_dev; 2147 unsigned int i; 2148 u32 ee_offset; 2149 int ret; 2150 2151 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL); 2152 if (!gpi_dev) 2153 return -ENOMEM; 2154 2155 gpi_dev->dev = &pdev->dev; 2156 gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res); 2157 if (IS_ERR(gpi_dev->regs)) 2158 return PTR_ERR(gpi_dev->regs); 2159 gpi_dev->ee_base = gpi_dev->regs; 2160 2161 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels", 2162 &gpi_dev->max_gpii); 2163 if (ret) { 2164 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n"); 2165 return ret; 2166 } 2167 2168 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask", 2169 &gpi_dev->gpii_mask); 2170 if (ret) { 2171 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n"); 2172 return ret; 2173 } 2174 2175 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev); 2176 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset; 2177 2178 gpi_dev->ev_factor = EV_FACTOR; 2179 2180 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64)); 2181 if (ret) { 2182 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret); 2183 return ret; 2184 } 2185 2186 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) * 2187 gpi_dev->max_gpii, GFP_KERNEL); 2188 if (!gpi_dev->gpiis) 2189 return -ENOMEM; 2190 2191 /* setup all the supported gpii */ 2192 INIT_LIST_HEAD(&gpi_dev->dma_device.channels); 2193 for (i = 0; i < gpi_dev->max_gpii; i++) { 2194 struct gpii *gpii = &gpi_dev->gpiis[i]; 2195 int chan; 2196 2197 if (!((1 << i) & gpi_dev->gpii_mask)) 2198 continue; 2199 2200 /* set up ev cntxt register map */ 2201 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0); 2202 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0); 2203 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB; 2204 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i); 2205 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i); 2206 2207 /* set up irq */ 2208 ret = platform_get_irq(pdev, i); 2209 if (ret < 0) 2210 return ret; 2211 gpii->irq = ret; 2212 2213 /* set up channel specific register info */ 2214 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) { 2215 struct gchan *gchan = &gpii->gchan[chan]; 2216 2217 /* set up ch cntxt register map */ 2218 gchan->ch_cntxt_base_reg = gpi_dev->ee_base + 2219 GPII_n_CH_k_CNTXT_0_OFFS(i, chan); 2220 gchan->ch_cntxt_db_reg = gpi_dev->ee_base + 2221 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan); 2222 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i); 2223 2224 /* vchan setup */ 2225 vchan_init(&gchan->vc, &gpi_dev->dma_device); 2226 gchan->vc.desc_free = gpi_desc_free; 2227 gchan->chid = chan; 2228 gchan->gpii = gpii; 2229 gchan->dir = GPII_CHAN_DIR[chan]; 2230 } 2231 mutex_init(&gpii->ctrl_lock); 2232 rwlock_init(&gpii->pm_lock); 2233 tasklet_init(&gpii->ev_task, gpi_ev_tasklet, 2234 (unsigned long)gpii); 2235 init_completion(&gpii->cmd_completion); 2236 gpii->gpii_id = i; 2237 gpii->regs = gpi_dev->ee_base; 2238 gpii->gpi_dev = gpi_dev; 2239 } 2240 2241 platform_set_drvdata(pdev, gpi_dev); 2242 2243 /* clear and Set capabilities */ 2244 dma_cap_zero(gpi_dev->dma_device.cap_mask); 2245 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask); 2246 2247 /* configure dmaengine apis */ 2248 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2249 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2250 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2251 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2252 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources; 2253 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources; 2254 gpi_dev->dma_device.device_tx_status = dma_cookie_status; 2255 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending; 2256 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg; 2257 gpi_dev->dma_device.device_config = gpi_peripheral_config; 2258 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all; 2259 gpi_dev->dma_device.dev = gpi_dev->dev; 2260 gpi_dev->dma_device.device_pause = gpi_pause; 2261 gpi_dev->dma_device.device_resume = gpi_resume; 2262 2263 /* register with dmaengine framework */ 2264 ret = dma_async_device_register(&gpi_dev->dma_device); 2265 if (ret) { 2266 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret); 2267 return ret; 2268 } 2269 2270 ret = of_dma_controller_register(gpi_dev->dev->of_node, 2271 gpi_of_dma_xlate, gpi_dev); 2272 if (ret) { 2273 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret); 2274 return ret; 2275 } 2276 2277 return ret; 2278 } 2279 2280 static const struct of_device_id gpi_of_match[] = { 2281 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 }, 2282 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 }, 2283 /* 2284 * Do not grow the list for compatible devices. Instead use 2285 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma 2286 * (for ee_offset = 0x10000). 2287 */ 2288 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 }, 2289 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 }, 2290 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 }, 2291 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 }, 2292 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 }, 2293 { }, 2294 }; 2295 MODULE_DEVICE_TABLE(of, gpi_of_match); 2296 2297 static struct platform_driver gpi_driver = { 2298 .probe = gpi_probe, 2299 .driver = { 2300 .name = KBUILD_MODNAME, 2301 .of_match_table = gpi_of_match, 2302 }, 2303 }; 2304 2305 static int __init gpi_init(void) 2306 { 2307 return platform_driver_register(&gpi_driver); 2308 } 2309 subsys_initcall(gpi_init) 2310 2311 MODULE_DESCRIPTION("QCOM GPI DMA engine driver"); 2312 MODULE_LICENSE("GPL v2"); 2313