1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 7 * Jaswinder Singh <jassi.brar@samsung.com> 8 */ 9 10 #include <linux/debugfs.h> 11 #include <linux/kernel.h> 12 #include <linux/io.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dmaengine.h> 21 #include <linux/amba/bus.h> 22 #include <linux/scatterlist.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/err.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/bug.h> 28 #include <linux/reset.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 #define PL330_MAX_BURST 16 35 36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 37 #define PL330_QUIRK_PERIPH_BURST BIT(1) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(KERN_CONT x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /* 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Pause was called while descriptor was BUSY. Due to hardware 408 * limitations, only termination is possible for descriptors 409 * that have been paused. 410 */ 411 PAUSED, 412 /* 413 * Sitting on the channel work_list but xfer done 414 * by PL330 core 415 */ 416 DONE, 417 }; 418 419 struct dma_pl330_chan { 420 /* Schedule desc completion */ 421 struct tasklet_struct task; 422 423 /* DMA-Engine Channel */ 424 struct dma_chan chan; 425 426 /* List of submitted descriptors */ 427 struct list_head submitted_list; 428 /* List of issued descriptors */ 429 struct list_head work_list; 430 /* List of completed descriptors */ 431 struct list_head completed_list; 432 433 /* Pointer to the DMAC that manages this channel, 434 * NULL if the channel is available to be acquired. 435 * As the parent, this DMAC also provides descriptors 436 * to the channel. 437 */ 438 struct pl330_dmac *dmac; 439 440 /* To protect channel manipulation */ 441 spinlock_t lock; 442 443 /* 444 * Hardware channel thread of PL330 DMAC. NULL if the channel is 445 * available. 446 */ 447 struct pl330_thread *thread; 448 449 /* For D-to-M and M-to-D channels */ 450 int burst_sz; /* the peripheral fifo width */ 451 int burst_len; /* the number of burst */ 452 phys_addr_t fifo_addr; 453 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 454 dma_addr_t fifo_dma; 455 enum dma_data_direction dir; 456 struct dma_slave_config slave_config; 457 458 /* for cyclic capability */ 459 bool cyclic; 460 461 /* for runtime pm tracking */ 462 bool active; 463 }; 464 465 struct pl330_dmac { 466 /* DMA-Engine Device */ 467 struct dma_device ddma; 468 469 /* Pool of descriptors available for the DMAC's channels */ 470 struct list_head desc_pool; 471 /* To protect desc_pool manipulation */ 472 spinlock_t pool_lock; 473 474 /* Size of MicroCode buffers for each channel. */ 475 unsigned mcbufsz; 476 /* ioremap'ed address of PL330 registers. */ 477 void __iomem *base; 478 /* Populated by the PL330 core driver during pl330_add */ 479 struct pl330_config pcfg; 480 481 spinlock_t lock; 482 /* Maximum possible events/irqs */ 483 int events[32]; 484 /* BUS address of MicroCode buffer */ 485 dma_addr_t mcode_bus; 486 /* CPU address of MicroCode buffer */ 487 void *mcode_cpu; 488 /* List of all Channel threads */ 489 struct pl330_thread *channels; 490 /* Pointer to the MANAGER thread */ 491 struct pl330_thread *manager; 492 /* To handle bad news in interrupt */ 493 struct tasklet_struct tasks; 494 struct _pl330_tbd dmac_tbd; 495 /* State of DMAC operation */ 496 enum pl330_dmac_state state; 497 /* Holds list of reqs with due callbacks */ 498 struct list_head req_done; 499 500 /* Peripheral channels connected to this DMAC */ 501 unsigned int num_peripherals; 502 struct dma_pl330_chan *peripherals; /* keep at end */ 503 int quirks; 504 505 struct reset_control *rstc; 506 struct reset_control *rstc_ocp; 507 }; 508 509 static struct pl330_of_quirks { 510 char *quirk; 511 int id; 512 } of_quirks[] = { 513 { 514 .quirk = "arm,pl330-broken-no-flushp", 515 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 516 }, 517 { 518 .quirk = "arm,pl330-periph-burst", 519 .id = PL330_QUIRK_PERIPH_BURST, 520 } 521 }; 522 523 struct dma_pl330_desc { 524 /* To attach to a queue as child */ 525 struct list_head node; 526 527 /* Descriptor for the DMA Engine API */ 528 struct dma_async_tx_descriptor txd; 529 530 /* Xfer for PL330 core */ 531 struct pl330_xfer px; 532 533 struct pl330_reqcfg rqcfg; 534 535 enum desc_status status; 536 537 int bytes_requested; 538 bool last; 539 540 /* The channel which currently holds this desc */ 541 struct dma_pl330_chan *pchan; 542 543 enum dma_transfer_direction rqtype; 544 /* Index of peripheral for the xfer. */ 545 unsigned peri:5; 546 /* Hook to attach to DMAC's list of reqs with due callback */ 547 struct list_head rqd; 548 }; 549 550 struct _xfer_spec { 551 u32 ccr; 552 struct dma_pl330_desc *desc; 553 }; 554 555 static int pl330_config_write(struct dma_chan *chan, 556 struct dma_slave_config *slave_config, 557 enum dma_transfer_direction direction); 558 559 static inline bool _queue_full(struct pl330_thread *thrd) 560 { 561 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 562 } 563 564 static inline bool is_manager(struct pl330_thread *thrd) 565 { 566 return thrd->dmac->manager == thrd; 567 } 568 569 /* If manager of the thread is in Non-Secure mode */ 570 static inline bool _manager_ns(struct pl330_thread *thrd) 571 { 572 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 573 } 574 575 static inline u32 get_revision(u32 periph_id) 576 { 577 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 578 } 579 580 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 581 { 582 if (dry_run) 583 return SZ_DMAEND; 584 585 buf[0] = CMD_DMAEND; 586 587 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 588 589 return SZ_DMAEND; 590 } 591 592 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 593 { 594 if (dry_run) 595 return SZ_DMAFLUSHP; 596 597 buf[0] = CMD_DMAFLUSHP; 598 599 peri &= 0x1f; 600 peri <<= 3; 601 buf[1] = peri; 602 603 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 604 605 return SZ_DMAFLUSHP; 606 } 607 608 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 609 { 610 if (dry_run) 611 return SZ_DMALD; 612 613 buf[0] = CMD_DMALD; 614 615 if (cond == SINGLE) 616 buf[0] |= (0 << 1) | (1 << 0); 617 else if (cond == BURST) 618 buf[0] |= (1 << 1) | (1 << 0); 619 620 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 621 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 622 623 return SZ_DMALD; 624 } 625 626 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 627 enum pl330_cond cond, u8 peri) 628 { 629 if (dry_run) 630 return SZ_DMALDP; 631 632 buf[0] = CMD_DMALDP; 633 634 if (cond == BURST) 635 buf[0] |= (1 << 1); 636 637 peri &= 0x1f; 638 peri <<= 3; 639 buf[1] = peri; 640 641 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 642 cond == SINGLE ? 'S' : 'B', peri >> 3); 643 644 return SZ_DMALDP; 645 } 646 647 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 648 unsigned loop, u8 cnt) 649 { 650 if (dry_run) 651 return SZ_DMALP; 652 653 buf[0] = CMD_DMALP; 654 655 if (loop) 656 buf[0] |= (1 << 1); 657 658 cnt--; /* DMAC increments by 1 internally */ 659 buf[1] = cnt; 660 661 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 662 663 return SZ_DMALP; 664 } 665 666 struct _arg_LPEND { 667 enum pl330_cond cond; 668 bool forever; 669 unsigned loop; 670 u8 bjump; 671 }; 672 673 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 674 const struct _arg_LPEND *arg) 675 { 676 enum pl330_cond cond = arg->cond; 677 bool forever = arg->forever; 678 unsigned loop = arg->loop; 679 u8 bjump = arg->bjump; 680 681 if (dry_run) 682 return SZ_DMALPEND; 683 684 buf[0] = CMD_DMALPEND; 685 686 if (loop) 687 buf[0] |= (1 << 2); 688 689 if (!forever) 690 buf[0] |= (1 << 4); 691 692 if (cond == SINGLE) 693 buf[0] |= (0 << 1) | (1 << 0); 694 else if (cond == BURST) 695 buf[0] |= (1 << 1) | (1 << 0); 696 697 buf[1] = bjump; 698 699 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 700 forever ? "FE" : "END", 701 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 702 loop ? '1' : '0', 703 bjump); 704 705 return SZ_DMALPEND; 706 } 707 708 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 709 { 710 if (dry_run) 711 return SZ_DMAKILL; 712 713 buf[0] = CMD_DMAKILL; 714 715 return SZ_DMAKILL; 716 } 717 718 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 719 enum dmamov_dst dst, u32 val) 720 { 721 if (dry_run) 722 return SZ_DMAMOV; 723 724 buf[0] = CMD_DMAMOV; 725 buf[1] = dst; 726 buf[2] = val; 727 buf[3] = val >> 8; 728 buf[4] = val >> 16; 729 buf[5] = val >> 24; 730 731 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 732 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 733 734 return SZ_DMAMOV; 735 } 736 737 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 738 { 739 if (dry_run) 740 return SZ_DMARMB; 741 742 buf[0] = CMD_DMARMB; 743 744 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 745 746 return SZ_DMARMB; 747 } 748 749 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 750 { 751 if (dry_run) 752 return SZ_DMASEV; 753 754 buf[0] = CMD_DMASEV; 755 756 ev &= 0x1f; 757 ev <<= 3; 758 buf[1] = ev; 759 760 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 761 762 return SZ_DMASEV; 763 } 764 765 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 766 { 767 if (dry_run) 768 return SZ_DMAST; 769 770 buf[0] = CMD_DMAST; 771 772 if (cond == SINGLE) 773 buf[0] |= (0 << 1) | (1 << 0); 774 else if (cond == BURST) 775 buf[0] |= (1 << 1) | (1 << 0); 776 777 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 778 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 779 780 return SZ_DMAST; 781 } 782 783 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 784 enum pl330_cond cond, u8 peri) 785 { 786 if (dry_run) 787 return SZ_DMASTP; 788 789 buf[0] = CMD_DMASTP; 790 791 if (cond == BURST) 792 buf[0] |= (1 << 1); 793 794 peri &= 0x1f; 795 peri <<= 3; 796 buf[1] = peri; 797 798 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 799 cond == SINGLE ? 'S' : 'B', peri >> 3); 800 801 return SZ_DMASTP; 802 } 803 804 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 805 enum pl330_cond cond, u8 peri) 806 { 807 if (dry_run) 808 return SZ_DMAWFP; 809 810 buf[0] = CMD_DMAWFP; 811 812 if (cond == SINGLE) 813 buf[0] |= (0 << 1) | (0 << 0); 814 else if (cond == BURST) 815 buf[0] |= (1 << 1) | (0 << 0); 816 else 817 buf[0] |= (0 << 1) | (1 << 0); 818 819 peri &= 0x1f; 820 peri <<= 3; 821 buf[1] = peri; 822 823 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 824 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 825 826 return SZ_DMAWFP; 827 } 828 829 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 830 { 831 if (dry_run) 832 return SZ_DMAWMB; 833 834 buf[0] = CMD_DMAWMB; 835 836 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 837 838 return SZ_DMAWMB; 839 } 840 841 struct _arg_GO { 842 u8 chan; 843 u32 addr; 844 unsigned ns; 845 }; 846 847 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 848 const struct _arg_GO *arg) 849 { 850 u8 chan = arg->chan; 851 u32 addr = arg->addr; 852 unsigned ns = arg->ns; 853 854 if (dry_run) 855 return SZ_DMAGO; 856 857 buf[0] = CMD_DMAGO; 858 buf[0] |= (ns << 1); 859 buf[1] = chan & 0x7; 860 buf[2] = addr; 861 buf[3] = addr >> 8; 862 buf[4] = addr >> 16; 863 buf[5] = addr >> 24; 864 865 return SZ_DMAGO; 866 } 867 868 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 869 870 /* Returns Time-Out */ 871 static bool _until_dmac_idle(struct pl330_thread *thrd) 872 { 873 void __iomem *regs = thrd->dmac->base; 874 unsigned long loops = msecs_to_loops(5); 875 876 do { 877 /* Until Manager is Idle */ 878 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 879 break; 880 881 cpu_relax(); 882 } while (--loops); 883 884 if (!loops) 885 return true; 886 887 return false; 888 } 889 890 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 891 u8 insn[], bool as_manager) 892 { 893 void __iomem *regs = thrd->dmac->base; 894 u32 val; 895 896 /* If timed out due to halted state-machine */ 897 if (_until_dmac_idle(thrd)) { 898 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 899 return; 900 } 901 902 val = (insn[0] << 16) | (insn[1] << 24); 903 if (!as_manager) { 904 val |= (1 << 0); 905 val |= (thrd->id << 8); /* Channel Number */ 906 } 907 writel(val, regs + DBGINST0); 908 909 val = le32_to_cpu(*((__le32 *)&insn[2])); 910 writel(val, regs + DBGINST1); 911 912 /* Get going */ 913 writel(0, regs + DBGCMD); 914 } 915 916 static inline u32 _state(struct pl330_thread *thrd) 917 { 918 void __iomem *regs = thrd->dmac->base; 919 u32 val; 920 921 if (is_manager(thrd)) 922 val = readl(regs + DS) & 0xf; 923 else 924 val = readl(regs + CS(thrd->id)) & 0xf; 925 926 switch (val) { 927 case DS_ST_STOP: 928 return PL330_STATE_STOPPED; 929 case DS_ST_EXEC: 930 return PL330_STATE_EXECUTING; 931 case DS_ST_CMISS: 932 return PL330_STATE_CACHEMISS; 933 case DS_ST_UPDTPC: 934 return PL330_STATE_UPDTPC; 935 case DS_ST_WFE: 936 return PL330_STATE_WFE; 937 case DS_ST_FAULT: 938 return PL330_STATE_FAULTING; 939 case DS_ST_ATBRR: 940 if (is_manager(thrd)) 941 return PL330_STATE_INVALID; 942 else 943 return PL330_STATE_ATBARRIER; 944 case DS_ST_QBUSY: 945 if (is_manager(thrd)) 946 return PL330_STATE_INVALID; 947 else 948 return PL330_STATE_QUEUEBUSY; 949 case DS_ST_WFP: 950 if (is_manager(thrd)) 951 return PL330_STATE_INVALID; 952 else 953 return PL330_STATE_WFP; 954 case DS_ST_KILL: 955 if (is_manager(thrd)) 956 return PL330_STATE_INVALID; 957 else 958 return PL330_STATE_KILLING; 959 case DS_ST_CMPLT: 960 if (is_manager(thrd)) 961 return PL330_STATE_INVALID; 962 else 963 return PL330_STATE_COMPLETING; 964 case DS_ST_FLTCMP: 965 if (is_manager(thrd)) 966 return PL330_STATE_INVALID; 967 else 968 return PL330_STATE_FAULT_COMPLETING; 969 default: 970 return PL330_STATE_INVALID; 971 } 972 } 973 974 static void _stop(struct pl330_thread *thrd) 975 { 976 void __iomem *regs = thrd->dmac->base; 977 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 978 u32 inten = readl(regs + INTEN); 979 980 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 981 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 982 983 /* Return if nothing needs to be done */ 984 if (_state(thrd) == PL330_STATE_COMPLETING 985 || _state(thrd) == PL330_STATE_KILLING 986 || _state(thrd) == PL330_STATE_STOPPED) 987 return; 988 989 _emit_KILL(0, insn); 990 991 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 992 993 /* clear the event */ 994 if (inten & (1 << thrd->ev)) 995 writel(1 << thrd->ev, regs + INTCLR); 996 /* Stop generating interrupts for SEV */ 997 writel(inten & ~(1 << thrd->ev), regs + INTEN); 998 } 999 1000 /* Start doing req 'idx' of thread 'thrd' */ 1001 static bool _trigger(struct pl330_thread *thrd) 1002 { 1003 void __iomem *regs = thrd->dmac->base; 1004 struct _pl330_req *req; 1005 struct dma_pl330_desc *desc; 1006 struct _arg_GO go; 1007 unsigned ns; 1008 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1009 int idx; 1010 1011 /* Return if already ACTIVE */ 1012 if (_state(thrd) != PL330_STATE_STOPPED) 1013 return true; 1014 1015 idx = 1 - thrd->lstenq; 1016 if (thrd->req[idx].desc != NULL) { 1017 req = &thrd->req[idx]; 1018 } else { 1019 idx = thrd->lstenq; 1020 if (thrd->req[idx].desc != NULL) 1021 req = &thrd->req[idx]; 1022 else 1023 req = NULL; 1024 } 1025 1026 /* Return if no request */ 1027 if (!req) 1028 return true; 1029 1030 /* Return if req is running */ 1031 if (idx == thrd->req_running) 1032 return true; 1033 1034 desc = req->desc; 1035 1036 ns = desc->rqcfg.nonsecure ? 1 : 0; 1037 1038 /* See 'Abort Sources' point-4 at Page 2-25 */ 1039 if (_manager_ns(thrd) && !ns) 1040 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1041 __func__, __LINE__); 1042 1043 go.chan = thrd->id; 1044 go.addr = req->mc_bus; 1045 go.ns = ns; 1046 _emit_GO(0, insn, &go); 1047 1048 /* Set to generate interrupts for SEV */ 1049 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1050 1051 /* Only manager can execute GO */ 1052 _execute_DBGINSN(thrd, insn, true); 1053 1054 thrd->req_running = idx; 1055 1056 return true; 1057 } 1058 1059 static bool pl330_start_thread(struct pl330_thread *thrd) 1060 { 1061 switch (_state(thrd)) { 1062 case PL330_STATE_FAULT_COMPLETING: 1063 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1064 1065 if (_state(thrd) == PL330_STATE_KILLING) 1066 UNTIL(thrd, PL330_STATE_STOPPED) 1067 fallthrough; 1068 1069 case PL330_STATE_FAULTING: 1070 _stop(thrd); 1071 fallthrough; 1072 1073 case PL330_STATE_KILLING: 1074 case PL330_STATE_COMPLETING: 1075 UNTIL(thrd, PL330_STATE_STOPPED) 1076 fallthrough; 1077 1078 case PL330_STATE_STOPPED: 1079 return _trigger(thrd); 1080 1081 case PL330_STATE_WFP: 1082 case PL330_STATE_QUEUEBUSY: 1083 case PL330_STATE_ATBARRIER: 1084 case PL330_STATE_UPDTPC: 1085 case PL330_STATE_CACHEMISS: 1086 case PL330_STATE_EXECUTING: 1087 return true; 1088 1089 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1090 default: 1091 return false; 1092 } 1093 } 1094 1095 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1096 const struct _xfer_spec *pxs, int cyc) 1097 { 1098 int off = 0; 1099 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1100 1101 /* check lock-up free version */ 1102 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1103 while (cyc--) { 1104 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1105 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1106 } 1107 } else { 1108 while (cyc--) { 1109 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1110 off += _emit_RMB(dry_run, &buf[off]); 1111 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1112 off += _emit_WMB(dry_run, &buf[off]); 1113 } 1114 } 1115 1116 return off; 1117 } 1118 1119 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1120 enum pl330_cond cond, enum dma_transfer_direction direction, 1121 u8 peri) 1122 { 1123 int off = 0; 1124 1125 switch (direction) { 1126 case DMA_MEM_TO_MEM: 1127 case DMA_MEM_TO_DEV: 1128 off += _emit_LD(dry_run, &buf[off], cond); 1129 break; 1130 1131 case DMA_DEV_TO_MEM: 1132 if (cond == ALWAYS) { 1133 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1134 peri); 1135 off += _emit_LDP(dry_run, &buf[off], BURST, 1136 peri); 1137 } else { 1138 off += _emit_LDP(dry_run, &buf[off], cond, 1139 peri); 1140 } 1141 break; 1142 1143 default: 1144 /* this code should be unreachable */ 1145 WARN_ON(1); 1146 break; 1147 } 1148 1149 return off; 1150 } 1151 1152 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1153 enum pl330_cond cond, enum dma_transfer_direction direction, 1154 u8 peri) 1155 { 1156 int off = 0; 1157 1158 switch (direction) { 1159 case DMA_MEM_TO_MEM: 1160 case DMA_DEV_TO_MEM: 1161 off += _emit_ST(dry_run, &buf[off], cond); 1162 break; 1163 1164 case DMA_MEM_TO_DEV: 1165 if (cond == ALWAYS) { 1166 off += _emit_STP(dry_run, &buf[off], SINGLE, 1167 peri); 1168 off += _emit_STP(dry_run, &buf[off], BURST, 1169 peri); 1170 } else { 1171 off += _emit_STP(dry_run, &buf[off], cond, 1172 peri); 1173 } 1174 break; 1175 1176 default: 1177 /* this code should be unreachable */ 1178 WARN_ON(1); 1179 break; 1180 } 1181 1182 return off; 1183 } 1184 1185 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1186 unsigned dry_run, u8 buf[], 1187 const struct _xfer_spec *pxs, int cyc, 1188 enum pl330_cond cond) 1189 { 1190 int off = 0; 1191 1192 /* 1193 * do FLUSHP at beginning to clear any stale dma requests before the 1194 * first WFP. 1195 */ 1196 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1197 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1198 while (cyc--) { 1199 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1200 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1201 pxs->desc->peri); 1202 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1203 pxs->desc->peri); 1204 } 1205 1206 return off; 1207 } 1208 1209 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1210 const struct _xfer_spec *pxs, int cyc) 1211 { 1212 int off = 0; 1213 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1214 1215 if (pl330->quirks & PL330_QUIRK_PERIPH_BURST) 1216 cond = BURST; 1217 1218 switch (pxs->desc->rqtype) { 1219 case DMA_MEM_TO_DEV: 1220 case DMA_DEV_TO_MEM: 1221 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1222 cond); 1223 break; 1224 1225 case DMA_MEM_TO_MEM: 1226 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1227 break; 1228 1229 default: 1230 /* this code should be unreachable */ 1231 WARN_ON(1); 1232 break; 1233 } 1234 1235 return off; 1236 } 1237 1238 /* 1239 * only the unaligned burst transfers have the dregs. 1240 * so, still transfer dregs with a reduced size burst 1241 * for mem-to-mem, mem-to-dev or dev-to-mem. 1242 */ 1243 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1244 const struct _xfer_spec *pxs, int transfer_length) 1245 { 1246 int off = 0; 1247 int dregs_ccr; 1248 1249 if (transfer_length == 0) 1250 return off; 1251 1252 /* 1253 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) / 1254 * BRST_SIZE(ccr) 1255 * the dregs len must be smaller than burst len, 1256 * so, for higher efficiency, we can modify CCR 1257 * to use a reduced size burst len for the dregs. 1258 */ 1259 dregs_ccr = pxs->ccr; 1260 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1261 (0xf << CC_DSTBRSTLEN_SHFT)); 1262 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1263 CC_SRCBRSTLEN_SHFT); 1264 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1265 CC_DSTBRSTLEN_SHFT); 1266 1267 switch (pxs->desc->rqtype) { 1268 case DMA_MEM_TO_DEV: 1269 case DMA_DEV_TO_MEM: 1270 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1271 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1, 1272 BURST); 1273 break; 1274 1275 case DMA_MEM_TO_MEM: 1276 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1277 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1278 break; 1279 1280 default: 1281 /* this code should be unreachable */ 1282 WARN_ON(1); 1283 break; 1284 } 1285 1286 return off; 1287 } 1288 1289 /* Returns bytes consumed and updates bursts */ 1290 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1291 unsigned long *bursts, const struct _xfer_spec *pxs) 1292 { 1293 int cyc, cycmax, szlp, szlpend, szbrst, off; 1294 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1295 struct _arg_LPEND lpend; 1296 1297 if (*bursts == 1) 1298 return _bursts(pl330, dry_run, buf, pxs, 1); 1299 1300 /* Max iterations possible in DMALP is 256 */ 1301 if (*bursts >= 256*256) { 1302 lcnt1 = 256; 1303 lcnt0 = 256; 1304 cyc = *bursts / lcnt1 / lcnt0; 1305 } else if (*bursts > 256) { 1306 lcnt1 = 256; 1307 lcnt0 = *bursts / lcnt1; 1308 cyc = 1; 1309 } else { 1310 lcnt1 = *bursts; 1311 lcnt0 = 0; 1312 cyc = 1; 1313 } 1314 1315 szlp = _emit_LP(1, buf, 0, 0); 1316 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1317 1318 lpend.cond = ALWAYS; 1319 lpend.forever = false; 1320 lpend.loop = 0; 1321 lpend.bjump = 0; 1322 szlpend = _emit_LPEND(1, buf, &lpend); 1323 1324 if (lcnt0) { 1325 szlp *= 2; 1326 szlpend *= 2; 1327 } 1328 1329 /* 1330 * Max bursts that we can unroll due to limit on the 1331 * size of backward jump that can be encoded in DMALPEND 1332 * which is 8-bits and hence 255 1333 */ 1334 cycmax = (255 - (szlp + szlpend)) / szbrst; 1335 1336 cyc = (cycmax < cyc) ? cycmax : cyc; 1337 1338 off = 0; 1339 1340 if (lcnt0) { 1341 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1342 ljmp0 = off; 1343 } 1344 1345 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1346 ljmp1 = off; 1347 1348 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1349 1350 lpend.cond = ALWAYS; 1351 lpend.forever = false; 1352 lpend.loop = 1; 1353 lpend.bjump = off - ljmp1; 1354 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1355 1356 if (lcnt0) { 1357 lpend.cond = ALWAYS; 1358 lpend.forever = false; 1359 lpend.loop = 0; 1360 lpend.bjump = off - ljmp0; 1361 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1362 } 1363 1364 *bursts = lcnt1 * cyc; 1365 if (lcnt0) 1366 *bursts *= lcnt0; 1367 1368 return off; 1369 } 1370 1371 static inline int _setup_loops(struct pl330_dmac *pl330, 1372 unsigned dry_run, u8 buf[], 1373 const struct _xfer_spec *pxs) 1374 { 1375 struct pl330_xfer *x = &pxs->desc->px; 1376 u32 ccr = pxs->ccr; 1377 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1378 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1379 BRST_SIZE(ccr); 1380 int off = 0; 1381 1382 while (bursts) { 1383 c = bursts; 1384 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1385 bursts -= c; 1386 } 1387 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1388 1389 return off; 1390 } 1391 1392 static inline int _setup_xfer(struct pl330_dmac *pl330, 1393 unsigned dry_run, u8 buf[], 1394 const struct _xfer_spec *pxs) 1395 { 1396 struct pl330_xfer *x = &pxs->desc->px; 1397 int off = 0; 1398 1399 /* DMAMOV SAR, x->src_addr */ 1400 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1401 /* DMAMOV DAR, x->dst_addr */ 1402 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1403 1404 /* Setup Loop(s) */ 1405 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1406 1407 return off; 1408 } 1409 1410 /* 1411 * A req is a sequence of one or more xfer units. 1412 * Returns the number of bytes taken to setup the MC for the req. 1413 */ 1414 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1415 struct pl330_thread *thrd, unsigned index, 1416 struct _xfer_spec *pxs) 1417 { 1418 struct _pl330_req *req = &thrd->req[index]; 1419 u8 *buf = req->mc_cpu; 1420 int off = 0; 1421 1422 PL330_DBGMC_START(req->mc_bus); 1423 1424 /* DMAMOV CCR, ccr */ 1425 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1426 1427 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1428 1429 /* DMASEV peripheral/event */ 1430 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1431 /* DMAEND */ 1432 off += _emit_END(dry_run, &buf[off]); 1433 1434 return off; 1435 } 1436 1437 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1438 { 1439 u32 ccr = 0; 1440 1441 if (rqc->src_inc) 1442 ccr |= CC_SRCINC; 1443 1444 if (rqc->dst_inc) 1445 ccr |= CC_DSTINC; 1446 1447 /* We set same protection levels for Src and DST for now */ 1448 if (rqc->privileged) 1449 ccr |= CC_SRCPRI | CC_DSTPRI; 1450 if (rqc->nonsecure) 1451 ccr |= CC_SRCNS | CC_DSTNS; 1452 if (rqc->insnaccess) 1453 ccr |= CC_SRCIA | CC_DSTIA; 1454 1455 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1456 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1457 1458 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1459 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1460 1461 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1462 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1463 1464 ccr |= (rqc->swap << CC_SWAP_SHFT); 1465 1466 return ccr; 1467 } 1468 1469 /* 1470 * Submit a list of xfers after which the client wants notification. 1471 * Client is not notified after each xfer unit, just once after all 1472 * xfer units are done or some error occurs. 1473 */ 1474 static int pl330_submit_req(struct pl330_thread *thrd, 1475 struct dma_pl330_desc *desc) 1476 { 1477 struct pl330_dmac *pl330 = thrd->dmac; 1478 struct _xfer_spec xs; 1479 unsigned long flags; 1480 unsigned idx; 1481 u32 ccr; 1482 int ret = 0; 1483 1484 switch (desc->rqtype) { 1485 case DMA_MEM_TO_DEV: 1486 break; 1487 1488 case DMA_DEV_TO_MEM: 1489 break; 1490 1491 case DMA_MEM_TO_MEM: 1492 break; 1493 1494 default: 1495 return -ENOTSUPP; 1496 } 1497 1498 if (pl330->state == DYING 1499 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1500 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1501 __func__, __LINE__); 1502 return -EAGAIN; 1503 } 1504 1505 /* If request for non-existing peripheral */ 1506 if (desc->rqtype != DMA_MEM_TO_MEM && 1507 desc->peri >= pl330->pcfg.num_peri) { 1508 dev_info(thrd->dmac->ddma.dev, 1509 "%s:%d Invalid peripheral(%u)!\n", 1510 __func__, __LINE__, desc->peri); 1511 return -EINVAL; 1512 } 1513 1514 spin_lock_irqsave(&pl330->lock, flags); 1515 1516 if (_queue_full(thrd)) { 1517 ret = -EAGAIN; 1518 goto xfer_exit; 1519 } 1520 1521 /* Prefer Secure Channel */ 1522 if (!_manager_ns(thrd)) 1523 desc->rqcfg.nonsecure = 0; 1524 else 1525 desc->rqcfg.nonsecure = 1; 1526 1527 ccr = _prepare_ccr(&desc->rqcfg); 1528 1529 idx = thrd->req[0].desc == NULL ? 0 : 1; 1530 1531 xs.ccr = ccr; 1532 xs.desc = desc; 1533 1534 /* First dry run to check if req is acceptable */ 1535 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1536 1537 if (ret > pl330->mcbufsz / 2) { 1538 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1539 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1540 ret = -ENOMEM; 1541 goto xfer_exit; 1542 } 1543 1544 /* Hook the request */ 1545 thrd->lstenq = idx; 1546 thrd->req[idx].desc = desc; 1547 _setup_req(pl330, 0, thrd, idx, &xs); 1548 1549 ret = 0; 1550 1551 xfer_exit: 1552 spin_unlock_irqrestore(&pl330->lock, flags); 1553 1554 return ret; 1555 } 1556 1557 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1558 { 1559 struct dma_pl330_chan *pch; 1560 unsigned long flags; 1561 1562 if (!desc) 1563 return; 1564 1565 pch = desc->pchan; 1566 1567 /* If desc aborted */ 1568 if (!pch) 1569 return; 1570 1571 spin_lock_irqsave(&pch->lock, flags); 1572 1573 desc->status = DONE; 1574 1575 spin_unlock_irqrestore(&pch->lock, flags); 1576 1577 tasklet_schedule(&pch->task); 1578 } 1579 1580 static void pl330_dotask(struct tasklet_struct *t) 1581 { 1582 struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks); 1583 unsigned long flags; 1584 int i; 1585 1586 spin_lock_irqsave(&pl330->lock, flags); 1587 1588 /* The DMAC itself gone nuts */ 1589 if (pl330->dmac_tbd.reset_dmac) { 1590 pl330->state = DYING; 1591 /* Reset the manager too */ 1592 pl330->dmac_tbd.reset_mngr = true; 1593 /* Clear the reset flag */ 1594 pl330->dmac_tbd.reset_dmac = false; 1595 } 1596 1597 if (pl330->dmac_tbd.reset_mngr) { 1598 _stop(pl330->manager); 1599 /* Reset all channels */ 1600 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1601 /* Clear the reset flag */ 1602 pl330->dmac_tbd.reset_mngr = false; 1603 } 1604 1605 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1606 1607 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1608 struct pl330_thread *thrd = &pl330->channels[i]; 1609 void __iomem *regs = pl330->base; 1610 enum pl330_op_err err; 1611 1612 _stop(thrd); 1613 1614 if (readl(regs + FSC) & (1 << thrd->id)) 1615 err = PL330_ERR_FAIL; 1616 else 1617 err = PL330_ERR_ABORT; 1618 1619 spin_unlock_irqrestore(&pl330->lock, flags); 1620 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1621 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1622 spin_lock_irqsave(&pl330->lock, flags); 1623 1624 thrd->req[0].desc = NULL; 1625 thrd->req[1].desc = NULL; 1626 thrd->req_running = -1; 1627 1628 /* Clear the reset flag */ 1629 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1630 } 1631 } 1632 1633 spin_unlock_irqrestore(&pl330->lock, flags); 1634 1635 return; 1636 } 1637 1638 /* Returns 1 if state was updated, 0 otherwise */ 1639 static int pl330_update(struct pl330_dmac *pl330) 1640 { 1641 struct dma_pl330_desc *descdone; 1642 unsigned long flags; 1643 void __iomem *regs; 1644 u32 val; 1645 int id, ev, ret = 0; 1646 1647 regs = pl330->base; 1648 1649 spin_lock_irqsave(&pl330->lock, flags); 1650 1651 val = readl(regs + FSM) & 0x1; 1652 if (val) 1653 pl330->dmac_tbd.reset_mngr = true; 1654 else 1655 pl330->dmac_tbd.reset_mngr = false; 1656 1657 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1658 pl330->dmac_tbd.reset_chan |= val; 1659 if (val) { 1660 int i = 0; 1661 while (i < pl330->pcfg.num_chan) { 1662 if (val & (1 << i)) { 1663 dev_info(pl330->ddma.dev, 1664 "Reset Channel-%d\t CS-%x FTC-%x\n", 1665 i, readl(regs + CS(i)), 1666 readl(regs + FTC(i))); 1667 _stop(&pl330->channels[i]); 1668 } 1669 i++; 1670 } 1671 } 1672 1673 /* Check which event happened i.e, thread notified */ 1674 val = readl(regs + ES); 1675 if (pl330->pcfg.num_events < 32 1676 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1677 pl330->dmac_tbd.reset_dmac = true; 1678 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1679 __LINE__); 1680 ret = 1; 1681 goto updt_exit; 1682 } 1683 1684 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1685 if (val & (1 << ev)) { /* Event occurred */ 1686 struct pl330_thread *thrd; 1687 u32 inten = readl(regs + INTEN); 1688 int active; 1689 1690 /* Clear the event */ 1691 if (inten & (1 << ev)) 1692 writel(1 << ev, regs + INTCLR); 1693 1694 ret = 1; 1695 1696 id = pl330->events[ev]; 1697 1698 thrd = &pl330->channels[id]; 1699 1700 active = thrd->req_running; 1701 if (active == -1) /* Aborted */ 1702 continue; 1703 1704 /* Detach the req */ 1705 descdone = thrd->req[active].desc; 1706 thrd->req[active].desc = NULL; 1707 1708 thrd->req_running = -1; 1709 1710 /* Get going again ASAP */ 1711 pl330_start_thread(thrd); 1712 1713 /* For now, just make a list of callbacks to be done */ 1714 list_add_tail(&descdone->rqd, &pl330->req_done); 1715 } 1716 } 1717 1718 /* Now that we are in no hurry, do the callbacks */ 1719 while (!list_empty(&pl330->req_done)) { 1720 descdone = list_first_entry(&pl330->req_done, 1721 struct dma_pl330_desc, rqd); 1722 list_del(&descdone->rqd); 1723 spin_unlock_irqrestore(&pl330->lock, flags); 1724 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1725 spin_lock_irqsave(&pl330->lock, flags); 1726 } 1727 1728 updt_exit: 1729 spin_unlock_irqrestore(&pl330->lock, flags); 1730 1731 if (pl330->dmac_tbd.reset_dmac 1732 || pl330->dmac_tbd.reset_mngr 1733 || pl330->dmac_tbd.reset_chan) { 1734 ret = 1; 1735 tasklet_schedule(&pl330->tasks); 1736 } 1737 1738 return ret; 1739 } 1740 1741 /* Reserve an event */ 1742 static inline int _alloc_event(struct pl330_thread *thrd) 1743 { 1744 struct pl330_dmac *pl330 = thrd->dmac; 1745 int ev; 1746 1747 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1748 if (pl330->events[ev] == -1) { 1749 pl330->events[ev] = thrd->id; 1750 return ev; 1751 } 1752 1753 return -1; 1754 } 1755 1756 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1757 { 1758 return pl330->pcfg.irq_ns & (1 << i); 1759 } 1760 1761 /* Upon success, returns IdentityToken for the 1762 * allocated channel, NULL otherwise. 1763 */ 1764 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1765 { 1766 struct pl330_thread *thrd = NULL; 1767 int chans, i; 1768 1769 if (pl330->state == DYING) 1770 return NULL; 1771 1772 chans = pl330->pcfg.num_chan; 1773 1774 for (i = 0; i < chans; i++) { 1775 thrd = &pl330->channels[i]; 1776 if ((thrd->free) && (!_manager_ns(thrd) || 1777 _chan_ns(pl330, i))) { 1778 thrd->ev = _alloc_event(thrd); 1779 if (thrd->ev >= 0) { 1780 thrd->free = false; 1781 thrd->lstenq = 1; 1782 thrd->req[0].desc = NULL; 1783 thrd->req[1].desc = NULL; 1784 thrd->req_running = -1; 1785 break; 1786 } 1787 } 1788 thrd = NULL; 1789 } 1790 1791 return thrd; 1792 } 1793 1794 /* Release an event */ 1795 static inline void _free_event(struct pl330_thread *thrd, int ev) 1796 { 1797 struct pl330_dmac *pl330 = thrd->dmac; 1798 1799 /* If the event is valid and was held by the thread */ 1800 if (ev >= 0 && ev < pl330->pcfg.num_events 1801 && pl330->events[ev] == thrd->id) 1802 pl330->events[ev] = -1; 1803 } 1804 1805 static void pl330_release_channel(struct pl330_thread *thrd) 1806 { 1807 if (!thrd || thrd->free) 1808 return; 1809 1810 _stop(thrd); 1811 1812 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1813 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1814 1815 _free_event(thrd, thrd->ev); 1816 thrd->free = true; 1817 } 1818 1819 /* Initialize the structure for PL330 configuration, that can be used 1820 * by the client driver the make best use of the DMAC 1821 */ 1822 static void read_dmac_config(struct pl330_dmac *pl330) 1823 { 1824 void __iomem *regs = pl330->base; 1825 u32 val; 1826 1827 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1828 val &= CRD_DATA_WIDTH_MASK; 1829 pl330->pcfg.data_bus_width = 8 * (1 << val); 1830 1831 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1832 val &= CRD_DATA_BUFF_MASK; 1833 pl330->pcfg.data_buf_dep = val + 1; 1834 1835 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1836 val &= CR0_NUM_CHANS_MASK; 1837 val += 1; 1838 pl330->pcfg.num_chan = val; 1839 1840 val = readl(regs + CR0); 1841 if (val & CR0_PERIPH_REQ_SET) { 1842 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1843 val += 1; 1844 pl330->pcfg.num_peri = val; 1845 pl330->pcfg.peri_ns = readl(regs + CR4); 1846 } else { 1847 pl330->pcfg.num_peri = 0; 1848 } 1849 1850 val = readl(regs + CR0); 1851 if (val & CR0_BOOT_MAN_NS) 1852 pl330->pcfg.mode |= DMAC_MODE_NS; 1853 else 1854 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1855 1856 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1857 val &= CR0_NUM_EVENTS_MASK; 1858 val += 1; 1859 pl330->pcfg.num_events = val; 1860 1861 pl330->pcfg.irq_ns = readl(regs + CR3); 1862 } 1863 1864 static inline void _reset_thread(struct pl330_thread *thrd) 1865 { 1866 struct pl330_dmac *pl330 = thrd->dmac; 1867 1868 thrd->req[0].mc_cpu = pl330->mcode_cpu 1869 + (thrd->id * pl330->mcbufsz); 1870 thrd->req[0].mc_bus = pl330->mcode_bus 1871 + (thrd->id * pl330->mcbufsz); 1872 thrd->req[0].desc = NULL; 1873 1874 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1875 + pl330->mcbufsz / 2; 1876 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1877 + pl330->mcbufsz / 2; 1878 thrd->req[1].desc = NULL; 1879 1880 thrd->req_running = -1; 1881 } 1882 1883 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1884 { 1885 int chans = pl330->pcfg.num_chan; 1886 struct pl330_thread *thrd; 1887 int i; 1888 1889 /* Allocate 1 Manager and 'chans' Channel threads */ 1890 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1891 GFP_KERNEL); 1892 if (!pl330->channels) 1893 return -ENOMEM; 1894 1895 /* Init Channel threads */ 1896 for (i = 0; i < chans; i++) { 1897 thrd = &pl330->channels[i]; 1898 thrd->id = i; 1899 thrd->dmac = pl330; 1900 _reset_thread(thrd); 1901 thrd->free = true; 1902 } 1903 1904 /* MANAGER is indexed at the end */ 1905 thrd = &pl330->channels[chans]; 1906 thrd->id = chans; 1907 thrd->dmac = pl330; 1908 thrd->free = false; 1909 pl330->manager = thrd; 1910 1911 return 0; 1912 } 1913 1914 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1915 { 1916 int chans = pl330->pcfg.num_chan; 1917 int ret; 1918 1919 /* 1920 * Alloc MicroCode buffer for 'chans' Channel threads. 1921 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1922 */ 1923 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1924 chans * pl330->mcbufsz, 1925 &pl330->mcode_bus, GFP_KERNEL, 1926 DMA_ATTR_PRIVILEGED); 1927 if (!pl330->mcode_cpu) { 1928 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1929 __func__, __LINE__); 1930 return -ENOMEM; 1931 } 1932 1933 ret = dmac_alloc_threads(pl330); 1934 if (ret) { 1935 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1936 __func__, __LINE__); 1937 dma_free_attrs(pl330->ddma.dev, 1938 chans * pl330->mcbufsz, 1939 pl330->mcode_cpu, pl330->mcode_bus, 1940 DMA_ATTR_PRIVILEGED); 1941 return ret; 1942 } 1943 1944 return 0; 1945 } 1946 1947 static int pl330_add(struct pl330_dmac *pl330) 1948 { 1949 int i, ret; 1950 1951 /* Check if we can handle this DMAC */ 1952 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1953 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1954 pl330->pcfg.periph_id); 1955 return -EINVAL; 1956 } 1957 1958 /* Read the configuration of the DMAC */ 1959 read_dmac_config(pl330); 1960 1961 if (pl330->pcfg.num_events == 0) { 1962 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1963 __func__, __LINE__); 1964 return -EINVAL; 1965 } 1966 1967 spin_lock_init(&pl330->lock); 1968 1969 INIT_LIST_HEAD(&pl330->req_done); 1970 1971 /* Use default MC buffer size if not provided */ 1972 if (!pl330->mcbufsz) 1973 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1974 1975 /* Mark all events as free */ 1976 for (i = 0; i < pl330->pcfg.num_events; i++) 1977 pl330->events[i] = -1; 1978 1979 /* Allocate resources needed by the DMAC */ 1980 ret = dmac_alloc_resources(pl330); 1981 if (ret) { 1982 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1983 return ret; 1984 } 1985 1986 tasklet_setup(&pl330->tasks, pl330_dotask); 1987 1988 pl330->state = INIT; 1989 1990 return 0; 1991 } 1992 1993 static int dmac_free_threads(struct pl330_dmac *pl330) 1994 { 1995 struct pl330_thread *thrd; 1996 int i; 1997 1998 /* Release Channel threads */ 1999 for (i = 0; i < pl330->pcfg.num_chan; i++) { 2000 thrd = &pl330->channels[i]; 2001 pl330_release_channel(thrd); 2002 } 2003 2004 /* Free memory */ 2005 kfree(pl330->channels); 2006 2007 return 0; 2008 } 2009 2010 static void pl330_del(struct pl330_dmac *pl330) 2011 { 2012 pl330->state = UNINIT; 2013 2014 tasklet_kill(&pl330->tasks); 2015 2016 /* Free DMAC resources */ 2017 dmac_free_threads(pl330); 2018 2019 dma_free_attrs(pl330->ddma.dev, 2020 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2021 pl330->mcode_bus, DMA_ATTR_PRIVILEGED); 2022 } 2023 2024 /* forward declaration */ 2025 static struct amba_driver pl330_driver; 2026 2027 static inline struct dma_pl330_chan * 2028 to_pchan(struct dma_chan *ch) 2029 { 2030 if (!ch) 2031 return NULL; 2032 2033 return container_of(ch, struct dma_pl330_chan, chan); 2034 } 2035 2036 static inline struct dma_pl330_desc * 2037 to_desc(struct dma_async_tx_descriptor *tx) 2038 { 2039 return container_of(tx, struct dma_pl330_desc, txd); 2040 } 2041 2042 static inline void fill_queue(struct dma_pl330_chan *pch) 2043 { 2044 struct dma_pl330_desc *desc; 2045 int ret; 2046 2047 list_for_each_entry(desc, &pch->work_list, node) { 2048 2049 /* If already submitted */ 2050 if (desc->status == BUSY || desc->status == PAUSED) 2051 continue; 2052 2053 ret = pl330_submit_req(pch->thread, desc); 2054 if (!ret) { 2055 desc->status = BUSY; 2056 } else if (ret == -EAGAIN) { 2057 /* QFull or DMAC Dying */ 2058 break; 2059 } else { 2060 /* Unacceptable request */ 2061 desc->status = DONE; 2062 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2063 __func__, __LINE__, desc->txd.cookie); 2064 tasklet_schedule(&pch->task); 2065 } 2066 } 2067 } 2068 2069 static void pl330_tasklet(struct tasklet_struct *t) 2070 { 2071 struct dma_pl330_chan *pch = from_tasklet(pch, t, task); 2072 struct dma_pl330_desc *desc, *_dt; 2073 unsigned long flags; 2074 bool power_down = false; 2075 2076 spin_lock_irqsave(&pch->lock, flags); 2077 2078 /* Pick up ripe tomatoes */ 2079 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2080 if (desc->status == DONE) { 2081 if (!pch->cyclic) 2082 dma_cookie_complete(&desc->txd); 2083 list_move_tail(&desc->node, &pch->completed_list); 2084 } 2085 2086 /* Try to submit a req imm. next to the last completed cookie */ 2087 fill_queue(pch); 2088 2089 if (list_empty(&pch->work_list)) { 2090 spin_lock(&pch->thread->dmac->lock); 2091 _stop(pch->thread); 2092 spin_unlock(&pch->thread->dmac->lock); 2093 power_down = true; 2094 pch->active = false; 2095 } else { 2096 /* Make sure the PL330 Channel thread is active */ 2097 spin_lock(&pch->thread->dmac->lock); 2098 pl330_start_thread(pch->thread); 2099 spin_unlock(&pch->thread->dmac->lock); 2100 } 2101 2102 while (!list_empty(&pch->completed_list)) { 2103 struct dmaengine_desc_callback cb; 2104 2105 desc = list_first_entry(&pch->completed_list, 2106 struct dma_pl330_desc, node); 2107 2108 dmaengine_desc_get_callback(&desc->txd, &cb); 2109 2110 if (pch->cyclic) { 2111 desc->status = PREP; 2112 list_move_tail(&desc->node, &pch->work_list); 2113 if (power_down) { 2114 pch->active = true; 2115 spin_lock(&pch->thread->dmac->lock); 2116 pl330_start_thread(pch->thread); 2117 spin_unlock(&pch->thread->dmac->lock); 2118 power_down = false; 2119 } 2120 } else { 2121 desc->status = FREE; 2122 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2123 } 2124 2125 dma_descriptor_unmap(&desc->txd); 2126 2127 if (dmaengine_desc_callback_valid(&cb)) { 2128 spin_unlock_irqrestore(&pch->lock, flags); 2129 dmaengine_desc_callback_invoke(&cb, NULL); 2130 spin_lock_irqsave(&pch->lock, flags); 2131 } 2132 } 2133 spin_unlock_irqrestore(&pch->lock, flags); 2134 2135 /* If work list empty, power down */ 2136 if (power_down) { 2137 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2138 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2139 } 2140 } 2141 2142 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2143 struct of_dma *ofdma) 2144 { 2145 int count = dma_spec->args_count; 2146 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2147 unsigned int chan_id; 2148 2149 if (!pl330) 2150 return NULL; 2151 2152 if (count != 1) 2153 return NULL; 2154 2155 chan_id = dma_spec->args[0]; 2156 if (chan_id >= pl330->num_peripherals) 2157 return NULL; 2158 2159 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2160 } 2161 2162 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2163 { 2164 struct dma_pl330_chan *pch = to_pchan(chan); 2165 struct pl330_dmac *pl330 = pch->dmac; 2166 unsigned long flags; 2167 2168 spin_lock_irqsave(&pl330->lock, flags); 2169 2170 dma_cookie_init(chan); 2171 pch->cyclic = false; 2172 2173 pch->thread = pl330_request_channel(pl330); 2174 if (!pch->thread) { 2175 spin_unlock_irqrestore(&pl330->lock, flags); 2176 return -ENOMEM; 2177 } 2178 2179 tasklet_setup(&pch->task, pl330_tasklet); 2180 2181 spin_unlock_irqrestore(&pl330->lock, flags); 2182 2183 return 1; 2184 } 2185 2186 /* 2187 * We need the data direction between the DMAC (the dma-mapping "device") and 2188 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2189 */ 2190 static enum dma_data_direction 2191 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2192 { 2193 switch (dir) { 2194 case DMA_MEM_TO_DEV: 2195 return DMA_FROM_DEVICE; 2196 case DMA_DEV_TO_MEM: 2197 return DMA_TO_DEVICE; 2198 case DMA_DEV_TO_DEV: 2199 return DMA_BIDIRECTIONAL; 2200 default: 2201 return DMA_NONE; 2202 } 2203 } 2204 2205 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2206 { 2207 if (pch->dir != DMA_NONE) 2208 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2209 1 << pch->burst_sz, pch->dir, 0); 2210 pch->dir = DMA_NONE; 2211 } 2212 2213 2214 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2215 enum dma_transfer_direction dir) 2216 { 2217 struct device *dev = pch->chan.device->dev; 2218 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2219 2220 /* Already mapped for this config? */ 2221 if (pch->dir == dma_dir) 2222 return true; 2223 2224 pl330_unprep_slave_fifo(pch); 2225 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2226 1 << pch->burst_sz, dma_dir, 0); 2227 if (dma_mapping_error(dev, pch->fifo_dma)) 2228 return false; 2229 2230 pch->dir = dma_dir; 2231 return true; 2232 } 2233 2234 static int fixup_burst_len(int max_burst_len, int quirks) 2235 { 2236 if (max_burst_len > PL330_MAX_BURST) 2237 return PL330_MAX_BURST; 2238 else if (max_burst_len < 1) 2239 return 1; 2240 else 2241 return max_burst_len; 2242 } 2243 2244 static int pl330_config_write(struct dma_chan *chan, 2245 struct dma_slave_config *slave_config, 2246 enum dma_transfer_direction direction) 2247 { 2248 struct dma_pl330_chan *pch = to_pchan(chan); 2249 2250 pl330_unprep_slave_fifo(pch); 2251 if (direction == DMA_MEM_TO_DEV) { 2252 if (slave_config->dst_addr) 2253 pch->fifo_addr = slave_config->dst_addr; 2254 if (slave_config->dst_addr_width) 2255 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2256 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2257 pch->dmac->quirks); 2258 } else if (direction == DMA_DEV_TO_MEM) { 2259 if (slave_config->src_addr) 2260 pch->fifo_addr = slave_config->src_addr; 2261 if (slave_config->src_addr_width) 2262 pch->burst_sz = __ffs(slave_config->src_addr_width); 2263 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2264 pch->dmac->quirks); 2265 } 2266 2267 return 0; 2268 } 2269 2270 static int pl330_config(struct dma_chan *chan, 2271 struct dma_slave_config *slave_config) 2272 { 2273 struct dma_pl330_chan *pch = to_pchan(chan); 2274 2275 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2276 2277 return 0; 2278 } 2279 2280 static int pl330_terminate_all(struct dma_chan *chan) 2281 { 2282 struct dma_pl330_chan *pch = to_pchan(chan); 2283 struct dma_pl330_desc *desc; 2284 unsigned long flags; 2285 struct pl330_dmac *pl330 = pch->dmac; 2286 bool power_down = false; 2287 2288 pm_runtime_get_sync(pl330->ddma.dev); 2289 spin_lock_irqsave(&pch->lock, flags); 2290 2291 spin_lock(&pl330->lock); 2292 _stop(pch->thread); 2293 pch->thread->req[0].desc = NULL; 2294 pch->thread->req[1].desc = NULL; 2295 pch->thread->req_running = -1; 2296 spin_unlock(&pl330->lock); 2297 2298 power_down = pch->active; 2299 pch->active = false; 2300 2301 /* Mark all desc done */ 2302 list_for_each_entry(desc, &pch->submitted_list, node) { 2303 desc->status = FREE; 2304 dma_cookie_complete(&desc->txd); 2305 } 2306 2307 list_for_each_entry(desc, &pch->work_list , node) { 2308 desc->status = FREE; 2309 dma_cookie_complete(&desc->txd); 2310 } 2311 2312 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2313 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2314 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2315 spin_unlock_irqrestore(&pch->lock, flags); 2316 pm_runtime_mark_last_busy(pl330->ddma.dev); 2317 if (power_down) 2318 pm_runtime_put_autosuspend(pl330->ddma.dev); 2319 pm_runtime_put_autosuspend(pl330->ddma.dev); 2320 2321 return 0; 2322 } 2323 2324 /* 2325 * We don't support DMA_RESUME command because of hardware 2326 * limitations, so after pausing the channel we cannot restore 2327 * it to active state. We have to terminate channel and setup 2328 * DMA transfer again. This pause feature was implemented to 2329 * allow safely read residue before channel termination. 2330 */ 2331 static int pl330_pause(struct dma_chan *chan) 2332 { 2333 struct dma_pl330_chan *pch = to_pchan(chan); 2334 struct pl330_dmac *pl330 = pch->dmac; 2335 struct dma_pl330_desc *desc; 2336 unsigned long flags; 2337 2338 pm_runtime_get_sync(pl330->ddma.dev); 2339 spin_lock_irqsave(&pch->lock, flags); 2340 2341 spin_lock(&pl330->lock); 2342 _stop(pch->thread); 2343 spin_unlock(&pl330->lock); 2344 2345 list_for_each_entry(desc, &pch->work_list, node) { 2346 if (desc->status == BUSY) 2347 desc->status = PAUSED; 2348 } 2349 spin_unlock_irqrestore(&pch->lock, flags); 2350 pm_runtime_mark_last_busy(pl330->ddma.dev); 2351 pm_runtime_put_autosuspend(pl330->ddma.dev); 2352 2353 return 0; 2354 } 2355 2356 static void pl330_free_chan_resources(struct dma_chan *chan) 2357 { 2358 struct dma_pl330_chan *pch = to_pchan(chan); 2359 struct pl330_dmac *pl330 = pch->dmac; 2360 unsigned long flags; 2361 2362 tasklet_kill(&pch->task); 2363 2364 pm_runtime_get_sync(pch->dmac->ddma.dev); 2365 spin_lock_irqsave(&pl330->lock, flags); 2366 2367 pl330_release_channel(pch->thread); 2368 pch->thread = NULL; 2369 2370 if (pch->cyclic) 2371 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2372 2373 spin_unlock_irqrestore(&pl330->lock, flags); 2374 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2375 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2376 pl330_unprep_slave_fifo(pch); 2377 } 2378 2379 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2380 struct dma_pl330_desc *desc) 2381 { 2382 struct pl330_thread *thrd = pch->thread; 2383 struct pl330_dmac *pl330 = pch->dmac; 2384 void __iomem *regs = thrd->dmac->base; 2385 u32 val, addr; 2386 2387 pm_runtime_get_sync(pl330->ddma.dev); 2388 val = addr = 0; 2389 if (desc->rqcfg.src_inc) { 2390 val = readl(regs + SA(thrd->id)); 2391 addr = desc->px.src_addr; 2392 } else { 2393 val = readl(regs + DA(thrd->id)); 2394 addr = desc->px.dst_addr; 2395 } 2396 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2397 pm_runtime_put_autosuspend(pl330->ddma.dev); 2398 2399 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2400 if (!val) 2401 return 0; 2402 2403 return val - addr; 2404 } 2405 2406 static enum dma_status 2407 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2408 struct dma_tx_state *txstate) 2409 { 2410 enum dma_status ret; 2411 unsigned long flags; 2412 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2413 struct dma_pl330_chan *pch = to_pchan(chan); 2414 unsigned int transferred, residual = 0; 2415 2416 ret = dma_cookie_status(chan, cookie, txstate); 2417 2418 if (!txstate) 2419 return ret; 2420 2421 if (ret == DMA_COMPLETE) 2422 goto out; 2423 2424 spin_lock_irqsave(&pch->lock, flags); 2425 spin_lock(&pch->thread->dmac->lock); 2426 2427 if (pch->thread->req_running != -1) 2428 running = pch->thread->req[pch->thread->req_running].desc; 2429 2430 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2431 2432 /* Check in pending list */ 2433 list_for_each_entry(desc, &pch->work_list, node) { 2434 if (desc->status == DONE) 2435 transferred = desc->bytes_requested; 2436 else if (running && desc == running) 2437 transferred = 2438 pl330_get_current_xferred_count(pch, desc); 2439 else if (desc->status == BUSY || desc->status == PAUSED) 2440 /* 2441 * Busy but not running means either just enqueued, 2442 * or finished and not yet marked done 2443 */ 2444 if (desc == last_enq) 2445 transferred = 0; 2446 else 2447 transferred = desc->bytes_requested; 2448 else 2449 transferred = 0; 2450 residual += desc->bytes_requested - transferred; 2451 if (desc->txd.cookie == cookie) { 2452 switch (desc->status) { 2453 case DONE: 2454 ret = DMA_COMPLETE; 2455 break; 2456 case PAUSED: 2457 ret = DMA_PAUSED; 2458 break; 2459 case PREP: 2460 case BUSY: 2461 ret = DMA_IN_PROGRESS; 2462 break; 2463 default: 2464 WARN_ON(1); 2465 } 2466 break; 2467 } 2468 if (desc->last) 2469 residual = 0; 2470 } 2471 spin_unlock(&pch->thread->dmac->lock); 2472 spin_unlock_irqrestore(&pch->lock, flags); 2473 2474 out: 2475 dma_set_residue(txstate, residual); 2476 2477 return ret; 2478 } 2479 2480 static void pl330_issue_pending(struct dma_chan *chan) 2481 { 2482 struct dma_pl330_chan *pch = to_pchan(chan); 2483 unsigned long flags; 2484 2485 spin_lock_irqsave(&pch->lock, flags); 2486 if (list_empty(&pch->work_list)) { 2487 /* 2488 * Warn on nothing pending. Empty submitted_list may 2489 * break our pm_runtime usage counter as it is 2490 * updated on work_list emptiness status. 2491 */ 2492 WARN_ON(list_empty(&pch->submitted_list)); 2493 pch->active = true; 2494 pm_runtime_get_sync(pch->dmac->ddma.dev); 2495 } 2496 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2497 spin_unlock_irqrestore(&pch->lock, flags); 2498 2499 pl330_tasklet(&pch->task); 2500 } 2501 2502 /* 2503 * We returned the last one of the circular list of descriptor(s) 2504 * from prep_xxx, so the argument to submit corresponds to the last 2505 * descriptor of the list. 2506 */ 2507 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2508 { 2509 struct dma_pl330_desc *desc, *last = to_desc(tx); 2510 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2511 dma_cookie_t cookie; 2512 unsigned long flags; 2513 2514 spin_lock_irqsave(&pch->lock, flags); 2515 2516 /* Assign cookies to all nodes */ 2517 while (!list_empty(&last->node)) { 2518 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2519 if (pch->cyclic) { 2520 desc->txd.callback = last->txd.callback; 2521 desc->txd.callback_param = last->txd.callback_param; 2522 } 2523 desc->last = false; 2524 2525 dma_cookie_assign(&desc->txd); 2526 2527 list_move_tail(&desc->node, &pch->submitted_list); 2528 } 2529 2530 last->last = true; 2531 cookie = dma_cookie_assign(&last->txd); 2532 list_add_tail(&last->node, &pch->submitted_list); 2533 spin_unlock_irqrestore(&pch->lock, flags); 2534 2535 return cookie; 2536 } 2537 2538 static inline void _init_desc(struct dma_pl330_desc *desc) 2539 { 2540 desc->rqcfg.swap = SWAP_NO; 2541 desc->rqcfg.scctl = CCTRL0; 2542 desc->rqcfg.dcctl = CCTRL0; 2543 desc->txd.tx_submit = pl330_tx_submit; 2544 2545 INIT_LIST_HEAD(&desc->node); 2546 } 2547 2548 /* Returns the number of descriptors added to the DMAC pool */ 2549 static int add_desc(struct list_head *pool, spinlock_t *lock, 2550 gfp_t flg, int count) 2551 { 2552 struct dma_pl330_desc *desc; 2553 unsigned long flags; 2554 int i; 2555 2556 desc = kcalloc(count, sizeof(*desc), flg); 2557 if (!desc) 2558 return 0; 2559 2560 spin_lock_irqsave(lock, flags); 2561 2562 for (i = 0; i < count; i++) { 2563 _init_desc(&desc[i]); 2564 list_add_tail(&desc[i].node, pool); 2565 } 2566 2567 spin_unlock_irqrestore(lock, flags); 2568 2569 return count; 2570 } 2571 2572 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2573 spinlock_t *lock) 2574 { 2575 struct dma_pl330_desc *desc = NULL; 2576 unsigned long flags; 2577 2578 spin_lock_irqsave(lock, flags); 2579 2580 if (!list_empty(pool)) { 2581 desc = list_entry(pool->next, 2582 struct dma_pl330_desc, node); 2583 2584 list_del_init(&desc->node); 2585 2586 desc->status = PREP; 2587 desc->txd.callback = NULL; 2588 desc->txd.callback_result = NULL; 2589 } 2590 2591 spin_unlock_irqrestore(lock, flags); 2592 2593 return desc; 2594 } 2595 2596 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2597 { 2598 struct pl330_dmac *pl330 = pch->dmac; 2599 u8 *peri_id = pch->chan.private; 2600 struct dma_pl330_desc *desc; 2601 2602 /* Pluck one desc from the pool of DMAC */ 2603 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2604 2605 /* If the DMAC pool is empty, alloc new */ 2606 if (!desc) { 2607 static DEFINE_SPINLOCK(lock); 2608 LIST_HEAD(pool); 2609 2610 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2611 return NULL; 2612 2613 desc = pluck_desc(&pool, &lock); 2614 WARN_ON(!desc || !list_empty(&pool)); 2615 } 2616 2617 /* Initialize the descriptor */ 2618 desc->pchan = pch; 2619 desc->txd.cookie = 0; 2620 async_tx_ack(&desc->txd); 2621 2622 desc->peri = peri_id ? pch->chan.chan_id : 0; 2623 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2624 2625 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2626 2627 return desc; 2628 } 2629 2630 static inline void fill_px(struct pl330_xfer *px, 2631 dma_addr_t dst, dma_addr_t src, size_t len) 2632 { 2633 px->bytes = len; 2634 px->dst_addr = dst; 2635 px->src_addr = src; 2636 } 2637 2638 static struct dma_pl330_desc * 2639 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2640 dma_addr_t src, size_t len) 2641 { 2642 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2643 2644 if (!desc) { 2645 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2646 __func__, __LINE__); 2647 return NULL; 2648 } 2649 2650 /* 2651 * Ideally we should lookout for reqs bigger than 2652 * those that can be programmed with 256 bytes of 2653 * MC buffer, but considering a req size is seldom 2654 * going to be word-unaligned and more than 200MB, 2655 * we take it easy. 2656 * Also, should the limit is reached we'd rather 2657 * have the platform increase MC buffer size than 2658 * complicating this API driver. 2659 */ 2660 fill_px(&desc->px, dst, src, len); 2661 2662 return desc; 2663 } 2664 2665 /* Call after fixing burst size */ 2666 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2667 { 2668 struct dma_pl330_chan *pch = desc->pchan; 2669 struct pl330_dmac *pl330 = pch->dmac; 2670 int burst_len; 2671 2672 burst_len = pl330->pcfg.data_bus_width / 8; 2673 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2674 burst_len >>= desc->rqcfg.brst_size; 2675 2676 /* src/dst_burst_len can't be more than 16 */ 2677 if (burst_len > PL330_MAX_BURST) 2678 burst_len = PL330_MAX_BURST; 2679 2680 return burst_len; 2681 } 2682 2683 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2684 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2685 size_t period_len, enum dma_transfer_direction direction, 2686 unsigned long flags) 2687 { 2688 struct dma_pl330_desc *desc = NULL, *first = NULL; 2689 struct dma_pl330_chan *pch = to_pchan(chan); 2690 struct pl330_dmac *pl330 = pch->dmac; 2691 unsigned int i; 2692 dma_addr_t dst; 2693 dma_addr_t src; 2694 2695 if (len % period_len != 0) 2696 return NULL; 2697 2698 if (!is_slave_direction(direction)) { 2699 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2700 __func__, __LINE__); 2701 return NULL; 2702 } 2703 2704 pl330_config_write(chan, &pch->slave_config, direction); 2705 2706 if (!pl330_prep_slave_fifo(pch, direction)) 2707 return NULL; 2708 2709 for (i = 0; i < len / period_len; i++) { 2710 desc = pl330_get_desc(pch); 2711 if (!desc) { 2712 unsigned long iflags; 2713 2714 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2715 __func__, __LINE__); 2716 2717 if (!first) 2718 return NULL; 2719 2720 spin_lock_irqsave(&pl330->pool_lock, iflags); 2721 2722 while (!list_empty(&first->node)) { 2723 desc = list_entry(first->node.next, 2724 struct dma_pl330_desc, node); 2725 list_move_tail(&desc->node, &pl330->desc_pool); 2726 } 2727 2728 list_move_tail(&first->node, &pl330->desc_pool); 2729 2730 spin_unlock_irqrestore(&pl330->pool_lock, iflags); 2731 2732 return NULL; 2733 } 2734 2735 switch (direction) { 2736 case DMA_MEM_TO_DEV: 2737 desc->rqcfg.src_inc = 1; 2738 desc->rqcfg.dst_inc = 0; 2739 src = dma_addr; 2740 dst = pch->fifo_dma; 2741 break; 2742 case DMA_DEV_TO_MEM: 2743 desc->rqcfg.src_inc = 0; 2744 desc->rqcfg.dst_inc = 1; 2745 src = pch->fifo_dma; 2746 dst = dma_addr; 2747 break; 2748 default: 2749 break; 2750 } 2751 2752 desc->rqtype = direction; 2753 desc->rqcfg.brst_size = pch->burst_sz; 2754 desc->rqcfg.brst_len = pch->burst_len; 2755 desc->bytes_requested = period_len; 2756 fill_px(&desc->px, dst, src, period_len); 2757 2758 if (!first) 2759 first = desc; 2760 else 2761 list_add_tail(&desc->node, &first->node); 2762 2763 dma_addr += period_len; 2764 } 2765 2766 if (!desc) 2767 return NULL; 2768 2769 pch->cyclic = true; 2770 2771 return &desc->txd; 2772 } 2773 2774 static struct dma_async_tx_descriptor * 2775 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2776 dma_addr_t src, size_t len, unsigned long flags) 2777 { 2778 struct dma_pl330_desc *desc; 2779 struct dma_pl330_chan *pch = to_pchan(chan); 2780 struct pl330_dmac *pl330; 2781 int burst; 2782 2783 if (unlikely(!pch || !len)) 2784 return NULL; 2785 2786 pl330 = pch->dmac; 2787 2788 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2789 if (!desc) 2790 return NULL; 2791 2792 desc->rqcfg.src_inc = 1; 2793 desc->rqcfg.dst_inc = 1; 2794 desc->rqtype = DMA_MEM_TO_MEM; 2795 2796 /* Select max possible burst size */ 2797 burst = pl330->pcfg.data_bus_width / 8; 2798 2799 /* 2800 * Make sure we use a burst size that aligns with all the memcpy 2801 * parameters because our DMA programming algorithm doesn't cope with 2802 * transfers which straddle an entry in the DMA device's MFIFO. 2803 */ 2804 while ((src | dst | len) & (burst - 1)) 2805 burst /= 2; 2806 2807 desc->rqcfg.brst_size = 0; 2808 while (burst != (1 << desc->rqcfg.brst_size)) 2809 desc->rqcfg.brst_size++; 2810 2811 desc->rqcfg.brst_len = get_burst_len(desc, len); 2812 /* 2813 * If burst size is smaller than bus width then make sure we only 2814 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2815 */ 2816 if (burst * 8 < pl330->pcfg.data_bus_width) 2817 desc->rqcfg.brst_len = 1; 2818 2819 desc->bytes_requested = len; 2820 2821 return &desc->txd; 2822 } 2823 2824 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2825 struct dma_pl330_desc *first) 2826 { 2827 unsigned long flags; 2828 struct dma_pl330_desc *desc; 2829 2830 if (!first) 2831 return; 2832 2833 spin_lock_irqsave(&pl330->pool_lock, flags); 2834 2835 while (!list_empty(&first->node)) { 2836 desc = list_entry(first->node.next, 2837 struct dma_pl330_desc, node); 2838 list_move_tail(&desc->node, &pl330->desc_pool); 2839 } 2840 2841 list_move_tail(&first->node, &pl330->desc_pool); 2842 2843 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2844 } 2845 2846 static struct dma_async_tx_descriptor * 2847 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2848 unsigned int sg_len, enum dma_transfer_direction direction, 2849 unsigned long flg, void *context) 2850 { 2851 struct dma_pl330_desc *first, *desc = NULL; 2852 struct dma_pl330_chan *pch = to_pchan(chan); 2853 struct scatterlist *sg; 2854 int i; 2855 2856 if (unlikely(!pch || !sgl || !sg_len)) 2857 return NULL; 2858 2859 pl330_config_write(chan, &pch->slave_config, direction); 2860 2861 if (!pl330_prep_slave_fifo(pch, direction)) 2862 return NULL; 2863 2864 first = NULL; 2865 2866 for_each_sg(sgl, sg, sg_len, i) { 2867 2868 desc = pl330_get_desc(pch); 2869 if (!desc) { 2870 struct pl330_dmac *pl330 = pch->dmac; 2871 2872 dev_err(pch->dmac->ddma.dev, 2873 "%s:%d Unable to fetch desc\n", 2874 __func__, __LINE__); 2875 __pl330_giveback_desc(pl330, first); 2876 2877 return NULL; 2878 } 2879 2880 if (!first) 2881 first = desc; 2882 else 2883 list_add_tail(&desc->node, &first->node); 2884 2885 if (direction == DMA_MEM_TO_DEV) { 2886 desc->rqcfg.src_inc = 1; 2887 desc->rqcfg.dst_inc = 0; 2888 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2889 sg_dma_len(sg)); 2890 } else { 2891 desc->rqcfg.src_inc = 0; 2892 desc->rqcfg.dst_inc = 1; 2893 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2894 sg_dma_len(sg)); 2895 } 2896 2897 desc->rqcfg.brst_size = pch->burst_sz; 2898 desc->rqcfg.brst_len = pch->burst_len; 2899 desc->rqtype = direction; 2900 desc->bytes_requested = sg_dma_len(sg); 2901 } 2902 2903 /* Return the last desc in the chain */ 2904 return &desc->txd; 2905 } 2906 2907 static irqreturn_t pl330_irq_handler(int irq, void *data) 2908 { 2909 if (pl330_update(data)) 2910 return IRQ_HANDLED; 2911 else 2912 return IRQ_NONE; 2913 } 2914 2915 #define PL330_DMA_BUSWIDTHS \ 2916 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2917 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2918 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2919 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2920 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2921 2922 #ifdef CONFIG_DEBUG_FS 2923 static int pl330_debugfs_show(struct seq_file *s, void *data) 2924 { 2925 struct pl330_dmac *pl330 = s->private; 2926 int chans, pchs, ch, pr; 2927 2928 chans = pl330->pcfg.num_chan; 2929 pchs = pl330->num_peripherals; 2930 2931 seq_puts(s, "PL330 physical channels:\n"); 2932 seq_puts(s, "THREAD:\t\tCHANNEL:\n"); 2933 seq_puts(s, "--------\t-----\n"); 2934 for (ch = 0; ch < chans; ch++) { 2935 struct pl330_thread *thrd = &pl330->channels[ch]; 2936 int found = -1; 2937 2938 for (pr = 0; pr < pchs; pr++) { 2939 struct dma_pl330_chan *pch = &pl330->peripherals[pr]; 2940 2941 if (!pch->thread || thrd->id != pch->thread->id) 2942 continue; 2943 2944 found = pr; 2945 } 2946 2947 seq_printf(s, "%d\t\t", thrd->id); 2948 if (found == -1) 2949 seq_puts(s, "--\n"); 2950 else 2951 seq_printf(s, "%d\n", found); 2952 } 2953 2954 return 0; 2955 } 2956 2957 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); 2958 2959 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2960 { 2961 debugfs_create_file(dev_name(pl330->ddma.dev), 2962 S_IFREG | 0444, NULL, pl330, 2963 &pl330_debugfs_fops); 2964 } 2965 #else 2966 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2967 { 2968 } 2969 #endif 2970 2971 /* 2972 * Runtime PM callbacks are provided by amba/bus.c driver. 2973 * 2974 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2975 * bus driver will only disable/enable the clock in runtime PM callbacks. 2976 */ 2977 static int __maybe_unused pl330_suspend(struct device *dev) 2978 { 2979 struct amba_device *pcdev = to_amba_device(dev); 2980 2981 pm_runtime_force_suspend(dev); 2982 clk_unprepare(pcdev->pclk); 2983 2984 return 0; 2985 } 2986 2987 static int __maybe_unused pl330_resume(struct device *dev) 2988 { 2989 struct amba_device *pcdev = to_amba_device(dev); 2990 int ret; 2991 2992 ret = clk_prepare(pcdev->pclk); 2993 if (ret) 2994 return ret; 2995 2996 pm_runtime_force_resume(dev); 2997 2998 return ret; 2999 } 3000 3001 static const struct dev_pm_ops pl330_pm = { 3002 SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume) 3003 }; 3004 3005 static int 3006 pl330_probe(struct amba_device *adev, const struct amba_id *id) 3007 { 3008 struct pl330_config *pcfg; 3009 struct pl330_dmac *pl330; 3010 struct dma_pl330_chan *pch, *_p; 3011 struct dma_device *pd; 3012 struct resource *res; 3013 int i, ret, irq; 3014 int num_chan; 3015 struct device_node *np = adev->dev.of_node; 3016 3017 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 3018 if (ret) 3019 return ret; 3020 3021 /* Allocate a new DMAC and its Channels */ 3022 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 3023 if (!pl330) 3024 return -ENOMEM; 3025 3026 pd = &pl330->ddma; 3027 pd->dev = &adev->dev; 3028 3029 pl330->mcbufsz = 0; 3030 3031 /* get quirk */ 3032 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 3033 if (of_property_read_bool(np, of_quirks[i].quirk)) 3034 pl330->quirks |= of_quirks[i].id; 3035 3036 res = &adev->res; 3037 pl330->base = devm_ioremap_resource(&adev->dev, res); 3038 if (IS_ERR(pl330->base)) 3039 return PTR_ERR(pl330->base); 3040 3041 amba_set_drvdata(adev, pl330); 3042 3043 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); 3044 if (IS_ERR(pl330->rstc)) { 3045 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n"); 3046 } else { 3047 ret = reset_control_deassert(pl330->rstc); 3048 if (ret) { 3049 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); 3050 return ret; 3051 } 3052 } 3053 3054 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); 3055 if (IS_ERR(pl330->rstc_ocp)) { 3056 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp), 3057 "Failed to get OCP reset!\n"); 3058 } else { 3059 ret = reset_control_deassert(pl330->rstc_ocp); 3060 if (ret) { 3061 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); 3062 return ret; 3063 } 3064 } 3065 3066 for (i = 0; i < AMBA_NR_IRQS; i++) { 3067 irq = adev->irq[i]; 3068 if (irq) { 3069 ret = devm_request_irq(&adev->dev, irq, 3070 pl330_irq_handler, 0, 3071 dev_name(&adev->dev), pl330); 3072 if (ret) 3073 return ret; 3074 } else { 3075 break; 3076 } 3077 } 3078 3079 pcfg = &pl330->pcfg; 3080 3081 pcfg->periph_id = adev->periphid; 3082 ret = pl330_add(pl330); 3083 if (ret) 3084 return ret; 3085 3086 INIT_LIST_HEAD(&pl330->desc_pool); 3087 spin_lock_init(&pl330->pool_lock); 3088 3089 /* Create a descriptor pool of default size */ 3090 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3091 GFP_KERNEL, NR_DEFAULT_DESC)) 3092 dev_warn(&adev->dev, "unable to allocate desc\n"); 3093 3094 INIT_LIST_HEAD(&pd->channels); 3095 3096 /* Initialize channel parameters */ 3097 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3098 3099 pl330->num_peripherals = num_chan; 3100 3101 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3102 if (!pl330->peripherals) { 3103 ret = -ENOMEM; 3104 goto probe_err2; 3105 } 3106 3107 for (i = 0; i < num_chan; i++) { 3108 pch = &pl330->peripherals[i]; 3109 3110 pch->chan.private = adev->dev.of_node; 3111 INIT_LIST_HEAD(&pch->submitted_list); 3112 INIT_LIST_HEAD(&pch->work_list); 3113 INIT_LIST_HEAD(&pch->completed_list); 3114 spin_lock_init(&pch->lock); 3115 pch->thread = NULL; 3116 pch->chan.device = pd; 3117 pch->dmac = pl330; 3118 pch->dir = DMA_NONE; 3119 3120 /* Add the channel to the DMAC list */ 3121 list_add_tail(&pch->chan.device_node, &pd->channels); 3122 } 3123 3124 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3125 if (pcfg->num_peri) { 3126 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3127 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3128 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3129 } 3130 3131 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3132 pd->device_free_chan_resources = pl330_free_chan_resources; 3133 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3134 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3135 pd->device_tx_status = pl330_tx_status; 3136 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3137 pd->device_config = pl330_config; 3138 pd->device_pause = pl330_pause; 3139 pd->device_terminate_all = pl330_terminate_all; 3140 pd->device_issue_pending = pl330_issue_pending; 3141 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3142 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3143 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3144 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3145 pd->max_burst = PL330_MAX_BURST; 3146 3147 ret = dma_async_device_register(pd); 3148 if (ret) { 3149 dev_err(&adev->dev, "unable to register DMAC\n"); 3150 goto probe_err3; 3151 } 3152 3153 if (adev->dev.of_node) { 3154 ret = of_dma_controller_register(adev->dev.of_node, 3155 of_dma_pl330_xlate, pl330); 3156 if (ret) { 3157 dev_err(&adev->dev, 3158 "unable to register DMA to the generic DT DMA helpers\n"); 3159 } 3160 } 3161 3162 /* 3163 * This is the limit for transfers with a buswidth of 1, larger 3164 * buswidths will have larger limits. 3165 */ 3166 dma_set_max_seg_size(&adev->dev, 1900800); 3167 3168 init_pl330_debugfs(pl330); 3169 dev_info(&adev->dev, 3170 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3171 dev_info(&adev->dev, 3172 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3173 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3174 pcfg->num_peri, pcfg->num_events); 3175 3176 pm_runtime_irq_safe(&adev->dev); 3177 pm_runtime_use_autosuspend(&adev->dev); 3178 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3179 pm_runtime_mark_last_busy(&adev->dev); 3180 pm_runtime_put_autosuspend(&adev->dev); 3181 3182 return 0; 3183 probe_err3: 3184 /* Idle the DMAC */ 3185 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3186 chan.device_node) { 3187 3188 /* Remove the channel */ 3189 list_del(&pch->chan.device_node); 3190 3191 /* Flush the channel */ 3192 if (pch->thread) { 3193 pl330_terminate_all(&pch->chan); 3194 pl330_free_chan_resources(&pch->chan); 3195 } 3196 } 3197 probe_err2: 3198 pl330_del(pl330); 3199 3200 if (pl330->rstc_ocp) 3201 reset_control_assert(pl330->rstc_ocp); 3202 3203 if (pl330->rstc) 3204 reset_control_assert(pl330->rstc); 3205 return ret; 3206 } 3207 3208 static void pl330_remove(struct amba_device *adev) 3209 { 3210 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3211 struct dma_pl330_chan *pch, *_p; 3212 int i, irq; 3213 3214 pm_runtime_get_noresume(pl330->ddma.dev); 3215 3216 if (adev->dev.of_node) 3217 of_dma_controller_free(adev->dev.of_node); 3218 3219 for (i = 0; i < AMBA_NR_IRQS; i++) { 3220 irq = adev->irq[i]; 3221 if (irq) 3222 devm_free_irq(&adev->dev, irq, pl330); 3223 } 3224 3225 dma_async_device_unregister(&pl330->ddma); 3226 3227 /* Idle the DMAC */ 3228 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3229 chan.device_node) { 3230 3231 /* Remove the channel */ 3232 list_del(&pch->chan.device_node); 3233 3234 /* Flush the channel */ 3235 if (pch->thread) { 3236 pl330_terminate_all(&pch->chan); 3237 pl330_free_chan_resources(&pch->chan); 3238 } 3239 } 3240 3241 pl330_del(pl330); 3242 3243 if (pl330->rstc_ocp) 3244 reset_control_assert(pl330->rstc_ocp); 3245 3246 if (pl330->rstc) 3247 reset_control_assert(pl330->rstc); 3248 } 3249 3250 static const struct amba_id pl330_ids[] = { 3251 { 3252 .id = 0x00041330, 3253 .mask = 0x000fffff, 3254 }, 3255 { 0, 0 }, 3256 }; 3257 3258 MODULE_DEVICE_TABLE(amba, pl330_ids); 3259 3260 static struct amba_driver pl330_driver = { 3261 .drv = { 3262 .name = "dma-pl330", 3263 .pm = &pl330_pm, 3264 }, 3265 .id_table = pl330_ids, 3266 .probe = pl330_probe, 3267 .remove = pl330_remove, 3268 }; 3269 3270 module_amba_driver(pl330_driver); 3271 3272 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3273 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3274 MODULE_LICENSE("GPL"); 3275