1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/scatterlist.h> 28 #include <linux/of.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 35 enum pl330_srccachectrl { 36 SCCTRL0, /* Noncacheable and nonbufferable */ 37 SCCTRL1, /* Bufferable only */ 38 SCCTRL2, /* Cacheable, but do not allocate */ 39 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 40 SINVALID1, 41 SINVALID2, 42 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 43 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 44 }; 45 46 enum pl330_dstcachectrl { 47 DCCTRL0, /* Noncacheable and nonbufferable */ 48 DCCTRL1, /* Bufferable only */ 49 DCCTRL2, /* Cacheable, but do not allocate */ 50 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 51 DINVALID1, /* AWCACHE = 0x1000 */ 52 DINVALID2, 53 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 54 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 55 }; 56 57 enum pl330_byteswap { 58 SWAP_NO, 59 SWAP_2, 60 SWAP_4, 61 SWAP_8, 62 SWAP_16, 63 }; 64 65 enum pl330_reqtype { 66 MEMTOMEM, 67 MEMTODEV, 68 DEVTOMEM, 69 DEVTODEV, 70 }; 71 72 /* Register and Bit field Definitions */ 73 #define DS 0x0 74 #define DS_ST_STOP 0x0 75 #define DS_ST_EXEC 0x1 76 #define DS_ST_CMISS 0x2 77 #define DS_ST_UPDTPC 0x3 78 #define DS_ST_WFE 0x4 79 #define DS_ST_ATBRR 0x5 80 #define DS_ST_QBUSY 0x6 81 #define DS_ST_WFP 0x7 82 #define DS_ST_KILL 0x8 83 #define DS_ST_CMPLT 0x9 84 #define DS_ST_FLTCMP 0xe 85 #define DS_ST_FAULT 0xf 86 87 #define DPC 0x4 88 #define INTEN 0x20 89 #define ES 0x24 90 #define INTSTATUS 0x28 91 #define INTCLR 0x2c 92 #define FSM 0x30 93 #define FSC 0x34 94 #define FTM 0x38 95 96 #define _FTC 0x40 97 #define FTC(n) (_FTC + (n)*0x4) 98 99 #define _CS 0x100 100 #define CS(n) (_CS + (n)*0x8) 101 #define CS_CNS (1 << 21) 102 103 #define _CPC 0x104 104 #define CPC(n) (_CPC + (n)*0x8) 105 106 #define _SA 0x400 107 #define SA(n) (_SA + (n)*0x20) 108 109 #define _DA 0x404 110 #define DA(n) (_DA + (n)*0x20) 111 112 #define _CC 0x408 113 #define CC(n) (_CC + (n)*0x20) 114 115 #define CC_SRCINC (1 << 0) 116 #define CC_DSTINC (1 << 14) 117 #define CC_SRCPRI (1 << 8) 118 #define CC_DSTPRI (1 << 22) 119 #define CC_SRCNS (1 << 9) 120 #define CC_DSTNS (1 << 23) 121 #define CC_SRCIA (1 << 10) 122 #define CC_DSTIA (1 << 24) 123 #define CC_SRCBRSTLEN_SHFT 4 124 #define CC_DSTBRSTLEN_SHFT 18 125 #define CC_SRCBRSTSIZE_SHFT 1 126 #define CC_DSTBRSTSIZE_SHFT 15 127 #define CC_SRCCCTRL_SHFT 11 128 #define CC_SRCCCTRL_MASK 0x7 129 #define CC_DSTCCTRL_SHFT 25 130 #define CC_DRCCCTRL_MASK 0x7 131 #define CC_SWAP_SHFT 28 132 133 #define _LC0 0x40c 134 #define LC0(n) (_LC0 + (n)*0x20) 135 136 #define _LC1 0x410 137 #define LC1(n) (_LC1 + (n)*0x20) 138 139 #define DBGSTATUS 0xd00 140 #define DBG_BUSY (1 << 0) 141 142 #define DBGCMD 0xd04 143 #define DBGINST0 0xd08 144 #define DBGINST1 0xd0c 145 146 #define CR0 0xe00 147 #define CR1 0xe04 148 #define CR2 0xe08 149 #define CR3 0xe0c 150 #define CR4 0xe10 151 #define CRD 0xe14 152 153 #define PERIPH_ID 0xfe0 154 #define PERIPH_REV_SHIFT 20 155 #define PERIPH_REV_MASK 0xf 156 #define PERIPH_REV_R0P0 0 157 #define PERIPH_REV_R1P0 1 158 #define PERIPH_REV_R1P1 2 159 #define PCELL_ID 0xff0 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PCELL_ID_VAL 0xb105f00d 196 197 #define PL330_STATE_STOPPED (1 << 0) 198 #define PL330_STATE_EXECUTING (1 << 1) 199 #define PL330_STATE_WFE (1 << 2) 200 #define PL330_STATE_FAULTING (1 << 3) 201 #define PL330_STATE_COMPLETING (1 << 4) 202 #define PL330_STATE_WFP (1 << 5) 203 #define PL330_STATE_KILLING (1 << 6) 204 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 205 #define PL330_STATE_CACHEMISS (1 << 8) 206 #define PL330_STATE_UPDTPC (1 << 9) 207 #define PL330_STATE_ATBARRIER (1 << 10) 208 #define PL330_STATE_QUEUEBUSY (1 << 11) 209 #define PL330_STATE_INVALID (1 << 15) 210 211 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 212 | PL330_STATE_WFE | PL330_STATE_FAULTING) 213 214 #define CMD_DMAADDH 0x54 215 #define CMD_DMAEND 0x00 216 #define CMD_DMAFLUSHP 0x35 217 #define CMD_DMAGO 0xa0 218 #define CMD_DMALD 0x04 219 #define CMD_DMALDP 0x25 220 #define CMD_DMALP 0x20 221 #define CMD_DMALPEND 0x28 222 #define CMD_DMAKILL 0x01 223 #define CMD_DMAMOV 0xbc 224 #define CMD_DMANOP 0x18 225 #define CMD_DMARMB 0x12 226 #define CMD_DMASEV 0x34 227 #define CMD_DMAST 0x08 228 #define CMD_DMASTP 0x29 229 #define CMD_DMASTZ 0x0c 230 #define CMD_DMAWFE 0x36 231 #define CMD_DMAWFP 0x30 232 #define CMD_DMAWMB 0x13 233 234 #define SZ_DMAADDH 3 235 #define SZ_DMAEND 1 236 #define SZ_DMAFLUSHP 2 237 #define SZ_DMALD 1 238 #define SZ_DMALDP 2 239 #define SZ_DMALP 2 240 #define SZ_DMALPEND 2 241 #define SZ_DMAKILL 1 242 #define SZ_DMAMOV 6 243 #define SZ_DMANOP 1 244 #define SZ_DMARMB 1 245 #define SZ_DMASEV 2 246 #define SZ_DMAST 1 247 #define SZ_DMASTP 2 248 #define SZ_DMASTZ 1 249 #define SZ_DMAWFE 2 250 #define SZ_DMAWFP 2 251 #define SZ_DMAWMB 1 252 #define SZ_DMAGO 6 253 254 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 255 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 256 257 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 258 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 259 260 /* 261 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 262 * at 1byte/burst for P<->M and M<->M respectively. 263 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 264 * should be enough for P<->M and M<->M respectively. 265 */ 266 #define MCODE_BUFF_PER_REQ 256 267 268 /* If the _pl330_req is available to the client */ 269 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 270 271 /* Use this _only_ to wait on transient states */ 272 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 273 274 #ifdef PL330_DEBUG_MCGEN 275 static unsigned cmd_line; 276 #define PL330_DBGCMD_DUMP(off, x...) do { \ 277 printk("%x:", cmd_line); \ 278 printk(x); \ 279 cmd_line += off; \ 280 } while (0) 281 #define PL330_DBGMC_START(addr) (cmd_line = addr) 282 #else 283 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 284 #define PL330_DBGMC_START(addr) do {} while (0) 285 #endif 286 287 /* The number of default descriptors */ 288 289 #define NR_DEFAULT_DESC 16 290 291 /* Populated by the PL330 core driver for DMA API driver's info */ 292 struct pl330_config { 293 u32 periph_id; 294 u32 pcell_id; 295 #define DMAC_MODE_NS (1 << 0) 296 unsigned int mode; 297 unsigned int data_bus_width:10; /* In number of bits */ 298 unsigned int data_buf_dep:10; 299 unsigned int num_chan:4; 300 unsigned int num_peri:6; 301 u32 peri_ns; 302 unsigned int num_events:6; 303 u32 irq_ns; 304 }; 305 306 /* Handle to the DMAC provided to the PL330 core */ 307 struct pl330_info { 308 /* Owning device */ 309 struct device *dev; 310 /* Size of MicroCode buffers for each channel. */ 311 unsigned mcbufsz; 312 /* ioremap'ed address of PL330 registers. */ 313 void __iomem *base; 314 /* Client can freely use it. */ 315 void *client_data; 316 /* PL330 core data, Client must not touch it. */ 317 void *pl330_data; 318 /* Populated by the PL330 core driver during pl330_add */ 319 struct pl330_config pcfg; 320 /* 321 * If the DMAC has some reset mechanism, then the 322 * client may want to provide pointer to the method. 323 */ 324 void (*dmac_reset)(struct pl330_info *pi); 325 }; 326 327 /** 328 * Request Configuration. 329 * The PL330 core does not modify this and uses the last 330 * working configuration if the request doesn't provide any. 331 * 332 * The Client may want to provide this info only for the 333 * first request and a request with new settings. 334 */ 335 struct pl330_reqcfg { 336 /* Address Incrementing */ 337 unsigned dst_inc:1; 338 unsigned src_inc:1; 339 340 /* 341 * For now, the SRC & DST protection levels 342 * and burst size/length are assumed same. 343 */ 344 bool nonsecure; 345 bool privileged; 346 bool insnaccess; 347 unsigned brst_len:5; 348 unsigned brst_size:3; /* in power of 2 */ 349 350 enum pl330_dstcachectrl dcctl; 351 enum pl330_srccachectrl scctl; 352 enum pl330_byteswap swap; 353 struct pl330_config *pcfg; 354 }; 355 356 /* 357 * One cycle of DMAC operation. 358 * There may be more than one xfer in a request. 359 */ 360 struct pl330_xfer { 361 u32 src_addr; 362 u32 dst_addr; 363 /* Size to xfer */ 364 u32 bytes; 365 /* 366 * Pointer to next xfer in the list. 367 * The last xfer in the req must point to NULL. 368 */ 369 struct pl330_xfer *next; 370 }; 371 372 /* The xfer callbacks are made with one of these arguments. */ 373 enum pl330_op_err { 374 /* The all xfers in the request were success. */ 375 PL330_ERR_NONE, 376 /* If req aborted due to global error. */ 377 PL330_ERR_ABORT, 378 /* If req failed due to problem with Channel. */ 379 PL330_ERR_FAIL, 380 }; 381 382 /* A request defining Scatter-Gather List ending with NULL xfer. */ 383 struct pl330_req { 384 enum pl330_reqtype rqtype; 385 /* Index of peripheral for the xfer. */ 386 unsigned peri:5; 387 /* Unique token for this xfer, set by the client. */ 388 void *token; 389 /* Callback to be called after xfer. */ 390 void (*xfer_cb)(void *token, enum pl330_op_err err); 391 /* If NULL, req will be done at last set parameters. */ 392 struct pl330_reqcfg *cfg; 393 /* Pointer to first xfer in the request. */ 394 struct pl330_xfer *x; 395 }; 396 397 /* 398 * To know the status of the channel and DMAC, the client 399 * provides a pointer to this structure. The PL330 core 400 * fills it with current information. 401 */ 402 struct pl330_chanstatus { 403 /* 404 * If the DMAC engine halted due to some error, 405 * the client should remove-add DMAC. 406 */ 407 bool dmac_halted; 408 /* 409 * If channel is halted due to some error, 410 * the client should ABORT/FLUSH and START the channel. 411 */ 412 bool faulting; 413 /* Location of last load */ 414 u32 src_addr; 415 /* Location of last store */ 416 u32 dst_addr; 417 /* 418 * Pointer to the currently active req, NULL if channel is 419 * inactive, even though the requests may be present. 420 */ 421 struct pl330_req *top_req; 422 /* Pointer to req waiting second in the queue if any. */ 423 struct pl330_req *wait_req; 424 }; 425 426 enum pl330_chan_op { 427 /* Start the channel */ 428 PL330_OP_START, 429 /* Abort the active xfer */ 430 PL330_OP_ABORT, 431 /* Stop xfer and flush queue */ 432 PL330_OP_FLUSH, 433 }; 434 435 struct _xfer_spec { 436 u32 ccr; 437 struct pl330_req *r; 438 struct pl330_xfer *x; 439 }; 440 441 enum dmamov_dst { 442 SAR = 0, 443 CCR, 444 DAR, 445 }; 446 447 enum pl330_dst { 448 SRC = 0, 449 DST, 450 }; 451 452 enum pl330_cond { 453 SINGLE, 454 BURST, 455 ALWAYS, 456 }; 457 458 struct _pl330_req { 459 u32 mc_bus; 460 void *mc_cpu; 461 /* Number of bytes taken to setup MC for the req */ 462 u32 mc_len; 463 struct pl330_req *r; 464 /* Hook to attach to DMAC's list of reqs with due callback */ 465 struct list_head rqd; 466 }; 467 468 /* ToBeDone for tasklet */ 469 struct _pl330_tbd { 470 bool reset_dmac; 471 bool reset_mngr; 472 u8 reset_chan; 473 }; 474 475 /* A DMAC Thread */ 476 struct pl330_thread { 477 u8 id; 478 int ev; 479 /* If the channel is not yet acquired by any client */ 480 bool free; 481 /* Parent DMAC */ 482 struct pl330_dmac *dmac; 483 /* Only two at a time */ 484 struct _pl330_req req[2]; 485 /* Index of the last enqueued request */ 486 unsigned lstenq; 487 /* Index of the last submitted request or -1 if the DMA is stopped */ 488 int req_running; 489 }; 490 491 enum pl330_dmac_state { 492 UNINIT, 493 INIT, 494 DYING, 495 }; 496 497 /* A DMAC */ 498 struct pl330_dmac { 499 spinlock_t lock; 500 /* Holds list of reqs with due callbacks */ 501 struct list_head req_done; 502 /* Pointer to platform specific stuff */ 503 struct pl330_info *pinfo; 504 /* Maximum possible events/irqs */ 505 int events[32]; 506 /* BUS address of MicroCode buffer */ 507 u32 mcode_bus; 508 /* CPU address of MicroCode buffer */ 509 void *mcode_cpu; 510 /* List of all Channel threads */ 511 struct pl330_thread *channels; 512 /* Pointer to the MANAGER thread */ 513 struct pl330_thread *manager; 514 /* To handle bad news in interrupt */ 515 struct tasklet_struct tasks; 516 struct _pl330_tbd dmac_tbd; 517 /* State of DMAC operation */ 518 enum pl330_dmac_state state; 519 }; 520 521 enum desc_status { 522 /* In the DMAC pool */ 523 FREE, 524 /* 525 * Allocted to some channel during prep_xxx 526 * Also may be sitting on the work_list. 527 */ 528 PREP, 529 /* 530 * Sitting on the work_list and already submitted 531 * to the PL330 core. Not more than two descriptors 532 * of a channel can be BUSY at any time. 533 */ 534 BUSY, 535 /* 536 * Sitting on the channel work_list but xfer done 537 * by PL330 core 538 */ 539 DONE, 540 }; 541 542 struct dma_pl330_chan { 543 /* Schedule desc completion */ 544 struct tasklet_struct task; 545 546 /* DMA-Engine Channel */ 547 struct dma_chan chan; 548 549 /* List of to be xfered descriptors */ 550 struct list_head work_list; 551 552 /* Pointer to the DMAC that manages this channel, 553 * NULL if the channel is available to be acquired. 554 * As the parent, this DMAC also provides descriptors 555 * to the channel. 556 */ 557 struct dma_pl330_dmac *dmac; 558 559 /* To protect channel manipulation */ 560 spinlock_t lock; 561 562 /* Token of a hardware channel thread of PL330 DMAC 563 * NULL if the channel is available to be acquired. 564 */ 565 void *pl330_chid; 566 567 /* For D-to-M and M-to-D channels */ 568 int burst_sz; /* the peripheral fifo width */ 569 int burst_len; /* the number of burst */ 570 dma_addr_t fifo_addr; 571 572 /* for cyclic capability */ 573 bool cyclic; 574 }; 575 576 struct dma_pl330_dmac { 577 struct pl330_info pif; 578 579 /* DMA-Engine Device */ 580 struct dma_device ddma; 581 582 /* Pool of descriptors available for the DMAC's channels */ 583 struct list_head desc_pool; 584 /* To protect desc_pool manipulation */ 585 spinlock_t pool_lock; 586 587 /* Peripheral channels connected to this DMAC */ 588 struct dma_pl330_chan *peripherals; /* keep at end */ 589 590 struct clk *clk; 591 }; 592 593 struct dma_pl330_desc { 594 /* To attach to a queue as child */ 595 struct list_head node; 596 597 /* Descriptor for the DMA Engine API */ 598 struct dma_async_tx_descriptor txd; 599 600 /* Xfer for PL330 core */ 601 struct pl330_xfer px; 602 603 struct pl330_reqcfg rqcfg; 604 struct pl330_req req; 605 606 enum desc_status status; 607 608 /* The channel which currently holds this desc */ 609 struct dma_pl330_chan *pchan; 610 }; 611 612 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 613 { 614 if (r && r->xfer_cb) 615 r->xfer_cb(r->token, err); 616 } 617 618 static inline bool _queue_empty(struct pl330_thread *thrd) 619 { 620 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 621 ? true : false; 622 } 623 624 static inline bool _queue_full(struct pl330_thread *thrd) 625 { 626 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 627 ? false : true; 628 } 629 630 static inline bool is_manager(struct pl330_thread *thrd) 631 { 632 struct pl330_dmac *pl330 = thrd->dmac; 633 634 /* MANAGER is indexed at the end */ 635 if (thrd->id == pl330->pinfo->pcfg.num_chan) 636 return true; 637 else 638 return false; 639 } 640 641 /* If manager of the thread is in Non-Secure mode */ 642 static inline bool _manager_ns(struct pl330_thread *thrd) 643 { 644 struct pl330_dmac *pl330 = thrd->dmac; 645 646 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 647 } 648 649 static inline u32 get_id(struct pl330_info *pi, u32 off) 650 { 651 void __iomem *regs = pi->base; 652 u32 id = 0; 653 654 id |= (readb(regs + off + 0x0) << 0); 655 id |= (readb(regs + off + 0x4) << 8); 656 id |= (readb(regs + off + 0x8) << 16); 657 id |= (readb(regs + off + 0xc) << 24); 658 659 return id; 660 } 661 662 static inline u32 get_revision(u32 periph_id) 663 { 664 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 665 } 666 667 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 668 enum pl330_dst da, u16 val) 669 { 670 if (dry_run) 671 return SZ_DMAADDH; 672 673 buf[0] = CMD_DMAADDH; 674 buf[0] |= (da << 1); 675 *((u16 *)&buf[1]) = val; 676 677 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 678 da == 1 ? "DA" : "SA", val); 679 680 return SZ_DMAADDH; 681 } 682 683 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 684 { 685 if (dry_run) 686 return SZ_DMAEND; 687 688 buf[0] = CMD_DMAEND; 689 690 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 691 692 return SZ_DMAEND; 693 } 694 695 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 696 { 697 if (dry_run) 698 return SZ_DMAFLUSHP; 699 700 buf[0] = CMD_DMAFLUSHP; 701 702 peri &= 0x1f; 703 peri <<= 3; 704 buf[1] = peri; 705 706 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 707 708 return SZ_DMAFLUSHP; 709 } 710 711 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 712 { 713 if (dry_run) 714 return SZ_DMALD; 715 716 buf[0] = CMD_DMALD; 717 718 if (cond == SINGLE) 719 buf[0] |= (0 << 1) | (1 << 0); 720 else if (cond == BURST) 721 buf[0] |= (1 << 1) | (1 << 0); 722 723 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 724 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 725 726 return SZ_DMALD; 727 } 728 729 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 730 enum pl330_cond cond, u8 peri) 731 { 732 if (dry_run) 733 return SZ_DMALDP; 734 735 buf[0] = CMD_DMALDP; 736 737 if (cond == BURST) 738 buf[0] |= (1 << 1); 739 740 peri &= 0x1f; 741 peri <<= 3; 742 buf[1] = peri; 743 744 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 745 cond == SINGLE ? 'S' : 'B', peri >> 3); 746 747 return SZ_DMALDP; 748 } 749 750 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 751 unsigned loop, u8 cnt) 752 { 753 if (dry_run) 754 return SZ_DMALP; 755 756 buf[0] = CMD_DMALP; 757 758 if (loop) 759 buf[0] |= (1 << 1); 760 761 cnt--; /* DMAC increments by 1 internally */ 762 buf[1] = cnt; 763 764 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 765 766 return SZ_DMALP; 767 } 768 769 struct _arg_LPEND { 770 enum pl330_cond cond; 771 bool forever; 772 unsigned loop; 773 u8 bjump; 774 }; 775 776 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 777 const struct _arg_LPEND *arg) 778 { 779 enum pl330_cond cond = arg->cond; 780 bool forever = arg->forever; 781 unsigned loop = arg->loop; 782 u8 bjump = arg->bjump; 783 784 if (dry_run) 785 return SZ_DMALPEND; 786 787 buf[0] = CMD_DMALPEND; 788 789 if (loop) 790 buf[0] |= (1 << 2); 791 792 if (!forever) 793 buf[0] |= (1 << 4); 794 795 if (cond == SINGLE) 796 buf[0] |= (0 << 1) | (1 << 0); 797 else if (cond == BURST) 798 buf[0] |= (1 << 1) | (1 << 0); 799 800 buf[1] = bjump; 801 802 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 803 forever ? "FE" : "END", 804 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 805 loop ? '1' : '0', 806 bjump); 807 808 return SZ_DMALPEND; 809 } 810 811 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 812 { 813 if (dry_run) 814 return SZ_DMAKILL; 815 816 buf[0] = CMD_DMAKILL; 817 818 return SZ_DMAKILL; 819 } 820 821 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 822 enum dmamov_dst dst, u32 val) 823 { 824 if (dry_run) 825 return SZ_DMAMOV; 826 827 buf[0] = CMD_DMAMOV; 828 buf[1] = dst; 829 *((u32 *)&buf[2]) = val; 830 831 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 832 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 833 834 return SZ_DMAMOV; 835 } 836 837 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 838 { 839 if (dry_run) 840 return SZ_DMANOP; 841 842 buf[0] = CMD_DMANOP; 843 844 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 845 846 return SZ_DMANOP; 847 } 848 849 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 850 { 851 if (dry_run) 852 return SZ_DMARMB; 853 854 buf[0] = CMD_DMARMB; 855 856 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 857 858 return SZ_DMARMB; 859 } 860 861 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 862 { 863 if (dry_run) 864 return SZ_DMASEV; 865 866 buf[0] = CMD_DMASEV; 867 868 ev &= 0x1f; 869 ev <<= 3; 870 buf[1] = ev; 871 872 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 873 874 return SZ_DMASEV; 875 } 876 877 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 878 { 879 if (dry_run) 880 return SZ_DMAST; 881 882 buf[0] = CMD_DMAST; 883 884 if (cond == SINGLE) 885 buf[0] |= (0 << 1) | (1 << 0); 886 else if (cond == BURST) 887 buf[0] |= (1 << 1) | (1 << 0); 888 889 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 890 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 891 892 return SZ_DMAST; 893 } 894 895 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 896 enum pl330_cond cond, u8 peri) 897 { 898 if (dry_run) 899 return SZ_DMASTP; 900 901 buf[0] = CMD_DMASTP; 902 903 if (cond == BURST) 904 buf[0] |= (1 << 1); 905 906 peri &= 0x1f; 907 peri <<= 3; 908 buf[1] = peri; 909 910 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 911 cond == SINGLE ? 'S' : 'B', peri >> 3); 912 913 return SZ_DMASTP; 914 } 915 916 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 917 { 918 if (dry_run) 919 return SZ_DMASTZ; 920 921 buf[0] = CMD_DMASTZ; 922 923 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 924 925 return SZ_DMASTZ; 926 } 927 928 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 929 unsigned invalidate) 930 { 931 if (dry_run) 932 return SZ_DMAWFE; 933 934 buf[0] = CMD_DMAWFE; 935 936 ev &= 0x1f; 937 ev <<= 3; 938 buf[1] = ev; 939 940 if (invalidate) 941 buf[1] |= (1 << 1); 942 943 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 944 ev >> 3, invalidate ? ", I" : ""); 945 946 return SZ_DMAWFE; 947 } 948 949 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 950 enum pl330_cond cond, u8 peri) 951 { 952 if (dry_run) 953 return SZ_DMAWFP; 954 955 buf[0] = CMD_DMAWFP; 956 957 if (cond == SINGLE) 958 buf[0] |= (0 << 1) | (0 << 0); 959 else if (cond == BURST) 960 buf[0] |= (1 << 1) | (0 << 0); 961 else 962 buf[0] |= (0 << 1) | (1 << 0); 963 964 peri &= 0x1f; 965 peri <<= 3; 966 buf[1] = peri; 967 968 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 969 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 970 971 return SZ_DMAWFP; 972 } 973 974 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 975 { 976 if (dry_run) 977 return SZ_DMAWMB; 978 979 buf[0] = CMD_DMAWMB; 980 981 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 982 983 return SZ_DMAWMB; 984 } 985 986 struct _arg_GO { 987 u8 chan; 988 u32 addr; 989 unsigned ns; 990 }; 991 992 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 993 const struct _arg_GO *arg) 994 { 995 u8 chan = arg->chan; 996 u32 addr = arg->addr; 997 unsigned ns = arg->ns; 998 999 if (dry_run) 1000 return SZ_DMAGO; 1001 1002 buf[0] = CMD_DMAGO; 1003 buf[0] |= (ns << 1); 1004 1005 buf[1] = chan & 0x7; 1006 1007 *((u32 *)&buf[2]) = addr; 1008 1009 return SZ_DMAGO; 1010 } 1011 1012 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1013 1014 /* Returns Time-Out */ 1015 static bool _until_dmac_idle(struct pl330_thread *thrd) 1016 { 1017 void __iomem *regs = thrd->dmac->pinfo->base; 1018 unsigned long loops = msecs_to_loops(5); 1019 1020 do { 1021 /* Until Manager is Idle */ 1022 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1023 break; 1024 1025 cpu_relax(); 1026 } while (--loops); 1027 1028 if (!loops) 1029 return true; 1030 1031 return false; 1032 } 1033 1034 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1035 u8 insn[], bool as_manager) 1036 { 1037 void __iomem *regs = thrd->dmac->pinfo->base; 1038 u32 val; 1039 1040 val = (insn[0] << 16) | (insn[1] << 24); 1041 if (!as_manager) { 1042 val |= (1 << 0); 1043 val |= (thrd->id << 8); /* Channel Number */ 1044 } 1045 writel(val, regs + DBGINST0); 1046 1047 val = *((u32 *)&insn[2]); 1048 writel(val, regs + DBGINST1); 1049 1050 /* If timed out due to halted state-machine */ 1051 if (_until_dmac_idle(thrd)) { 1052 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1053 return; 1054 } 1055 1056 /* Get going */ 1057 writel(0, regs + DBGCMD); 1058 } 1059 1060 /* 1061 * Mark a _pl330_req as free. 1062 * We do it by writing DMAEND as the first instruction 1063 * because no valid request is going to have DMAEND as 1064 * its first instruction to execute. 1065 */ 1066 static void mark_free(struct pl330_thread *thrd, int idx) 1067 { 1068 struct _pl330_req *req = &thrd->req[idx]; 1069 1070 _emit_END(0, req->mc_cpu); 1071 req->mc_len = 0; 1072 1073 thrd->req_running = -1; 1074 } 1075 1076 static inline u32 _state(struct pl330_thread *thrd) 1077 { 1078 void __iomem *regs = thrd->dmac->pinfo->base; 1079 u32 val; 1080 1081 if (is_manager(thrd)) 1082 val = readl(regs + DS) & 0xf; 1083 else 1084 val = readl(regs + CS(thrd->id)) & 0xf; 1085 1086 switch (val) { 1087 case DS_ST_STOP: 1088 return PL330_STATE_STOPPED; 1089 case DS_ST_EXEC: 1090 return PL330_STATE_EXECUTING; 1091 case DS_ST_CMISS: 1092 return PL330_STATE_CACHEMISS; 1093 case DS_ST_UPDTPC: 1094 return PL330_STATE_UPDTPC; 1095 case DS_ST_WFE: 1096 return PL330_STATE_WFE; 1097 case DS_ST_FAULT: 1098 return PL330_STATE_FAULTING; 1099 case DS_ST_ATBRR: 1100 if (is_manager(thrd)) 1101 return PL330_STATE_INVALID; 1102 else 1103 return PL330_STATE_ATBARRIER; 1104 case DS_ST_QBUSY: 1105 if (is_manager(thrd)) 1106 return PL330_STATE_INVALID; 1107 else 1108 return PL330_STATE_QUEUEBUSY; 1109 case DS_ST_WFP: 1110 if (is_manager(thrd)) 1111 return PL330_STATE_INVALID; 1112 else 1113 return PL330_STATE_WFP; 1114 case DS_ST_KILL: 1115 if (is_manager(thrd)) 1116 return PL330_STATE_INVALID; 1117 else 1118 return PL330_STATE_KILLING; 1119 case DS_ST_CMPLT: 1120 if (is_manager(thrd)) 1121 return PL330_STATE_INVALID; 1122 else 1123 return PL330_STATE_COMPLETING; 1124 case DS_ST_FLTCMP: 1125 if (is_manager(thrd)) 1126 return PL330_STATE_INVALID; 1127 else 1128 return PL330_STATE_FAULT_COMPLETING; 1129 default: 1130 return PL330_STATE_INVALID; 1131 } 1132 } 1133 1134 static void _stop(struct pl330_thread *thrd) 1135 { 1136 void __iomem *regs = thrd->dmac->pinfo->base; 1137 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1138 1139 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1140 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1141 1142 /* Return if nothing needs to be done */ 1143 if (_state(thrd) == PL330_STATE_COMPLETING 1144 || _state(thrd) == PL330_STATE_KILLING 1145 || _state(thrd) == PL330_STATE_STOPPED) 1146 return; 1147 1148 _emit_KILL(0, insn); 1149 1150 /* Stop generating interrupts for SEV */ 1151 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1152 1153 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1154 } 1155 1156 /* Start doing req 'idx' of thread 'thrd' */ 1157 static bool _trigger(struct pl330_thread *thrd) 1158 { 1159 void __iomem *regs = thrd->dmac->pinfo->base; 1160 struct _pl330_req *req; 1161 struct pl330_req *r; 1162 struct _arg_GO go; 1163 unsigned ns; 1164 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1165 int idx; 1166 1167 /* Return if already ACTIVE */ 1168 if (_state(thrd) != PL330_STATE_STOPPED) 1169 return true; 1170 1171 idx = 1 - thrd->lstenq; 1172 if (!IS_FREE(&thrd->req[idx])) 1173 req = &thrd->req[idx]; 1174 else { 1175 idx = thrd->lstenq; 1176 if (!IS_FREE(&thrd->req[idx])) 1177 req = &thrd->req[idx]; 1178 else 1179 req = NULL; 1180 } 1181 1182 /* Return if no request */ 1183 if (!req || !req->r) 1184 return true; 1185 1186 r = req->r; 1187 1188 if (r->cfg) 1189 ns = r->cfg->nonsecure ? 1 : 0; 1190 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1191 ns = 1; 1192 else 1193 ns = 0; 1194 1195 /* See 'Abort Sources' point-4 at Page 2-25 */ 1196 if (_manager_ns(thrd) && !ns) 1197 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1198 __func__, __LINE__); 1199 1200 go.chan = thrd->id; 1201 go.addr = req->mc_bus; 1202 go.ns = ns; 1203 _emit_GO(0, insn, &go); 1204 1205 /* Set to generate interrupts for SEV */ 1206 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1207 1208 /* Only manager can execute GO */ 1209 _execute_DBGINSN(thrd, insn, true); 1210 1211 thrd->req_running = idx; 1212 1213 return true; 1214 } 1215 1216 static bool _start(struct pl330_thread *thrd) 1217 { 1218 switch (_state(thrd)) { 1219 case PL330_STATE_FAULT_COMPLETING: 1220 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1221 1222 if (_state(thrd) == PL330_STATE_KILLING) 1223 UNTIL(thrd, PL330_STATE_STOPPED) 1224 1225 case PL330_STATE_FAULTING: 1226 _stop(thrd); 1227 1228 case PL330_STATE_KILLING: 1229 case PL330_STATE_COMPLETING: 1230 UNTIL(thrd, PL330_STATE_STOPPED) 1231 1232 case PL330_STATE_STOPPED: 1233 return _trigger(thrd); 1234 1235 case PL330_STATE_WFP: 1236 case PL330_STATE_QUEUEBUSY: 1237 case PL330_STATE_ATBARRIER: 1238 case PL330_STATE_UPDTPC: 1239 case PL330_STATE_CACHEMISS: 1240 case PL330_STATE_EXECUTING: 1241 return true; 1242 1243 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1244 default: 1245 return false; 1246 } 1247 } 1248 1249 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1250 const struct _xfer_spec *pxs, int cyc) 1251 { 1252 int off = 0; 1253 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1254 1255 /* check lock-up free version */ 1256 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1257 while (cyc--) { 1258 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1259 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1260 } 1261 } else { 1262 while (cyc--) { 1263 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1264 off += _emit_RMB(dry_run, &buf[off]); 1265 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1266 off += _emit_WMB(dry_run, &buf[off]); 1267 } 1268 } 1269 1270 return off; 1271 } 1272 1273 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1274 const struct _xfer_spec *pxs, int cyc) 1275 { 1276 int off = 0; 1277 1278 while (cyc--) { 1279 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1280 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1281 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1282 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1283 } 1284 1285 return off; 1286 } 1287 1288 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1289 const struct _xfer_spec *pxs, int cyc) 1290 { 1291 int off = 0; 1292 1293 while (cyc--) { 1294 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1295 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1296 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1297 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1298 } 1299 1300 return off; 1301 } 1302 1303 static int _bursts(unsigned dry_run, u8 buf[], 1304 const struct _xfer_spec *pxs, int cyc) 1305 { 1306 int off = 0; 1307 1308 switch (pxs->r->rqtype) { 1309 case MEMTODEV: 1310 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1311 break; 1312 case DEVTOMEM: 1313 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1314 break; 1315 case MEMTOMEM: 1316 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1317 break; 1318 default: 1319 off += 0x40000000; /* Scare off the Client */ 1320 break; 1321 } 1322 1323 return off; 1324 } 1325 1326 /* Returns bytes consumed and updates bursts */ 1327 static inline int _loop(unsigned dry_run, u8 buf[], 1328 unsigned long *bursts, const struct _xfer_spec *pxs) 1329 { 1330 int cyc, cycmax, szlp, szlpend, szbrst, off; 1331 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1332 struct _arg_LPEND lpend; 1333 1334 /* Max iterations possible in DMALP is 256 */ 1335 if (*bursts >= 256*256) { 1336 lcnt1 = 256; 1337 lcnt0 = 256; 1338 cyc = *bursts / lcnt1 / lcnt0; 1339 } else if (*bursts > 256) { 1340 lcnt1 = 256; 1341 lcnt0 = *bursts / lcnt1; 1342 cyc = 1; 1343 } else { 1344 lcnt1 = *bursts; 1345 lcnt0 = 0; 1346 cyc = 1; 1347 } 1348 1349 szlp = _emit_LP(1, buf, 0, 0); 1350 szbrst = _bursts(1, buf, pxs, 1); 1351 1352 lpend.cond = ALWAYS; 1353 lpend.forever = false; 1354 lpend.loop = 0; 1355 lpend.bjump = 0; 1356 szlpend = _emit_LPEND(1, buf, &lpend); 1357 1358 if (lcnt0) { 1359 szlp *= 2; 1360 szlpend *= 2; 1361 } 1362 1363 /* 1364 * Max bursts that we can unroll due to limit on the 1365 * size of backward jump that can be encoded in DMALPEND 1366 * which is 8-bits and hence 255 1367 */ 1368 cycmax = (255 - (szlp + szlpend)) / szbrst; 1369 1370 cyc = (cycmax < cyc) ? cycmax : cyc; 1371 1372 off = 0; 1373 1374 if (lcnt0) { 1375 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1376 ljmp0 = off; 1377 } 1378 1379 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1380 ljmp1 = off; 1381 1382 off += _bursts(dry_run, &buf[off], pxs, cyc); 1383 1384 lpend.cond = ALWAYS; 1385 lpend.forever = false; 1386 lpend.loop = 1; 1387 lpend.bjump = off - ljmp1; 1388 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1389 1390 if (lcnt0) { 1391 lpend.cond = ALWAYS; 1392 lpend.forever = false; 1393 lpend.loop = 0; 1394 lpend.bjump = off - ljmp0; 1395 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1396 } 1397 1398 *bursts = lcnt1 * cyc; 1399 if (lcnt0) 1400 *bursts *= lcnt0; 1401 1402 return off; 1403 } 1404 1405 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1406 const struct _xfer_spec *pxs) 1407 { 1408 struct pl330_xfer *x = pxs->x; 1409 u32 ccr = pxs->ccr; 1410 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1411 int off = 0; 1412 1413 while (bursts) { 1414 c = bursts; 1415 off += _loop(dry_run, &buf[off], &c, pxs); 1416 bursts -= c; 1417 } 1418 1419 return off; 1420 } 1421 1422 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1423 const struct _xfer_spec *pxs) 1424 { 1425 struct pl330_xfer *x = pxs->x; 1426 int off = 0; 1427 1428 /* DMAMOV SAR, x->src_addr */ 1429 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1430 /* DMAMOV DAR, x->dst_addr */ 1431 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1432 1433 /* Setup Loop(s) */ 1434 off += _setup_loops(dry_run, &buf[off], pxs); 1435 1436 return off; 1437 } 1438 1439 /* 1440 * A req is a sequence of one or more xfer units. 1441 * Returns the number of bytes taken to setup the MC for the req. 1442 */ 1443 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1444 unsigned index, struct _xfer_spec *pxs) 1445 { 1446 struct _pl330_req *req = &thrd->req[index]; 1447 struct pl330_xfer *x; 1448 u8 *buf = req->mc_cpu; 1449 int off = 0; 1450 1451 PL330_DBGMC_START(req->mc_bus); 1452 1453 /* DMAMOV CCR, ccr */ 1454 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1455 1456 x = pxs->r->x; 1457 do { 1458 /* Error if xfer length is not aligned at burst size */ 1459 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1460 return -EINVAL; 1461 1462 pxs->x = x; 1463 off += _setup_xfer(dry_run, &buf[off], pxs); 1464 1465 x = x->next; 1466 } while (x); 1467 1468 /* DMASEV peripheral/event */ 1469 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1470 /* DMAEND */ 1471 off += _emit_END(dry_run, &buf[off]); 1472 1473 return off; 1474 } 1475 1476 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1477 { 1478 u32 ccr = 0; 1479 1480 if (rqc->src_inc) 1481 ccr |= CC_SRCINC; 1482 1483 if (rqc->dst_inc) 1484 ccr |= CC_DSTINC; 1485 1486 /* We set same protection levels for Src and DST for now */ 1487 if (rqc->privileged) 1488 ccr |= CC_SRCPRI | CC_DSTPRI; 1489 if (rqc->nonsecure) 1490 ccr |= CC_SRCNS | CC_DSTNS; 1491 if (rqc->insnaccess) 1492 ccr |= CC_SRCIA | CC_DSTIA; 1493 1494 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1495 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1496 1497 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1498 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1499 1500 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1501 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1502 1503 ccr |= (rqc->swap << CC_SWAP_SHFT); 1504 1505 return ccr; 1506 } 1507 1508 static inline bool _is_valid(u32 ccr) 1509 { 1510 enum pl330_dstcachectrl dcctl; 1511 enum pl330_srccachectrl scctl; 1512 1513 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1514 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1515 1516 if (dcctl == DINVALID1 || dcctl == DINVALID2 1517 || scctl == SINVALID1 || scctl == SINVALID2) 1518 return false; 1519 else 1520 return true; 1521 } 1522 1523 /* 1524 * Submit a list of xfers after which the client wants notification. 1525 * Client is not notified after each xfer unit, just once after all 1526 * xfer units are done or some error occurs. 1527 */ 1528 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1529 { 1530 struct pl330_thread *thrd = ch_id; 1531 struct pl330_dmac *pl330; 1532 struct pl330_info *pi; 1533 struct _xfer_spec xs; 1534 unsigned long flags; 1535 void __iomem *regs; 1536 unsigned idx; 1537 u32 ccr; 1538 int ret = 0; 1539 1540 /* No Req or Unacquired Channel or DMAC */ 1541 if (!r || !thrd || thrd->free) 1542 return -EINVAL; 1543 1544 pl330 = thrd->dmac; 1545 pi = pl330->pinfo; 1546 regs = pi->base; 1547 1548 if (pl330->state == DYING 1549 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1550 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1551 __func__, __LINE__); 1552 return -EAGAIN; 1553 } 1554 1555 /* If request for non-existing peripheral */ 1556 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1557 dev_info(thrd->dmac->pinfo->dev, 1558 "%s:%d Invalid peripheral(%u)!\n", 1559 __func__, __LINE__, r->peri); 1560 return -EINVAL; 1561 } 1562 1563 spin_lock_irqsave(&pl330->lock, flags); 1564 1565 if (_queue_full(thrd)) { 1566 ret = -EAGAIN; 1567 goto xfer_exit; 1568 } 1569 1570 /* Prefer Secure Channel */ 1571 if (!_manager_ns(thrd)) 1572 r->cfg->nonsecure = 0; 1573 else 1574 r->cfg->nonsecure = 1; 1575 1576 /* Use last settings, if not provided */ 1577 if (r->cfg) 1578 ccr = _prepare_ccr(r->cfg); 1579 else 1580 ccr = readl(regs + CC(thrd->id)); 1581 1582 /* If this req doesn't have valid xfer settings */ 1583 if (!_is_valid(ccr)) { 1584 ret = -EINVAL; 1585 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1586 __func__, __LINE__, ccr); 1587 goto xfer_exit; 1588 } 1589 1590 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1591 1592 xs.ccr = ccr; 1593 xs.r = r; 1594 1595 /* First dry run to check if req is acceptable */ 1596 ret = _setup_req(1, thrd, idx, &xs); 1597 if (ret < 0) 1598 goto xfer_exit; 1599 1600 if (ret > pi->mcbufsz / 2) { 1601 dev_info(thrd->dmac->pinfo->dev, 1602 "%s:%d Trying increasing mcbufsz\n", 1603 __func__, __LINE__); 1604 ret = -ENOMEM; 1605 goto xfer_exit; 1606 } 1607 1608 /* Hook the request */ 1609 thrd->lstenq = idx; 1610 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1611 thrd->req[idx].r = r; 1612 1613 ret = 0; 1614 1615 xfer_exit: 1616 spin_unlock_irqrestore(&pl330->lock, flags); 1617 1618 return ret; 1619 } 1620 1621 static void pl330_dotask(unsigned long data) 1622 { 1623 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1624 struct pl330_info *pi = pl330->pinfo; 1625 unsigned long flags; 1626 int i; 1627 1628 spin_lock_irqsave(&pl330->lock, flags); 1629 1630 /* The DMAC itself gone nuts */ 1631 if (pl330->dmac_tbd.reset_dmac) { 1632 pl330->state = DYING; 1633 /* Reset the manager too */ 1634 pl330->dmac_tbd.reset_mngr = true; 1635 /* Clear the reset flag */ 1636 pl330->dmac_tbd.reset_dmac = false; 1637 } 1638 1639 if (pl330->dmac_tbd.reset_mngr) { 1640 _stop(pl330->manager); 1641 /* Reset all channels */ 1642 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1643 /* Clear the reset flag */ 1644 pl330->dmac_tbd.reset_mngr = false; 1645 } 1646 1647 for (i = 0; i < pi->pcfg.num_chan; i++) { 1648 1649 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1650 struct pl330_thread *thrd = &pl330->channels[i]; 1651 void __iomem *regs = pi->base; 1652 enum pl330_op_err err; 1653 1654 _stop(thrd); 1655 1656 if (readl(regs + FSC) & (1 << thrd->id)) 1657 err = PL330_ERR_FAIL; 1658 else 1659 err = PL330_ERR_ABORT; 1660 1661 spin_unlock_irqrestore(&pl330->lock, flags); 1662 1663 _callback(thrd->req[1 - thrd->lstenq].r, err); 1664 _callback(thrd->req[thrd->lstenq].r, err); 1665 1666 spin_lock_irqsave(&pl330->lock, flags); 1667 1668 thrd->req[0].r = NULL; 1669 thrd->req[1].r = NULL; 1670 mark_free(thrd, 0); 1671 mark_free(thrd, 1); 1672 1673 /* Clear the reset flag */ 1674 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1675 } 1676 } 1677 1678 spin_unlock_irqrestore(&pl330->lock, flags); 1679 1680 return; 1681 } 1682 1683 /* Returns 1 if state was updated, 0 otherwise */ 1684 static int pl330_update(const struct pl330_info *pi) 1685 { 1686 struct _pl330_req *rqdone; 1687 struct pl330_dmac *pl330; 1688 unsigned long flags; 1689 void __iomem *regs; 1690 u32 val; 1691 int id, ev, ret = 0; 1692 1693 if (!pi || !pi->pl330_data) 1694 return 0; 1695 1696 regs = pi->base; 1697 pl330 = pi->pl330_data; 1698 1699 spin_lock_irqsave(&pl330->lock, flags); 1700 1701 val = readl(regs + FSM) & 0x1; 1702 if (val) 1703 pl330->dmac_tbd.reset_mngr = true; 1704 else 1705 pl330->dmac_tbd.reset_mngr = false; 1706 1707 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1708 pl330->dmac_tbd.reset_chan |= val; 1709 if (val) { 1710 int i = 0; 1711 while (i < pi->pcfg.num_chan) { 1712 if (val & (1 << i)) { 1713 dev_info(pi->dev, 1714 "Reset Channel-%d\t CS-%x FTC-%x\n", 1715 i, readl(regs + CS(i)), 1716 readl(regs + FTC(i))); 1717 _stop(&pl330->channels[i]); 1718 } 1719 i++; 1720 } 1721 } 1722 1723 /* Check which event happened i.e, thread notified */ 1724 val = readl(regs + ES); 1725 if (pi->pcfg.num_events < 32 1726 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1727 pl330->dmac_tbd.reset_dmac = true; 1728 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1729 ret = 1; 1730 goto updt_exit; 1731 } 1732 1733 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1734 if (val & (1 << ev)) { /* Event occurred */ 1735 struct pl330_thread *thrd; 1736 u32 inten = readl(regs + INTEN); 1737 int active; 1738 1739 /* Clear the event */ 1740 if (inten & (1 << ev)) 1741 writel(1 << ev, regs + INTCLR); 1742 1743 ret = 1; 1744 1745 id = pl330->events[ev]; 1746 1747 thrd = &pl330->channels[id]; 1748 1749 active = thrd->req_running; 1750 if (active == -1) /* Aborted */ 1751 continue; 1752 1753 rqdone = &thrd->req[active]; 1754 mark_free(thrd, active); 1755 1756 /* Get going again ASAP */ 1757 _start(thrd); 1758 1759 /* For now, just make a list of callbacks to be done */ 1760 list_add_tail(&rqdone->rqd, &pl330->req_done); 1761 } 1762 } 1763 1764 /* Now that we are in no hurry, do the callbacks */ 1765 while (!list_empty(&pl330->req_done)) { 1766 struct pl330_req *r; 1767 1768 rqdone = container_of(pl330->req_done.next, 1769 struct _pl330_req, rqd); 1770 1771 list_del_init(&rqdone->rqd); 1772 1773 /* Detach the req */ 1774 r = rqdone->r; 1775 rqdone->r = NULL; 1776 1777 spin_unlock_irqrestore(&pl330->lock, flags); 1778 _callback(r, PL330_ERR_NONE); 1779 spin_lock_irqsave(&pl330->lock, flags); 1780 } 1781 1782 updt_exit: 1783 spin_unlock_irqrestore(&pl330->lock, flags); 1784 1785 if (pl330->dmac_tbd.reset_dmac 1786 || pl330->dmac_tbd.reset_mngr 1787 || pl330->dmac_tbd.reset_chan) { 1788 ret = 1; 1789 tasklet_schedule(&pl330->tasks); 1790 } 1791 1792 return ret; 1793 } 1794 1795 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1796 { 1797 struct pl330_thread *thrd = ch_id; 1798 struct pl330_dmac *pl330; 1799 unsigned long flags; 1800 int ret = 0, active; 1801 1802 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1803 return -EINVAL; 1804 1805 pl330 = thrd->dmac; 1806 active = thrd->req_running; 1807 1808 spin_lock_irqsave(&pl330->lock, flags); 1809 1810 switch (op) { 1811 case PL330_OP_FLUSH: 1812 /* Make sure the channel is stopped */ 1813 _stop(thrd); 1814 1815 thrd->req[0].r = NULL; 1816 thrd->req[1].r = NULL; 1817 mark_free(thrd, 0); 1818 mark_free(thrd, 1); 1819 break; 1820 1821 case PL330_OP_ABORT: 1822 /* Make sure the channel is stopped */ 1823 _stop(thrd); 1824 1825 /* ABORT is only for the active req */ 1826 if (active == -1) 1827 break; 1828 1829 thrd->req[active].r = NULL; 1830 mark_free(thrd, active); 1831 1832 /* Start the next */ 1833 case PL330_OP_START: 1834 if ((active == -1) && !_start(thrd)) 1835 ret = -EIO; 1836 break; 1837 1838 default: 1839 ret = -EINVAL; 1840 } 1841 1842 spin_unlock_irqrestore(&pl330->lock, flags); 1843 return ret; 1844 } 1845 1846 /* Reserve an event */ 1847 static inline int _alloc_event(struct pl330_thread *thrd) 1848 { 1849 struct pl330_dmac *pl330 = thrd->dmac; 1850 struct pl330_info *pi = pl330->pinfo; 1851 int ev; 1852 1853 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1854 if (pl330->events[ev] == -1) { 1855 pl330->events[ev] = thrd->id; 1856 return ev; 1857 } 1858 1859 return -1; 1860 } 1861 1862 static bool _chan_ns(const struct pl330_info *pi, int i) 1863 { 1864 return pi->pcfg.irq_ns & (1 << i); 1865 } 1866 1867 /* Upon success, returns IdentityToken for the 1868 * allocated channel, NULL otherwise. 1869 */ 1870 static void *pl330_request_channel(const struct pl330_info *pi) 1871 { 1872 struct pl330_thread *thrd = NULL; 1873 struct pl330_dmac *pl330; 1874 unsigned long flags; 1875 int chans, i; 1876 1877 if (!pi || !pi->pl330_data) 1878 return NULL; 1879 1880 pl330 = pi->pl330_data; 1881 1882 if (pl330->state == DYING) 1883 return NULL; 1884 1885 chans = pi->pcfg.num_chan; 1886 1887 spin_lock_irqsave(&pl330->lock, flags); 1888 1889 for (i = 0; i < chans; i++) { 1890 thrd = &pl330->channels[i]; 1891 if ((thrd->free) && (!_manager_ns(thrd) || 1892 _chan_ns(pi, i))) { 1893 thrd->ev = _alloc_event(thrd); 1894 if (thrd->ev >= 0) { 1895 thrd->free = false; 1896 thrd->lstenq = 1; 1897 thrd->req[0].r = NULL; 1898 mark_free(thrd, 0); 1899 thrd->req[1].r = NULL; 1900 mark_free(thrd, 1); 1901 break; 1902 } 1903 } 1904 thrd = NULL; 1905 } 1906 1907 spin_unlock_irqrestore(&pl330->lock, flags); 1908 1909 return thrd; 1910 } 1911 1912 /* Release an event */ 1913 static inline void _free_event(struct pl330_thread *thrd, int ev) 1914 { 1915 struct pl330_dmac *pl330 = thrd->dmac; 1916 struct pl330_info *pi = pl330->pinfo; 1917 1918 /* If the event is valid and was held by the thread */ 1919 if (ev >= 0 && ev < pi->pcfg.num_events 1920 && pl330->events[ev] == thrd->id) 1921 pl330->events[ev] = -1; 1922 } 1923 1924 static void pl330_release_channel(void *ch_id) 1925 { 1926 struct pl330_thread *thrd = ch_id; 1927 struct pl330_dmac *pl330; 1928 unsigned long flags; 1929 1930 if (!thrd || thrd->free) 1931 return; 1932 1933 _stop(thrd); 1934 1935 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1936 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1937 1938 pl330 = thrd->dmac; 1939 1940 spin_lock_irqsave(&pl330->lock, flags); 1941 _free_event(thrd, thrd->ev); 1942 thrd->free = true; 1943 spin_unlock_irqrestore(&pl330->lock, flags); 1944 } 1945 1946 /* Initialize the structure for PL330 configuration, that can be used 1947 * by the client driver the make best use of the DMAC 1948 */ 1949 static void read_dmac_config(struct pl330_info *pi) 1950 { 1951 void __iomem *regs = pi->base; 1952 u32 val; 1953 1954 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1955 val &= CRD_DATA_WIDTH_MASK; 1956 pi->pcfg.data_bus_width = 8 * (1 << val); 1957 1958 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1959 val &= CRD_DATA_BUFF_MASK; 1960 pi->pcfg.data_buf_dep = val + 1; 1961 1962 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1963 val &= CR0_NUM_CHANS_MASK; 1964 val += 1; 1965 pi->pcfg.num_chan = val; 1966 1967 val = readl(regs + CR0); 1968 if (val & CR0_PERIPH_REQ_SET) { 1969 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1970 val += 1; 1971 pi->pcfg.num_peri = val; 1972 pi->pcfg.peri_ns = readl(regs + CR4); 1973 } else { 1974 pi->pcfg.num_peri = 0; 1975 } 1976 1977 val = readl(regs + CR0); 1978 if (val & CR0_BOOT_MAN_NS) 1979 pi->pcfg.mode |= DMAC_MODE_NS; 1980 else 1981 pi->pcfg.mode &= ~DMAC_MODE_NS; 1982 1983 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1984 val &= CR0_NUM_EVENTS_MASK; 1985 val += 1; 1986 pi->pcfg.num_events = val; 1987 1988 pi->pcfg.irq_ns = readl(regs + CR3); 1989 1990 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1991 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1992 } 1993 1994 static inline void _reset_thread(struct pl330_thread *thrd) 1995 { 1996 struct pl330_dmac *pl330 = thrd->dmac; 1997 struct pl330_info *pi = pl330->pinfo; 1998 1999 thrd->req[0].mc_cpu = pl330->mcode_cpu 2000 + (thrd->id * pi->mcbufsz); 2001 thrd->req[0].mc_bus = pl330->mcode_bus 2002 + (thrd->id * pi->mcbufsz); 2003 thrd->req[0].r = NULL; 2004 mark_free(thrd, 0); 2005 2006 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2007 + pi->mcbufsz / 2; 2008 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2009 + pi->mcbufsz / 2; 2010 thrd->req[1].r = NULL; 2011 mark_free(thrd, 1); 2012 } 2013 2014 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2015 { 2016 struct pl330_info *pi = pl330->pinfo; 2017 int chans = pi->pcfg.num_chan; 2018 struct pl330_thread *thrd; 2019 int i; 2020 2021 /* Allocate 1 Manager and 'chans' Channel threads */ 2022 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2023 GFP_KERNEL); 2024 if (!pl330->channels) 2025 return -ENOMEM; 2026 2027 /* Init Channel threads */ 2028 for (i = 0; i < chans; i++) { 2029 thrd = &pl330->channels[i]; 2030 thrd->id = i; 2031 thrd->dmac = pl330; 2032 _reset_thread(thrd); 2033 thrd->free = true; 2034 } 2035 2036 /* MANAGER is indexed at the end */ 2037 thrd = &pl330->channels[chans]; 2038 thrd->id = chans; 2039 thrd->dmac = pl330; 2040 thrd->free = false; 2041 pl330->manager = thrd; 2042 2043 return 0; 2044 } 2045 2046 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2047 { 2048 struct pl330_info *pi = pl330->pinfo; 2049 int chans = pi->pcfg.num_chan; 2050 int ret; 2051 2052 /* 2053 * Alloc MicroCode buffer for 'chans' Channel threads. 2054 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2055 */ 2056 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2057 chans * pi->mcbufsz, 2058 &pl330->mcode_bus, GFP_KERNEL); 2059 if (!pl330->mcode_cpu) { 2060 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2061 __func__, __LINE__); 2062 return -ENOMEM; 2063 } 2064 2065 ret = dmac_alloc_threads(pl330); 2066 if (ret) { 2067 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2068 __func__, __LINE__); 2069 dma_free_coherent(pi->dev, 2070 chans * pi->mcbufsz, 2071 pl330->mcode_cpu, pl330->mcode_bus); 2072 return ret; 2073 } 2074 2075 return 0; 2076 } 2077 2078 static int pl330_add(struct pl330_info *pi) 2079 { 2080 struct pl330_dmac *pl330; 2081 void __iomem *regs; 2082 int i, ret; 2083 2084 if (!pi || !pi->dev) 2085 return -EINVAL; 2086 2087 /* If already added */ 2088 if (pi->pl330_data) 2089 return -EINVAL; 2090 2091 /* 2092 * If the SoC can perform reset on the DMAC, then do it 2093 * before reading its configuration. 2094 */ 2095 if (pi->dmac_reset) 2096 pi->dmac_reset(pi); 2097 2098 regs = pi->base; 2099 2100 /* Check if we can handle this DMAC */ 2101 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2102 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2103 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2104 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2105 return -EINVAL; 2106 } 2107 2108 /* Read the configuration of the DMAC */ 2109 read_dmac_config(pi); 2110 2111 if (pi->pcfg.num_events == 0) { 2112 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2113 __func__, __LINE__); 2114 return -EINVAL; 2115 } 2116 2117 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2118 if (!pl330) { 2119 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2120 __func__, __LINE__); 2121 return -ENOMEM; 2122 } 2123 2124 /* Assign the info structure and private data */ 2125 pl330->pinfo = pi; 2126 pi->pl330_data = pl330; 2127 2128 spin_lock_init(&pl330->lock); 2129 2130 INIT_LIST_HEAD(&pl330->req_done); 2131 2132 /* Use default MC buffer size if not provided */ 2133 if (!pi->mcbufsz) 2134 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2135 2136 /* Mark all events as free */ 2137 for (i = 0; i < pi->pcfg.num_events; i++) 2138 pl330->events[i] = -1; 2139 2140 /* Allocate resources needed by the DMAC */ 2141 ret = dmac_alloc_resources(pl330); 2142 if (ret) { 2143 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2144 kfree(pl330); 2145 return ret; 2146 } 2147 2148 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2149 2150 pl330->state = INIT; 2151 2152 return 0; 2153 } 2154 2155 static int dmac_free_threads(struct pl330_dmac *pl330) 2156 { 2157 struct pl330_info *pi = pl330->pinfo; 2158 int chans = pi->pcfg.num_chan; 2159 struct pl330_thread *thrd; 2160 int i; 2161 2162 /* Release Channel threads */ 2163 for (i = 0; i < chans; i++) { 2164 thrd = &pl330->channels[i]; 2165 pl330_release_channel((void *)thrd); 2166 } 2167 2168 /* Free memory */ 2169 kfree(pl330->channels); 2170 2171 return 0; 2172 } 2173 2174 static void dmac_free_resources(struct pl330_dmac *pl330) 2175 { 2176 struct pl330_info *pi = pl330->pinfo; 2177 int chans = pi->pcfg.num_chan; 2178 2179 dmac_free_threads(pl330); 2180 2181 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2182 pl330->mcode_cpu, pl330->mcode_bus); 2183 } 2184 2185 static void pl330_del(struct pl330_info *pi) 2186 { 2187 struct pl330_dmac *pl330; 2188 2189 if (!pi || !pi->pl330_data) 2190 return; 2191 2192 pl330 = pi->pl330_data; 2193 2194 pl330->state = UNINIT; 2195 2196 tasklet_kill(&pl330->tasks); 2197 2198 /* Free DMAC resources */ 2199 dmac_free_resources(pl330); 2200 2201 kfree(pl330); 2202 pi->pl330_data = NULL; 2203 } 2204 2205 /* forward declaration */ 2206 static struct amba_driver pl330_driver; 2207 2208 static inline struct dma_pl330_chan * 2209 to_pchan(struct dma_chan *ch) 2210 { 2211 if (!ch) 2212 return NULL; 2213 2214 return container_of(ch, struct dma_pl330_chan, chan); 2215 } 2216 2217 static inline struct dma_pl330_desc * 2218 to_desc(struct dma_async_tx_descriptor *tx) 2219 { 2220 return container_of(tx, struct dma_pl330_desc, txd); 2221 } 2222 2223 static inline void free_desc_list(struct list_head *list) 2224 { 2225 struct dma_pl330_dmac *pdmac; 2226 struct dma_pl330_desc *desc; 2227 struct dma_pl330_chan *pch = NULL; 2228 unsigned long flags; 2229 2230 /* Finish off the work list */ 2231 list_for_each_entry(desc, list, node) { 2232 dma_async_tx_callback callback; 2233 void *param; 2234 2235 /* All desc in a list belong to same channel */ 2236 pch = desc->pchan; 2237 callback = desc->txd.callback; 2238 param = desc->txd.callback_param; 2239 2240 if (callback) 2241 callback(param); 2242 2243 desc->pchan = NULL; 2244 } 2245 2246 /* pch will be unset if list was empty */ 2247 if (!pch) 2248 return; 2249 2250 pdmac = pch->dmac; 2251 2252 spin_lock_irqsave(&pdmac->pool_lock, flags); 2253 list_splice_tail_init(list, &pdmac->desc_pool); 2254 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2255 } 2256 2257 static inline void handle_cyclic_desc_list(struct list_head *list) 2258 { 2259 struct dma_pl330_desc *desc; 2260 struct dma_pl330_chan *pch = NULL; 2261 unsigned long flags; 2262 2263 list_for_each_entry(desc, list, node) { 2264 dma_async_tx_callback callback; 2265 2266 /* Change status to reload it */ 2267 desc->status = PREP; 2268 pch = desc->pchan; 2269 callback = desc->txd.callback; 2270 if (callback) 2271 callback(desc->txd.callback_param); 2272 } 2273 2274 /* pch will be unset if list was empty */ 2275 if (!pch) 2276 return; 2277 2278 spin_lock_irqsave(&pch->lock, flags); 2279 list_splice_tail_init(list, &pch->work_list); 2280 spin_unlock_irqrestore(&pch->lock, flags); 2281 } 2282 2283 static inline void fill_queue(struct dma_pl330_chan *pch) 2284 { 2285 struct dma_pl330_desc *desc; 2286 int ret; 2287 2288 list_for_each_entry(desc, &pch->work_list, node) { 2289 2290 /* If already submitted */ 2291 if (desc->status == BUSY) 2292 break; 2293 2294 ret = pl330_submit_req(pch->pl330_chid, 2295 &desc->req); 2296 if (!ret) { 2297 desc->status = BUSY; 2298 break; 2299 } else if (ret == -EAGAIN) { 2300 /* QFull or DMAC Dying */ 2301 break; 2302 } else { 2303 /* Unacceptable request */ 2304 desc->status = DONE; 2305 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2306 __func__, __LINE__, desc->txd.cookie); 2307 tasklet_schedule(&pch->task); 2308 } 2309 } 2310 } 2311 2312 static void pl330_tasklet(unsigned long data) 2313 { 2314 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2315 struct dma_pl330_desc *desc, *_dt; 2316 unsigned long flags; 2317 LIST_HEAD(list); 2318 2319 spin_lock_irqsave(&pch->lock, flags); 2320 2321 /* Pick up ripe tomatoes */ 2322 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2323 if (desc->status == DONE) { 2324 if (pch->cyclic) 2325 dma_cookie_complete(&desc->txd); 2326 list_move_tail(&desc->node, &list); 2327 } 2328 2329 /* Try to submit a req imm. next to the last completed cookie */ 2330 fill_queue(pch); 2331 2332 /* Make sure the PL330 Channel thread is active */ 2333 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2334 2335 spin_unlock_irqrestore(&pch->lock, flags); 2336 2337 if (pch->cyclic) 2338 handle_cyclic_desc_list(&list); 2339 else 2340 free_desc_list(&list); 2341 } 2342 2343 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2344 { 2345 struct dma_pl330_desc *desc = token; 2346 struct dma_pl330_chan *pch = desc->pchan; 2347 unsigned long flags; 2348 2349 /* If desc aborted */ 2350 if (!pch) 2351 return; 2352 2353 spin_lock_irqsave(&pch->lock, flags); 2354 2355 desc->status = DONE; 2356 2357 spin_unlock_irqrestore(&pch->lock, flags); 2358 2359 tasklet_schedule(&pch->task); 2360 } 2361 2362 bool pl330_filter(struct dma_chan *chan, void *param) 2363 { 2364 u8 *peri_id; 2365 2366 if (chan->device->dev->driver != &pl330_driver.drv) 2367 return false; 2368 2369 #ifdef CONFIG_OF 2370 if (chan->device->dev->of_node) { 2371 const __be32 *prop_value; 2372 phandle phandle; 2373 struct device_node *node; 2374 2375 prop_value = ((struct property *)param)->value; 2376 phandle = be32_to_cpup(prop_value++); 2377 node = of_find_node_by_phandle(phandle); 2378 return ((chan->private == node) && 2379 (chan->chan_id == be32_to_cpup(prop_value))); 2380 } 2381 #endif 2382 2383 peri_id = chan->private; 2384 return *peri_id == (unsigned)param; 2385 } 2386 EXPORT_SYMBOL(pl330_filter); 2387 2388 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2389 { 2390 struct dma_pl330_chan *pch = to_pchan(chan); 2391 struct dma_pl330_dmac *pdmac = pch->dmac; 2392 unsigned long flags; 2393 2394 spin_lock_irqsave(&pch->lock, flags); 2395 2396 dma_cookie_init(chan); 2397 pch->cyclic = false; 2398 2399 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2400 if (!pch->pl330_chid) { 2401 spin_unlock_irqrestore(&pch->lock, flags); 2402 return 0; 2403 } 2404 2405 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2406 2407 spin_unlock_irqrestore(&pch->lock, flags); 2408 2409 return 1; 2410 } 2411 2412 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2413 { 2414 struct dma_pl330_chan *pch = to_pchan(chan); 2415 struct dma_pl330_desc *desc, *_dt; 2416 unsigned long flags; 2417 struct dma_pl330_dmac *pdmac = pch->dmac; 2418 struct dma_slave_config *slave_config; 2419 LIST_HEAD(list); 2420 2421 switch (cmd) { 2422 case DMA_TERMINATE_ALL: 2423 spin_lock_irqsave(&pch->lock, flags); 2424 2425 /* FLUSH the PL330 Channel thread */ 2426 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2427 2428 /* Mark all desc done */ 2429 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2430 desc->status = DONE; 2431 list_move_tail(&desc->node, &list); 2432 } 2433 2434 list_splice_tail_init(&list, &pdmac->desc_pool); 2435 spin_unlock_irqrestore(&pch->lock, flags); 2436 break; 2437 case DMA_SLAVE_CONFIG: 2438 slave_config = (struct dma_slave_config *)arg; 2439 2440 if (slave_config->direction == DMA_MEM_TO_DEV) { 2441 if (slave_config->dst_addr) 2442 pch->fifo_addr = slave_config->dst_addr; 2443 if (slave_config->dst_addr_width) 2444 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2445 if (slave_config->dst_maxburst) 2446 pch->burst_len = slave_config->dst_maxburst; 2447 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2448 if (slave_config->src_addr) 2449 pch->fifo_addr = slave_config->src_addr; 2450 if (slave_config->src_addr_width) 2451 pch->burst_sz = __ffs(slave_config->src_addr_width); 2452 if (slave_config->src_maxburst) 2453 pch->burst_len = slave_config->src_maxburst; 2454 } 2455 break; 2456 default: 2457 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2458 return -ENXIO; 2459 } 2460 2461 return 0; 2462 } 2463 2464 static void pl330_free_chan_resources(struct dma_chan *chan) 2465 { 2466 struct dma_pl330_chan *pch = to_pchan(chan); 2467 unsigned long flags; 2468 2469 spin_lock_irqsave(&pch->lock, flags); 2470 2471 tasklet_kill(&pch->task); 2472 2473 pl330_release_channel(pch->pl330_chid); 2474 pch->pl330_chid = NULL; 2475 2476 if (pch->cyclic) 2477 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2478 2479 spin_unlock_irqrestore(&pch->lock, flags); 2480 } 2481 2482 static enum dma_status 2483 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2484 struct dma_tx_state *txstate) 2485 { 2486 return dma_cookie_status(chan, cookie, txstate); 2487 } 2488 2489 static void pl330_issue_pending(struct dma_chan *chan) 2490 { 2491 pl330_tasklet((unsigned long) to_pchan(chan)); 2492 } 2493 2494 /* 2495 * We returned the last one of the circular list of descriptor(s) 2496 * from prep_xxx, so the argument to submit corresponds to the last 2497 * descriptor of the list. 2498 */ 2499 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2500 { 2501 struct dma_pl330_desc *desc, *last = to_desc(tx); 2502 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2503 dma_cookie_t cookie; 2504 unsigned long flags; 2505 2506 spin_lock_irqsave(&pch->lock, flags); 2507 2508 /* Assign cookies to all nodes */ 2509 while (!list_empty(&last->node)) { 2510 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2511 2512 dma_cookie_assign(&desc->txd); 2513 2514 list_move_tail(&desc->node, &pch->work_list); 2515 } 2516 2517 cookie = dma_cookie_assign(&last->txd); 2518 list_add_tail(&last->node, &pch->work_list); 2519 spin_unlock_irqrestore(&pch->lock, flags); 2520 2521 return cookie; 2522 } 2523 2524 static inline void _init_desc(struct dma_pl330_desc *desc) 2525 { 2526 desc->pchan = NULL; 2527 desc->req.x = &desc->px; 2528 desc->req.token = desc; 2529 desc->rqcfg.swap = SWAP_NO; 2530 desc->rqcfg.privileged = 0; 2531 desc->rqcfg.insnaccess = 0; 2532 desc->rqcfg.scctl = SCCTRL0; 2533 desc->rqcfg.dcctl = DCCTRL0; 2534 desc->req.cfg = &desc->rqcfg; 2535 desc->req.xfer_cb = dma_pl330_rqcb; 2536 desc->txd.tx_submit = pl330_tx_submit; 2537 2538 INIT_LIST_HEAD(&desc->node); 2539 } 2540 2541 /* Returns the number of descriptors added to the DMAC pool */ 2542 int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2543 { 2544 struct dma_pl330_desc *desc; 2545 unsigned long flags; 2546 int i; 2547 2548 if (!pdmac) 2549 return 0; 2550 2551 desc = kmalloc(count * sizeof(*desc), flg); 2552 if (!desc) 2553 return 0; 2554 2555 spin_lock_irqsave(&pdmac->pool_lock, flags); 2556 2557 for (i = 0; i < count; i++) { 2558 _init_desc(&desc[i]); 2559 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2560 } 2561 2562 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2563 2564 return count; 2565 } 2566 2567 static struct dma_pl330_desc * 2568 pluck_desc(struct dma_pl330_dmac *pdmac) 2569 { 2570 struct dma_pl330_desc *desc = NULL; 2571 unsigned long flags; 2572 2573 if (!pdmac) 2574 return NULL; 2575 2576 spin_lock_irqsave(&pdmac->pool_lock, flags); 2577 2578 if (!list_empty(&pdmac->desc_pool)) { 2579 desc = list_entry(pdmac->desc_pool.next, 2580 struct dma_pl330_desc, node); 2581 2582 list_del_init(&desc->node); 2583 2584 desc->status = PREP; 2585 desc->txd.callback = NULL; 2586 } 2587 2588 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2589 2590 return desc; 2591 } 2592 2593 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2594 { 2595 struct dma_pl330_dmac *pdmac = pch->dmac; 2596 u8 *peri_id = pch->chan.private; 2597 struct dma_pl330_desc *desc; 2598 2599 /* Pluck one desc from the pool of DMAC */ 2600 desc = pluck_desc(pdmac); 2601 2602 /* If the DMAC pool is empty, alloc new */ 2603 if (!desc) { 2604 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2605 return NULL; 2606 2607 /* Try again */ 2608 desc = pluck_desc(pdmac); 2609 if (!desc) { 2610 dev_err(pch->dmac->pif.dev, 2611 "%s:%d ALERT!\n", __func__, __LINE__); 2612 return NULL; 2613 } 2614 } 2615 2616 /* Initialize the descriptor */ 2617 desc->pchan = pch; 2618 desc->txd.cookie = 0; 2619 async_tx_ack(&desc->txd); 2620 2621 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2622 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2623 2624 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2625 2626 return desc; 2627 } 2628 2629 static inline void fill_px(struct pl330_xfer *px, 2630 dma_addr_t dst, dma_addr_t src, size_t len) 2631 { 2632 px->next = NULL; 2633 px->bytes = len; 2634 px->dst_addr = dst; 2635 px->src_addr = src; 2636 } 2637 2638 static struct dma_pl330_desc * 2639 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2640 dma_addr_t src, size_t len) 2641 { 2642 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2643 2644 if (!desc) { 2645 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2646 __func__, __LINE__); 2647 return NULL; 2648 } 2649 2650 /* 2651 * Ideally we should lookout for reqs bigger than 2652 * those that can be programmed with 256 bytes of 2653 * MC buffer, but considering a req size is seldom 2654 * going to be word-unaligned and more than 200MB, 2655 * we take it easy. 2656 * Also, should the limit is reached we'd rather 2657 * have the platform increase MC buffer size than 2658 * complicating this API driver. 2659 */ 2660 fill_px(&desc->px, dst, src, len); 2661 2662 return desc; 2663 } 2664 2665 /* Call after fixing burst size */ 2666 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2667 { 2668 struct dma_pl330_chan *pch = desc->pchan; 2669 struct pl330_info *pi = &pch->dmac->pif; 2670 int burst_len; 2671 2672 burst_len = pi->pcfg.data_bus_width / 8; 2673 burst_len *= pi->pcfg.data_buf_dep; 2674 burst_len >>= desc->rqcfg.brst_size; 2675 2676 /* src/dst_burst_len can't be more than 16 */ 2677 if (burst_len > 16) 2678 burst_len = 16; 2679 2680 while (burst_len > 1) { 2681 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2682 break; 2683 burst_len--; 2684 } 2685 2686 return burst_len; 2687 } 2688 2689 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2690 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2691 size_t period_len, enum dma_transfer_direction direction, 2692 void *context) 2693 { 2694 struct dma_pl330_desc *desc; 2695 struct dma_pl330_chan *pch = to_pchan(chan); 2696 dma_addr_t dst; 2697 dma_addr_t src; 2698 2699 desc = pl330_get_desc(pch); 2700 if (!desc) { 2701 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2702 __func__, __LINE__); 2703 return NULL; 2704 } 2705 2706 switch (direction) { 2707 case DMA_MEM_TO_DEV: 2708 desc->rqcfg.src_inc = 1; 2709 desc->rqcfg.dst_inc = 0; 2710 desc->req.rqtype = MEMTODEV; 2711 src = dma_addr; 2712 dst = pch->fifo_addr; 2713 break; 2714 case DMA_DEV_TO_MEM: 2715 desc->rqcfg.src_inc = 0; 2716 desc->rqcfg.dst_inc = 1; 2717 desc->req.rqtype = DEVTOMEM; 2718 src = pch->fifo_addr; 2719 dst = dma_addr; 2720 break; 2721 default: 2722 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2723 __func__, __LINE__); 2724 return NULL; 2725 } 2726 2727 desc->rqcfg.brst_size = pch->burst_sz; 2728 desc->rqcfg.brst_len = 1; 2729 2730 pch->cyclic = true; 2731 2732 fill_px(&desc->px, dst, src, period_len); 2733 2734 return &desc->txd; 2735 } 2736 2737 static struct dma_async_tx_descriptor * 2738 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2739 dma_addr_t src, size_t len, unsigned long flags) 2740 { 2741 struct dma_pl330_desc *desc; 2742 struct dma_pl330_chan *pch = to_pchan(chan); 2743 struct pl330_info *pi; 2744 int burst; 2745 2746 if (unlikely(!pch || !len)) 2747 return NULL; 2748 2749 pi = &pch->dmac->pif; 2750 2751 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2752 if (!desc) 2753 return NULL; 2754 2755 desc->rqcfg.src_inc = 1; 2756 desc->rqcfg.dst_inc = 1; 2757 desc->req.rqtype = MEMTOMEM; 2758 2759 /* Select max possible burst size */ 2760 burst = pi->pcfg.data_bus_width / 8; 2761 2762 while (burst > 1) { 2763 if (!(len % burst)) 2764 break; 2765 burst /= 2; 2766 } 2767 2768 desc->rqcfg.brst_size = 0; 2769 while (burst != (1 << desc->rqcfg.brst_size)) 2770 desc->rqcfg.brst_size++; 2771 2772 desc->rqcfg.brst_len = get_burst_len(desc, len); 2773 2774 desc->txd.flags = flags; 2775 2776 return &desc->txd; 2777 } 2778 2779 static struct dma_async_tx_descriptor * 2780 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2781 unsigned int sg_len, enum dma_transfer_direction direction, 2782 unsigned long flg, void *context) 2783 { 2784 struct dma_pl330_desc *first, *desc = NULL; 2785 struct dma_pl330_chan *pch = to_pchan(chan); 2786 struct scatterlist *sg; 2787 unsigned long flags; 2788 int i; 2789 dma_addr_t addr; 2790 2791 if (unlikely(!pch || !sgl || !sg_len)) 2792 return NULL; 2793 2794 addr = pch->fifo_addr; 2795 2796 first = NULL; 2797 2798 for_each_sg(sgl, sg, sg_len, i) { 2799 2800 desc = pl330_get_desc(pch); 2801 if (!desc) { 2802 struct dma_pl330_dmac *pdmac = pch->dmac; 2803 2804 dev_err(pch->dmac->pif.dev, 2805 "%s:%d Unable to fetch desc\n", 2806 __func__, __LINE__); 2807 if (!first) 2808 return NULL; 2809 2810 spin_lock_irqsave(&pdmac->pool_lock, flags); 2811 2812 while (!list_empty(&first->node)) { 2813 desc = list_entry(first->node.next, 2814 struct dma_pl330_desc, node); 2815 list_move_tail(&desc->node, &pdmac->desc_pool); 2816 } 2817 2818 list_move_tail(&first->node, &pdmac->desc_pool); 2819 2820 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2821 2822 return NULL; 2823 } 2824 2825 if (!first) 2826 first = desc; 2827 else 2828 list_add_tail(&desc->node, &first->node); 2829 2830 if (direction == DMA_MEM_TO_DEV) { 2831 desc->rqcfg.src_inc = 1; 2832 desc->rqcfg.dst_inc = 0; 2833 desc->req.rqtype = MEMTODEV; 2834 fill_px(&desc->px, 2835 addr, sg_dma_address(sg), sg_dma_len(sg)); 2836 } else { 2837 desc->rqcfg.src_inc = 0; 2838 desc->rqcfg.dst_inc = 1; 2839 desc->req.rqtype = DEVTOMEM; 2840 fill_px(&desc->px, 2841 sg_dma_address(sg), addr, sg_dma_len(sg)); 2842 } 2843 2844 desc->rqcfg.brst_size = pch->burst_sz; 2845 desc->rqcfg.brst_len = 1; 2846 } 2847 2848 /* Return the last desc in the chain */ 2849 desc->txd.flags = flg; 2850 return &desc->txd; 2851 } 2852 2853 static irqreturn_t pl330_irq_handler(int irq, void *data) 2854 { 2855 if (pl330_update(data)) 2856 return IRQ_HANDLED; 2857 else 2858 return IRQ_NONE; 2859 } 2860 2861 static int __devinit 2862 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2863 { 2864 struct dma_pl330_platdata *pdat; 2865 struct dma_pl330_dmac *pdmac; 2866 struct dma_pl330_chan *pch; 2867 struct pl330_info *pi; 2868 struct dma_device *pd; 2869 struct resource *res; 2870 int i, ret, irq; 2871 int num_chan; 2872 2873 pdat = adev->dev.platform_data; 2874 2875 /* Allocate a new DMAC and its Channels */ 2876 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL); 2877 if (!pdmac) { 2878 dev_err(&adev->dev, "unable to allocate mem\n"); 2879 return -ENOMEM; 2880 } 2881 2882 pi = &pdmac->pif; 2883 pi->dev = &adev->dev; 2884 pi->pl330_data = NULL; 2885 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2886 2887 res = &adev->res; 2888 request_mem_region(res->start, resource_size(res), "dma-pl330"); 2889 2890 pi->base = ioremap(res->start, resource_size(res)); 2891 if (!pi->base) { 2892 ret = -ENXIO; 2893 goto probe_err1; 2894 } 2895 2896 pdmac->clk = clk_get(&adev->dev, "dma"); 2897 if (IS_ERR(pdmac->clk)) { 2898 dev_err(&adev->dev, "Cannot get operation clock.\n"); 2899 ret = -EINVAL; 2900 goto probe_err2; 2901 } 2902 2903 amba_set_drvdata(adev, pdmac); 2904 2905 #ifndef CONFIG_PM_RUNTIME 2906 /* enable dma clk */ 2907 clk_enable(pdmac->clk); 2908 #endif 2909 2910 irq = adev->irq[0]; 2911 ret = request_irq(irq, pl330_irq_handler, 0, 2912 dev_name(&adev->dev), pi); 2913 if (ret) 2914 goto probe_err3; 2915 2916 ret = pl330_add(pi); 2917 if (ret) 2918 goto probe_err4; 2919 2920 INIT_LIST_HEAD(&pdmac->desc_pool); 2921 spin_lock_init(&pdmac->pool_lock); 2922 2923 /* Create a descriptor pool of default size */ 2924 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2925 dev_warn(&adev->dev, "unable to allocate desc\n"); 2926 2927 pd = &pdmac->ddma; 2928 INIT_LIST_HEAD(&pd->channels); 2929 2930 /* Initialize channel parameters */ 2931 if (pdat) 2932 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2933 else 2934 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2935 2936 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2937 2938 for (i = 0; i < num_chan; i++) { 2939 pch = &pdmac->peripherals[i]; 2940 if (!adev->dev.of_node) 2941 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2942 else 2943 pch->chan.private = adev->dev.of_node; 2944 2945 INIT_LIST_HEAD(&pch->work_list); 2946 spin_lock_init(&pch->lock); 2947 pch->pl330_chid = NULL; 2948 pch->chan.device = pd; 2949 pch->dmac = pdmac; 2950 2951 /* Add the channel to the DMAC list */ 2952 list_add_tail(&pch->chan.device_node, &pd->channels); 2953 } 2954 2955 pd->dev = &adev->dev; 2956 if (pdat) { 2957 pd->cap_mask = pdat->cap_mask; 2958 } else { 2959 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2960 if (pi->pcfg.num_peri) { 2961 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2962 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2963 } 2964 } 2965 2966 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2967 pd->device_free_chan_resources = pl330_free_chan_resources; 2968 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2969 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2970 pd->device_tx_status = pl330_tx_status; 2971 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2972 pd->device_control = pl330_control; 2973 pd->device_issue_pending = pl330_issue_pending; 2974 2975 ret = dma_async_device_register(pd); 2976 if (ret) { 2977 dev_err(&adev->dev, "unable to register DMAC\n"); 2978 goto probe_err5; 2979 } 2980 2981 dev_info(&adev->dev, 2982 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 2983 dev_info(&adev->dev, 2984 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2985 pi->pcfg.data_buf_dep, 2986 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 2987 pi->pcfg.num_peri, pi->pcfg.num_events); 2988 2989 return 0; 2990 2991 probe_err5: 2992 pl330_del(pi); 2993 probe_err4: 2994 free_irq(irq, pi); 2995 probe_err3: 2996 #ifndef CONFIG_PM_RUNTIME 2997 clk_disable(pdmac->clk); 2998 #endif 2999 clk_put(pdmac->clk); 3000 probe_err2: 3001 iounmap(pi->base); 3002 probe_err1: 3003 release_mem_region(res->start, resource_size(res)); 3004 kfree(pdmac); 3005 3006 return ret; 3007 } 3008 3009 static int __devexit pl330_remove(struct amba_device *adev) 3010 { 3011 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3012 struct dma_pl330_chan *pch, *_p; 3013 struct pl330_info *pi; 3014 struct resource *res; 3015 int irq; 3016 3017 if (!pdmac) 3018 return 0; 3019 3020 amba_set_drvdata(adev, NULL); 3021 3022 /* Idle the DMAC */ 3023 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3024 chan.device_node) { 3025 3026 /* Remove the channel */ 3027 list_del(&pch->chan.device_node); 3028 3029 /* Flush the channel */ 3030 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3031 pl330_free_chan_resources(&pch->chan); 3032 } 3033 3034 pi = &pdmac->pif; 3035 3036 pl330_del(pi); 3037 3038 irq = adev->irq[0]; 3039 free_irq(irq, pi); 3040 3041 iounmap(pi->base); 3042 3043 res = &adev->res; 3044 release_mem_region(res->start, resource_size(res)); 3045 3046 #ifndef CONFIG_PM_RUNTIME 3047 clk_disable(pdmac->clk); 3048 #endif 3049 3050 kfree(pdmac); 3051 3052 return 0; 3053 } 3054 3055 static struct amba_id pl330_ids[] = { 3056 { 3057 .id = 0x00041330, 3058 .mask = 0x000fffff, 3059 }, 3060 { 0, 0 }, 3061 }; 3062 3063 MODULE_DEVICE_TABLE(amba, pl330_ids); 3064 3065 #ifdef CONFIG_PM_RUNTIME 3066 static int pl330_runtime_suspend(struct device *dev) 3067 { 3068 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3069 3070 if (!pdmac) { 3071 dev_err(dev, "failed to get dmac\n"); 3072 return -ENODEV; 3073 } 3074 3075 clk_disable(pdmac->clk); 3076 3077 return 0; 3078 } 3079 3080 static int pl330_runtime_resume(struct device *dev) 3081 { 3082 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3083 3084 if (!pdmac) { 3085 dev_err(dev, "failed to get dmac\n"); 3086 return -ENODEV; 3087 } 3088 3089 clk_enable(pdmac->clk); 3090 3091 return 0; 3092 } 3093 #else 3094 #define pl330_runtime_suspend NULL 3095 #define pl330_runtime_resume NULL 3096 #endif /* CONFIG_PM_RUNTIME */ 3097 3098 static const struct dev_pm_ops pl330_pm_ops = { 3099 .runtime_suspend = pl330_runtime_suspend, 3100 .runtime_resume = pl330_runtime_resume, 3101 }; 3102 3103 static struct amba_driver pl330_driver = { 3104 .drv = { 3105 .owner = THIS_MODULE, 3106 .name = "dma-pl330", 3107 .pm = &pl330_pm_ops, 3108 }, 3109 .id_table = pl330_ids, 3110 .probe = pl330_probe, 3111 .remove = pl330_remove, 3112 }; 3113 3114 module_amba_driver(pl330_driver); 3115 3116 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3117 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3118 MODULE_LICENSE("GPL"); 3119