xref: /linux/drivers/dma/pl330.c (revision f2d14bc4e437b8ed21e6890ae047a6ec47c030d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
7  *	Jaswinder Singh <jassi.brar@samsung.com>
8  */
9 
10 #include <linux/debugfs.h>
11 #include <linux/kernel.h>
12 #include <linux/io.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/amba/bus.h>
22 #include <linux/scatterlist.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/err.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/bug.h>
28 #include <linux/reset.h>
29 
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN		8
32 #define PL330_MAX_IRQS		32
33 #define PL330_MAX_PERI		32
34 #define PL330_MAX_BURST         16
35 
36 #define PL330_QUIRK_BROKEN_NO_FLUSHP	BIT(0)
37 #define PL330_QUIRK_PERIPH_BURST	BIT(1)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(KERN_CONT x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /*
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Sitting on the channel work_list but xfer done
408 	 * by PL330 core
409 	 */
410 	DONE,
411 };
412 
413 struct dma_pl330_chan {
414 	/* Schedule desc completion */
415 	struct tasklet_struct task;
416 
417 	/* DMA-Engine Channel */
418 	struct dma_chan chan;
419 
420 	/* List of submitted descriptors */
421 	struct list_head submitted_list;
422 	/* List of issued descriptors */
423 	struct list_head work_list;
424 	/* List of completed descriptors */
425 	struct list_head completed_list;
426 
427 	/* Pointer to the DMAC that manages this channel,
428 	 * NULL if the channel is available to be acquired.
429 	 * As the parent, this DMAC also provides descriptors
430 	 * to the channel.
431 	 */
432 	struct pl330_dmac *dmac;
433 
434 	/* To protect channel manipulation */
435 	spinlock_t lock;
436 
437 	/*
438 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 	 * available.
440 	 */
441 	struct pl330_thread *thread;
442 
443 	/* For D-to-M and M-to-D channels */
444 	int burst_sz; /* the peripheral fifo width */
445 	int burst_len; /* the number of burst */
446 	phys_addr_t fifo_addr;
447 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 	dma_addr_t fifo_dma;
449 	enum dma_data_direction dir;
450 	struct dma_slave_config slave_config;
451 
452 	/* for cyclic capability */
453 	bool cyclic;
454 
455 	/* for runtime pm tracking */
456 	bool active;
457 };
458 
459 struct pl330_dmac {
460 	/* DMA-Engine Device */
461 	struct dma_device ddma;
462 
463 	/* Pool of descriptors available for the DMAC's channels */
464 	struct list_head desc_pool;
465 	/* To protect desc_pool manipulation */
466 	spinlock_t pool_lock;
467 
468 	/* Size of MicroCode buffers for each channel. */
469 	unsigned mcbufsz;
470 	/* ioremap'ed address of PL330 registers. */
471 	void __iomem	*base;
472 	/* Populated by the PL330 core driver during pl330_add */
473 	struct pl330_config	pcfg;
474 
475 	spinlock_t		lock;
476 	/* Maximum possible events/irqs */
477 	int			events[32];
478 	/* BUS address of MicroCode buffer */
479 	dma_addr_t		mcode_bus;
480 	/* CPU address of MicroCode buffer */
481 	void			*mcode_cpu;
482 	/* List of all Channel threads */
483 	struct pl330_thread	*channels;
484 	/* Pointer to the MANAGER thread */
485 	struct pl330_thread	*manager;
486 	/* To handle bad news in interrupt */
487 	struct tasklet_struct	tasks;
488 	struct _pl330_tbd	dmac_tbd;
489 	/* State of DMAC operation */
490 	enum pl330_dmac_state	state;
491 	/* Holds list of reqs with due callbacks */
492 	struct list_head        req_done;
493 
494 	/* Peripheral channels connected to this DMAC */
495 	unsigned int num_peripherals;
496 	struct dma_pl330_chan *peripherals; /* keep at end */
497 	int quirks;
498 
499 	struct reset_control	*rstc;
500 	struct reset_control	*rstc_ocp;
501 };
502 
503 static struct pl330_of_quirks {
504 	char *quirk;
505 	int id;
506 } of_quirks[] = {
507 	{
508 		.quirk = "arm,pl330-broken-no-flushp",
509 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
510 	},
511 	{
512 		.quirk = "arm,pl330-periph-burst",
513 		.id = PL330_QUIRK_PERIPH_BURST,
514 	}
515 };
516 
517 struct dma_pl330_desc {
518 	/* To attach to a queue as child */
519 	struct list_head node;
520 
521 	/* Descriptor for the DMA Engine API */
522 	struct dma_async_tx_descriptor txd;
523 
524 	/* Xfer for PL330 core */
525 	struct pl330_xfer px;
526 
527 	struct pl330_reqcfg rqcfg;
528 
529 	enum desc_status status;
530 
531 	int bytes_requested;
532 	bool last;
533 
534 	/* The channel which currently holds this desc */
535 	struct dma_pl330_chan *pchan;
536 
537 	enum dma_transfer_direction rqtype;
538 	/* Index of peripheral for the xfer. */
539 	unsigned peri:5;
540 	/* Hook to attach to DMAC's list of reqs with due callback */
541 	struct list_head rqd;
542 };
543 
544 struct _xfer_spec {
545 	u32 ccr;
546 	struct dma_pl330_desc *desc;
547 };
548 
549 static int pl330_config_write(struct dma_chan *chan,
550 			struct dma_slave_config *slave_config,
551 			enum dma_transfer_direction direction);
552 
553 static inline bool _queue_full(struct pl330_thread *thrd)
554 {
555 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
556 }
557 
558 static inline bool is_manager(struct pl330_thread *thrd)
559 {
560 	return thrd->dmac->manager == thrd;
561 }
562 
563 /* If manager of the thread is in Non-Secure mode */
564 static inline bool _manager_ns(struct pl330_thread *thrd)
565 {
566 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
567 }
568 
569 static inline u32 get_revision(u32 periph_id)
570 {
571 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
572 }
573 
574 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
575 {
576 	if (dry_run)
577 		return SZ_DMAEND;
578 
579 	buf[0] = CMD_DMAEND;
580 
581 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
582 
583 	return SZ_DMAEND;
584 }
585 
586 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
587 {
588 	if (dry_run)
589 		return SZ_DMAFLUSHP;
590 
591 	buf[0] = CMD_DMAFLUSHP;
592 
593 	peri &= 0x1f;
594 	peri <<= 3;
595 	buf[1] = peri;
596 
597 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
598 
599 	return SZ_DMAFLUSHP;
600 }
601 
602 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
603 {
604 	if (dry_run)
605 		return SZ_DMALD;
606 
607 	buf[0] = CMD_DMALD;
608 
609 	if (cond == SINGLE)
610 		buf[0] |= (0 << 1) | (1 << 0);
611 	else if (cond == BURST)
612 		buf[0] |= (1 << 1) | (1 << 0);
613 
614 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
615 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
616 
617 	return SZ_DMALD;
618 }
619 
620 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
621 		enum pl330_cond cond, u8 peri)
622 {
623 	if (dry_run)
624 		return SZ_DMALDP;
625 
626 	buf[0] = CMD_DMALDP;
627 
628 	if (cond == BURST)
629 		buf[0] |= (1 << 1);
630 
631 	peri &= 0x1f;
632 	peri <<= 3;
633 	buf[1] = peri;
634 
635 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
636 		cond == SINGLE ? 'S' : 'B', peri >> 3);
637 
638 	return SZ_DMALDP;
639 }
640 
641 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
642 		unsigned loop, u8 cnt)
643 {
644 	if (dry_run)
645 		return SZ_DMALP;
646 
647 	buf[0] = CMD_DMALP;
648 
649 	if (loop)
650 		buf[0] |= (1 << 1);
651 
652 	cnt--; /* DMAC increments by 1 internally */
653 	buf[1] = cnt;
654 
655 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
656 
657 	return SZ_DMALP;
658 }
659 
660 struct _arg_LPEND {
661 	enum pl330_cond cond;
662 	bool forever;
663 	unsigned loop;
664 	u8 bjump;
665 };
666 
667 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
668 		const struct _arg_LPEND *arg)
669 {
670 	enum pl330_cond cond = arg->cond;
671 	bool forever = arg->forever;
672 	unsigned loop = arg->loop;
673 	u8 bjump = arg->bjump;
674 
675 	if (dry_run)
676 		return SZ_DMALPEND;
677 
678 	buf[0] = CMD_DMALPEND;
679 
680 	if (loop)
681 		buf[0] |= (1 << 2);
682 
683 	if (!forever)
684 		buf[0] |= (1 << 4);
685 
686 	if (cond == SINGLE)
687 		buf[0] |= (0 << 1) | (1 << 0);
688 	else if (cond == BURST)
689 		buf[0] |= (1 << 1) | (1 << 0);
690 
691 	buf[1] = bjump;
692 
693 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
694 			forever ? "FE" : "END",
695 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
696 			loop ? '1' : '0',
697 			bjump);
698 
699 	return SZ_DMALPEND;
700 }
701 
702 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
703 {
704 	if (dry_run)
705 		return SZ_DMAKILL;
706 
707 	buf[0] = CMD_DMAKILL;
708 
709 	return SZ_DMAKILL;
710 }
711 
712 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
713 		enum dmamov_dst dst, u32 val)
714 {
715 	if (dry_run)
716 		return SZ_DMAMOV;
717 
718 	buf[0] = CMD_DMAMOV;
719 	buf[1] = dst;
720 	buf[2] = val;
721 	buf[3] = val >> 8;
722 	buf[4] = val >> 16;
723 	buf[5] = val >> 24;
724 
725 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
726 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
727 
728 	return SZ_DMAMOV;
729 }
730 
731 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
732 {
733 	if (dry_run)
734 		return SZ_DMARMB;
735 
736 	buf[0] = CMD_DMARMB;
737 
738 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
739 
740 	return SZ_DMARMB;
741 }
742 
743 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
744 {
745 	if (dry_run)
746 		return SZ_DMASEV;
747 
748 	buf[0] = CMD_DMASEV;
749 
750 	ev &= 0x1f;
751 	ev <<= 3;
752 	buf[1] = ev;
753 
754 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
755 
756 	return SZ_DMASEV;
757 }
758 
759 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
760 {
761 	if (dry_run)
762 		return SZ_DMAST;
763 
764 	buf[0] = CMD_DMAST;
765 
766 	if (cond == SINGLE)
767 		buf[0] |= (0 << 1) | (1 << 0);
768 	else if (cond == BURST)
769 		buf[0] |= (1 << 1) | (1 << 0);
770 
771 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
772 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
773 
774 	return SZ_DMAST;
775 }
776 
777 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
778 		enum pl330_cond cond, u8 peri)
779 {
780 	if (dry_run)
781 		return SZ_DMASTP;
782 
783 	buf[0] = CMD_DMASTP;
784 
785 	if (cond == BURST)
786 		buf[0] |= (1 << 1);
787 
788 	peri &= 0x1f;
789 	peri <<= 3;
790 	buf[1] = peri;
791 
792 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
793 		cond == SINGLE ? 'S' : 'B', peri >> 3);
794 
795 	return SZ_DMASTP;
796 }
797 
798 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
799 		enum pl330_cond cond, u8 peri)
800 {
801 	if (dry_run)
802 		return SZ_DMAWFP;
803 
804 	buf[0] = CMD_DMAWFP;
805 
806 	if (cond == SINGLE)
807 		buf[0] |= (0 << 1) | (0 << 0);
808 	else if (cond == BURST)
809 		buf[0] |= (1 << 1) | (0 << 0);
810 	else
811 		buf[0] |= (0 << 1) | (1 << 0);
812 
813 	peri &= 0x1f;
814 	peri <<= 3;
815 	buf[1] = peri;
816 
817 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
818 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
819 
820 	return SZ_DMAWFP;
821 }
822 
823 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
824 {
825 	if (dry_run)
826 		return SZ_DMAWMB;
827 
828 	buf[0] = CMD_DMAWMB;
829 
830 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
831 
832 	return SZ_DMAWMB;
833 }
834 
835 struct _arg_GO {
836 	u8 chan;
837 	u32 addr;
838 	unsigned ns;
839 };
840 
841 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
842 		const struct _arg_GO *arg)
843 {
844 	u8 chan = arg->chan;
845 	u32 addr = arg->addr;
846 	unsigned ns = arg->ns;
847 
848 	if (dry_run)
849 		return SZ_DMAGO;
850 
851 	buf[0] = CMD_DMAGO;
852 	buf[0] |= (ns << 1);
853 	buf[1] = chan & 0x7;
854 	buf[2] = addr;
855 	buf[3] = addr >> 8;
856 	buf[4] = addr >> 16;
857 	buf[5] = addr >> 24;
858 
859 	return SZ_DMAGO;
860 }
861 
862 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
863 
864 /* Returns Time-Out */
865 static bool _until_dmac_idle(struct pl330_thread *thrd)
866 {
867 	void __iomem *regs = thrd->dmac->base;
868 	unsigned long loops = msecs_to_loops(5);
869 
870 	do {
871 		/* Until Manager is Idle */
872 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
873 			break;
874 
875 		cpu_relax();
876 	} while (--loops);
877 
878 	if (!loops)
879 		return true;
880 
881 	return false;
882 }
883 
884 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
885 		u8 insn[], bool as_manager)
886 {
887 	void __iomem *regs = thrd->dmac->base;
888 	u32 val;
889 
890 	/* If timed out due to halted state-machine */
891 	if (_until_dmac_idle(thrd)) {
892 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
893 		return;
894 	}
895 
896 	val = (insn[0] << 16) | (insn[1] << 24);
897 	if (!as_manager) {
898 		val |= (1 << 0);
899 		val |= (thrd->id << 8); /* Channel Number */
900 	}
901 	writel(val, regs + DBGINST0);
902 
903 	val = le32_to_cpu(*((__le32 *)&insn[2]));
904 	writel(val, regs + DBGINST1);
905 
906 	/* Get going */
907 	writel(0, regs + DBGCMD);
908 }
909 
910 static inline u32 _state(struct pl330_thread *thrd)
911 {
912 	void __iomem *regs = thrd->dmac->base;
913 	u32 val;
914 
915 	if (is_manager(thrd))
916 		val = readl(regs + DS) & 0xf;
917 	else
918 		val = readl(regs + CS(thrd->id)) & 0xf;
919 
920 	switch (val) {
921 	case DS_ST_STOP:
922 		return PL330_STATE_STOPPED;
923 	case DS_ST_EXEC:
924 		return PL330_STATE_EXECUTING;
925 	case DS_ST_CMISS:
926 		return PL330_STATE_CACHEMISS;
927 	case DS_ST_UPDTPC:
928 		return PL330_STATE_UPDTPC;
929 	case DS_ST_WFE:
930 		return PL330_STATE_WFE;
931 	case DS_ST_FAULT:
932 		return PL330_STATE_FAULTING;
933 	case DS_ST_ATBRR:
934 		if (is_manager(thrd))
935 			return PL330_STATE_INVALID;
936 		else
937 			return PL330_STATE_ATBARRIER;
938 	case DS_ST_QBUSY:
939 		if (is_manager(thrd))
940 			return PL330_STATE_INVALID;
941 		else
942 			return PL330_STATE_QUEUEBUSY;
943 	case DS_ST_WFP:
944 		if (is_manager(thrd))
945 			return PL330_STATE_INVALID;
946 		else
947 			return PL330_STATE_WFP;
948 	case DS_ST_KILL:
949 		if (is_manager(thrd))
950 			return PL330_STATE_INVALID;
951 		else
952 			return PL330_STATE_KILLING;
953 	case DS_ST_CMPLT:
954 		if (is_manager(thrd))
955 			return PL330_STATE_INVALID;
956 		else
957 			return PL330_STATE_COMPLETING;
958 	case DS_ST_FLTCMP:
959 		if (is_manager(thrd))
960 			return PL330_STATE_INVALID;
961 		else
962 			return PL330_STATE_FAULT_COMPLETING;
963 	default:
964 		return PL330_STATE_INVALID;
965 	}
966 }
967 
968 static void _stop(struct pl330_thread *thrd)
969 {
970 	void __iomem *regs = thrd->dmac->base;
971 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
972 	u32 inten = readl(regs + INTEN);
973 
974 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
975 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
976 
977 	/* Return if nothing needs to be done */
978 	if (_state(thrd) == PL330_STATE_COMPLETING
979 		  || _state(thrd) == PL330_STATE_KILLING
980 		  || _state(thrd) == PL330_STATE_STOPPED)
981 		return;
982 
983 	_emit_KILL(0, insn);
984 
985 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
986 
987 	/* clear the event */
988 	if (inten & (1 << thrd->ev))
989 		writel(1 << thrd->ev, regs + INTCLR);
990 	/* Stop generating interrupts for SEV */
991 	writel(inten & ~(1 << thrd->ev), regs + INTEN);
992 }
993 
994 /* Start doing req 'idx' of thread 'thrd' */
995 static bool _trigger(struct pl330_thread *thrd)
996 {
997 	void __iomem *regs = thrd->dmac->base;
998 	struct _pl330_req *req;
999 	struct dma_pl330_desc *desc;
1000 	struct _arg_GO go;
1001 	unsigned ns;
1002 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1003 	int idx;
1004 
1005 	/* Return if already ACTIVE */
1006 	if (_state(thrd) != PL330_STATE_STOPPED)
1007 		return true;
1008 
1009 	idx = 1 - thrd->lstenq;
1010 	if (thrd->req[idx].desc != NULL) {
1011 		req = &thrd->req[idx];
1012 	} else {
1013 		idx = thrd->lstenq;
1014 		if (thrd->req[idx].desc != NULL)
1015 			req = &thrd->req[idx];
1016 		else
1017 			req = NULL;
1018 	}
1019 
1020 	/* Return if no request */
1021 	if (!req)
1022 		return true;
1023 
1024 	/* Return if req is running */
1025 	if (idx == thrd->req_running)
1026 		return true;
1027 
1028 	desc = req->desc;
1029 
1030 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1031 
1032 	/* See 'Abort Sources' point-4 at Page 2-25 */
1033 	if (_manager_ns(thrd) && !ns)
1034 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1035 			__func__, __LINE__);
1036 
1037 	go.chan = thrd->id;
1038 	go.addr = req->mc_bus;
1039 	go.ns = ns;
1040 	_emit_GO(0, insn, &go);
1041 
1042 	/* Set to generate interrupts for SEV */
1043 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1044 
1045 	/* Only manager can execute GO */
1046 	_execute_DBGINSN(thrd, insn, true);
1047 
1048 	thrd->req_running = idx;
1049 
1050 	return true;
1051 }
1052 
1053 static bool pl330_start_thread(struct pl330_thread *thrd)
1054 {
1055 	switch (_state(thrd)) {
1056 	case PL330_STATE_FAULT_COMPLETING:
1057 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1058 
1059 		if (_state(thrd) == PL330_STATE_KILLING)
1060 			UNTIL(thrd, PL330_STATE_STOPPED)
1061 		fallthrough;
1062 
1063 	case PL330_STATE_FAULTING:
1064 		_stop(thrd);
1065 		fallthrough;
1066 
1067 	case PL330_STATE_KILLING:
1068 	case PL330_STATE_COMPLETING:
1069 		UNTIL(thrd, PL330_STATE_STOPPED)
1070 		fallthrough;
1071 
1072 	case PL330_STATE_STOPPED:
1073 		return _trigger(thrd);
1074 
1075 	case PL330_STATE_WFP:
1076 	case PL330_STATE_QUEUEBUSY:
1077 	case PL330_STATE_ATBARRIER:
1078 	case PL330_STATE_UPDTPC:
1079 	case PL330_STATE_CACHEMISS:
1080 	case PL330_STATE_EXECUTING:
1081 		return true;
1082 
1083 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1084 	default:
1085 		return false;
1086 	}
1087 }
1088 
1089 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1090 		const struct _xfer_spec *pxs, int cyc)
1091 {
1092 	int off = 0;
1093 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1094 
1095 	/* check lock-up free version */
1096 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1097 		while (cyc--) {
1098 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1099 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1100 		}
1101 	} else {
1102 		while (cyc--) {
1103 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1104 			off += _emit_RMB(dry_run, &buf[off]);
1105 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1106 			off += _emit_WMB(dry_run, &buf[off]);
1107 		}
1108 	}
1109 
1110 	return off;
1111 }
1112 
1113 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1114 	enum pl330_cond cond, enum dma_transfer_direction direction,
1115 	u8 peri)
1116 {
1117 	int off = 0;
1118 
1119 	switch (direction) {
1120 	case DMA_MEM_TO_MEM:
1121 	case DMA_MEM_TO_DEV:
1122 		off += _emit_LD(dry_run, &buf[off], cond);
1123 		break;
1124 
1125 	case DMA_DEV_TO_MEM:
1126 		if (cond == ALWAYS) {
1127 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1128 				peri);
1129 			off += _emit_LDP(dry_run, &buf[off], BURST,
1130 				peri);
1131 		} else {
1132 			off += _emit_LDP(dry_run, &buf[off], cond,
1133 				peri);
1134 		}
1135 		break;
1136 
1137 	default:
1138 		/* this code should be unreachable */
1139 		WARN_ON(1);
1140 		break;
1141 	}
1142 
1143 	return off;
1144 }
1145 
1146 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1147 	enum pl330_cond cond, enum dma_transfer_direction direction,
1148 	u8 peri)
1149 {
1150 	int off = 0;
1151 
1152 	switch (direction) {
1153 	case DMA_MEM_TO_MEM:
1154 	case DMA_DEV_TO_MEM:
1155 		off += _emit_ST(dry_run, &buf[off], cond);
1156 		break;
1157 
1158 	case DMA_MEM_TO_DEV:
1159 		if (cond == ALWAYS) {
1160 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1161 				peri);
1162 			off += _emit_STP(dry_run, &buf[off], BURST,
1163 				peri);
1164 		} else {
1165 			off += _emit_STP(dry_run, &buf[off], cond,
1166 				peri);
1167 		}
1168 		break;
1169 
1170 	default:
1171 		/* this code should be unreachable */
1172 		WARN_ON(1);
1173 		break;
1174 	}
1175 
1176 	return off;
1177 }
1178 
1179 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1180 				 unsigned dry_run, u8 buf[],
1181 				 const struct _xfer_spec *pxs, int cyc,
1182 				 enum pl330_cond cond)
1183 {
1184 	int off = 0;
1185 
1186 	/*
1187 	 * do FLUSHP at beginning to clear any stale dma requests before the
1188 	 * first WFP.
1189 	 */
1190 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1191 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1192 	while (cyc--) {
1193 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1194 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1195 			pxs->desc->peri);
1196 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1197 			pxs->desc->peri);
1198 	}
1199 
1200 	return off;
1201 }
1202 
1203 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1204 		const struct _xfer_spec *pxs, int cyc)
1205 {
1206 	int off = 0;
1207 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1208 
1209 	if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1210 		cond = BURST;
1211 
1212 	switch (pxs->desc->rqtype) {
1213 	case DMA_MEM_TO_DEV:
1214 	case DMA_DEV_TO_MEM:
1215 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1216 			cond);
1217 		break;
1218 
1219 	case DMA_MEM_TO_MEM:
1220 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1221 		break;
1222 
1223 	default:
1224 		/* this code should be unreachable */
1225 		WARN_ON(1);
1226 		break;
1227 	}
1228 
1229 	return off;
1230 }
1231 
1232 /*
1233  * only the unaligned burst transfers have the dregs.
1234  * so, still transfer dregs with a reduced size burst
1235  * for mem-to-mem, mem-to-dev or dev-to-mem.
1236  */
1237 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1238 		const struct _xfer_spec *pxs, int transfer_length)
1239 {
1240 	int off = 0;
1241 	int dregs_ccr;
1242 
1243 	if (transfer_length == 0)
1244 		return off;
1245 
1246 	/*
1247 	 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1248 	 *             BRST_SIZE(ccr)
1249 	 * the dregs len must be smaller than burst len,
1250 	 * so, for higher efficiency, we can modify CCR
1251 	 * to use a reduced size burst len for the dregs.
1252 	 */
1253 	dregs_ccr = pxs->ccr;
1254 	dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1255 		(0xf << CC_DSTBRSTLEN_SHFT));
1256 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1257 		CC_SRCBRSTLEN_SHFT);
1258 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1259 		CC_DSTBRSTLEN_SHFT);
1260 
1261 	switch (pxs->desc->rqtype) {
1262 	case DMA_MEM_TO_DEV:
1263 	case DMA_DEV_TO_MEM:
1264 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1265 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1266 					BURST);
1267 		break;
1268 
1269 	case DMA_MEM_TO_MEM:
1270 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1271 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1272 		break;
1273 
1274 	default:
1275 		/* this code should be unreachable */
1276 		WARN_ON(1);
1277 		break;
1278 	}
1279 
1280 	return off;
1281 }
1282 
1283 /* Returns bytes consumed and updates bursts */
1284 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1285 		unsigned long *bursts, const struct _xfer_spec *pxs)
1286 {
1287 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1288 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1289 	struct _arg_LPEND lpend;
1290 
1291 	if (*bursts == 1)
1292 		return _bursts(pl330, dry_run, buf, pxs, 1);
1293 
1294 	/* Max iterations possible in DMALP is 256 */
1295 	if (*bursts >= 256*256) {
1296 		lcnt1 = 256;
1297 		lcnt0 = 256;
1298 		cyc = *bursts / lcnt1 / lcnt0;
1299 	} else if (*bursts > 256) {
1300 		lcnt1 = 256;
1301 		lcnt0 = *bursts / lcnt1;
1302 		cyc = 1;
1303 	} else {
1304 		lcnt1 = *bursts;
1305 		lcnt0 = 0;
1306 		cyc = 1;
1307 	}
1308 
1309 	szlp = _emit_LP(1, buf, 0, 0);
1310 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1311 
1312 	lpend.cond = ALWAYS;
1313 	lpend.forever = false;
1314 	lpend.loop = 0;
1315 	lpend.bjump = 0;
1316 	szlpend = _emit_LPEND(1, buf, &lpend);
1317 
1318 	if (lcnt0) {
1319 		szlp *= 2;
1320 		szlpend *= 2;
1321 	}
1322 
1323 	/*
1324 	 * Max bursts that we can unroll due to limit on the
1325 	 * size of backward jump that can be encoded in DMALPEND
1326 	 * which is 8-bits and hence 255
1327 	 */
1328 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1329 
1330 	cyc = (cycmax < cyc) ? cycmax : cyc;
1331 
1332 	off = 0;
1333 
1334 	if (lcnt0) {
1335 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1336 		ljmp0 = off;
1337 	}
1338 
1339 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1340 	ljmp1 = off;
1341 
1342 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1343 
1344 	lpend.cond = ALWAYS;
1345 	lpend.forever = false;
1346 	lpend.loop = 1;
1347 	lpend.bjump = off - ljmp1;
1348 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1349 
1350 	if (lcnt0) {
1351 		lpend.cond = ALWAYS;
1352 		lpend.forever = false;
1353 		lpend.loop = 0;
1354 		lpend.bjump = off - ljmp0;
1355 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1356 	}
1357 
1358 	*bursts = lcnt1 * cyc;
1359 	if (lcnt0)
1360 		*bursts *= lcnt0;
1361 
1362 	return off;
1363 }
1364 
1365 static inline int _setup_loops(struct pl330_dmac *pl330,
1366 			       unsigned dry_run, u8 buf[],
1367 			       const struct _xfer_spec *pxs)
1368 {
1369 	struct pl330_xfer *x = &pxs->desc->px;
1370 	u32 ccr = pxs->ccr;
1371 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1372 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1373 		BRST_SIZE(ccr);
1374 	int off = 0;
1375 
1376 	while (bursts) {
1377 		c = bursts;
1378 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1379 		bursts -= c;
1380 	}
1381 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1382 
1383 	return off;
1384 }
1385 
1386 static inline int _setup_xfer(struct pl330_dmac *pl330,
1387 			      unsigned dry_run, u8 buf[],
1388 			      const struct _xfer_spec *pxs)
1389 {
1390 	struct pl330_xfer *x = &pxs->desc->px;
1391 	int off = 0;
1392 
1393 	/* DMAMOV SAR, x->src_addr */
1394 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1395 	/* DMAMOV DAR, x->dst_addr */
1396 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1397 
1398 	/* Setup Loop(s) */
1399 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1400 
1401 	return off;
1402 }
1403 
1404 /*
1405  * A req is a sequence of one or more xfer units.
1406  * Returns the number of bytes taken to setup the MC for the req.
1407  */
1408 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1409 		      struct pl330_thread *thrd, unsigned index,
1410 		      struct _xfer_spec *pxs)
1411 {
1412 	struct _pl330_req *req = &thrd->req[index];
1413 	u8 *buf = req->mc_cpu;
1414 	int off = 0;
1415 
1416 	PL330_DBGMC_START(req->mc_bus);
1417 
1418 	/* DMAMOV CCR, ccr */
1419 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1420 
1421 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1422 
1423 	/* DMASEV peripheral/event */
1424 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1425 	/* DMAEND */
1426 	off += _emit_END(dry_run, &buf[off]);
1427 
1428 	return off;
1429 }
1430 
1431 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1432 {
1433 	u32 ccr = 0;
1434 
1435 	if (rqc->src_inc)
1436 		ccr |= CC_SRCINC;
1437 
1438 	if (rqc->dst_inc)
1439 		ccr |= CC_DSTINC;
1440 
1441 	/* We set same protection levels for Src and DST for now */
1442 	if (rqc->privileged)
1443 		ccr |= CC_SRCPRI | CC_DSTPRI;
1444 	if (rqc->nonsecure)
1445 		ccr |= CC_SRCNS | CC_DSTNS;
1446 	if (rqc->insnaccess)
1447 		ccr |= CC_SRCIA | CC_DSTIA;
1448 
1449 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1450 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1451 
1452 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1453 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1454 
1455 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1456 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1457 
1458 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1459 
1460 	return ccr;
1461 }
1462 
1463 /*
1464  * Submit a list of xfers after which the client wants notification.
1465  * Client is not notified after each xfer unit, just once after all
1466  * xfer units are done or some error occurs.
1467  */
1468 static int pl330_submit_req(struct pl330_thread *thrd,
1469 	struct dma_pl330_desc *desc)
1470 {
1471 	struct pl330_dmac *pl330 = thrd->dmac;
1472 	struct _xfer_spec xs;
1473 	unsigned long flags;
1474 	unsigned idx;
1475 	u32 ccr;
1476 	int ret = 0;
1477 
1478 	switch (desc->rqtype) {
1479 	case DMA_MEM_TO_DEV:
1480 		break;
1481 
1482 	case DMA_DEV_TO_MEM:
1483 		break;
1484 
1485 	case DMA_MEM_TO_MEM:
1486 		break;
1487 
1488 	default:
1489 		return -ENOTSUPP;
1490 	}
1491 
1492 	if (pl330->state == DYING
1493 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1494 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1495 			__func__, __LINE__);
1496 		return -EAGAIN;
1497 	}
1498 
1499 	/* If request for non-existing peripheral */
1500 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1501 	    desc->peri >= pl330->pcfg.num_peri) {
1502 		dev_info(thrd->dmac->ddma.dev,
1503 				"%s:%d Invalid peripheral(%u)!\n",
1504 				__func__, __LINE__, desc->peri);
1505 		return -EINVAL;
1506 	}
1507 
1508 	spin_lock_irqsave(&pl330->lock, flags);
1509 
1510 	if (_queue_full(thrd)) {
1511 		ret = -EAGAIN;
1512 		goto xfer_exit;
1513 	}
1514 
1515 	/* Prefer Secure Channel */
1516 	if (!_manager_ns(thrd))
1517 		desc->rqcfg.nonsecure = 0;
1518 	else
1519 		desc->rqcfg.nonsecure = 1;
1520 
1521 	ccr = _prepare_ccr(&desc->rqcfg);
1522 
1523 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1524 
1525 	xs.ccr = ccr;
1526 	xs.desc = desc;
1527 
1528 	/* First dry run to check if req is acceptable */
1529 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1530 
1531 	if (ret > pl330->mcbufsz / 2) {
1532 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1533 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1534 		ret = -ENOMEM;
1535 		goto xfer_exit;
1536 	}
1537 
1538 	/* Hook the request */
1539 	thrd->lstenq = idx;
1540 	thrd->req[idx].desc = desc;
1541 	_setup_req(pl330, 0, thrd, idx, &xs);
1542 
1543 	ret = 0;
1544 
1545 xfer_exit:
1546 	spin_unlock_irqrestore(&pl330->lock, flags);
1547 
1548 	return ret;
1549 }
1550 
1551 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1552 {
1553 	struct dma_pl330_chan *pch;
1554 	unsigned long flags;
1555 
1556 	if (!desc)
1557 		return;
1558 
1559 	pch = desc->pchan;
1560 
1561 	/* If desc aborted */
1562 	if (!pch)
1563 		return;
1564 
1565 	spin_lock_irqsave(&pch->lock, flags);
1566 
1567 	desc->status = DONE;
1568 
1569 	spin_unlock_irqrestore(&pch->lock, flags);
1570 
1571 	tasklet_schedule(&pch->task);
1572 }
1573 
1574 static void pl330_dotask(struct tasklet_struct *t)
1575 {
1576 	struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks);
1577 	unsigned long flags;
1578 	int i;
1579 
1580 	spin_lock_irqsave(&pl330->lock, flags);
1581 
1582 	/* The DMAC itself gone nuts */
1583 	if (pl330->dmac_tbd.reset_dmac) {
1584 		pl330->state = DYING;
1585 		/* Reset the manager too */
1586 		pl330->dmac_tbd.reset_mngr = true;
1587 		/* Clear the reset flag */
1588 		pl330->dmac_tbd.reset_dmac = false;
1589 	}
1590 
1591 	if (pl330->dmac_tbd.reset_mngr) {
1592 		_stop(pl330->manager);
1593 		/* Reset all channels */
1594 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1595 		/* Clear the reset flag */
1596 		pl330->dmac_tbd.reset_mngr = false;
1597 	}
1598 
1599 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1600 
1601 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1602 			struct pl330_thread *thrd = &pl330->channels[i];
1603 			void __iomem *regs = pl330->base;
1604 			enum pl330_op_err err;
1605 
1606 			_stop(thrd);
1607 
1608 			if (readl(regs + FSC) & (1 << thrd->id))
1609 				err = PL330_ERR_FAIL;
1610 			else
1611 				err = PL330_ERR_ABORT;
1612 
1613 			spin_unlock_irqrestore(&pl330->lock, flags);
1614 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1615 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1616 			spin_lock_irqsave(&pl330->lock, flags);
1617 
1618 			thrd->req[0].desc = NULL;
1619 			thrd->req[1].desc = NULL;
1620 			thrd->req_running = -1;
1621 
1622 			/* Clear the reset flag */
1623 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1624 		}
1625 	}
1626 
1627 	spin_unlock_irqrestore(&pl330->lock, flags);
1628 
1629 	return;
1630 }
1631 
1632 /* Returns 1 if state was updated, 0 otherwise */
1633 static int pl330_update(struct pl330_dmac *pl330)
1634 {
1635 	struct dma_pl330_desc *descdone;
1636 	unsigned long flags;
1637 	void __iomem *regs;
1638 	u32 val;
1639 	int id, ev, ret = 0;
1640 
1641 	regs = pl330->base;
1642 
1643 	spin_lock_irqsave(&pl330->lock, flags);
1644 
1645 	val = readl(regs + FSM) & 0x1;
1646 	if (val)
1647 		pl330->dmac_tbd.reset_mngr = true;
1648 	else
1649 		pl330->dmac_tbd.reset_mngr = false;
1650 
1651 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1652 	pl330->dmac_tbd.reset_chan |= val;
1653 	if (val) {
1654 		int i = 0;
1655 		while (i < pl330->pcfg.num_chan) {
1656 			if (val & (1 << i)) {
1657 				dev_info(pl330->ddma.dev,
1658 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1659 						i, readl(regs + CS(i)),
1660 						readl(regs + FTC(i)));
1661 				_stop(&pl330->channels[i]);
1662 			}
1663 			i++;
1664 		}
1665 	}
1666 
1667 	/* Check which event happened i.e, thread notified */
1668 	val = readl(regs + ES);
1669 	if (pl330->pcfg.num_events < 32
1670 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1671 		pl330->dmac_tbd.reset_dmac = true;
1672 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1673 			__LINE__);
1674 		ret = 1;
1675 		goto updt_exit;
1676 	}
1677 
1678 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1679 		if (val & (1 << ev)) { /* Event occurred */
1680 			struct pl330_thread *thrd;
1681 			u32 inten = readl(regs + INTEN);
1682 			int active;
1683 
1684 			/* Clear the event */
1685 			if (inten & (1 << ev))
1686 				writel(1 << ev, regs + INTCLR);
1687 
1688 			ret = 1;
1689 
1690 			id = pl330->events[ev];
1691 
1692 			thrd = &pl330->channels[id];
1693 
1694 			active = thrd->req_running;
1695 			if (active == -1) /* Aborted */
1696 				continue;
1697 
1698 			/* Detach the req */
1699 			descdone = thrd->req[active].desc;
1700 			thrd->req[active].desc = NULL;
1701 
1702 			thrd->req_running = -1;
1703 
1704 			/* Get going again ASAP */
1705 			pl330_start_thread(thrd);
1706 
1707 			/* For now, just make a list of callbacks to be done */
1708 			list_add_tail(&descdone->rqd, &pl330->req_done);
1709 		}
1710 	}
1711 
1712 	/* Now that we are in no hurry, do the callbacks */
1713 	while (!list_empty(&pl330->req_done)) {
1714 		descdone = list_first_entry(&pl330->req_done,
1715 					    struct dma_pl330_desc, rqd);
1716 		list_del(&descdone->rqd);
1717 		spin_unlock_irqrestore(&pl330->lock, flags);
1718 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1719 		spin_lock_irqsave(&pl330->lock, flags);
1720 	}
1721 
1722 updt_exit:
1723 	spin_unlock_irqrestore(&pl330->lock, flags);
1724 
1725 	if (pl330->dmac_tbd.reset_dmac
1726 			|| pl330->dmac_tbd.reset_mngr
1727 			|| pl330->dmac_tbd.reset_chan) {
1728 		ret = 1;
1729 		tasklet_schedule(&pl330->tasks);
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 /* Reserve an event */
1736 static inline int _alloc_event(struct pl330_thread *thrd)
1737 {
1738 	struct pl330_dmac *pl330 = thrd->dmac;
1739 	int ev;
1740 
1741 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1742 		if (pl330->events[ev] == -1) {
1743 			pl330->events[ev] = thrd->id;
1744 			return ev;
1745 		}
1746 
1747 	return -1;
1748 }
1749 
1750 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1751 {
1752 	return pl330->pcfg.irq_ns & (1 << i);
1753 }
1754 
1755 /* Upon success, returns IdentityToken for the
1756  * allocated channel, NULL otherwise.
1757  */
1758 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1759 {
1760 	struct pl330_thread *thrd = NULL;
1761 	int chans, i;
1762 
1763 	if (pl330->state == DYING)
1764 		return NULL;
1765 
1766 	chans = pl330->pcfg.num_chan;
1767 
1768 	for (i = 0; i < chans; i++) {
1769 		thrd = &pl330->channels[i];
1770 		if ((thrd->free) && (!_manager_ns(thrd) ||
1771 					_chan_ns(pl330, i))) {
1772 			thrd->ev = _alloc_event(thrd);
1773 			if (thrd->ev >= 0) {
1774 				thrd->free = false;
1775 				thrd->lstenq = 1;
1776 				thrd->req[0].desc = NULL;
1777 				thrd->req[1].desc = NULL;
1778 				thrd->req_running = -1;
1779 				break;
1780 			}
1781 		}
1782 		thrd = NULL;
1783 	}
1784 
1785 	return thrd;
1786 }
1787 
1788 /* Release an event */
1789 static inline void _free_event(struct pl330_thread *thrd, int ev)
1790 {
1791 	struct pl330_dmac *pl330 = thrd->dmac;
1792 
1793 	/* If the event is valid and was held by the thread */
1794 	if (ev >= 0 && ev < pl330->pcfg.num_events
1795 			&& pl330->events[ev] == thrd->id)
1796 		pl330->events[ev] = -1;
1797 }
1798 
1799 static void pl330_release_channel(struct pl330_thread *thrd)
1800 {
1801 	if (!thrd || thrd->free)
1802 		return;
1803 
1804 	_stop(thrd);
1805 
1806 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1807 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1808 
1809 	_free_event(thrd, thrd->ev);
1810 	thrd->free = true;
1811 }
1812 
1813 /* Initialize the structure for PL330 configuration, that can be used
1814  * by the client driver the make best use of the DMAC
1815  */
1816 static void read_dmac_config(struct pl330_dmac *pl330)
1817 {
1818 	void __iomem *regs = pl330->base;
1819 	u32 val;
1820 
1821 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1822 	val &= CRD_DATA_WIDTH_MASK;
1823 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1824 
1825 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1826 	val &= CRD_DATA_BUFF_MASK;
1827 	pl330->pcfg.data_buf_dep = val + 1;
1828 
1829 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1830 	val &= CR0_NUM_CHANS_MASK;
1831 	val += 1;
1832 	pl330->pcfg.num_chan = val;
1833 
1834 	val = readl(regs + CR0);
1835 	if (val & CR0_PERIPH_REQ_SET) {
1836 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1837 		val += 1;
1838 		pl330->pcfg.num_peri = val;
1839 		pl330->pcfg.peri_ns = readl(regs + CR4);
1840 	} else {
1841 		pl330->pcfg.num_peri = 0;
1842 	}
1843 
1844 	val = readl(regs + CR0);
1845 	if (val & CR0_BOOT_MAN_NS)
1846 		pl330->pcfg.mode |= DMAC_MODE_NS;
1847 	else
1848 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1849 
1850 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1851 	val &= CR0_NUM_EVENTS_MASK;
1852 	val += 1;
1853 	pl330->pcfg.num_events = val;
1854 
1855 	pl330->pcfg.irq_ns = readl(regs + CR3);
1856 }
1857 
1858 static inline void _reset_thread(struct pl330_thread *thrd)
1859 {
1860 	struct pl330_dmac *pl330 = thrd->dmac;
1861 
1862 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1863 				+ (thrd->id * pl330->mcbufsz);
1864 	thrd->req[0].mc_bus = pl330->mcode_bus
1865 				+ (thrd->id * pl330->mcbufsz);
1866 	thrd->req[0].desc = NULL;
1867 
1868 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1869 				+ pl330->mcbufsz / 2;
1870 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1871 				+ pl330->mcbufsz / 2;
1872 	thrd->req[1].desc = NULL;
1873 
1874 	thrd->req_running = -1;
1875 }
1876 
1877 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1878 {
1879 	int chans = pl330->pcfg.num_chan;
1880 	struct pl330_thread *thrd;
1881 	int i;
1882 
1883 	/* Allocate 1 Manager and 'chans' Channel threads */
1884 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1885 					GFP_KERNEL);
1886 	if (!pl330->channels)
1887 		return -ENOMEM;
1888 
1889 	/* Init Channel threads */
1890 	for (i = 0; i < chans; i++) {
1891 		thrd = &pl330->channels[i];
1892 		thrd->id = i;
1893 		thrd->dmac = pl330;
1894 		_reset_thread(thrd);
1895 		thrd->free = true;
1896 	}
1897 
1898 	/* MANAGER is indexed at the end */
1899 	thrd = &pl330->channels[chans];
1900 	thrd->id = chans;
1901 	thrd->dmac = pl330;
1902 	thrd->free = false;
1903 	pl330->manager = thrd;
1904 
1905 	return 0;
1906 }
1907 
1908 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1909 {
1910 	int chans = pl330->pcfg.num_chan;
1911 	int ret;
1912 
1913 	/*
1914 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1915 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1916 	 */
1917 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1918 				chans * pl330->mcbufsz,
1919 				&pl330->mcode_bus, GFP_KERNEL,
1920 				DMA_ATTR_PRIVILEGED);
1921 	if (!pl330->mcode_cpu) {
1922 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1923 			__func__, __LINE__);
1924 		return -ENOMEM;
1925 	}
1926 
1927 	ret = dmac_alloc_threads(pl330);
1928 	if (ret) {
1929 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1930 			__func__, __LINE__);
1931 		dma_free_attrs(pl330->ddma.dev,
1932 				chans * pl330->mcbufsz,
1933 				pl330->mcode_cpu, pl330->mcode_bus,
1934 				DMA_ATTR_PRIVILEGED);
1935 		return ret;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int pl330_add(struct pl330_dmac *pl330)
1942 {
1943 	int i, ret;
1944 
1945 	/* Check if we can handle this DMAC */
1946 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1947 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1948 			pl330->pcfg.periph_id);
1949 		return -EINVAL;
1950 	}
1951 
1952 	/* Read the configuration of the DMAC */
1953 	read_dmac_config(pl330);
1954 
1955 	if (pl330->pcfg.num_events == 0) {
1956 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1957 			__func__, __LINE__);
1958 		return -EINVAL;
1959 	}
1960 
1961 	spin_lock_init(&pl330->lock);
1962 
1963 	INIT_LIST_HEAD(&pl330->req_done);
1964 
1965 	/* Use default MC buffer size if not provided */
1966 	if (!pl330->mcbufsz)
1967 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1968 
1969 	/* Mark all events as free */
1970 	for (i = 0; i < pl330->pcfg.num_events; i++)
1971 		pl330->events[i] = -1;
1972 
1973 	/* Allocate resources needed by the DMAC */
1974 	ret = dmac_alloc_resources(pl330);
1975 	if (ret) {
1976 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1977 		return ret;
1978 	}
1979 
1980 	tasklet_setup(&pl330->tasks, pl330_dotask);
1981 
1982 	pl330->state = INIT;
1983 
1984 	return 0;
1985 }
1986 
1987 static int dmac_free_threads(struct pl330_dmac *pl330)
1988 {
1989 	struct pl330_thread *thrd;
1990 	int i;
1991 
1992 	/* Release Channel threads */
1993 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1994 		thrd = &pl330->channels[i];
1995 		pl330_release_channel(thrd);
1996 	}
1997 
1998 	/* Free memory */
1999 	kfree(pl330->channels);
2000 
2001 	return 0;
2002 }
2003 
2004 static void pl330_del(struct pl330_dmac *pl330)
2005 {
2006 	pl330->state = UNINIT;
2007 
2008 	tasklet_kill(&pl330->tasks);
2009 
2010 	/* Free DMAC resources */
2011 	dmac_free_threads(pl330);
2012 
2013 	dma_free_attrs(pl330->ddma.dev,
2014 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2015 		pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2016 }
2017 
2018 /* forward declaration */
2019 static struct amba_driver pl330_driver;
2020 
2021 static inline struct dma_pl330_chan *
2022 to_pchan(struct dma_chan *ch)
2023 {
2024 	if (!ch)
2025 		return NULL;
2026 
2027 	return container_of(ch, struct dma_pl330_chan, chan);
2028 }
2029 
2030 static inline struct dma_pl330_desc *
2031 to_desc(struct dma_async_tx_descriptor *tx)
2032 {
2033 	return container_of(tx, struct dma_pl330_desc, txd);
2034 }
2035 
2036 static inline void fill_queue(struct dma_pl330_chan *pch)
2037 {
2038 	struct dma_pl330_desc *desc;
2039 	int ret;
2040 
2041 	list_for_each_entry(desc, &pch->work_list, node) {
2042 
2043 		/* If already submitted */
2044 		if (desc->status == BUSY)
2045 			continue;
2046 
2047 		ret = pl330_submit_req(pch->thread, desc);
2048 		if (!ret) {
2049 			desc->status = BUSY;
2050 		} else if (ret == -EAGAIN) {
2051 			/* QFull or DMAC Dying */
2052 			break;
2053 		} else {
2054 			/* Unacceptable request */
2055 			desc->status = DONE;
2056 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2057 					__func__, __LINE__, desc->txd.cookie);
2058 			tasklet_schedule(&pch->task);
2059 		}
2060 	}
2061 }
2062 
2063 static void pl330_tasklet(struct tasklet_struct *t)
2064 {
2065 	struct dma_pl330_chan *pch = from_tasklet(pch, t, task);
2066 	struct dma_pl330_desc *desc, *_dt;
2067 	unsigned long flags;
2068 	bool power_down = false;
2069 
2070 	spin_lock_irqsave(&pch->lock, flags);
2071 
2072 	/* Pick up ripe tomatoes */
2073 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2074 		if (desc->status == DONE) {
2075 			if (!pch->cyclic)
2076 				dma_cookie_complete(&desc->txd);
2077 			list_move_tail(&desc->node, &pch->completed_list);
2078 		}
2079 
2080 	/* Try to submit a req imm. next to the last completed cookie */
2081 	fill_queue(pch);
2082 
2083 	if (list_empty(&pch->work_list)) {
2084 		spin_lock(&pch->thread->dmac->lock);
2085 		_stop(pch->thread);
2086 		spin_unlock(&pch->thread->dmac->lock);
2087 		power_down = true;
2088 		pch->active = false;
2089 	} else {
2090 		/* Make sure the PL330 Channel thread is active */
2091 		spin_lock(&pch->thread->dmac->lock);
2092 		pl330_start_thread(pch->thread);
2093 		spin_unlock(&pch->thread->dmac->lock);
2094 	}
2095 
2096 	while (!list_empty(&pch->completed_list)) {
2097 		struct dmaengine_desc_callback cb;
2098 
2099 		desc = list_first_entry(&pch->completed_list,
2100 					struct dma_pl330_desc, node);
2101 
2102 		dmaengine_desc_get_callback(&desc->txd, &cb);
2103 
2104 		if (pch->cyclic) {
2105 			desc->status = PREP;
2106 			list_move_tail(&desc->node, &pch->work_list);
2107 			if (power_down) {
2108 				pch->active = true;
2109 				spin_lock(&pch->thread->dmac->lock);
2110 				pl330_start_thread(pch->thread);
2111 				spin_unlock(&pch->thread->dmac->lock);
2112 				power_down = false;
2113 			}
2114 		} else {
2115 			desc->status = FREE;
2116 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2117 		}
2118 
2119 		dma_descriptor_unmap(&desc->txd);
2120 
2121 		if (dmaengine_desc_callback_valid(&cb)) {
2122 			spin_unlock_irqrestore(&pch->lock, flags);
2123 			dmaengine_desc_callback_invoke(&cb, NULL);
2124 			spin_lock_irqsave(&pch->lock, flags);
2125 		}
2126 	}
2127 	spin_unlock_irqrestore(&pch->lock, flags);
2128 
2129 	/* If work list empty, power down */
2130 	if (power_down) {
2131 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2132 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2133 	}
2134 }
2135 
2136 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2137 						struct of_dma *ofdma)
2138 {
2139 	int count = dma_spec->args_count;
2140 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2141 	unsigned int chan_id;
2142 
2143 	if (!pl330)
2144 		return NULL;
2145 
2146 	if (count != 1)
2147 		return NULL;
2148 
2149 	chan_id = dma_spec->args[0];
2150 	if (chan_id >= pl330->num_peripherals)
2151 		return NULL;
2152 
2153 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2154 }
2155 
2156 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2157 {
2158 	struct dma_pl330_chan *pch = to_pchan(chan);
2159 	struct pl330_dmac *pl330 = pch->dmac;
2160 	unsigned long flags;
2161 
2162 	spin_lock_irqsave(&pl330->lock, flags);
2163 
2164 	dma_cookie_init(chan);
2165 	pch->cyclic = false;
2166 
2167 	pch->thread = pl330_request_channel(pl330);
2168 	if (!pch->thread) {
2169 		spin_unlock_irqrestore(&pl330->lock, flags);
2170 		return -ENOMEM;
2171 	}
2172 
2173 	tasklet_setup(&pch->task, pl330_tasklet);
2174 
2175 	spin_unlock_irqrestore(&pl330->lock, flags);
2176 
2177 	return 1;
2178 }
2179 
2180 /*
2181  * We need the data direction between the DMAC (the dma-mapping "device") and
2182  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2183  */
2184 static enum dma_data_direction
2185 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2186 {
2187 	switch (dir) {
2188 	case DMA_MEM_TO_DEV:
2189 		return DMA_FROM_DEVICE;
2190 	case DMA_DEV_TO_MEM:
2191 		return DMA_TO_DEVICE;
2192 	case DMA_DEV_TO_DEV:
2193 		return DMA_BIDIRECTIONAL;
2194 	default:
2195 		return DMA_NONE;
2196 	}
2197 }
2198 
2199 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2200 {
2201 	if (pch->dir != DMA_NONE)
2202 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2203 				   1 << pch->burst_sz, pch->dir, 0);
2204 	pch->dir = DMA_NONE;
2205 }
2206 
2207 
2208 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2209 				  enum dma_transfer_direction dir)
2210 {
2211 	struct device *dev = pch->chan.device->dev;
2212 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2213 
2214 	/* Already mapped for this config? */
2215 	if (pch->dir == dma_dir)
2216 		return true;
2217 
2218 	pl330_unprep_slave_fifo(pch);
2219 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2220 					 1 << pch->burst_sz, dma_dir, 0);
2221 	if (dma_mapping_error(dev, pch->fifo_dma))
2222 		return false;
2223 
2224 	pch->dir = dma_dir;
2225 	return true;
2226 }
2227 
2228 static int fixup_burst_len(int max_burst_len, int quirks)
2229 {
2230 	if (max_burst_len > PL330_MAX_BURST)
2231 		return PL330_MAX_BURST;
2232 	else if (max_burst_len < 1)
2233 		return 1;
2234 	else
2235 		return max_burst_len;
2236 }
2237 
2238 static int pl330_config_write(struct dma_chan *chan,
2239 			struct dma_slave_config *slave_config,
2240 			enum dma_transfer_direction direction)
2241 {
2242 	struct dma_pl330_chan *pch = to_pchan(chan);
2243 
2244 	pl330_unprep_slave_fifo(pch);
2245 	if (direction == DMA_MEM_TO_DEV) {
2246 		if (slave_config->dst_addr)
2247 			pch->fifo_addr = slave_config->dst_addr;
2248 		if (slave_config->dst_addr_width)
2249 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2250 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2251 			pch->dmac->quirks);
2252 	} else if (direction == DMA_DEV_TO_MEM) {
2253 		if (slave_config->src_addr)
2254 			pch->fifo_addr = slave_config->src_addr;
2255 		if (slave_config->src_addr_width)
2256 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2257 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2258 			pch->dmac->quirks);
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int pl330_config(struct dma_chan *chan,
2265 			struct dma_slave_config *slave_config)
2266 {
2267 	struct dma_pl330_chan *pch = to_pchan(chan);
2268 
2269 	memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2270 
2271 	return 0;
2272 }
2273 
2274 static int pl330_terminate_all(struct dma_chan *chan)
2275 {
2276 	struct dma_pl330_chan *pch = to_pchan(chan);
2277 	struct dma_pl330_desc *desc;
2278 	unsigned long flags;
2279 	struct pl330_dmac *pl330 = pch->dmac;
2280 	bool power_down = false;
2281 
2282 	pm_runtime_get_sync(pl330->ddma.dev);
2283 	spin_lock_irqsave(&pch->lock, flags);
2284 
2285 	spin_lock(&pl330->lock);
2286 	_stop(pch->thread);
2287 	pch->thread->req[0].desc = NULL;
2288 	pch->thread->req[1].desc = NULL;
2289 	pch->thread->req_running = -1;
2290 	spin_unlock(&pl330->lock);
2291 
2292 	power_down = pch->active;
2293 	pch->active = false;
2294 
2295 	/* Mark all desc done */
2296 	list_for_each_entry(desc, &pch->submitted_list, node) {
2297 		desc->status = FREE;
2298 		dma_cookie_complete(&desc->txd);
2299 	}
2300 
2301 	list_for_each_entry(desc, &pch->work_list , node) {
2302 		desc->status = FREE;
2303 		dma_cookie_complete(&desc->txd);
2304 	}
2305 
2306 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2307 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2308 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2309 	spin_unlock_irqrestore(&pch->lock, flags);
2310 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2311 	if (power_down)
2312 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2313 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2314 
2315 	return 0;
2316 }
2317 
2318 /*
2319  * We don't support DMA_RESUME command because of hardware
2320  * limitations, so after pausing the channel we cannot restore
2321  * it to active state. We have to terminate channel and setup
2322  * DMA transfer again. This pause feature was implemented to
2323  * allow safely read residue before channel termination.
2324  */
2325 static int pl330_pause(struct dma_chan *chan)
2326 {
2327 	struct dma_pl330_chan *pch = to_pchan(chan);
2328 	struct pl330_dmac *pl330 = pch->dmac;
2329 	unsigned long flags;
2330 
2331 	pm_runtime_get_sync(pl330->ddma.dev);
2332 	spin_lock_irqsave(&pch->lock, flags);
2333 
2334 	spin_lock(&pl330->lock);
2335 	_stop(pch->thread);
2336 	spin_unlock(&pl330->lock);
2337 
2338 	spin_unlock_irqrestore(&pch->lock, flags);
2339 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2340 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2341 
2342 	return 0;
2343 }
2344 
2345 static void pl330_free_chan_resources(struct dma_chan *chan)
2346 {
2347 	struct dma_pl330_chan *pch = to_pchan(chan);
2348 	struct pl330_dmac *pl330 = pch->dmac;
2349 	unsigned long flags;
2350 
2351 	tasklet_kill(&pch->task);
2352 
2353 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2354 	spin_lock_irqsave(&pl330->lock, flags);
2355 
2356 	pl330_release_channel(pch->thread);
2357 	pch->thread = NULL;
2358 
2359 	if (pch->cyclic)
2360 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2361 
2362 	spin_unlock_irqrestore(&pl330->lock, flags);
2363 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2364 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2365 	pl330_unprep_slave_fifo(pch);
2366 }
2367 
2368 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2369 					   struct dma_pl330_desc *desc)
2370 {
2371 	struct pl330_thread *thrd = pch->thread;
2372 	struct pl330_dmac *pl330 = pch->dmac;
2373 	void __iomem *regs = thrd->dmac->base;
2374 	u32 val, addr;
2375 
2376 	pm_runtime_get_sync(pl330->ddma.dev);
2377 	val = addr = 0;
2378 	if (desc->rqcfg.src_inc) {
2379 		val = readl(regs + SA(thrd->id));
2380 		addr = desc->px.src_addr;
2381 	} else {
2382 		val = readl(regs + DA(thrd->id));
2383 		addr = desc->px.dst_addr;
2384 	}
2385 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2386 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2387 
2388 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2389 	if (!val)
2390 		return 0;
2391 
2392 	return val - addr;
2393 }
2394 
2395 static enum dma_status
2396 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2397 		 struct dma_tx_state *txstate)
2398 {
2399 	enum dma_status ret;
2400 	unsigned long flags;
2401 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2402 	struct dma_pl330_chan *pch = to_pchan(chan);
2403 	unsigned int transferred, residual = 0;
2404 
2405 	ret = dma_cookie_status(chan, cookie, txstate);
2406 
2407 	if (!txstate)
2408 		return ret;
2409 
2410 	if (ret == DMA_COMPLETE)
2411 		goto out;
2412 
2413 	spin_lock_irqsave(&pch->lock, flags);
2414 	spin_lock(&pch->thread->dmac->lock);
2415 
2416 	if (pch->thread->req_running != -1)
2417 		running = pch->thread->req[pch->thread->req_running].desc;
2418 
2419 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2420 
2421 	/* Check in pending list */
2422 	list_for_each_entry(desc, &pch->work_list, node) {
2423 		if (desc->status == DONE)
2424 			transferred = desc->bytes_requested;
2425 		else if (running && desc == running)
2426 			transferred =
2427 				pl330_get_current_xferred_count(pch, desc);
2428 		else if (desc->status == BUSY)
2429 			/*
2430 			 * Busy but not running means either just enqueued,
2431 			 * or finished and not yet marked done
2432 			 */
2433 			if (desc == last_enq)
2434 				transferred = 0;
2435 			else
2436 				transferred = desc->bytes_requested;
2437 		else
2438 			transferred = 0;
2439 		residual += desc->bytes_requested - transferred;
2440 		if (desc->txd.cookie == cookie) {
2441 			switch (desc->status) {
2442 			case DONE:
2443 				ret = DMA_COMPLETE;
2444 				break;
2445 			case PREP:
2446 			case BUSY:
2447 				ret = DMA_IN_PROGRESS;
2448 				break;
2449 			default:
2450 				WARN_ON(1);
2451 			}
2452 			break;
2453 		}
2454 		if (desc->last)
2455 			residual = 0;
2456 	}
2457 	spin_unlock(&pch->thread->dmac->lock);
2458 	spin_unlock_irqrestore(&pch->lock, flags);
2459 
2460 out:
2461 	dma_set_residue(txstate, residual);
2462 
2463 	return ret;
2464 }
2465 
2466 static void pl330_issue_pending(struct dma_chan *chan)
2467 {
2468 	struct dma_pl330_chan *pch = to_pchan(chan);
2469 	unsigned long flags;
2470 
2471 	spin_lock_irqsave(&pch->lock, flags);
2472 	if (list_empty(&pch->work_list)) {
2473 		/*
2474 		 * Warn on nothing pending. Empty submitted_list may
2475 		 * break our pm_runtime usage counter as it is
2476 		 * updated on work_list emptiness status.
2477 		 */
2478 		WARN_ON(list_empty(&pch->submitted_list));
2479 		pch->active = true;
2480 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2481 	}
2482 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2483 	spin_unlock_irqrestore(&pch->lock, flags);
2484 
2485 	pl330_tasklet(&pch->task);
2486 }
2487 
2488 /*
2489  * We returned the last one of the circular list of descriptor(s)
2490  * from prep_xxx, so the argument to submit corresponds to the last
2491  * descriptor of the list.
2492  */
2493 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2494 {
2495 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2496 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2497 	dma_cookie_t cookie;
2498 	unsigned long flags;
2499 
2500 	spin_lock_irqsave(&pch->lock, flags);
2501 
2502 	/* Assign cookies to all nodes */
2503 	while (!list_empty(&last->node)) {
2504 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2505 		if (pch->cyclic) {
2506 			desc->txd.callback = last->txd.callback;
2507 			desc->txd.callback_param = last->txd.callback_param;
2508 		}
2509 		desc->last = false;
2510 
2511 		dma_cookie_assign(&desc->txd);
2512 
2513 		list_move_tail(&desc->node, &pch->submitted_list);
2514 	}
2515 
2516 	last->last = true;
2517 	cookie = dma_cookie_assign(&last->txd);
2518 	list_add_tail(&last->node, &pch->submitted_list);
2519 	spin_unlock_irqrestore(&pch->lock, flags);
2520 
2521 	return cookie;
2522 }
2523 
2524 static inline void _init_desc(struct dma_pl330_desc *desc)
2525 {
2526 	desc->rqcfg.swap = SWAP_NO;
2527 	desc->rqcfg.scctl = CCTRL0;
2528 	desc->rqcfg.dcctl = CCTRL0;
2529 	desc->txd.tx_submit = pl330_tx_submit;
2530 
2531 	INIT_LIST_HEAD(&desc->node);
2532 }
2533 
2534 /* Returns the number of descriptors added to the DMAC pool */
2535 static int add_desc(struct list_head *pool, spinlock_t *lock,
2536 		    gfp_t flg, int count)
2537 {
2538 	struct dma_pl330_desc *desc;
2539 	unsigned long flags;
2540 	int i;
2541 
2542 	desc = kcalloc(count, sizeof(*desc), flg);
2543 	if (!desc)
2544 		return 0;
2545 
2546 	spin_lock_irqsave(lock, flags);
2547 
2548 	for (i = 0; i < count; i++) {
2549 		_init_desc(&desc[i]);
2550 		list_add_tail(&desc[i].node, pool);
2551 	}
2552 
2553 	spin_unlock_irqrestore(lock, flags);
2554 
2555 	return count;
2556 }
2557 
2558 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2559 					 spinlock_t *lock)
2560 {
2561 	struct dma_pl330_desc *desc = NULL;
2562 	unsigned long flags;
2563 
2564 	spin_lock_irqsave(lock, flags);
2565 
2566 	if (!list_empty(pool)) {
2567 		desc = list_entry(pool->next,
2568 				struct dma_pl330_desc, node);
2569 
2570 		list_del_init(&desc->node);
2571 
2572 		desc->status = PREP;
2573 		desc->txd.callback = NULL;
2574 	}
2575 
2576 	spin_unlock_irqrestore(lock, flags);
2577 
2578 	return desc;
2579 }
2580 
2581 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2582 {
2583 	struct pl330_dmac *pl330 = pch->dmac;
2584 	u8 *peri_id = pch->chan.private;
2585 	struct dma_pl330_desc *desc;
2586 
2587 	/* Pluck one desc from the pool of DMAC */
2588 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2589 
2590 	/* If the DMAC pool is empty, alloc new */
2591 	if (!desc) {
2592 		static DEFINE_SPINLOCK(lock);
2593 		LIST_HEAD(pool);
2594 
2595 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2596 			return NULL;
2597 
2598 		desc = pluck_desc(&pool, &lock);
2599 		WARN_ON(!desc || !list_empty(&pool));
2600 	}
2601 
2602 	/* Initialize the descriptor */
2603 	desc->pchan = pch;
2604 	desc->txd.cookie = 0;
2605 	async_tx_ack(&desc->txd);
2606 
2607 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2608 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2609 
2610 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2611 
2612 	return desc;
2613 }
2614 
2615 static inline void fill_px(struct pl330_xfer *px,
2616 		dma_addr_t dst, dma_addr_t src, size_t len)
2617 {
2618 	px->bytes = len;
2619 	px->dst_addr = dst;
2620 	px->src_addr = src;
2621 }
2622 
2623 static struct dma_pl330_desc *
2624 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2625 		dma_addr_t src, size_t len)
2626 {
2627 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2628 
2629 	if (!desc) {
2630 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2631 			__func__, __LINE__);
2632 		return NULL;
2633 	}
2634 
2635 	/*
2636 	 * Ideally we should lookout for reqs bigger than
2637 	 * those that can be programmed with 256 bytes of
2638 	 * MC buffer, but considering a req size is seldom
2639 	 * going to be word-unaligned and more than 200MB,
2640 	 * we take it easy.
2641 	 * Also, should the limit is reached we'd rather
2642 	 * have the platform increase MC buffer size than
2643 	 * complicating this API driver.
2644 	 */
2645 	fill_px(&desc->px, dst, src, len);
2646 
2647 	return desc;
2648 }
2649 
2650 /* Call after fixing burst size */
2651 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2652 {
2653 	struct dma_pl330_chan *pch = desc->pchan;
2654 	struct pl330_dmac *pl330 = pch->dmac;
2655 	int burst_len;
2656 
2657 	burst_len = pl330->pcfg.data_bus_width / 8;
2658 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2659 	burst_len >>= desc->rqcfg.brst_size;
2660 
2661 	/* src/dst_burst_len can't be more than 16 */
2662 	if (burst_len > PL330_MAX_BURST)
2663 		burst_len = PL330_MAX_BURST;
2664 
2665 	return burst_len;
2666 }
2667 
2668 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2669 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2670 		size_t period_len, enum dma_transfer_direction direction,
2671 		unsigned long flags)
2672 {
2673 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2674 	struct dma_pl330_chan *pch = to_pchan(chan);
2675 	struct pl330_dmac *pl330 = pch->dmac;
2676 	unsigned int i;
2677 	dma_addr_t dst;
2678 	dma_addr_t src;
2679 
2680 	if (len % period_len != 0)
2681 		return NULL;
2682 
2683 	if (!is_slave_direction(direction)) {
2684 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2685 		__func__, __LINE__);
2686 		return NULL;
2687 	}
2688 
2689 	pl330_config_write(chan, &pch->slave_config, direction);
2690 
2691 	if (!pl330_prep_slave_fifo(pch, direction))
2692 		return NULL;
2693 
2694 	for (i = 0; i < len / period_len; i++) {
2695 		desc = pl330_get_desc(pch);
2696 		if (!desc) {
2697 			unsigned long iflags;
2698 
2699 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2700 				__func__, __LINE__);
2701 
2702 			if (!first)
2703 				return NULL;
2704 
2705 			spin_lock_irqsave(&pl330->pool_lock, iflags);
2706 
2707 			while (!list_empty(&first->node)) {
2708 				desc = list_entry(first->node.next,
2709 						struct dma_pl330_desc, node);
2710 				list_move_tail(&desc->node, &pl330->desc_pool);
2711 			}
2712 
2713 			list_move_tail(&first->node, &pl330->desc_pool);
2714 
2715 			spin_unlock_irqrestore(&pl330->pool_lock, iflags);
2716 
2717 			return NULL;
2718 		}
2719 
2720 		switch (direction) {
2721 		case DMA_MEM_TO_DEV:
2722 			desc->rqcfg.src_inc = 1;
2723 			desc->rqcfg.dst_inc = 0;
2724 			src = dma_addr;
2725 			dst = pch->fifo_dma;
2726 			break;
2727 		case DMA_DEV_TO_MEM:
2728 			desc->rqcfg.src_inc = 0;
2729 			desc->rqcfg.dst_inc = 1;
2730 			src = pch->fifo_dma;
2731 			dst = dma_addr;
2732 			break;
2733 		default:
2734 			break;
2735 		}
2736 
2737 		desc->rqtype = direction;
2738 		desc->rqcfg.brst_size = pch->burst_sz;
2739 		desc->rqcfg.brst_len = pch->burst_len;
2740 		desc->bytes_requested = period_len;
2741 		fill_px(&desc->px, dst, src, period_len);
2742 
2743 		if (!first)
2744 			first = desc;
2745 		else
2746 			list_add_tail(&desc->node, &first->node);
2747 
2748 		dma_addr += period_len;
2749 	}
2750 
2751 	if (!desc)
2752 		return NULL;
2753 
2754 	pch->cyclic = true;
2755 
2756 	return &desc->txd;
2757 }
2758 
2759 static struct dma_async_tx_descriptor *
2760 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2761 		dma_addr_t src, size_t len, unsigned long flags)
2762 {
2763 	struct dma_pl330_desc *desc;
2764 	struct dma_pl330_chan *pch = to_pchan(chan);
2765 	struct pl330_dmac *pl330;
2766 	int burst;
2767 
2768 	if (unlikely(!pch || !len))
2769 		return NULL;
2770 
2771 	pl330 = pch->dmac;
2772 
2773 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2774 	if (!desc)
2775 		return NULL;
2776 
2777 	desc->rqcfg.src_inc = 1;
2778 	desc->rqcfg.dst_inc = 1;
2779 	desc->rqtype = DMA_MEM_TO_MEM;
2780 
2781 	/* Select max possible burst size */
2782 	burst = pl330->pcfg.data_bus_width / 8;
2783 
2784 	/*
2785 	 * Make sure we use a burst size that aligns with all the memcpy
2786 	 * parameters because our DMA programming algorithm doesn't cope with
2787 	 * transfers which straddle an entry in the DMA device's MFIFO.
2788 	 */
2789 	while ((src | dst | len) & (burst - 1))
2790 		burst /= 2;
2791 
2792 	desc->rqcfg.brst_size = 0;
2793 	while (burst != (1 << desc->rqcfg.brst_size))
2794 		desc->rqcfg.brst_size++;
2795 
2796 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2797 	/*
2798 	 * If burst size is smaller than bus width then make sure we only
2799 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2800 	 */
2801 	if (burst * 8 < pl330->pcfg.data_bus_width)
2802 		desc->rqcfg.brst_len = 1;
2803 
2804 	desc->bytes_requested = len;
2805 
2806 	return &desc->txd;
2807 }
2808 
2809 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2810 				  struct dma_pl330_desc *first)
2811 {
2812 	unsigned long flags;
2813 	struct dma_pl330_desc *desc;
2814 
2815 	if (!first)
2816 		return;
2817 
2818 	spin_lock_irqsave(&pl330->pool_lock, flags);
2819 
2820 	while (!list_empty(&first->node)) {
2821 		desc = list_entry(first->node.next,
2822 				struct dma_pl330_desc, node);
2823 		list_move_tail(&desc->node, &pl330->desc_pool);
2824 	}
2825 
2826 	list_move_tail(&first->node, &pl330->desc_pool);
2827 
2828 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2829 }
2830 
2831 static struct dma_async_tx_descriptor *
2832 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2833 		unsigned int sg_len, enum dma_transfer_direction direction,
2834 		unsigned long flg, void *context)
2835 {
2836 	struct dma_pl330_desc *first, *desc = NULL;
2837 	struct dma_pl330_chan *pch = to_pchan(chan);
2838 	struct scatterlist *sg;
2839 	int i;
2840 
2841 	if (unlikely(!pch || !sgl || !sg_len))
2842 		return NULL;
2843 
2844 	pl330_config_write(chan, &pch->slave_config, direction);
2845 
2846 	if (!pl330_prep_slave_fifo(pch, direction))
2847 		return NULL;
2848 
2849 	first = NULL;
2850 
2851 	for_each_sg(sgl, sg, sg_len, i) {
2852 
2853 		desc = pl330_get_desc(pch);
2854 		if (!desc) {
2855 			struct pl330_dmac *pl330 = pch->dmac;
2856 
2857 			dev_err(pch->dmac->ddma.dev,
2858 				"%s:%d Unable to fetch desc\n",
2859 				__func__, __LINE__);
2860 			__pl330_giveback_desc(pl330, first);
2861 
2862 			return NULL;
2863 		}
2864 
2865 		if (!first)
2866 			first = desc;
2867 		else
2868 			list_add_tail(&desc->node, &first->node);
2869 
2870 		if (direction == DMA_MEM_TO_DEV) {
2871 			desc->rqcfg.src_inc = 1;
2872 			desc->rqcfg.dst_inc = 0;
2873 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2874 				sg_dma_len(sg));
2875 		} else {
2876 			desc->rqcfg.src_inc = 0;
2877 			desc->rqcfg.dst_inc = 1;
2878 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2879 				sg_dma_len(sg));
2880 		}
2881 
2882 		desc->rqcfg.brst_size = pch->burst_sz;
2883 		desc->rqcfg.brst_len = pch->burst_len;
2884 		desc->rqtype = direction;
2885 		desc->bytes_requested = sg_dma_len(sg);
2886 	}
2887 
2888 	/* Return the last desc in the chain */
2889 	return &desc->txd;
2890 }
2891 
2892 static irqreturn_t pl330_irq_handler(int irq, void *data)
2893 {
2894 	if (pl330_update(data))
2895 		return IRQ_HANDLED;
2896 	else
2897 		return IRQ_NONE;
2898 }
2899 
2900 #define PL330_DMA_BUSWIDTHS \
2901 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2902 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2903 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2904 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2905 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2906 
2907 #ifdef CONFIG_DEBUG_FS
2908 static int pl330_debugfs_show(struct seq_file *s, void *data)
2909 {
2910 	struct pl330_dmac *pl330 = s->private;
2911 	int chans, pchs, ch, pr;
2912 
2913 	chans = pl330->pcfg.num_chan;
2914 	pchs = pl330->num_peripherals;
2915 
2916 	seq_puts(s, "PL330 physical channels:\n");
2917 	seq_puts(s, "THREAD:\t\tCHANNEL:\n");
2918 	seq_puts(s, "--------\t-----\n");
2919 	for (ch = 0; ch < chans; ch++) {
2920 		struct pl330_thread *thrd = &pl330->channels[ch];
2921 		int found = -1;
2922 
2923 		for (pr = 0; pr < pchs; pr++) {
2924 			struct dma_pl330_chan *pch = &pl330->peripherals[pr];
2925 
2926 			if (!pch->thread || thrd->id != pch->thread->id)
2927 				continue;
2928 
2929 			found = pr;
2930 		}
2931 
2932 		seq_printf(s, "%d\t\t", thrd->id);
2933 		if (found == -1)
2934 			seq_puts(s, "--\n");
2935 		else
2936 			seq_printf(s, "%d\n", found);
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
2943 
2944 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2945 {
2946 	debugfs_create_file(dev_name(pl330->ddma.dev),
2947 			    S_IFREG | 0444, NULL, pl330,
2948 			    &pl330_debugfs_fops);
2949 }
2950 #else
2951 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2952 {
2953 }
2954 #endif
2955 
2956 /*
2957  * Runtime PM callbacks are provided by amba/bus.c driver.
2958  *
2959  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2960  * bus driver will only disable/enable the clock in runtime PM callbacks.
2961  */
2962 static int __maybe_unused pl330_suspend(struct device *dev)
2963 {
2964 	struct amba_device *pcdev = to_amba_device(dev);
2965 
2966 	pm_runtime_force_suspend(dev);
2967 	clk_unprepare(pcdev->pclk);
2968 
2969 	return 0;
2970 }
2971 
2972 static int __maybe_unused pl330_resume(struct device *dev)
2973 {
2974 	struct amba_device *pcdev = to_amba_device(dev);
2975 	int ret;
2976 
2977 	ret = clk_prepare(pcdev->pclk);
2978 	if (ret)
2979 		return ret;
2980 
2981 	pm_runtime_force_resume(dev);
2982 
2983 	return ret;
2984 }
2985 
2986 static const struct dev_pm_ops pl330_pm = {
2987 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
2988 };
2989 
2990 static int
2991 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2992 {
2993 	struct pl330_config *pcfg;
2994 	struct pl330_dmac *pl330;
2995 	struct dma_pl330_chan *pch, *_p;
2996 	struct dma_device *pd;
2997 	struct resource *res;
2998 	int i, ret, irq;
2999 	int num_chan;
3000 	struct device_node *np = adev->dev.of_node;
3001 
3002 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3003 	if (ret)
3004 		return ret;
3005 
3006 	/* Allocate a new DMAC and its Channels */
3007 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3008 	if (!pl330)
3009 		return -ENOMEM;
3010 
3011 	pd = &pl330->ddma;
3012 	pd->dev = &adev->dev;
3013 
3014 	pl330->mcbufsz = 0;
3015 
3016 	/* get quirk */
3017 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3018 		if (of_property_read_bool(np, of_quirks[i].quirk))
3019 			pl330->quirks |= of_quirks[i].id;
3020 
3021 	res = &adev->res;
3022 	pl330->base = devm_ioremap_resource(&adev->dev, res);
3023 	if (IS_ERR(pl330->base))
3024 		return PTR_ERR(pl330->base);
3025 
3026 	amba_set_drvdata(adev, pl330);
3027 
3028 	pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3029 	if (IS_ERR(pl330->rstc)) {
3030 		return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n");
3031 	} else {
3032 		ret = reset_control_deassert(pl330->rstc);
3033 		if (ret) {
3034 			dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3035 			return ret;
3036 		}
3037 	}
3038 
3039 	pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3040 	if (IS_ERR(pl330->rstc_ocp)) {
3041 		return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp),
3042 				     "Failed to get OCP reset!\n");
3043 	} else {
3044 		ret = reset_control_deassert(pl330->rstc_ocp);
3045 		if (ret) {
3046 			dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3047 			return ret;
3048 		}
3049 	}
3050 
3051 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3052 		irq = adev->irq[i];
3053 		if (irq) {
3054 			ret = devm_request_irq(&adev->dev, irq,
3055 					       pl330_irq_handler, 0,
3056 					       dev_name(&adev->dev), pl330);
3057 			if (ret)
3058 				return ret;
3059 		} else {
3060 			break;
3061 		}
3062 	}
3063 
3064 	pcfg = &pl330->pcfg;
3065 
3066 	pcfg->periph_id = adev->periphid;
3067 	ret = pl330_add(pl330);
3068 	if (ret)
3069 		return ret;
3070 
3071 	INIT_LIST_HEAD(&pl330->desc_pool);
3072 	spin_lock_init(&pl330->pool_lock);
3073 
3074 	/* Create a descriptor pool of default size */
3075 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3076 		      GFP_KERNEL, NR_DEFAULT_DESC))
3077 		dev_warn(&adev->dev, "unable to allocate desc\n");
3078 
3079 	INIT_LIST_HEAD(&pd->channels);
3080 
3081 	/* Initialize channel parameters */
3082 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3083 
3084 	pl330->num_peripherals = num_chan;
3085 
3086 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3087 	if (!pl330->peripherals) {
3088 		ret = -ENOMEM;
3089 		goto probe_err2;
3090 	}
3091 
3092 	for (i = 0; i < num_chan; i++) {
3093 		pch = &pl330->peripherals[i];
3094 
3095 		pch->chan.private = adev->dev.of_node;
3096 		INIT_LIST_HEAD(&pch->submitted_list);
3097 		INIT_LIST_HEAD(&pch->work_list);
3098 		INIT_LIST_HEAD(&pch->completed_list);
3099 		spin_lock_init(&pch->lock);
3100 		pch->thread = NULL;
3101 		pch->chan.device = pd;
3102 		pch->dmac = pl330;
3103 		pch->dir = DMA_NONE;
3104 
3105 		/* Add the channel to the DMAC list */
3106 		list_add_tail(&pch->chan.device_node, &pd->channels);
3107 	}
3108 
3109 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3110 	if (pcfg->num_peri) {
3111 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3112 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3113 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3114 	}
3115 
3116 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3117 	pd->device_free_chan_resources = pl330_free_chan_resources;
3118 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3119 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3120 	pd->device_tx_status = pl330_tx_status;
3121 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3122 	pd->device_config = pl330_config;
3123 	pd->device_pause = pl330_pause;
3124 	pd->device_terminate_all = pl330_terminate_all;
3125 	pd->device_issue_pending = pl330_issue_pending;
3126 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3127 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3128 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3129 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3130 	pd->max_burst = PL330_MAX_BURST;
3131 
3132 	ret = dma_async_device_register(pd);
3133 	if (ret) {
3134 		dev_err(&adev->dev, "unable to register DMAC\n");
3135 		goto probe_err3;
3136 	}
3137 
3138 	if (adev->dev.of_node) {
3139 		ret = of_dma_controller_register(adev->dev.of_node,
3140 					 of_dma_pl330_xlate, pl330);
3141 		if (ret) {
3142 			dev_err(&adev->dev,
3143 			"unable to register DMA to the generic DT DMA helpers\n");
3144 		}
3145 	}
3146 
3147 	/*
3148 	 * This is the limit for transfers with a buswidth of 1, larger
3149 	 * buswidths will have larger limits.
3150 	 */
3151 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3152 	if (ret)
3153 		dev_err(&adev->dev, "unable to set the seg size\n");
3154 
3155 
3156 	init_pl330_debugfs(pl330);
3157 	dev_info(&adev->dev,
3158 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3159 	dev_info(&adev->dev,
3160 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3161 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3162 		pcfg->num_peri, pcfg->num_events);
3163 
3164 	pm_runtime_irq_safe(&adev->dev);
3165 	pm_runtime_use_autosuspend(&adev->dev);
3166 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3167 	pm_runtime_mark_last_busy(&adev->dev);
3168 	pm_runtime_put_autosuspend(&adev->dev);
3169 
3170 	return 0;
3171 probe_err3:
3172 	/* Idle the DMAC */
3173 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3174 			chan.device_node) {
3175 
3176 		/* Remove the channel */
3177 		list_del(&pch->chan.device_node);
3178 
3179 		/* Flush the channel */
3180 		if (pch->thread) {
3181 			pl330_terminate_all(&pch->chan);
3182 			pl330_free_chan_resources(&pch->chan);
3183 		}
3184 	}
3185 probe_err2:
3186 	pl330_del(pl330);
3187 
3188 	if (pl330->rstc_ocp)
3189 		reset_control_assert(pl330->rstc_ocp);
3190 
3191 	if (pl330->rstc)
3192 		reset_control_assert(pl330->rstc);
3193 	return ret;
3194 }
3195 
3196 static void pl330_remove(struct amba_device *adev)
3197 {
3198 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3199 	struct dma_pl330_chan *pch, *_p;
3200 	int i, irq;
3201 
3202 	pm_runtime_get_noresume(pl330->ddma.dev);
3203 
3204 	if (adev->dev.of_node)
3205 		of_dma_controller_free(adev->dev.of_node);
3206 
3207 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3208 		irq = adev->irq[i];
3209 		if (irq)
3210 			devm_free_irq(&adev->dev, irq, pl330);
3211 	}
3212 
3213 	dma_async_device_unregister(&pl330->ddma);
3214 
3215 	/* Idle the DMAC */
3216 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3217 			chan.device_node) {
3218 
3219 		/* Remove the channel */
3220 		list_del(&pch->chan.device_node);
3221 
3222 		/* Flush the channel */
3223 		if (pch->thread) {
3224 			pl330_terminate_all(&pch->chan);
3225 			pl330_free_chan_resources(&pch->chan);
3226 		}
3227 	}
3228 
3229 	pl330_del(pl330);
3230 
3231 	if (pl330->rstc_ocp)
3232 		reset_control_assert(pl330->rstc_ocp);
3233 
3234 	if (pl330->rstc)
3235 		reset_control_assert(pl330->rstc);
3236 }
3237 
3238 static const struct amba_id pl330_ids[] = {
3239 	{
3240 		.id	= 0x00041330,
3241 		.mask	= 0x000fffff,
3242 	},
3243 	{ 0, 0 },
3244 };
3245 
3246 MODULE_DEVICE_TABLE(amba, pl330_ids);
3247 
3248 static struct amba_driver pl330_driver = {
3249 	.drv = {
3250 		.owner = THIS_MODULE,
3251 		.name = "dma-pl330",
3252 		.pm = &pl330_pm,
3253 	},
3254 	.id_table = pl330_ids,
3255 	.probe = pl330_probe,
3256 	.remove = pl330_remove,
3257 };
3258 
3259 module_amba_driver(pl330_driver);
3260 
3261 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3262 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3263 MODULE_LICENSE("GPL");
3264