1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <dt-bindings/dma/qcom-gpi.h> 8 #include <linux/bitfield.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/of_dma.h> 13 #include <linux/platform_device.h> 14 #include <linux/dma/qcom-gpi-dma.h> 15 #include <linux/scatterlist.h> 16 #include <linux/slab.h> 17 #include "../dmaengine.h" 18 #include "../virt-dma.h" 19 20 #define TRE_TYPE_DMA 0x10 21 #define TRE_TYPE_IMMEDIATE_DMA 0x11 22 #define TRE_TYPE_GO 0x20 23 #define TRE_TYPE_CONFIG0 0x22 24 25 /* TRE flags */ 26 #define TRE_FLAGS_CHAIN BIT(0) 27 #define TRE_FLAGS_IEOB BIT(8) 28 #define TRE_FLAGS_IEOT BIT(9) 29 #define TRE_FLAGS_BEI BIT(10) 30 #define TRE_FLAGS_LINK BIT(11) 31 #define TRE_FLAGS_TYPE GENMASK(23, 16) 32 33 /* SPI CONFIG0 WD0 */ 34 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0) 35 #define TRE_SPI_C0_LOOPBACK BIT(8) 36 #define TRE_SPI_C0_CS BIT(11) 37 #define TRE_SPI_C0_CPHA BIT(12) 38 #define TRE_SPI_C0_CPOL BIT(13) 39 #define TRE_SPI_C0_TX_PACK BIT(24) 40 #define TRE_SPI_C0_RX_PACK BIT(25) 41 42 /* CONFIG0 WD2 */ 43 #define TRE_C0_CLK_DIV GENMASK(11, 0) 44 #define TRE_C0_CLK_SRC GENMASK(19, 16) 45 46 /* SPI GO WD0 */ 47 #define TRE_SPI_GO_CMD GENMASK(4, 0) 48 #define TRE_SPI_GO_CS GENMASK(10, 8) 49 #define TRE_SPI_GO_FRAG BIT(26) 50 51 /* GO WD2 */ 52 #define TRE_RX_LEN GENMASK(23, 0) 53 54 /* I2C Config0 WD0 */ 55 #define TRE_I2C_C0_TLOW GENMASK(7, 0) 56 #define TRE_I2C_C0_THIGH GENMASK(15, 8) 57 #define TRE_I2C_C0_TCYL GENMASK(23, 16) 58 #define TRE_I2C_C0_TX_PACK BIT(24) 59 #define TRE_I2C_C0_RX_PACK BIT(25) 60 61 /* I2C GO WD0 */ 62 #define TRE_I2C_GO_CMD GENMASK(4, 0) 63 #define TRE_I2C_GO_ADDR GENMASK(14, 8) 64 #define TRE_I2C_GO_STRETCH BIT(26) 65 66 /* DMA TRE */ 67 #define TRE_DMA_LEN GENMASK(23, 0) 68 #define TRE_DMA_IMMEDIATE_LEN GENMASK(3, 0) 69 70 /* Register offsets from gpi-top */ 71 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k))) 72 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 73 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20) 74 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14) 75 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3) 76 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0) 77 78 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \ 79 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \ 80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \ 81 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \ 82 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto)) 83 84 #define GPI_CHTYPE_DIR_IN (0) 85 #define GPI_CHTYPE_DIR_OUT (1) 86 87 #define GPI_CHTYPE_PROTO_GPI (0x2) 88 89 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k))) 90 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n))) 91 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24) 92 #define GPII_n_CH_CMD_CHID GENMASK(7, 0) 93 #define GPII_n_CH_CMD(opcode, chid) \ 94 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \ 95 FIELD_PREP(GPII_n_CH_CMD_CHID, chid)) 96 97 #define GPII_n_CH_CMD_ALLOCATE (0) 98 #define GPII_n_CH_CMD_START (1) 99 #define GPII_n_CH_CMD_STOP (2) 100 #define GPII_n_CH_CMD_RESET (9) 101 #define GPII_n_CH_CMD_DE_ALLOC (10) 102 #define GPII_n_CH_CMD_UART_SW_STALE (32) 103 #define GPII_n_CH_CMD_UART_RFR_READY (33) 104 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34) 105 106 /* EV Context Array */ 107 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k))) 108 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 109 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20) 110 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16) 111 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0) 112 113 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \ 114 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \ 115 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \ 116 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype)) 117 118 #define GPI_INTTYPE_IRQ (1) 119 #define GPI_CHTYPE_GPI_EV (0x2) 120 121 enum CNTXT_OFFS { 122 CNTXT_0_CONFIG = 0x0, 123 CNTXT_1_R_LENGTH = 0x4, 124 CNTXT_2_RING_BASE_LSB = 0x8, 125 CNTXT_3_RING_BASE_MSB = 0xC, 126 CNTXT_4_RING_RP_LSB = 0x10, 127 CNTXT_5_RING_RP_MSB = 0x14, 128 CNTXT_6_RING_WP_LSB = 0x18, 129 CNTXT_7_RING_WP_MSB = 0x1C, 130 CNTXT_8_RING_INT_MOD = 0x20, 131 CNTXT_9_RING_INTVEC = 0x24, 132 CNTXT_10_RING_MSI_LSB = 0x28, 133 CNTXT_11_RING_MSI_MSB = 0x2C, 134 CNTXT_12_RING_RP_UPDATE_LSB = 0x30, 135 CNTXT_13_RING_RP_UPDATE_MSB = 0x34, 136 }; 137 138 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k))) 139 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n))) 140 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24) 141 #define GPII_n_EV_CMD_CHID GENMASK(7, 0) 142 #define GPII_n_EV_CMD(opcode, chid) \ 143 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \ 144 FIELD_PREP(GPII_n_EV_CMD_CHID, chid)) 145 146 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00) 147 #define GPII_n_EV_CH_CMD_RESET (0x09) 148 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A) 149 150 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n))) 151 152 /* mask type register */ 153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n))) 154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0) 155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6) 156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3) 157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2) 158 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1) 159 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0) 160 161 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n))) 162 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n))) 163 164 /* Mask channel control interrupt register */ 165 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n))) 166 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0) 167 168 /* Mask event control interrupt register */ 169 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n))) 170 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0) 171 172 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n))) 173 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n))) 174 175 /* Mask event interrupt register */ 176 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n))) 177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0) 178 179 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n))) 180 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n))) 181 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0) 182 183 /* GPII specific Global - Enable bit register */ 184 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n))) 185 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n))) 186 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n))) 187 188 /* GPII general interrupt - Enable bit register */ 189 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n))) 190 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0) 191 192 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n))) 193 194 /* GPII Interrupt Type register */ 195 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n))) 196 #define GPII_n_CNTXT_INTSET_BMSK BIT(0) 197 198 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n))) 199 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n))) 200 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n))) 201 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n))) 202 203 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n))) 204 205 /* QOS Registers */ 206 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k))) 207 208 /* Scratch registers */ 209 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k))) 210 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0) 211 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4) 212 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16) 213 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \ 214 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \ 215 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \ 216 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid)) 217 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k))) 218 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k))) 219 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k))) 220 221 struct __packed gpi_tre { 222 u32 dword[4]; 223 }; 224 225 enum msm_gpi_tce_code { 226 MSM_GPI_TCE_SUCCESS = 1, 227 MSM_GPI_TCE_EOT = 2, 228 MSM_GPI_TCE_EOB = 4, 229 MSM_GPI_TCE_UNEXP_ERR = 16, 230 }; 231 232 #define CMD_TIMEOUT_MS (250) 233 234 #define MAX_CHANNELS_PER_GPII (2) 235 #define GPI_TX_CHAN (0) 236 #define GPI_RX_CHAN (1) 237 #define STATE_IGNORE (U32_MAX) 238 #define EV_FACTOR (2) 239 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */ 240 #define CHAN_TRES 64 241 242 struct __packed xfer_compl_event { 243 u64 ptr; 244 u32 length:24; 245 u8 code; 246 u16 status; 247 u8 type; 248 u8 chid; 249 }; 250 251 struct __packed immediate_data_event { 252 u8 data_bytes[8]; 253 u8 length:4; 254 u8 resvd:4; 255 u16 tre_index; 256 u8 code; 257 u16 status; 258 u8 type; 259 u8 chid; 260 }; 261 262 struct __packed qup_notif_event { 263 u32 status; 264 u32 time; 265 u32 count:24; 266 u8 resvd; 267 u16 resvd1; 268 u8 type; 269 u8 chid; 270 }; 271 272 struct __packed gpi_ere { 273 u32 dword[4]; 274 }; 275 276 enum GPI_EV_TYPE { 277 XFER_COMPLETE_EV_TYPE = 0x22, 278 IMMEDIATE_DATA_EV_TYPE = 0x30, 279 QUP_NOTIF_EV_TYPE = 0x31, 280 STALE_EV_TYPE = 0xFF, 281 }; 282 283 union __packed gpi_event { 284 struct __packed xfer_compl_event xfer_compl_event; 285 struct __packed immediate_data_event immediate_data_event; 286 struct __packed qup_notif_event qup_notif_event; 287 struct __packed gpi_ere gpi_ere; 288 }; 289 290 enum gpii_irq_settings { 291 DEFAULT_IRQ_SETTINGS, 292 MASK_IEOB_SETTINGS, 293 }; 294 295 enum gpi_ev_state { 296 DEFAULT_EV_CH_STATE = 0, 297 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE, 298 EV_STATE_ALLOCATED, 299 MAX_EV_STATES 300 }; 301 302 static const char *const gpi_ev_state_str[MAX_EV_STATES] = { 303 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED", 304 [EV_STATE_ALLOCATED] = "ALLOCATED", 305 }; 306 307 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \ 308 "INVALID" : gpi_ev_state_str[(_state)]) 309 310 enum gpi_ch_state { 311 DEFAULT_CH_STATE = 0x0, 312 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE, 313 CH_STATE_ALLOCATED = 0x1, 314 CH_STATE_STARTED = 0x2, 315 CH_STATE_STOPPED = 0x3, 316 CH_STATE_STOP_IN_PROC = 0x4, 317 CH_STATE_ERROR = 0xf, 318 MAX_CH_STATES 319 }; 320 321 enum gpi_cmd { 322 GPI_CH_CMD_BEGIN, 323 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN, 324 GPI_CH_CMD_START, 325 GPI_CH_CMD_STOP, 326 GPI_CH_CMD_RESET, 327 GPI_CH_CMD_DE_ALLOC, 328 GPI_CH_CMD_UART_SW_STALE, 329 GPI_CH_CMD_UART_RFR_READY, 330 GPI_CH_CMD_UART_RFR_NOT_READY, 331 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY, 332 GPI_EV_CMD_BEGIN, 333 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN, 334 GPI_EV_CMD_RESET, 335 GPI_EV_CMD_DEALLOC, 336 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC, 337 GPI_MAX_CMD, 338 }; 339 340 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END) 341 342 static const char *const gpi_cmd_str[GPI_MAX_CMD] = { 343 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE", 344 [GPI_CH_CMD_START] = "CH START", 345 [GPI_CH_CMD_STOP] = "CH STOP", 346 [GPI_CH_CMD_RESET] = "CH_RESET", 347 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC", 348 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE", 349 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY", 350 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY", 351 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE", 352 [GPI_EV_CMD_RESET] = "EV RESET", 353 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC", 354 }; 355 356 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \ 357 gpi_cmd_str[(_cmd)]) 358 359 /* 360 * @DISABLE_STATE: no register access allowed 361 * @CONFIG_STATE: client has configured the channel 362 * @PREP_HARDWARE: register access is allowed 363 * however, no processing EVENTS 364 * @ACTIVE_STATE: channels are fully operational 365 * @PREPARE_TERMINATE: graceful termination of channels 366 * register access is allowed 367 * @PAUSE_STATE: channels are active, but not processing any events 368 */ 369 enum gpi_pm_state { 370 DISABLE_STATE, 371 CONFIG_STATE, 372 PREPARE_HARDWARE, 373 ACTIVE_STATE, 374 PREPARE_TERMINATE, 375 PAUSE_STATE, 376 MAX_PM_STATE 377 }; 378 379 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE) 380 381 static const char *const gpi_pm_state_str[MAX_PM_STATE] = { 382 [DISABLE_STATE] = "DISABLE", 383 [CONFIG_STATE] = "CONFIG", 384 [PREPARE_HARDWARE] = "PREPARE HARDWARE", 385 [ACTIVE_STATE] = "ACTIVE", 386 [PREPARE_TERMINATE] = "PREPARE TERMINATE", 387 [PAUSE_STATE] = "PAUSE", 388 }; 389 390 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \ 391 "INVALID" : gpi_pm_state_str[(_state)]) 392 393 static const struct { 394 enum gpi_cmd gpi_cmd; 395 u32 opcode; 396 u32 state; 397 } gpi_cmd_info[GPI_MAX_CMD] = { 398 { 399 GPI_CH_CMD_ALLOCATE, 400 GPII_n_CH_CMD_ALLOCATE, 401 CH_STATE_ALLOCATED, 402 }, 403 { 404 GPI_CH_CMD_START, 405 GPII_n_CH_CMD_START, 406 CH_STATE_STARTED, 407 }, 408 { 409 GPI_CH_CMD_STOP, 410 GPII_n_CH_CMD_STOP, 411 CH_STATE_STOPPED, 412 }, 413 { 414 GPI_CH_CMD_RESET, 415 GPII_n_CH_CMD_RESET, 416 CH_STATE_ALLOCATED, 417 }, 418 { 419 GPI_CH_CMD_DE_ALLOC, 420 GPII_n_CH_CMD_DE_ALLOC, 421 CH_STATE_NOT_ALLOCATED, 422 }, 423 { 424 GPI_CH_CMD_UART_SW_STALE, 425 GPII_n_CH_CMD_UART_SW_STALE, 426 STATE_IGNORE, 427 }, 428 { 429 GPI_CH_CMD_UART_RFR_READY, 430 GPII_n_CH_CMD_UART_RFR_READY, 431 STATE_IGNORE, 432 }, 433 { 434 GPI_CH_CMD_UART_RFR_NOT_READY, 435 GPII_n_CH_CMD_UART_RFR_NOT_READY, 436 STATE_IGNORE, 437 }, 438 { 439 GPI_EV_CMD_ALLOCATE, 440 GPII_n_EV_CH_CMD_ALLOCATE, 441 EV_STATE_ALLOCATED, 442 }, 443 { 444 GPI_EV_CMD_RESET, 445 GPII_n_EV_CH_CMD_RESET, 446 EV_STATE_ALLOCATED, 447 }, 448 { 449 GPI_EV_CMD_DEALLOC, 450 GPII_n_EV_CH_CMD_DE_ALLOC, 451 EV_STATE_NOT_ALLOCATED, 452 }, 453 }; 454 455 struct gpi_ring { 456 void *pre_aligned; 457 size_t alloc_size; 458 phys_addr_t phys_addr; 459 dma_addr_t dma_handle; 460 void *base; 461 void *wp; 462 void *rp; 463 u32 len; 464 u32 el_size; 465 u32 elements; 466 bool configured; 467 }; 468 469 struct gpi_dev { 470 struct dma_device dma_device; 471 struct device *dev; 472 struct resource *res; 473 void __iomem *regs; 474 void __iomem *ee_base; /*ee register base address*/ 475 u32 max_gpii; /* maximum # of gpii instances available per gpi block */ 476 u32 gpii_mask; /* gpii instances available for apps */ 477 u32 ev_factor; /* ev ring length factor */ 478 struct gpii *gpiis; 479 }; 480 481 struct gchan { 482 struct virt_dma_chan vc; 483 u32 chid; 484 u32 seid; 485 u32 protocol; 486 struct gpii *gpii; 487 enum gpi_ch_state ch_state; 488 enum gpi_pm_state pm_state; 489 void __iomem *ch_cntxt_base_reg; 490 void __iomem *ch_cntxt_db_reg; 491 void __iomem *ch_cmd_reg; 492 u32 dir; 493 struct gpi_ring ch_ring; 494 void *config; 495 }; 496 497 struct gpii { 498 u32 gpii_id; 499 struct gchan gchan[MAX_CHANNELS_PER_GPII]; 500 struct gpi_dev *gpi_dev; 501 int irq; 502 void __iomem *regs; /* points to gpi top */ 503 void __iomem *ev_cntxt_base_reg; 504 void __iomem *ev_cntxt_db_reg; 505 void __iomem *ev_ring_rp_lsb_reg; 506 void __iomem *ev_cmd_reg; 507 void __iomem *ieob_clr_reg; 508 struct mutex ctrl_lock; 509 enum gpi_ev_state ev_state; 510 bool configured_irq; 511 enum gpi_pm_state pm_state; 512 rwlock_t pm_lock; 513 struct gpi_ring ev_ring; 514 struct tasklet_struct ev_task; /* event processing tasklet */ 515 struct completion cmd_completion; 516 enum gpi_cmd gpi_cmd; 517 u32 cntxt_type_irq_msk; 518 bool ieob_set; 519 }; 520 521 #define MAX_TRE 3 522 523 struct gpi_desc { 524 struct virt_dma_desc vd; 525 size_t len; 526 void *db; /* DB register to program */ 527 struct gchan *gchan; 528 struct gpi_tre tre[MAX_TRE]; 529 u32 num_tre; 530 }; 531 532 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = { 533 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN 534 }; 535 536 static irqreturn_t gpi_handle_irq(int irq, void *data); 537 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring); 538 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp); 539 static void gpi_process_events(struct gpii *gpii); 540 541 static inline struct gchan *to_gchan(struct dma_chan *dma_chan) 542 { 543 return container_of(dma_chan, struct gchan, vc.chan); 544 } 545 546 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd) 547 { 548 return container_of(vd, struct gpi_desc, vd); 549 } 550 551 static inline phys_addr_t to_physical(const struct gpi_ring *const ring, 552 void *addr) 553 { 554 return ring->phys_addr + (addr - ring->base); 555 } 556 557 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr) 558 { 559 return ring->base + (addr - ring->phys_addr); 560 } 561 562 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr) 563 { 564 return readl_relaxed(addr); 565 } 566 567 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val) 568 { 569 writel_relaxed(val, addr); 570 } 571 572 static __always_inline void 573 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val) 574 { 575 void __iomem *addr = gpii->regs + offset; 576 u32 tmp = gpi_read_reg(gpii, addr); 577 578 tmp &= ~mask; 579 tmp |= u32_encode_bits(val, mask); 580 581 gpi_write_reg(gpii, addr, tmp); 582 } 583 584 static void gpi_disable_interrupts(struct gpii *gpii) 585 { 586 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 587 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0); 588 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 589 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0); 590 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 591 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0); 592 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 593 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0); 594 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 595 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 596 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 597 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 598 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 599 GPII_n_CNTXT_INTSET_BMSK, 0); 600 601 gpii->cntxt_type_irq_msk = 0; 602 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii); 603 gpii->configured_irq = false; 604 } 605 606 /* configure and enable interrupts */ 607 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask) 608 { 609 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL | 610 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB | 611 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB | 612 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL | 613 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 614 int ret; 615 616 if (!gpii->configured_irq) { 617 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq, 618 gpi_handle_irq, IRQF_TRIGGER_HIGH, 619 "gpi-dma", gpii); 620 if (ret < 0) { 621 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n", 622 gpii->irq, ret); 623 return ret; 624 } 625 } 626 627 if (settings == MASK_IEOB_SETTINGS) { 628 /* 629 * GPII only uses one EV ring per gpii so we can globally 630 * enable/disable IEOB interrupt 631 */ 632 if (mask) 633 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 634 else 635 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB); 636 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 637 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk); 638 } else { 639 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 640 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable); 641 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 642 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 643 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK); 644 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 645 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 646 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK); 647 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 648 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 649 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK); 650 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 651 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 652 GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 653 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 654 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 655 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0); 656 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0); 657 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0); 658 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0); 659 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 660 GPII_n_CNTXT_INTSET_BMSK, 1); 661 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0); 662 663 gpii->cntxt_type_irq_msk = enable; 664 } 665 666 gpii->configured_irq = true; 667 return 0; 668 } 669 670 /* Sends gpii event or channel command */ 671 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan, 672 enum gpi_cmd gpi_cmd) 673 { 674 u32 chid = MAX_CHANNELS_PER_GPII; 675 unsigned long timeout; 676 void __iomem *cmd_reg; 677 u32 cmd; 678 679 if (gpi_cmd >= GPI_MAX_CMD) 680 return -EINVAL; 681 if (IS_CHAN_CMD(gpi_cmd)) 682 chid = gchan->chid; 683 684 dev_dbg(gpii->gpi_dev->dev, 685 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); 686 687 /* send opcode and wait for completion */ 688 reinit_completion(&gpii->cmd_completion); 689 gpii->gpi_cmd = gpi_cmd; 690 691 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg; 692 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) : 693 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0); 694 gpi_write_reg(gpii, cmd_reg, cmd); 695 timeout = wait_for_completion_timeout(&gpii->cmd_completion, 696 msecs_to_jiffies(CMD_TIMEOUT_MS)); 697 if (!timeout) { 698 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n", 699 TO_GPI_CMD_STR(gpi_cmd), chid); 700 return -EIO; 701 } 702 703 /* confirm new ch state is correct , if the cmd is a state change cmd */ 704 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE) 705 return 0; 706 707 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state) 708 return 0; 709 710 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state) 711 return 0; 712 713 return -EIO; 714 } 715 716 /* program transfer ring DB register */ 717 static inline void gpi_write_ch_db(struct gchan *gchan, 718 struct gpi_ring *ring, void *wp) 719 { 720 struct gpii *gpii = gchan->gpii; 721 phys_addr_t p_wp; 722 723 p_wp = to_physical(ring, wp); 724 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp); 725 } 726 727 /* program event ring DB register */ 728 static inline void gpi_write_ev_db(struct gpii *gpii, 729 struct gpi_ring *ring, void *wp) 730 { 731 phys_addr_t p_wp; 732 733 p_wp = ring->phys_addr + (wp - ring->base); 734 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp); 735 } 736 737 /* process transfer completion interrupt */ 738 static void gpi_process_ieob(struct gpii *gpii) 739 { 740 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 741 742 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0); 743 tasklet_hi_schedule(&gpii->ev_task); 744 } 745 746 /* process channel control interrupt */ 747 static void gpi_process_ch_ctrl_irq(struct gpii *gpii) 748 { 749 u32 gpii_id = gpii->gpii_id; 750 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id); 751 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 752 struct gchan *gchan; 753 u32 chid, state; 754 755 /* clear the status */ 756 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id); 757 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq); 758 759 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) { 760 if (!(BIT(chid) & ch_irq)) 761 continue; 762 763 gchan = &gpii->gchan[chid]; 764 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg + 765 CNTXT_0_CONFIG); 766 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state); 767 768 /* 769 * CH_CMD_DEALLOC cmd always successful. However cmd does 770 * not change hardware status. So overwriting software state 771 * to default state. 772 */ 773 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC) 774 state = DEFAULT_CH_STATE; 775 gchan->ch_state = state; 776 777 /* 778 * Triggering complete all if ch_state is not a stop in process. 779 * Stop in process is a transition state and we will wait for 780 * stop interrupt before notifying. 781 */ 782 if (gchan->ch_state != CH_STATE_STOP_IN_PROC) 783 complete_all(&gpii->cmd_completion); 784 } 785 } 786 787 /* processing gpi general error interrupts */ 788 static void gpi_process_gen_err_irq(struct gpii *gpii) 789 { 790 u32 gpii_id = gpii->gpii_id; 791 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id); 792 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 793 794 /* clear the status */ 795 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts); 796 797 /* Clear the register */ 798 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id); 799 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 800 } 801 802 /* processing gpi level error interrupts */ 803 static void gpi_process_glob_err_irq(struct gpii *gpii) 804 { 805 u32 gpii_id = gpii->gpii_id; 806 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id); 807 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 808 809 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id); 810 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 811 812 /* only error interrupt should be set */ 813 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) { 814 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts); 815 return; 816 } 817 818 offset = GPII_n_ERROR_LOG_OFFS(gpii_id); 819 gpi_write_reg(gpii, gpii->regs + offset, 0); 820 } 821 822 /* gpii interrupt handler */ 823 static irqreturn_t gpi_handle_irq(int irq, void *data) 824 { 825 struct gpii *gpii = data; 826 u32 gpii_id = gpii->gpii_id; 827 u32 type, offset; 828 unsigned long flags; 829 830 read_lock_irqsave(&gpii->pm_lock, flags); 831 832 /* 833 * States are out of sync to receive interrupt 834 * while software state is in DISABLE state, bailing out. 835 */ 836 if (!REG_ACCESS_VALID(gpii->pm_state)) { 837 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n", 838 TO_GPI_PM_STR(gpii->pm_state)); 839 goto exit_irq; 840 } 841 842 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 843 type = gpi_read_reg(gpii, gpii->regs + offset); 844 845 do { 846 /* global gpii error */ 847 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) { 848 gpi_process_glob_err_irq(gpii); 849 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB); 850 } 851 852 /* transfer complete interrupt */ 853 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) { 854 gpi_process_ieob(gpii); 855 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 856 } 857 858 /* event control irq */ 859 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) { 860 u32 ev_state; 861 u32 ev_ch_irq; 862 863 dev_dbg(gpii->gpi_dev->dev, 864 "processing EV CTRL interrupt\n"); 865 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id); 866 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 867 868 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS 869 (gpii_id); 870 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq); 871 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg + 872 CNTXT_0_CONFIG); 873 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state); 874 875 /* 876 * CMD EV_CMD_DEALLOC is always successful. However 877 * cmd does not change hardware status. So overwriting 878 * software state to default state. 879 */ 880 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC) 881 ev_state = DEFAULT_EV_CH_STATE; 882 883 gpii->ev_state = ev_state; 884 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n", 885 TO_GPI_EV_STATE_STR(gpii->ev_state)); 886 complete_all(&gpii->cmd_completion); 887 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL); 888 } 889 890 /* channel control irq */ 891 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) { 892 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n"); 893 gpi_process_ch_ctrl_irq(gpii); 894 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 895 } 896 897 if (type) { 898 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type); 899 gpi_process_gen_err_irq(gpii); 900 goto exit_irq; 901 } 902 903 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 904 type = gpi_read_reg(gpii, gpii->regs + offset); 905 } while (type); 906 907 exit_irq: 908 read_unlock_irqrestore(&gpii->pm_lock, flags); 909 910 return IRQ_HANDLED; 911 } 912 913 /* process DMA Immediate completion data events */ 914 static void gpi_process_imed_data_event(struct gchan *gchan, 915 struct immediate_data_event *imed_event) 916 { 917 struct gpii *gpii = gchan->gpii; 918 struct gpi_ring *ch_ring = &gchan->ch_ring; 919 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index); 920 struct dmaengine_result result; 921 struct gpi_desc *gpi_desc; 922 struct virt_dma_desc *vd; 923 unsigned long flags; 924 u32 chid; 925 926 /* 927 * If channel not active don't process event 928 */ 929 if (gchan->pm_state != ACTIVE_STATE) { 930 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 931 TO_GPI_PM_STR(gchan->pm_state)); 932 return; 933 } 934 935 spin_lock_irqsave(&gchan->vc.lock, flags); 936 vd = vchan_next_desc(&gchan->vc); 937 if (!vd) { 938 struct gpi_ere *gpi_ere; 939 struct gpi_tre *gpi_tre; 940 941 spin_unlock_irqrestore(&gchan->vc.lock, flags); 942 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n"); 943 gpi_ere = (struct gpi_ere *)imed_event; 944 dev_dbg(gpii->gpi_dev->dev, 945 "Event: %08x %08x %08x %08x\n", 946 gpi_ere->dword[0], gpi_ere->dword[1], 947 gpi_ere->dword[2], gpi_ere->dword[3]); 948 gpi_tre = tre; 949 dev_dbg(gpii->gpi_dev->dev, 950 "Pending TRE: %08x %08x %08x %08x\n", 951 gpi_tre->dword[0], gpi_tre->dword[1], 952 gpi_tre->dword[2], gpi_tre->dword[3]); 953 return; 954 } 955 gpi_desc = to_gpi_desc(vd); 956 spin_unlock_irqrestore(&gchan->vc.lock, flags); 957 958 /* 959 * RP pointed by Event is to last TRE processed, 960 * we need to update ring rp to tre + 1 961 */ 962 tre += ch_ring->el_size; 963 if (tre >= (ch_ring->base + ch_ring->len)) 964 tre = ch_ring->base; 965 ch_ring->rp = tre; 966 967 /* make sure rp updates are immediately visible to all cores */ 968 smp_wmb(); 969 970 chid = imed_event->chid; 971 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 972 if (chid == GPI_RX_CHAN) 973 goto gpi_free_desc; 974 else 975 return; 976 } 977 978 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR) 979 result.result = DMA_TRANS_ABORTED; 980 else 981 result.result = DMA_TRANS_NOERROR; 982 result.residue = gpi_desc->len - imed_event->length; 983 984 dma_cookie_complete(&vd->tx); 985 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 986 987 gpi_free_desc: 988 spin_lock_irqsave(&gchan->vc.lock, flags); 989 list_del(&vd->node); 990 spin_unlock_irqrestore(&gchan->vc.lock, flags); 991 kfree(gpi_desc); 992 gpi_desc = NULL; 993 } 994 995 /* processing transfer completion events */ 996 static void gpi_process_xfer_compl_event(struct gchan *gchan, 997 struct xfer_compl_event *compl_event) 998 { 999 struct gpii *gpii = gchan->gpii; 1000 struct gpi_ring *ch_ring = &gchan->ch_ring; 1001 void *ev_rp = to_virtual(ch_ring, compl_event->ptr); 1002 struct virt_dma_desc *vd; 1003 struct gpi_desc *gpi_desc; 1004 struct dmaengine_result result; 1005 unsigned long flags; 1006 u32 chid; 1007 1008 /* only process events on active channel */ 1009 if (unlikely(gchan->pm_state != ACTIVE_STATE)) { 1010 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 1011 TO_GPI_PM_STR(gchan->pm_state)); 1012 return; 1013 } 1014 1015 spin_lock_irqsave(&gchan->vc.lock, flags); 1016 vd = vchan_next_desc(&gchan->vc); 1017 if (!vd) { 1018 struct gpi_ere *gpi_ere; 1019 1020 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1021 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n"); 1022 gpi_ere = (struct gpi_ere *)compl_event; 1023 dev_err(gpii->gpi_dev->dev, 1024 "Event: %08x %08x %08x %08x\n", 1025 gpi_ere->dword[0], gpi_ere->dword[1], 1026 gpi_ere->dword[2], gpi_ere->dword[3]); 1027 return; 1028 } 1029 1030 gpi_desc = to_gpi_desc(vd); 1031 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1032 1033 /* 1034 * RP pointed by Event is to last TRE processed, 1035 * we need to update ring rp to ev_rp + 1 1036 */ 1037 ev_rp += ch_ring->el_size; 1038 if (ev_rp >= (ch_ring->base + ch_ring->len)) 1039 ev_rp = ch_ring->base; 1040 ch_ring->rp = ev_rp; 1041 1042 /* update must be visible to other cores */ 1043 smp_wmb(); 1044 1045 chid = compl_event->chid; 1046 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 1047 if (chid == GPI_RX_CHAN) 1048 goto gpi_free_desc; 1049 else 1050 return; 1051 } 1052 1053 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) { 1054 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n"); 1055 result.result = DMA_TRANS_ABORTED; 1056 } else { 1057 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n"); 1058 result.result = DMA_TRANS_NOERROR; 1059 } 1060 result.residue = gpi_desc->len - compl_event->length; 1061 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue); 1062 1063 dma_cookie_complete(&vd->tx); 1064 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 1065 1066 gpi_free_desc: 1067 spin_lock_irqsave(&gchan->vc.lock, flags); 1068 list_del(&vd->node); 1069 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1070 kfree(gpi_desc); 1071 gpi_desc = NULL; 1072 } 1073 1074 /* process all events */ 1075 static void gpi_process_events(struct gpii *gpii) 1076 { 1077 struct gpi_ring *ev_ring = &gpii->ev_ring; 1078 phys_addr_t cntxt_rp; 1079 void *rp; 1080 union gpi_event *gpi_event; 1081 struct gchan *gchan; 1082 u32 chid, type; 1083 1084 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1085 rp = to_virtual(ev_ring, cntxt_rp); 1086 1087 do { 1088 while (rp != ev_ring->rp) { 1089 gpi_event = ev_ring->rp; 1090 chid = gpi_event->xfer_compl_event.chid; 1091 type = gpi_event->xfer_compl_event.type; 1092 1093 dev_dbg(gpii->gpi_dev->dev, 1094 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n", 1095 chid, type, gpi_event->gpi_ere.dword[0], 1096 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2], 1097 gpi_event->gpi_ere.dword[3]); 1098 1099 switch (type) { 1100 case XFER_COMPLETE_EV_TYPE: 1101 gchan = &gpii->gchan[chid]; 1102 gpi_process_xfer_compl_event(gchan, 1103 &gpi_event->xfer_compl_event); 1104 break; 1105 case STALE_EV_TYPE: 1106 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n"); 1107 break; 1108 case IMMEDIATE_DATA_EV_TYPE: 1109 gchan = &gpii->gchan[chid]; 1110 gpi_process_imed_data_event(gchan, 1111 &gpi_event->immediate_data_event); 1112 break; 1113 case QUP_NOTIF_EV_TYPE: 1114 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n"); 1115 break; 1116 default: 1117 dev_dbg(gpii->gpi_dev->dev, 1118 "not supported event type:0x%x\n", type); 1119 } 1120 gpi_ring_recycle_ev_element(ev_ring); 1121 } 1122 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp); 1123 1124 /* clear pending IEOB events */ 1125 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 1126 1127 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1128 rp = to_virtual(ev_ring, cntxt_rp); 1129 1130 } while (rp != ev_ring->rp); 1131 } 1132 1133 /* processing events using tasklet */ 1134 static void gpi_ev_tasklet(unsigned long data) 1135 { 1136 struct gpii *gpii = (struct gpii *)data; 1137 1138 read_lock(&gpii->pm_lock); 1139 if (!REG_ACCESS_VALID(gpii->pm_state)) { 1140 read_unlock(&gpii->pm_lock); 1141 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n", 1142 TO_GPI_PM_STR(gpii->pm_state)); 1143 return; 1144 } 1145 1146 /* process the events */ 1147 gpi_process_events(gpii); 1148 1149 /* enable IEOB, switching back to interrupts */ 1150 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1); 1151 read_unlock(&gpii->pm_lock); 1152 } 1153 1154 /* marks all pending events for the channel as stale */ 1155 static void gpi_mark_stale_events(struct gchan *gchan) 1156 { 1157 struct gpii *gpii = gchan->gpii; 1158 struct gpi_ring *ev_ring = &gpii->ev_ring; 1159 u32 cntxt_rp, local_rp; 1160 void *ev_rp; 1161 1162 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1163 1164 ev_rp = ev_ring->rp; 1165 local_rp = (u32)to_physical(ev_ring, ev_rp); 1166 while (local_rp != cntxt_rp) { 1167 union gpi_event *gpi_event = ev_rp; 1168 u32 chid = gpi_event->xfer_compl_event.chid; 1169 1170 if (chid == gchan->chid) 1171 gpi_event->xfer_compl_event.type = STALE_EV_TYPE; 1172 ev_rp += ev_ring->el_size; 1173 if (ev_rp >= (ev_ring->base + ev_ring->len)) 1174 ev_rp = ev_ring->base; 1175 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1176 local_rp = (u32)to_physical(ev_ring, ev_rp); 1177 } 1178 } 1179 1180 /* reset sw state and issue channel reset or de-alloc */ 1181 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd) 1182 { 1183 struct gpii *gpii = gchan->gpii; 1184 struct gpi_ring *ch_ring = &gchan->ch_ring; 1185 LIST_HEAD(list); 1186 int ret; 1187 1188 ret = gpi_send_cmd(gpii, gchan, gpi_cmd); 1189 if (ret) { 1190 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1191 TO_GPI_CMD_STR(gpi_cmd), ret); 1192 return ret; 1193 } 1194 1195 /* initialize the local ring ptrs */ 1196 ch_ring->rp = ch_ring->base; 1197 ch_ring->wp = ch_ring->base; 1198 1199 /* visible to other cores */ 1200 smp_wmb(); 1201 1202 /* check event ring for any stale events */ 1203 write_lock_irq(&gpii->pm_lock); 1204 gpi_mark_stale_events(gchan); 1205 1206 /* remove all async descriptors */ 1207 spin_lock(&gchan->vc.lock); 1208 vchan_get_all_descriptors(&gchan->vc, &list); 1209 spin_unlock(&gchan->vc.lock); 1210 write_unlock_irq(&gpii->pm_lock); 1211 vchan_dma_desc_free_list(&gchan->vc, &list); 1212 1213 return 0; 1214 } 1215 1216 static int gpi_start_chan(struct gchan *gchan) 1217 { 1218 struct gpii *gpii = gchan->gpii; 1219 int ret; 1220 1221 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START); 1222 if (ret) { 1223 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1224 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret); 1225 return ret; 1226 } 1227 1228 /* gpii CH is active now */ 1229 write_lock_irq(&gpii->pm_lock); 1230 gchan->pm_state = ACTIVE_STATE; 1231 write_unlock_irq(&gpii->pm_lock); 1232 1233 return 0; 1234 } 1235 1236 static int gpi_stop_chan(struct gchan *gchan) 1237 { 1238 struct gpii *gpii = gchan->gpii; 1239 int ret; 1240 1241 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP); 1242 if (ret) { 1243 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1244 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret); 1245 return ret; 1246 } 1247 1248 return 0; 1249 } 1250 1251 /* allocate and configure the transfer channel */ 1252 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd) 1253 { 1254 struct gpii *gpii = chan->gpii; 1255 struct gpi_ring *ring = &chan->ch_ring; 1256 int ret; 1257 u32 id = gpii->gpii_id; 1258 u32 chid = chan->chid; 1259 u32 pair_chid = !chid; 1260 1261 if (send_alloc_cmd) { 1262 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE); 1263 if (ret) { 1264 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1265 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret); 1266 return ret; 1267 } 1268 } 1269 1270 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG, 1271 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI)); 1272 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len); 1273 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr); 1274 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB, 1275 upper_32_bits(ring->phys_addr)); 1276 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1277 upper_32_bits(ring->phys_addr)); 1278 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid), 1279 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid)); 1280 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0); 1281 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0); 1282 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0); 1283 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1); 1284 1285 /* flush all the writes */ 1286 wmb(); 1287 return 0; 1288 } 1289 1290 /* allocate and configure event ring */ 1291 static int gpi_alloc_ev_chan(struct gpii *gpii) 1292 { 1293 struct gpi_ring *ring = &gpii->ev_ring; 1294 void __iomem *base = gpii->ev_cntxt_base_reg; 1295 int ret; 1296 1297 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE); 1298 if (ret) { 1299 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n", 1300 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret); 1301 return ret; 1302 } 1303 1304 /* program event context */ 1305 gpi_write_reg(gpii, base + CNTXT_0_CONFIG, 1306 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV)); 1307 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len); 1308 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr)); 1309 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); 1310 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1311 upper_32_bits(ring->phys_addr)); 1312 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1313 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0); 1314 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0); 1315 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1316 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0); 1317 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0); 1318 1319 /* add events to ring */ 1320 ring->wp = (ring->base + ring->len - ring->el_size); 1321 1322 /* flush all the writes */ 1323 wmb(); 1324 1325 /* gpii is active now */ 1326 write_lock_irq(&gpii->pm_lock); 1327 gpii->pm_state = ACTIVE_STATE; 1328 write_unlock_irq(&gpii->pm_lock); 1329 gpi_write_ev_db(gpii, ring, ring->wp); 1330 1331 return 0; 1332 } 1333 1334 /* calculate # of ERE/TRE available to queue */ 1335 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring) 1336 { 1337 int elements = 0; 1338 1339 if (ring->wp < ring->rp) { 1340 elements = ((ring->rp - ring->wp) / ring->el_size) - 1; 1341 } else { 1342 elements = (ring->rp - ring->base) / ring->el_size; 1343 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; 1344 } 1345 1346 return elements; 1347 } 1348 1349 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp) 1350 { 1351 if (gpi_ring_num_elements_avail(ring) <= 0) 1352 return -ENOMEM; 1353 1354 *wp = ring->wp; 1355 ring->wp += ring->el_size; 1356 if (ring->wp >= (ring->base + ring->len)) 1357 ring->wp = ring->base; 1358 1359 /* visible to other cores */ 1360 smp_wmb(); 1361 1362 return 0; 1363 } 1364 1365 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring) 1366 { 1367 /* Update the WP */ 1368 ring->wp += ring->el_size; 1369 if (ring->wp >= (ring->base + ring->len)) 1370 ring->wp = ring->base; 1371 1372 /* Update the RP */ 1373 ring->rp += ring->el_size; 1374 if (ring->rp >= (ring->base + ring->len)) 1375 ring->rp = ring->base; 1376 1377 /* visible to other cores */ 1378 smp_wmb(); 1379 } 1380 1381 static void gpi_free_ring(struct gpi_ring *ring, 1382 struct gpii *gpii) 1383 { 1384 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size, 1385 ring->pre_aligned, ring->dma_handle); 1386 memset(ring, 0, sizeof(*ring)); 1387 } 1388 1389 /* allocate memory for transfer and event rings */ 1390 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements, 1391 u32 el_size, struct gpii *gpii) 1392 { 1393 u64 len = elements * el_size; 1394 int bit; 1395 1396 /* ring len must be power of 2 */ 1397 bit = find_last_bit((unsigned long *)&len, 32); 1398 if (((1 << bit) - 1) & len) 1399 bit++; 1400 len = 1 << bit; 1401 ring->alloc_size = (len + (len - 1)); 1402 dev_dbg(gpii->gpi_dev->dev, 1403 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n", 1404 elements, el_size, (elements * el_size), len, 1405 ring->alloc_size); 1406 1407 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev, 1408 ring->alloc_size, 1409 &ring->dma_handle, GFP_KERNEL); 1410 if (!ring->pre_aligned) { 1411 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n", 1412 ring->alloc_size); 1413 return -ENOMEM; 1414 } 1415 1416 /* align the physical mem */ 1417 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1); 1418 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle); 1419 ring->rp = ring->base; 1420 ring->wp = ring->base; 1421 ring->len = len; 1422 ring->el_size = el_size; 1423 ring->elements = ring->len / ring->el_size; 1424 memset(ring->base, 0, ring->len); 1425 ring->configured = true; 1426 1427 /* update to other cores */ 1428 smp_wmb(); 1429 1430 dev_dbg(gpii->gpi_dev->dev, 1431 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n", 1432 &ring->dma_handle, &ring->phys_addr, ring->len, 1433 ring->el_size, ring->elements); 1434 1435 return 0; 1436 } 1437 1438 /* copy tre into transfer ring */ 1439 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan, 1440 struct gpi_tre *gpi_tre, void **wp) 1441 { 1442 struct gpi_tre *ch_tre; 1443 int ret; 1444 1445 /* get next tre location we can copy */ 1446 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre); 1447 if (unlikely(ret)) { 1448 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n"); 1449 return; 1450 } 1451 1452 /* copy the tre info */ 1453 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre)); 1454 *wp = ch_tre; 1455 } 1456 1457 /* reset and restart transfer channel */ 1458 static int gpi_terminate_all(struct dma_chan *chan) 1459 { 1460 struct gchan *gchan = to_gchan(chan); 1461 struct gpii *gpii = gchan->gpii; 1462 int schid, echid, i; 1463 int ret = 0; 1464 1465 mutex_lock(&gpii->ctrl_lock); 1466 1467 /* 1468 * treat both channels as a group if its protocol is not UART 1469 * STOP, RESET, or START needs to be in lockstep 1470 */ 1471 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0; 1472 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII; 1473 1474 /* stop the channel */ 1475 for (i = schid; i < echid; i++) { 1476 gchan = &gpii->gchan[i]; 1477 1478 /* disable ch state so no more TRE processing */ 1479 write_lock_irq(&gpii->pm_lock); 1480 gchan->pm_state = PREPARE_TERMINATE; 1481 write_unlock_irq(&gpii->pm_lock); 1482 1483 /* send command to Stop the channel */ 1484 ret = gpi_stop_chan(gchan); 1485 } 1486 1487 /* reset the channels (clears any pending tre) */ 1488 for (i = schid; i < echid; i++) { 1489 gchan = &gpii->gchan[i]; 1490 1491 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET); 1492 if (ret) { 1493 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret); 1494 goto terminate_exit; 1495 } 1496 1497 /* reprogram channel CNTXT */ 1498 ret = gpi_alloc_chan(gchan, false); 1499 if (ret) { 1500 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret); 1501 goto terminate_exit; 1502 } 1503 } 1504 1505 /* restart the channels */ 1506 for (i = schid; i < echid; i++) { 1507 gchan = &gpii->gchan[i]; 1508 1509 ret = gpi_start_chan(gchan); 1510 if (ret) { 1511 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret); 1512 goto terminate_exit; 1513 } 1514 } 1515 1516 terminate_exit: 1517 mutex_unlock(&gpii->ctrl_lock); 1518 return ret; 1519 } 1520 1521 /* pause dma transfer for all channels */ 1522 static int gpi_pause(struct dma_chan *chan) 1523 { 1524 struct gchan *gchan = to_gchan(chan); 1525 struct gpii *gpii = gchan->gpii; 1526 int i, ret; 1527 1528 mutex_lock(&gpii->ctrl_lock); 1529 1530 /* 1531 * pause/resume are per gpii not per channel, so 1532 * client needs to call pause only once 1533 */ 1534 if (gpii->pm_state == PAUSE_STATE) { 1535 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n"); 1536 mutex_unlock(&gpii->ctrl_lock); 1537 return 0; 1538 } 1539 1540 /* send stop command to stop the channels */ 1541 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1542 ret = gpi_stop_chan(&gpii->gchan[i]); 1543 if (ret) { 1544 mutex_unlock(&gpii->ctrl_lock); 1545 return ret; 1546 } 1547 } 1548 1549 disable_irq(gpii->irq); 1550 1551 /* Wait for threads to complete out */ 1552 tasklet_kill(&gpii->ev_task); 1553 1554 write_lock_irq(&gpii->pm_lock); 1555 gpii->pm_state = PAUSE_STATE; 1556 write_unlock_irq(&gpii->pm_lock); 1557 mutex_unlock(&gpii->ctrl_lock); 1558 1559 return 0; 1560 } 1561 1562 /* resume dma transfer */ 1563 static int gpi_resume(struct dma_chan *chan) 1564 { 1565 struct gchan *gchan = to_gchan(chan); 1566 struct gpii *gpii = gchan->gpii; 1567 int i, ret; 1568 1569 mutex_lock(&gpii->ctrl_lock); 1570 if (gpii->pm_state == ACTIVE_STATE) { 1571 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n"); 1572 mutex_unlock(&gpii->ctrl_lock); 1573 return 0; 1574 } 1575 1576 enable_irq(gpii->irq); 1577 1578 /* send start command to start the channels */ 1579 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1580 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START); 1581 if (ret) { 1582 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret); 1583 mutex_unlock(&gpii->ctrl_lock); 1584 return ret; 1585 } 1586 } 1587 1588 write_lock_irq(&gpii->pm_lock); 1589 gpii->pm_state = ACTIVE_STATE; 1590 write_unlock_irq(&gpii->pm_lock); 1591 mutex_unlock(&gpii->ctrl_lock); 1592 1593 return 0; 1594 } 1595 1596 static void gpi_desc_free(struct virt_dma_desc *vd) 1597 { 1598 struct gpi_desc *gpi_desc = to_gpi_desc(vd); 1599 1600 kfree(gpi_desc); 1601 gpi_desc = NULL; 1602 } 1603 1604 static int 1605 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config) 1606 { 1607 struct gchan *gchan = to_gchan(chan); 1608 1609 if (!config->peripheral_config) 1610 return -EINVAL; 1611 1612 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT); 1613 if (!gchan->config) 1614 return -ENOMEM; 1615 1616 memcpy(gchan->config, config->peripheral_config, config->peripheral_size); 1617 1618 return 0; 1619 } 1620 1621 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc, 1622 struct scatterlist *sgl, enum dma_transfer_direction direction) 1623 { 1624 struct gpi_i2c_config *i2c = chan->config; 1625 struct device *dev = chan->gpii->gpi_dev->dev; 1626 unsigned int tre_idx = 0; 1627 dma_addr_t address; 1628 struct gpi_tre *tre; 1629 unsigned int i; 1630 1631 /* first create config tre if applicable */ 1632 if (i2c->set_config) { 1633 tre = &desc->tre[tre_idx]; 1634 tre_idx++; 1635 1636 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW); 1637 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH); 1638 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL); 1639 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK); 1640 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK); 1641 1642 tre->dword[1] = 0; 1643 1644 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV); 1645 1646 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1647 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1648 } 1649 1650 /* create the GO tre for Tx */ 1651 if (i2c->op == I2C_WRITE) { 1652 tre = &desc->tre[tre_idx]; 1653 tre_idx++; 1654 1655 if (i2c->multi_msg) 1656 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD); 1657 else 1658 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD); 1659 1660 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR); 1661 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH); 1662 1663 tre->dword[1] = 0; 1664 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN); 1665 1666 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1667 1668 if (i2c->multi_msg) 1669 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1670 else 1671 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1672 } 1673 1674 if (i2c->op == I2C_READ || i2c->multi_msg == false) { 1675 /* create the DMA TRE */ 1676 tre = &desc->tre[tre_idx]; 1677 tre_idx++; 1678 1679 address = sg_dma_address(sgl); 1680 tre->dword[0] = lower_32_bits(address); 1681 tre->dword[1] = upper_32_bits(address); 1682 1683 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1684 1685 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1686 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1687 } 1688 1689 for (i = 0; i < tre_idx; i++) 1690 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1691 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1692 1693 return tre_idx; 1694 } 1695 1696 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc, 1697 struct scatterlist *sgl, enum dma_transfer_direction direction) 1698 { 1699 struct gpi_spi_config *spi = chan->config; 1700 struct device *dev = chan->gpii->gpi_dev->dev; 1701 unsigned int tre_idx = 0; 1702 dma_addr_t address; 1703 struct gpi_tre *tre; 1704 unsigned int i; 1705 int len; 1706 1707 /* first create config tre if applicable */ 1708 if (direction == DMA_MEM_TO_DEV && spi->set_config) { 1709 tre = &desc->tre[tre_idx]; 1710 tre_idx++; 1711 1712 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ); 1713 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK); 1714 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL); 1715 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA); 1716 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK); 1717 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK); 1718 1719 tre->dword[1] = 0; 1720 1721 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV); 1722 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC); 1723 1724 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1725 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1726 } 1727 1728 /* create the GO tre for Tx */ 1729 if (direction == DMA_MEM_TO_DEV) { 1730 tre = &desc->tre[tre_idx]; 1731 tre_idx++; 1732 1733 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG); 1734 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS); 1735 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD); 1736 1737 tre->dword[1] = 0; 1738 1739 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN); 1740 1741 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1742 if (spi->cmd == SPI_RX) { 1743 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB); 1744 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1745 } else if (spi->cmd == SPI_TX) { 1746 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1747 } else { /* SPI_DUPLEX */ 1748 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1749 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1750 } 1751 } 1752 1753 /* create the dma tre */ 1754 tre = &desc->tre[tre_idx]; 1755 tre_idx++; 1756 1757 address = sg_dma_address(sgl); 1758 len = sg_dma_len(sgl); 1759 1760 /* Support Immediate dma for write transfers for data length up to 8 bytes */ 1761 if (direction == DMA_MEM_TO_DEV && len <= 2 * sizeof(tre->dword[0])) { 1762 /* 1763 * For Immediate dma, data length may not always be length of 8 bytes, 1764 * it can be length less than 8, hence initialize both dword's with 0 1765 */ 1766 tre->dword[0] = 0; 1767 tre->dword[1] = 0; 1768 memcpy(&tre->dword[0], sg_virt(sgl), len); 1769 1770 tre->dword[2] = u32_encode_bits(len, TRE_DMA_IMMEDIATE_LEN); 1771 tre->dword[3] = u32_encode_bits(TRE_TYPE_IMMEDIATE_DMA, TRE_FLAGS_TYPE); 1772 } else { 1773 tre->dword[0] = lower_32_bits(address); 1774 tre->dword[1] = upper_32_bits(address); 1775 1776 tre->dword[2] = u32_encode_bits(len, TRE_DMA_LEN); 1777 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1778 } 1779 1780 tre->dword[3] |= u32_encode_bits(direction == DMA_MEM_TO_DEV, 1781 TRE_FLAGS_IEOT); 1782 1783 for (i = 0; i < tre_idx; i++) 1784 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1785 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1786 1787 return tre_idx; 1788 } 1789 1790 /* copy tre into transfer ring */ 1791 static struct dma_async_tx_descriptor * 1792 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1793 unsigned int sg_len, enum dma_transfer_direction direction, 1794 unsigned long flags, void *context) 1795 { 1796 struct gchan *gchan = to_gchan(chan); 1797 struct gpii *gpii = gchan->gpii; 1798 struct device *dev = gpii->gpi_dev->dev; 1799 struct gpi_ring *ch_ring = &gchan->ch_ring; 1800 struct gpi_desc *gpi_desc; 1801 u32 nr, nr_tre = 0; 1802 u8 set_config; 1803 int i; 1804 1805 gpii->ieob_set = false; 1806 if (!is_slave_direction(direction)) { 1807 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction); 1808 return NULL; 1809 } 1810 1811 if (sg_len > 1) { 1812 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len); 1813 return NULL; 1814 } 1815 1816 nr_tre = 3; 1817 set_config = *(u32 *)gchan->config; 1818 if (!set_config) 1819 nr_tre = 2; 1820 if (direction == DMA_DEV_TO_MEM) /* rx */ 1821 nr_tre = 1; 1822 1823 /* calculate # of elements required & available */ 1824 nr = gpi_ring_num_elements_avail(ch_ring); 1825 if (nr < nr_tre) { 1826 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre); 1827 return NULL; 1828 } 1829 1830 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT); 1831 if (!gpi_desc) 1832 return NULL; 1833 1834 /* create TREs for xfer */ 1835 if (gchan->protocol == QCOM_GPI_SPI) { 1836 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction); 1837 } else if (gchan->protocol == QCOM_GPI_I2C) { 1838 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction); 1839 } else { 1840 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol); 1841 kfree(gpi_desc); 1842 return NULL; 1843 } 1844 1845 /* set up the descriptor */ 1846 gpi_desc->gchan = gchan; 1847 gpi_desc->len = sg_dma_len(sgl); 1848 gpi_desc->num_tre = i; 1849 1850 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags); 1851 } 1852 1853 /* rings transfer ring db to being transfer */ 1854 static void gpi_issue_pending(struct dma_chan *chan) 1855 { 1856 struct gchan *gchan = to_gchan(chan); 1857 struct gpii *gpii = gchan->gpii; 1858 unsigned long flags, pm_lock_flags; 1859 struct virt_dma_desc *vd = NULL; 1860 struct gpi_desc *gpi_desc; 1861 struct gpi_ring *ch_ring = &gchan->ch_ring; 1862 void *tre, *wp = NULL; 1863 int i; 1864 1865 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags); 1866 1867 /* move all submitted descriptors to issued list */ 1868 spin_lock_irqsave(&gchan->vc.lock, flags); 1869 if (vchan_issue_pending(&gchan->vc)) 1870 vd = list_last_entry(&gchan->vc.desc_issued, 1871 struct virt_dma_desc, node); 1872 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1873 1874 /* nothing to do list is empty */ 1875 if (!vd) { 1876 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1877 return; 1878 } 1879 1880 gpi_desc = to_gpi_desc(vd); 1881 for (i = 0; i < gpi_desc->num_tre; i++) { 1882 tre = &gpi_desc->tre[i]; 1883 gpi_queue_xfer(gpii, gchan, tre, &wp); 1884 } 1885 1886 gpi_desc->db = ch_ring->wp; 1887 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db); 1888 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1889 } 1890 1891 static int gpi_ch_init(struct gchan *gchan) 1892 { 1893 struct gpii *gpii = gchan->gpii; 1894 const int ev_factor = gpii->gpi_dev->ev_factor; 1895 u32 elements; 1896 int i = 0, ret = 0; 1897 1898 gchan->pm_state = CONFIG_STATE; 1899 1900 /* check if both channels are configured before continue */ 1901 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 1902 if (gpii->gchan[i].pm_state != CONFIG_STATE) 1903 goto exit_gpi_init; 1904 1905 /* protocol must be same for both channels */ 1906 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) { 1907 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n", 1908 gpii->gchan[0].protocol, gpii->gchan[1].protocol); 1909 ret = -EINVAL; 1910 goto exit_gpi_init; 1911 } 1912 1913 /* allocate memory for event ring */ 1914 elements = CHAN_TRES << ev_factor; 1915 ret = gpi_alloc_ring(&gpii->ev_ring, elements, 1916 sizeof(union gpi_event), gpii); 1917 if (ret) 1918 goto exit_gpi_init; 1919 1920 /* configure interrupts */ 1921 write_lock_irq(&gpii->pm_lock); 1922 gpii->pm_state = PREPARE_HARDWARE; 1923 write_unlock_irq(&gpii->pm_lock); 1924 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0); 1925 if (ret) { 1926 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret); 1927 goto error_config_int; 1928 } 1929 1930 /* allocate event rings */ 1931 ret = gpi_alloc_ev_chan(gpii); 1932 if (ret) { 1933 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret); 1934 goto error_alloc_ev_ring; 1935 } 1936 1937 /* Allocate all channels */ 1938 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1939 ret = gpi_alloc_chan(&gpii->gchan[i], true); 1940 if (ret) { 1941 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret); 1942 goto error_alloc_chan; 1943 } 1944 } 1945 1946 /* start channels */ 1947 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1948 ret = gpi_start_chan(&gpii->gchan[i]); 1949 if (ret) { 1950 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret); 1951 goto error_start_chan; 1952 } 1953 } 1954 return ret; 1955 1956 error_start_chan: 1957 for (i = i - 1; i >= 0; i--) { 1958 gpi_stop_chan(&gpii->gchan[i]); 1959 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1960 } 1961 i = 2; 1962 error_alloc_chan: 1963 for (i = i - 1; i >= 0; i--) 1964 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1965 error_alloc_ev_ring: 1966 gpi_disable_interrupts(gpii); 1967 error_config_int: 1968 gpi_free_ring(&gpii->ev_ring, gpii); 1969 exit_gpi_init: 1970 return ret; 1971 } 1972 1973 /* release all channel resources */ 1974 static void gpi_free_chan_resources(struct dma_chan *chan) 1975 { 1976 struct gchan *gchan = to_gchan(chan); 1977 struct gpii *gpii = gchan->gpii; 1978 enum gpi_pm_state cur_state; 1979 int ret, i; 1980 1981 mutex_lock(&gpii->ctrl_lock); 1982 1983 cur_state = gchan->pm_state; 1984 1985 /* disable ch state so no more TRE processing for this channel */ 1986 write_lock_irq(&gpii->pm_lock); 1987 gchan->pm_state = PREPARE_TERMINATE; 1988 write_unlock_irq(&gpii->pm_lock); 1989 1990 /* attempt to do graceful hardware shutdown */ 1991 if (cur_state == ACTIVE_STATE) { 1992 gpi_stop_chan(gchan); 1993 1994 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1995 if (ret) 1996 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret); 1997 1998 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1999 } 2000 2001 /* free all allocated memory */ 2002 gpi_free_ring(&gchan->ch_ring, gpii); 2003 vchan_free_chan_resources(&gchan->vc); 2004 kfree(gchan->config); 2005 2006 write_lock_irq(&gpii->pm_lock); 2007 gchan->pm_state = DISABLE_STATE; 2008 write_unlock_irq(&gpii->pm_lock); 2009 2010 /* if other rings are still active exit */ 2011 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 2012 if (gpii->gchan[i].ch_ring.configured) 2013 goto exit_free; 2014 2015 /* deallocate EV Ring */ 2016 cur_state = gpii->pm_state; 2017 write_lock_irq(&gpii->pm_lock); 2018 gpii->pm_state = PREPARE_TERMINATE; 2019 write_unlock_irq(&gpii->pm_lock); 2020 2021 /* wait for threads to complete out */ 2022 tasklet_kill(&gpii->ev_task); 2023 2024 /* send command to de allocate event ring */ 2025 if (cur_state == ACTIVE_STATE) 2026 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC); 2027 2028 gpi_free_ring(&gpii->ev_ring, gpii); 2029 2030 /* disable interrupts */ 2031 if (cur_state == ACTIVE_STATE) 2032 gpi_disable_interrupts(gpii); 2033 2034 /* set final state to disable */ 2035 write_lock_irq(&gpii->pm_lock); 2036 gpii->pm_state = DISABLE_STATE; 2037 write_unlock_irq(&gpii->pm_lock); 2038 2039 exit_free: 2040 mutex_unlock(&gpii->ctrl_lock); 2041 } 2042 2043 /* allocate channel resources */ 2044 static int gpi_alloc_chan_resources(struct dma_chan *chan) 2045 { 2046 struct gchan *gchan = to_gchan(chan); 2047 struct gpii *gpii = gchan->gpii; 2048 int ret; 2049 2050 mutex_lock(&gpii->ctrl_lock); 2051 2052 /* allocate memory for transfer ring */ 2053 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES, 2054 sizeof(struct gpi_tre), gpii); 2055 if (ret) 2056 goto xfer_alloc_err; 2057 2058 ret = gpi_ch_init(gchan); 2059 2060 mutex_unlock(&gpii->ctrl_lock); 2061 2062 return ret; 2063 xfer_alloc_err: 2064 mutex_unlock(&gpii->ctrl_lock); 2065 2066 return ret; 2067 } 2068 2069 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid) 2070 { 2071 struct gchan *tx_chan, *rx_chan; 2072 unsigned int gpii; 2073 2074 /* check if same seid is already configured for another chid */ 2075 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2076 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2077 continue; 2078 2079 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2080 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2081 2082 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid) 2083 return gpii; 2084 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid) 2085 return gpii; 2086 } 2087 2088 /* no channels configured with same seid, return next avail gpii */ 2089 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2090 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2091 continue; 2092 2093 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2094 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2095 2096 /* check if gpii is configured */ 2097 if (tx_chan->vc.chan.client_count || 2098 rx_chan->vc.chan.client_count) 2099 continue; 2100 2101 /* found a free gpii */ 2102 return gpii; 2103 } 2104 2105 /* no gpii instance available to use */ 2106 return -EIO; 2107 } 2108 2109 /* gpi_of_dma_xlate: open client requested channel */ 2110 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args, 2111 struct of_dma *of_dma) 2112 { 2113 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data; 2114 u32 seid, chid; 2115 int gpii; 2116 struct gchan *gchan; 2117 2118 if (args->args_count < 3) { 2119 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n", 2120 args->args_count); 2121 return NULL; 2122 } 2123 2124 chid = args->args[0]; 2125 if (chid >= MAX_CHANNELS_PER_GPII) { 2126 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid); 2127 return NULL; 2128 } 2129 2130 seid = args->args[1]; 2131 2132 /* find next available gpii to use */ 2133 gpii = gpi_find_avail_gpii(gpi_dev, seid); 2134 if (gpii < 0) { 2135 dev_err(gpi_dev->dev, "no available gpii instances\n"); 2136 return NULL; 2137 } 2138 2139 gchan = &gpi_dev->gpiis[gpii].gchan[chid]; 2140 if (gchan->vc.chan.client_count) { 2141 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n", 2142 gpii, chid, gchan->seid); 2143 return NULL; 2144 } 2145 2146 gchan->seid = seid; 2147 gchan->protocol = args->args[2]; 2148 2149 return dma_get_slave_channel(&gchan->vc.chan); 2150 } 2151 2152 static int gpi_probe(struct platform_device *pdev) 2153 { 2154 struct gpi_dev *gpi_dev; 2155 unsigned int i; 2156 u32 ee_offset; 2157 int ret; 2158 2159 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL); 2160 if (!gpi_dev) 2161 return -ENOMEM; 2162 2163 gpi_dev->dev = &pdev->dev; 2164 gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res); 2165 if (IS_ERR(gpi_dev->regs)) 2166 return PTR_ERR(gpi_dev->regs); 2167 gpi_dev->ee_base = gpi_dev->regs; 2168 2169 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels", 2170 &gpi_dev->max_gpii); 2171 if (ret) { 2172 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n"); 2173 return ret; 2174 } 2175 2176 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask", 2177 &gpi_dev->gpii_mask); 2178 if (ret) { 2179 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n"); 2180 return ret; 2181 } 2182 2183 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev); 2184 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset; 2185 2186 gpi_dev->ev_factor = EV_FACTOR; 2187 2188 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64)); 2189 if (ret) { 2190 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret); 2191 return ret; 2192 } 2193 2194 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) * 2195 gpi_dev->max_gpii, GFP_KERNEL); 2196 if (!gpi_dev->gpiis) 2197 return -ENOMEM; 2198 2199 /* setup all the supported gpii */ 2200 INIT_LIST_HEAD(&gpi_dev->dma_device.channels); 2201 for (i = 0; i < gpi_dev->max_gpii; i++) { 2202 struct gpii *gpii = &gpi_dev->gpiis[i]; 2203 int chan; 2204 2205 if (!((1 << i) & gpi_dev->gpii_mask)) 2206 continue; 2207 2208 /* set up ev cntxt register map */ 2209 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0); 2210 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0); 2211 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB; 2212 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i); 2213 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i); 2214 2215 /* set up irq */ 2216 ret = platform_get_irq(pdev, i); 2217 if (ret < 0) 2218 return ret; 2219 gpii->irq = ret; 2220 2221 /* set up channel specific register info */ 2222 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) { 2223 struct gchan *gchan = &gpii->gchan[chan]; 2224 2225 /* set up ch cntxt register map */ 2226 gchan->ch_cntxt_base_reg = gpi_dev->ee_base + 2227 GPII_n_CH_k_CNTXT_0_OFFS(i, chan); 2228 gchan->ch_cntxt_db_reg = gpi_dev->ee_base + 2229 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan); 2230 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i); 2231 2232 /* vchan setup */ 2233 vchan_init(&gchan->vc, &gpi_dev->dma_device); 2234 gchan->vc.desc_free = gpi_desc_free; 2235 gchan->chid = chan; 2236 gchan->gpii = gpii; 2237 gchan->dir = GPII_CHAN_DIR[chan]; 2238 } 2239 mutex_init(&gpii->ctrl_lock); 2240 rwlock_init(&gpii->pm_lock); 2241 tasklet_init(&gpii->ev_task, gpi_ev_tasklet, 2242 (unsigned long)gpii); 2243 init_completion(&gpii->cmd_completion); 2244 gpii->gpii_id = i; 2245 gpii->regs = gpi_dev->ee_base; 2246 gpii->gpi_dev = gpi_dev; 2247 } 2248 2249 platform_set_drvdata(pdev, gpi_dev); 2250 2251 /* clear and Set capabilities */ 2252 dma_cap_zero(gpi_dev->dma_device.cap_mask); 2253 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask); 2254 2255 /* configure dmaengine apis */ 2256 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2257 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2258 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2259 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2260 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources; 2261 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources; 2262 gpi_dev->dma_device.device_tx_status = dma_cookie_status; 2263 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending; 2264 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg; 2265 gpi_dev->dma_device.device_config = gpi_peripheral_config; 2266 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all; 2267 gpi_dev->dma_device.dev = gpi_dev->dev; 2268 gpi_dev->dma_device.device_pause = gpi_pause; 2269 gpi_dev->dma_device.device_resume = gpi_resume; 2270 2271 /* register with dmaengine framework */ 2272 ret = dma_async_device_register(&gpi_dev->dma_device); 2273 if (ret) { 2274 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret); 2275 return ret; 2276 } 2277 2278 ret = of_dma_controller_register(gpi_dev->dev->of_node, 2279 gpi_of_dma_xlate, gpi_dev); 2280 if (ret) { 2281 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret); 2282 return ret; 2283 } 2284 2285 return ret; 2286 } 2287 2288 static const struct of_device_id gpi_of_match[] = { 2289 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 }, 2290 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 }, 2291 /* 2292 * Do not grow the list for compatible devices. Instead use 2293 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma 2294 * (for ee_offset = 0x10000). 2295 */ 2296 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 }, 2297 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 }, 2298 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 }, 2299 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 }, 2300 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 }, 2301 { }, 2302 }; 2303 MODULE_DEVICE_TABLE(of, gpi_of_match); 2304 2305 static struct platform_driver gpi_driver = { 2306 .probe = gpi_probe, 2307 .driver = { 2308 .name = KBUILD_MODNAME, 2309 .of_match_table = gpi_of_match, 2310 }, 2311 }; 2312 2313 static int __init gpi_init(void) 2314 { 2315 return platform_driver_register(&gpi_driver); 2316 } 2317 subsys_initcall(gpi_init) 2318 2319 MODULE_DESCRIPTION("QCOM GPI DMA engine driver"); 2320 MODULE_LICENSE("GPL v2"); 2321