xref: /linux/drivers/dma/plx_dma.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microsemi Switchtec(tm) PCIe Management Driver
4  * Copyright (c) 2019, Logan Gunthorpe <logang@deltatee.com>
5  * Copyright (c) 2019, GigaIO Networks, Inc
6  */
7 
8 #include "dmaengine.h"
9 
10 #include <linux/circ_buf.h>
11 #include <linux/dmaengine.h>
12 #include <linux/kref.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 
17 MODULE_DESCRIPTION("PLX ExpressLane PEX PCI Switch DMA Engine");
18 MODULE_VERSION("0.1");
19 MODULE_LICENSE("GPL");
20 MODULE_AUTHOR("Logan Gunthorpe");
21 
22 #define PLX_REG_DESC_RING_ADDR			0x214
23 #define PLX_REG_DESC_RING_ADDR_HI		0x218
24 #define PLX_REG_DESC_RING_NEXT_ADDR		0x21C
25 #define PLX_REG_DESC_RING_COUNT			0x220
26 #define PLX_REG_DESC_RING_LAST_ADDR		0x224
27 #define PLX_REG_DESC_RING_LAST_SIZE		0x228
28 #define PLX_REG_PREF_LIMIT			0x234
29 #define PLX_REG_CTRL				0x238
30 #define PLX_REG_CTRL2				0x23A
31 #define PLX_REG_INTR_CTRL			0x23C
32 #define PLX_REG_INTR_STATUS			0x23E
33 
34 #define PLX_REG_PREF_LIMIT_PREF_FOUR		8
35 
36 #define PLX_REG_CTRL_GRACEFUL_PAUSE		BIT(0)
37 #define PLX_REG_CTRL_ABORT			BIT(1)
38 #define PLX_REG_CTRL_WRITE_BACK_EN		BIT(2)
39 #define PLX_REG_CTRL_START			BIT(3)
40 #define PLX_REG_CTRL_RING_STOP_MODE		BIT(4)
41 #define PLX_REG_CTRL_DESC_MODE_BLOCK		(0 << 5)
42 #define PLX_REG_CTRL_DESC_MODE_ON_CHIP		(1 << 5)
43 #define PLX_REG_CTRL_DESC_MODE_OFF_CHIP		(2 << 5)
44 #define PLX_REG_CTRL_DESC_INVALID		BIT(8)
45 #define PLX_REG_CTRL_GRACEFUL_PAUSE_DONE	BIT(9)
46 #define PLX_REG_CTRL_ABORT_DONE			BIT(10)
47 #define PLX_REG_CTRL_IMM_PAUSE_DONE		BIT(12)
48 #define PLX_REG_CTRL_IN_PROGRESS		BIT(30)
49 
50 #define PLX_REG_CTRL_RESET_VAL	(PLX_REG_CTRL_DESC_INVALID | \
51 				 PLX_REG_CTRL_GRACEFUL_PAUSE_DONE | \
52 				 PLX_REG_CTRL_ABORT_DONE | \
53 				 PLX_REG_CTRL_IMM_PAUSE_DONE)
54 
55 #define PLX_REG_CTRL_START_VAL	(PLX_REG_CTRL_WRITE_BACK_EN | \
56 				 PLX_REG_CTRL_DESC_MODE_OFF_CHIP | \
57 				 PLX_REG_CTRL_START | \
58 				 PLX_REG_CTRL_RESET_VAL)
59 
60 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_64B		0
61 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_128B	1
62 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_256B	2
63 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_512B	3
64 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_1KB		4
65 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_2KB		5
66 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_4B		7
67 
68 #define PLX_REG_INTR_CRTL_ERROR_EN		BIT(0)
69 #define PLX_REG_INTR_CRTL_INV_DESC_EN		BIT(1)
70 #define PLX_REG_INTR_CRTL_ABORT_DONE_EN		BIT(3)
71 #define PLX_REG_INTR_CRTL_PAUSE_DONE_EN		BIT(4)
72 #define PLX_REG_INTR_CRTL_IMM_PAUSE_DONE_EN	BIT(5)
73 
74 #define PLX_REG_INTR_STATUS_ERROR		BIT(0)
75 #define PLX_REG_INTR_STATUS_INV_DESC		BIT(1)
76 #define PLX_REG_INTR_STATUS_DESC_DONE		BIT(2)
77 #define PLX_REG_INTR_CRTL_ABORT_DONE		BIT(3)
78 
79 struct plx_dma_hw_std_desc {
80 	__le32 flags_and_size;
81 	__le16 dst_addr_hi;
82 	__le16 src_addr_hi;
83 	__le32 dst_addr_lo;
84 	__le32 src_addr_lo;
85 };
86 
87 #define PLX_DESC_SIZE_MASK		0x7ffffff
88 #define PLX_DESC_FLAG_VALID		BIT(31)
89 #define PLX_DESC_FLAG_INT_WHEN_DONE	BIT(30)
90 
91 #define PLX_DESC_WB_SUCCESS		BIT(30)
92 #define PLX_DESC_WB_RD_FAIL		BIT(29)
93 #define PLX_DESC_WB_WR_FAIL		BIT(28)
94 
95 #define PLX_DMA_RING_COUNT		2048
96 
97 struct plx_dma_desc {
98 	struct dma_async_tx_descriptor txd;
99 	struct plx_dma_hw_std_desc *hw;
100 	u32 orig_size;
101 };
102 
103 struct plx_dma_dev {
104 	struct dma_device dma_dev;
105 	struct dma_chan dma_chan;
106 	struct pci_dev __rcu *pdev;
107 	void __iomem *bar;
108 	struct tasklet_struct desc_task;
109 
110 	spinlock_t ring_lock;
111 	bool ring_active;
112 	int head;
113 	int tail;
114 	struct plx_dma_hw_std_desc *hw_ring;
115 	dma_addr_t hw_ring_dma;
116 	struct plx_dma_desc **desc_ring;
117 };
118 
119 static struct plx_dma_dev *chan_to_plx_dma_dev(struct dma_chan *c)
120 {
121 	return container_of(c, struct plx_dma_dev, dma_chan);
122 }
123 
124 static struct plx_dma_desc *to_plx_desc(struct dma_async_tx_descriptor *txd)
125 {
126 	return container_of(txd, struct plx_dma_desc, txd);
127 }
128 
129 static struct plx_dma_desc *plx_dma_get_desc(struct plx_dma_dev *plxdev, int i)
130 {
131 	return plxdev->desc_ring[i & (PLX_DMA_RING_COUNT - 1)];
132 }
133 
134 static void plx_dma_process_desc(struct plx_dma_dev *plxdev)
135 {
136 	struct dmaengine_result res;
137 	struct plx_dma_desc *desc;
138 	u32 flags;
139 
140 	spin_lock_bh(&plxdev->ring_lock);
141 
142 	while (plxdev->tail != plxdev->head) {
143 		desc = plx_dma_get_desc(plxdev, plxdev->tail);
144 
145 		flags = le32_to_cpu(READ_ONCE(desc->hw->flags_and_size));
146 
147 		if (flags & PLX_DESC_FLAG_VALID)
148 			break;
149 
150 		res.residue = desc->orig_size - (flags & PLX_DESC_SIZE_MASK);
151 
152 		if (flags & PLX_DESC_WB_SUCCESS)
153 			res.result = DMA_TRANS_NOERROR;
154 		else if (flags & PLX_DESC_WB_WR_FAIL)
155 			res.result = DMA_TRANS_WRITE_FAILED;
156 		else
157 			res.result = DMA_TRANS_READ_FAILED;
158 
159 		dma_cookie_complete(&desc->txd);
160 		dma_descriptor_unmap(&desc->txd);
161 		dmaengine_desc_get_callback_invoke(&desc->txd, &res);
162 		desc->txd.callback = NULL;
163 		desc->txd.callback_result = NULL;
164 
165 		plxdev->tail++;
166 	}
167 
168 	spin_unlock_bh(&plxdev->ring_lock);
169 }
170 
171 static void plx_dma_abort_desc(struct plx_dma_dev *plxdev)
172 {
173 	struct dmaengine_result res;
174 	struct plx_dma_desc *desc;
175 
176 	plx_dma_process_desc(plxdev);
177 
178 	spin_lock_bh(&plxdev->ring_lock);
179 
180 	while (plxdev->tail != plxdev->head) {
181 		desc = plx_dma_get_desc(plxdev, plxdev->tail);
182 
183 		res.residue = desc->orig_size;
184 		res.result = DMA_TRANS_ABORTED;
185 
186 		dma_cookie_complete(&desc->txd);
187 		dma_descriptor_unmap(&desc->txd);
188 		dmaengine_desc_get_callback_invoke(&desc->txd, &res);
189 		desc->txd.callback = NULL;
190 		desc->txd.callback_result = NULL;
191 
192 		plxdev->tail++;
193 	}
194 
195 	spin_unlock_bh(&plxdev->ring_lock);
196 }
197 
198 static void __plx_dma_stop(struct plx_dma_dev *plxdev)
199 {
200 	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
201 	u32 val;
202 
203 	val = readl(plxdev->bar + PLX_REG_CTRL);
204 	if (!(val & ~PLX_REG_CTRL_GRACEFUL_PAUSE))
205 		return;
206 
207 	writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE,
208 	       plxdev->bar + PLX_REG_CTRL);
209 
210 	while (!time_after(jiffies, timeout)) {
211 		val = readl(plxdev->bar + PLX_REG_CTRL);
212 		if (val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE)
213 			break;
214 
215 		cpu_relax();
216 	}
217 
218 	if (!(val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE))
219 		dev_err(plxdev->dma_dev.dev,
220 			"Timeout waiting for graceful pause!\n");
221 
222 	writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE,
223 	       plxdev->bar + PLX_REG_CTRL);
224 
225 	writel(0, plxdev->bar + PLX_REG_DESC_RING_COUNT);
226 	writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR);
227 	writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR_HI);
228 	writel(0, plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR);
229 }
230 
231 static void plx_dma_stop(struct plx_dma_dev *plxdev)
232 {
233 	rcu_read_lock();
234 	if (!rcu_dereference(plxdev->pdev)) {
235 		rcu_read_unlock();
236 		return;
237 	}
238 
239 	__plx_dma_stop(plxdev);
240 
241 	rcu_read_unlock();
242 }
243 
244 static void plx_dma_desc_task(unsigned long data)
245 {
246 	struct plx_dma_dev *plxdev = (void *)data;
247 
248 	plx_dma_process_desc(plxdev);
249 }
250 
251 static struct dma_async_tx_descriptor *plx_dma_prep_memcpy(struct dma_chan *c,
252 		dma_addr_t dma_dst, dma_addr_t dma_src, size_t len,
253 		unsigned long flags)
254 	__acquires(plxdev->ring_lock)
255 {
256 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(c);
257 	struct plx_dma_desc *plxdesc;
258 
259 	spin_lock_bh(&plxdev->ring_lock);
260 	if (!plxdev->ring_active)
261 		goto err_unlock;
262 
263 	if (!CIRC_SPACE(plxdev->head, plxdev->tail, PLX_DMA_RING_COUNT))
264 		goto err_unlock;
265 
266 	if (len > PLX_DESC_SIZE_MASK)
267 		goto err_unlock;
268 
269 	plxdesc = plx_dma_get_desc(plxdev, plxdev->head);
270 	plxdev->head++;
271 
272 	plxdesc->hw->dst_addr_lo = cpu_to_le32(lower_32_bits(dma_dst));
273 	plxdesc->hw->dst_addr_hi = cpu_to_le16(upper_32_bits(dma_dst));
274 	plxdesc->hw->src_addr_lo = cpu_to_le32(lower_32_bits(dma_src));
275 	plxdesc->hw->src_addr_hi = cpu_to_le16(upper_32_bits(dma_src));
276 
277 	plxdesc->orig_size = len;
278 
279 	if (flags & DMA_PREP_INTERRUPT)
280 		len |= PLX_DESC_FLAG_INT_WHEN_DONE;
281 
282 	plxdesc->hw->flags_and_size = cpu_to_le32(len);
283 	plxdesc->txd.flags = flags;
284 
285 	/* return with the lock held, it will be released in tx_submit */
286 
287 	return &plxdesc->txd;
288 
289 err_unlock:
290 	/*
291 	 * Keep sparse happy by restoring an even lock count on
292 	 * this lock.
293 	 */
294 	__acquire(plxdev->ring_lock);
295 
296 	spin_unlock_bh(&plxdev->ring_lock);
297 	return NULL;
298 }
299 
300 static dma_cookie_t plx_dma_tx_submit(struct dma_async_tx_descriptor *desc)
301 	__releases(plxdev->ring_lock)
302 {
303 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(desc->chan);
304 	struct plx_dma_desc *plxdesc = to_plx_desc(desc);
305 	dma_cookie_t cookie;
306 
307 	cookie = dma_cookie_assign(desc);
308 
309 	/*
310 	 * Ensure the descriptor updates are visible to the dma device
311 	 * before setting the valid bit.
312 	 */
313 	wmb();
314 
315 	plxdesc->hw->flags_and_size |= cpu_to_le32(PLX_DESC_FLAG_VALID);
316 
317 	spin_unlock_bh(&plxdev->ring_lock);
318 
319 	return cookie;
320 }
321 
322 static enum dma_status plx_dma_tx_status(struct dma_chan *chan,
323 		dma_cookie_t cookie, struct dma_tx_state *txstate)
324 {
325 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
326 	enum dma_status ret;
327 
328 	ret = dma_cookie_status(chan, cookie, txstate);
329 	if (ret == DMA_COMPLETE)
330 		return ret;
331 
332 	plx_dma_process_desc(plxdev);
333 
334 	return dma_cookie_status(chan, cookie, txstate);
335 }
336 
337 static void plx_dma_issue_pending(struct dma_chan *chan)
338 {
339 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
340 
341 	rcu_read_lock();
342 	if (!rcu_dereference(plxdev->pdev)) {
343 		rcu_read_unlock();
344 		return;
345 	}
346 
347 	/*
348 	 * Ensure the valid bits are visible before starting the
349 	 * DMA engine.
350 	 */
351 	wmb();
352 
353 	writew(PLX_REG_CTRL_START_VAL, plxdev->bar + PLX_REG_CTRL);
354 
355 	rcu_read_unlock();
356 }
357 
358 static irqreturn_t plx_dma_isr(int irq, void *devid)
359 {
360 	struct plx_dma_dev *plxdev = devid;
361 	u32 status;
362 
363 	status = readw(plxdev->bar + PLX_REG_INTR_STATUS);
364 
365 	if (!status)
366 		return IRQ_NONE;
367 
368 	if (status & PLX_REG_INTR_STATUS_DESC_DONE && plxdev->ring_active)
369 		tasklet_schedule(&plxdev->desc_task);
370 
371 	writew(status, plxdev->bar + PLX_REG_INTR_STATUS);
372 
373 	return IRQ_HANDLED;
374 }
375 
376 static int plx_dma_alloc_desc(struct plx_dma_dev *plxdev)
377 {
378 	struct plx_dma_desc *desc;
379 	int i;
380 
381 	plxdev->desc_ring = kcalloc(PLX_DMA_RING_COUNT,
382 				    sizeof(*plxdev->desc_ring), GFP_KERNEL);
383 	if (!plxdev->desc_ring)
384 		return -ENOMEM;
385 
386 	for (i = 0; i < PLX_DMA_RING_COUNT; i++) {
387 		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
388 		if (!desc)
389 			goto free_and_exit;
390 
391 		dma_async_tx_descriptor_init(&desc->txd, &plxdev->dma_chan);
392 		desc->txd.tx_submit = plx_dma_tx_submit;
393 		desc->hw = &plxdev->hw_ring[i];
394 
395 		plxdev->desc_ring[i] = desc;
396 	}
397 
398 	return 0;
399 
400 free_and_exit:
401 	for (i = 0; i < PLX_DMA_RING_COUNT; i++)
402 		kfree(plxdev->desc_ring[i]);
403 	kfree(plxdev->desc_ring);
404 	return -ENOMEM;
405 }
406 
407 static int plx_dma_alloc_chan_resources(struct dma_chan *chan)
408 {
409 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
410 	size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring);
411 	int rc;
412 
413 	plxdev->head = plxdev->tail = 0;
414 	plxdev->hw_ring = dma_alloc_coherent(plxdev->dma_dev.dev, ring_sz,
415 					     &plxdev->hw_ring_dma, GFP_KERNEL);
416 	if (!plxdev->hw_ring)
417 		return -ENOMEM;
418 
419 	rc = plx_dma_alloc_desc(plxdev);
420 	if (rc)
421 		goto out_free_hw_ring;
422 
423 	rcu_read_lock();
424 	if (!rcu_dereference(plxdev->pdev)) {
425 		rcu_read_unlock();
426 		rc = -ENODEV;
427 		goto out_free_hw_ring;
428 	}
429 
430 	writel(PLX_REG_CTRL_RESET_VAL, plxdev->bar + PLX_REG_CTRL);
431 	writel(lower_32_bits(plxdev->hw_ring_dma),
432 	       plxdev->bar + PLX_REG_DESC_RING_ADDR);
433 	writel(upper_32_bits(plxdev->hw_ring_dma),
434 	       plxdev->bar + PLX_REG_DESC_RING_ADDR_HI);
435 	writel(lower_32_bits(plxdev->hw_ring_dma),
436 	       plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR);
437 	writel(PLX_DMA_RING_COUNT, plxdev->bar + PLX_REG_DESC_RING_COUNT);
438 	writel(PLX_REG_PREF_LIMIT_PREF_FOUR, plxdev->bar + PLX_REG_PREF_LIMIT);
439 
440 	plxdev->ring_active = true;
441 
442 	rcu_read_unlock();
443 
444 	return PLX_DMA_RING_COUNT;
445 
446 out_free_hw_ring:
447 	dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring,
448 			  plxdev->hw_ring_dma);
449 	return rc;
450 }
451 
452 static void plx_dma_free_chan_resources(struct dma_chan *chan)
453 {
454 	struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan);
455 	size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring);
456 	struct pci_dev *pdev;
457 	int irq = -1;
458 	int i;
459 
460 	spin_lock_bh(&plxdev->ring_lock);
461 	plxdev->ring_active = false;
462 	spin_unlock_bh(&plxdev->ring_lock);
463 
464 	plx_dma_stop(plxdev);
465 
466 	rcu_read_lock();
467 	pdev = rcu_dereference(plxdev->pdev);
468 	if (pdev)
469 		irq = pci_irq_vector(pdev, 0);
470 	rcu_read_unlock();
471 
472 	if (irq > 0)
473 		synchronize_irq(irq);
474 
475 	tasklet_kill(&plxdev->desc_task);
476 
477 	plx_dma_abort_desc(plxdev);
478 
479 	for (i = 0; i < PLX_DMA_RING_COUNT; i++)
480 		kfree(plxdev->desc_ring[i]);
481 
482 	kfree(plxdev->desc_ring);
483 	dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring,
484 			  plxdev->hw_ring_dma);
485 
486 }
487 
488 static void plx_dma_release(struct dma_device *dma_dev)
489 {
490 	struct plx_dma_dev *plxdev =
491 		container_of(dma_dev, struct plx_dma_dev, dma_dev);
492 
493 	put_device(dma_dev->dev);
494 	kfree(plxdev);
495 }
496 
497 static int plx_dma_create(struct pci_dev *pdev)
498 {
499 	struct plx_dma_dev *plxdev;
500 	struct dma_device *dma;
501 	struct dma_chan *chan;
502 	int rc;
503 
504 	plxdev = kzalloc(sizeof(*plxdev), GFP_KERNEL);
505 	if (!plxdev)
506 		return -ENOMEM;
507 
508 	rc = request_irq(pci_irq_vector(pdev, 0), plx_dma_isr, 0,
509 			 KBUILD_MODNAME, plxdev);
510 	if (rc) {
511 		kfree(plxdev);
512 		return rc;
513 	}
514 
515 	spin_lock_init(&plxdev->ring_lock);
516 	tasklet_init(&plxdev->desc_task, plx_dma_desc_task,
517 		     (unsigned long)plxdev);
518 
519 	RCU_INIT_POINTER(plxdev->pdev, pdev);
520 	plxdev->bar = pcim_iomap_table(pdev)[0];
521 
522 	dma = &plxdev->dma_dev;
523 	dma->chancnt = 1;
524 	INIT_LIST_HEAD(&dma->channels);
525 	dma_cap_set(DMA_MEMCPY, dma->cap_mask);
526 	dma->copy_align = DMAENGINE_ALIGN_1_BYTE;
527 	dma->dev = get_device(&pdev->dev);
528 
529 	dma->device_alloc_chan_resources = plx_dma_alloc_chan_resources;
530 	dma->device_free_chan_resources = plx_dma_free_chan_resources;
531 	dma->device_prep_dma_memcpy = plx_dma_prep_memcpy;
532 	dma->device_issue_pending = plx_dma_issue_pending;
533 	dma->device_tx_status = plx_dma_tx_status;
534 	dma->device_release = plx_dma_release;
535 
536 	chan = &plxdev->dma_chan;
537 	chan->device = dma;
538 	dma_cookie_init(chan);
539 	list_add_tail(&chan->device_node, &dma->channels);
540 
541 	rc = dma_async_device_register(dma);
542 	if (rc) {
543 		pci_err(pdev, "Failed to register dma device: %d\n", rc);
544 		free_irq(pci_irq_vector(pdev, 0),  plxdev);
545 		kfree(plxdev);
546 		return rc;
547 	}
548 
549 	pci_set_drvdata(pdev, plxdev);
550 
551 	return 0;
552 }
553 
554 static int plx_dma_probe(struct pci_dev *pdev,
555 			 const struct pci_device_id *id)
556 {
557 	int rc;
558 
559 	rc = pcim_enable_device(pdev);
560 	if (rc)
561 		return rc;
562 
563 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
564 	if (rc)
565 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
566 	if (rc)
567 		return rc;
568 
569 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
570 	if (rc)
571 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
572 	if (rc)
573 		return rc;
574 
575 	rc = pcim_iomap_regions(pdev, 1, KBUILD_MODNAME);
576 	if (rc)
577 		return rc;
578 
579 	rc = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
580 	if (rc <= 0)
581 		return rc;
582 
583 	pci_set_master(pdev);
584 
585 	rc = plx_dma_create(pdev);
586 	if (rc)
587 		goto err_free_irq_vectors;
588 
589 	pci_info(pdev, "PLX DMA Channel Registered\n");
590 
591 	return 0;
592 
593 err_free_irq_vectors:
594 	pci_free_irq_vectors(pdev);
595 	return rc;
596 }
597 
598 static void plx_dma_remove(struct pci_dev *pdev)
599 {
600 	struct plx_dma_dev *plxdev = pci_get_drvdata(pdev);
601 
602 	free_irq(pci_irq_vector(pdev, 0),  plxdev);
603 
604 	rcu_assign_pointer(plxdev->pdev, NULL);
605 	synchronize_rcu();
606 
607 	spin_lock_bh(&plxdev->ring_lock);
608 	plxdev->ring_active = false;
609 	spin_unlock_bh(&plxdev->ring_lock);
610 
611 	__plx_dma_stop(plxdev);
612 	plx_dma_abort_desc(plxdev);
613 
614 	plxdev->bar = NULL;
615 	dma_async_device_unregister(&plxdev->dma_dev);
616 
617 	pci_free_irq_vectors(pdev);
618 }
619 
620 static const struct pci_device_id plx_dma_pci_tbl[] = {
621 	{
622 		.vendor		= PCI_VENDOR_ID_PLX,
623 		.device		= 0x87D0,
624 		.subvendor	= PCI_ANY_ID,
625 		.subdevice	= PCI_ANY_ID,
626 		.class		= PCI_CLASS_SYSTEM_OTHER << 8,
627 		.class_mask	= 0xFFFFFFFF,
628 	},
629 	{0}
630 };
631 MODULE_DEVICE_TABLE(pci, plx_dma_pci_tbl);
632 
633 static struct pci_driver plx_dma_pci_driver = {
634 	.name           = KBUILD_MODNAME,
635 	.id_table       = plx_dma_pci_tbl,
636 	.probe          = plx_dma_probe,
637 	.remove		= plx_dma_remove,
638 };
639 module_pci_driver(plx_dma_pci_driver);
640