1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 35 enum pl330_srccachectrl { 36 SCCTRL0, /* Noncacheable and nonbufferable */ 37 SCCTRL1, /* Bufferable only */ 38 SCCTRL2, /* Cacheable, but do not allocate */ 39 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 40 SINVALID1, 41 SINVALID2, 42 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 43 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 44 }; 45 46 enum pl330_dstcachectrl { 47 DCCTRL0, /* Noncacheable and nonbufferable */ 48 DCCTRL1, /* Bufferable only */ 49 DCCTRL2, /* Cacheable, but do not allocate */ 50 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 51 DINVALID1, /* AWCACHE = 0x1000 */ 52 DINVALID2, 53 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 54 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 55 }; 56 57 enum pl330_byteswap { 58 SWAP_NO, 59 SWAP_2, 60 SWAP_4, 61 SWAP_8, 62 SWAP_16, 63 }; 64 65 enum pl330_reqtype { 66 MEMTOMEM, 67 MEMTODEV, 68 DEVTOMEM, 69 DEVTODEV, 70 }; 71 72 /* Register and Bit field Definitions */ 73 #define DS 0x0 74 #define DS_ST_STOP 0x0 75 #define DS_ST_EXEC 0x1 76 #define DS_ST_CMISS 0x2 77 #define DS_ST_UPDTPC 0x3 78 #define DS_ST_WFE 0x4 79 #define DS_ST_ATBRR 0x5 80 #define DS_ST_QBUSY 0x6 81 #define DS_ST_WFP 0x7 82 #define DS_ST_KILL 0x8 83 #define DS_ST_CMPLT 0x9 84 #define DS_ST_FLTCMP 0xe 85 #define DS_ST_FAULT 0xf 86 87 #define DPC 0x4 88 #define INTEN 0x20 89 #define ES 0x24 90 #define INTSTATUS 0x28 91 #define INTCLR 0x2c 92 #define FSM 0x30 93 #define FSC 0x34 94 #define FTM 0x38 95 96 #define _FTC 0x40 97 #define FTC(n) (_FTC + (n)*0x4) 98 99 #define _CS 0x100 100 #define CS(n) (_CS + (n)*0x8) 101 #define CS_CNS (1 << 21) 102 103 #define _CPC 0x104 104 #define CPC(n) (_CPC + (n)*0x8) 105 106 #define _SA 0x400 107 #define SA(n) (_SA + (n)*0x20) 108 109 #define _DA 0x404 110 #define DA(n) (_DA + (n)*0x20) 111 112 #define _CC 0x408 113 #define CC(n) (_CC + (n)*0x20) 114 115 #define CC_SRCINC (1 << 0) 116 #define CC_DSTINC (1 << 14) 117 #define CC_SRCPRI (1 << 8) 118 #define CC_DSTPRI (1 << 22) 119 #define CC_SRCNS (1 << 9) 120 #define CC_DSTNS (1 << 23) 121 #define CC_SRCIA (1 << 10) 122 #define CC_DSTIA (1 << 24) 123 #define CC_SRCBRSTLEN_SHFT 4 124 #define CC_DSTBRSTLEN_SHFT 18 125 #define CC_SRCBRSTSIZE_SHFT 1 126 #define CC_DSTBRSTSIZE_SHFT 15 127 #define CC_SRCCCTRL_SHFT 11 128 #define CC_SRCCCTRL_MASK 0x7 129 #define CC_DSTCCTRL_SHFT 25 130 #define CC_DRCCCTRL_MASK 0x7 131 #define CC_SWAP_SHFT 28 132 133 #define _LC0 0x40c 134 #define LC0(n) (_LC0 + (n)*0x20) 135 136 #define _LC1 0x410 137 #define LC1(n) (_LC1 + (n)*0x20) 138 139 #define DBGSTATUS 0xd00 140 #define DBG_BUSY (1 << 0) 141 142 #define DBGCMD 0xd04 143 #define DBGINST0 0xd08 144 #define DBGINST1 0xd0c 145 146 #define CR0 0xe00 147 #define CR1 0xe04 148 #define CR2 0xe08 149 #define CR3 0xe0c 150 #define CR4 0xe10 151 #define CRD 0xe14 152 153 #define PERIPH_ID 0xfe0 154 #define PERIPH_REV_SHIFT 20 155 #define PERIPH_REV_MASK 0xf 156 #define PERIPH_REV_R0P0 0 157 #define PERIPH_REV_R1P0 1 158 #define PERIPH_REV_R1P1 2 159 #define PCELL_ID 0xff0 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PCELL_ID_VAL 0xb105f00d 196 197 #define PL330_STATE_STOPPED (1 << 0) 198 #define PL330_STATE_EXECUTING (1 << 1) 199 #define PL330_STATE_WFE (1 << 2) 200 #define PL330_STATE_FAULTING (1 << 3) 201 #define PL330_STATE_COMPLETING (1 << 4) 202 #define PL330_STATE_WFP (1 << 5) 203 #define PL330_STATE_KILLING (1 << 6) 204 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 205 #define PL330_STATE_CACHEMISS (1 << 8) 206 #define PL330_STATE_UPDTPC (1 << 9) 207 #define PL330_STATE_ATBARRIER (1 << 10) 208 #define PL330_STATE_QUEUEBUSY (1 << 11) 209 #define PL330_STATE_INVALID (1 << 15) 210 211 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 212 | PL330_STATE_WFE | PL330_STATE_FAULTING) 213 214 #define CMD_DMAADDH 0x54 215 #define CMD_DMAEND 0x00 216 #define CMD_DMAFLUSHP 0x35 217 #define CMD_DMAGO 0xa0 218 #define CMD_DMALD 0x04 219 #define CMD_DMALDP 0x25 220 #define CMD_DMALP 0x20 221 #define CMD_DMALPEND 0x28 222 #define CMD_DMAKILL 0x01 223 #define CMD_DMAMOV 0xbc 224 #define CMD_DMANOP 0x18 225 #define CMD_DMARMB 0x12 226 #define CMD_DMASEV 0x34 227 #define CMD_DMAST 0x08 228 #define CMD_DMASTP 0x29 229 #define CMD_DMASTZ 0x0c 230 #define CMD_DMAWFE 0x36 231 #define CMD_DMAWFP 0x30 232 #define CMD_DMAWMB 0x13 233 234 #define SZ_DMAADDH 3 235 #define SZ_DMAEND 1 236 #define SZ_DMAFLUSHP 2 237 #define SZ_DMALD 1 238 #define SZ_DMALDP 2 239 #define SZ_DMALP 2 240 #define SZ_DMALPEND 2 241 #define SZ_DMAKILL 1 242 #define SZ_DMAMOV 6 243 #define SZ_DMANOP 1 244 #define SZ_DMARMB 1 245 #define SZ_DMASEV 2 246 #define SZ_DMAST 1 247 #define SZ_DMASTP 2 248 #define SZ_DMASTZ 1 249 #define SZ_DMAWFE 2 250 #define SZ_DMAWFP 2 251 #define SZ_DMAWMB 1 252 #define SZ_DMAGO 6 253 254 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 255 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 256 257 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 258 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 259 260 /* 261 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 262 * at 1byte/burst for P<->M and M<->M respectively. 263 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 264 * should be enough for P<->M and M<->M respectively. 265 */ 266 #define MCODE_BUFF_PER_REQ 256 267 268 /* If the _pl330_req is available to the client */ 269 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 270 271 /* Use this _only_ to wait on transient states */ 272 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 273 274 #ifdef PL330_DEBUG_MCGEN 275 static unsigned cmd_line; 276 #define PL330_DBGCMD_DUMP(off, x...) do { \ 277 printk("%x:", cmd_line); \ 278 printk(x); \ 279 cmd_line += off; \ 280 } while (0) 281 #define PL330_DBGMC_START(addr) (cmd_line = addr) 282 #else 283 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 284 #define PL330_DBGMC_START(addr) do {} while (0) 285 #endif 286 287 /* The number of default descriptors */ 288 289 #define NR_DEFAULT_DESC 16 290 291 /* Populated by the PL330 core driver for DMA API driver's info */ 292 struct pl330_config { 293 u32 periph_id; 294 u32 pcell_id; 295 #define DMAC_MODE_NS (1 << 0) 296 unsigned int mode; 297 unsigned int data_bus_width:10; /* In number of bits */ 298 unsigned int data_buf_dep:10; 299 unsigned int num_chan:4; 300 unsigned int num_peri:6; 301 u32 peri_ns; 302 unsigned int num_events:6; 303 u32 irq_ns; 304 }; 305 306 /* Handle to the DMAC provided to the PL330 core */ 307 struct pl330_info { 308 /* Owning device */ 309 struct device *dev; 310 /* Size of MicroCode buffers for each channel. */ 311 unsigned mcbufsz; 312 /* ioremap'ed address of PL330 registers. */ 313 void __iomem *base; 314 /* Client can freely use it. */ 315 void *client_data; 316 /* PL330 core data, Client must not touch it. */ 317 void *pl330_data; 318 /* Populated by the PL330 core driver during pl330_add */ 319 struct pl330_config pcfg; 320 /* 321 * If the DMAC has some reset mechanism, then the 322 * client may want to provide pointer to the method. 323 */ 324 void (*dmac_reset)(struct pl330_info *pi); 325 }; 326 327 /** 328 * Request Configuration. 329 * The PL330 core does not modify this and uses the last 330 * working configuration if the request doesn't provide any. 331 * 332 * The Client may want to provide this info only for the 333 * first request and a request with new settings. 334 */ 335 struct pl330_reqcfg { 336 /* Address Incrementing */ 337 unsigned dst_inc:1; 338 unsigned src_inc:1; 339 340 /* 341 * For now, the SRC & DST protection levels 342 * and burst size/length are assumed same. 343 */ 344 bool nonsecure; 345 bool privileged; 346 bool insnaccess; 347 unsigned brst_len:5; 348 unsigned brst_size:3; /* in power of 2 */ 349 350 enum pl330_dstcachectrl dcctl; 351 enum pl330_srccachectrl scctl; 352 enum pl330_byteswap swap; 353 struct pl330_config *pcfg; 354 }; 355 356 /* 357 * One cycle of DMAC operation. 358 * There may be more than one xfer in a request. 359 */ 360 struct pl330_xfer { 361 u32 src_addr; 362 u32 dst_addr; 363 /* Size to xfer */ 364 u32 bytes; 365 /* 366 * Pointer to next xfer in the list. 367 * The last xfer in the req must point to NULL. 368 */ 369 struct pl330_xfer *next; 370 }; 371 372 /* The xfer callbacks are made with one of these arguments. */ 373 enum pl330_op_err { 374 /* The all xfers in the request were success. */ 375 PL330_ERR_NONE, 376 /* If req aborted due to global error. */ 377 PL330_ERR_ABORT, 378 /* If req failed due to problem with Channel. */ 379 PL330_ERR_FAIL, 380 }; 381 382 /* A request defining Scatter-Gather List ending with NULL xfer. */ 383 struct pl330_req { 384 enum pl330_reqtype rqtype; 385 /* Index of peripheral for the xfer. */ 386 unsigned peri:5; 387 /* Unique token for this xfer, set by the client. */ 388 void *token; 389 /* Callback to be called after xfer. */ 390 void (*xfer_cb)(void *token, enum pl330_op_err err); 391 /* If NULL, req will be done at last set parameters. */ 392 struct pl330_reqcfg *cfg; 393 /* Pointer to first xfer in the request. */ 394 struct pl330_xfer *x; 395 /* Hook to attach to DMAC's list of reqs with due callback */ 396 struct list_head rqd; 397 }; 398 399 /* 400 * To know the status of the channel and DMAC, the client 401 * provides a pointer to this structure. The PL330 core 402 * fills it with current information. 403 */ 404 struct pl330_chanstatus { 405 /* 406 * If the DMAC engine halted due to some error, 407 * the client should remove-add DMAC. 408 */ 409 bool dmac_halted; 410 /* 411 * If channel is halted due to some error, 412 * the client should ABORT/FLUSH and START the channel. 413 */ 414 bool faulting; 415 /* Location of last load */ 416 u32 src_addr; 417 /* Location of last store */ 418 u32 dst_addr; 419 /* 420 * Pointer to the currently active req, NULL if channel is 421 * inactive, even though the requests may be present. 422 */ 423 struct pl330_req *top_req; 424 /* Pointer to req waiting second in the queue if any. */ 425 struct pl330_req *wait_req; 426 }; 427 428 enum pl330_chan_op { 429 /* Start the channel */ 430 PL330_OP_START, 431 /* Abort the active xfer */ 432 PL330_OP_ABORT, 433 /* Stop xfer and flush queue */ 434 PL330_OP_FLUSH, 435 }; 436 437 struct _xfer_spec { 438 u32 ccr; 439 struct pl330_req *r; 440 struct pl330_xfer *x; 441 }; 442 443 enum dmamov_dst { 444 SAR = 0, 445 CCR, 446 DAR, 447 }; 448 449 enum pl330_dst { 450 SRC = 0, 451 DST, 452 }; 453 454 enum pl330_cond { 455 SINGLE, 456 BURST, 457 ALWAYS, 458 }; 459 460 struct _pl330_req { 461 u32 mc_bus; 462 void *mc_cpu; 463 /* Number of bytes taken to setup MC for the req */ 464 u32 mc_len; 465 struct pl330_req *r; 466 }; 467 468 /* ToBeDone for tasklet */ 469 struct _pl330_tbd { 470 bool reset_dmac; 471 bool reset_mngr; 472 u8 reset_chan; 473 }; 474 475 /* A DMAC Thread */ 476 struct pl330_thread { 477 u8 id; 478 int ev; 479 /* If the channel is not yet acquired by any client */ 480 bool free; 481 /* Parent DMAC */ 482 struct pl330_dmac *dmac; 483 /* Only two at a time */ 484 struct _pl330_req req[2]; 485 /* Index of the last enqueued request */ 486 unsigned lstenq; 487 /* Index of the last submitted request or -1 if the DMA is stopped */ 488 int req_running; 489 }; 490 491 enum pl330_dmac_state { 492 UNINIT, 493 INIT, 494 DYING, 495 }; 496 497 /* A DMAC */ 498 struct pl330_dmac { 499 spinlock_t lock; 500 /* Holds list of reqs with due callbacks */ 501 struct list_head req_done; 502 /* Pointer to platform specific stuff */ 503 struct pl330_info *pinfo; 504 /* Maximum possible events/irqs */ 505 int events[32]; 506 /* BUS address of MicroCode buffer */ 507 u32 mcode_bus; 508 /* CPU address of MicroCode buffer */ 509 void *mcode_cpu; 510 /* List of all Channel threads */ 511 struct pl330_thread *channels; 512 /* Pointer to the MANAGER thread */ 513 struct pl330_thread *manager; 514 /* To handle bad news in interrupt */ 515 struct tasklet_struct tasks; 516 struct _pl330_tbd dmac_tbd; 517 /* State of DMAC operation */ 518 enum pl330_dmac_state state; 519 }; 520 521 enum desc_status { 522 /* In the DMAC pool */ 523 FREE, 524 /* 525 * Allocated to some channel during prep_xxx 526 * Also may be sitting on the work_list. 527 */ 528 PREP, 529 /* 530 * Sitting on the work_list and already submitted 531 * to the PL330 core. Not more than two descriptors 532 * of a channel can be BUSY at any time. 533 */ 534 BUSY, 535 /* 536 * Sitting on the channel work_list but xfer done 537 * by PL330 core 538 */ 539 DONE, 540 }; 541 542 struct dma_pl330_chan { 543 /* Schedule desc completion */ 544 struct tasklet_struct task; 545 546 /* DMA-Engine Channel */ 547 struct dma_chan chan; 548 549 /* List of to be xfered descriptors */ 550 struct list_head work_list; 551 552 /* Pointer to the DMAC that manages this channel, 553 * NULL if the channel is available to be acquired. 554 * As the parent, this DMAC also provides descriptors 555 * to the channel. 556 */ 557 struct dma_pl330_dmac *dmac; 558 559 /* To protect channel manipulation */ 560 spinlock_t lock; 561 562 /* Token of a hardware channel thread of PL330 DMAC 563 * NULL if the channel is available to be acquired. 564 */ 565 void *pl330_chid; 566 567 /* For D-to-M and M-to-D channels */ 568 int burst_sz; /* the peripheral fifo width */ 569 int burst_len; /* the number of burst */ 570 dma_addr_t fifo_addr; 571 572 /* for cyclic capability */ 573 bool cyclic; 574 }; 575 576 struct dma_pl330_dmac { 577 struct pl330_info pif; 578 579 /* DMA-Engine Device */ 580 struct dma_device ddma; 581 582 /* Pool of descriptors available for the DMAC's channels */ 583 struct list_head desc_pool; 584 /* To protect desc_pool manipulation */ 585 spinlock_t pool_lock; 586 587 /* Peripheral channels connected to this DMAC */ 588 struct dma_pl330_chan *peripherals; /* keep at end */ 589 }; 590 591 struct dma_pl330_desc { 592 /* To attach to a queue as child */ 593 struct list_head node; 594 595 /* Descriptor for the DMA Engine API */ 596 struct dma_async_tx_descriptor txd; 597 598 /* Xfer for PL330 core */ 599 struct pl330_xfer px; 600 601 struct pl330_reqcfg rqcfg; 602 struct pl330_req req; 603 604 enum desc_status status; 605 606 /* The channel which currently holds this desc */ 607 struct dma_pl330_chan *pchan; 608 }; 609 610 struct dma_pl330_filter_args { 611 struct dma_pl330_dmac *pdmac; 612 unsigned int chan_id; 613 }; 614 615 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 616 { 617 if (r && r->xfer_cb) 618 r->xfer_cb(r->token, err); 619 } 620 621 static inline bool _queue_empty(struct pl330_thread *thrd) 622 { 623 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 624 ? true : false; 625 } 626 627 static inline bool _queue_full(struct pl330_thread *thrd) 628 { 629 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 630 ? false : true; 631 } 632 633 static inline bool is_manager(struct pl330_thread *thrd) 634 { 635 struct pl330_dmac *pl330 = thrd->dmac; 636 637 /* MANAGER is indexed at the end */ 638 if (thrd->id == pl330->pinfo->pcfg.num_chan) 639 return true; 640 else 641 return false; 642 } 643 644 /* If manager of the thread is in Non-Secure mode */ 645 static inline bool _manager_ns(struct pl330_thread *thrd) 646 { 647 struct pl330_dmac *pl330 = thrd->dmac; 648 649 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 650 } 651 652 static inline u32 get_id(struct pl330_info *pi, u32 off) 653 { 654 void __iomem *regs = pi->base; 655 u32 id = 0; 656 657 id |= (readb(regs + off + 0x0) << 0); 658 id |= (readb(regs + off + 0x4) << 8); 659 id |= (readb(regs + off + 0x8) << 16); 660 id |= (readb(regs + off + 0xc) << 24); 661 662 return id; 663 } 664 665 static inline u32 get_revision(u32 periph_id) 666 { 667 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 668 } 669 670 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 671 enum pl330_dst da, u16 val) 672 { 673 if (dry_run) 674 return SZ_DMAADDH; 675 676 buf[0] = CMD_DMAADDH; 677 buf[0] |= (da << 1); 678 *((u16 *)&buf[1]) = val; 679 680 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 681 da == 1 ? "DA" : "SA", val); 682 683 return SZ_DMAADDH; 684 } 685 686 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 687 { 688 if (dry_run) 689 return SZ_DMAEND; 690 691 buf[0] = CMD_DMAEND; 692 693 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 694 695 return SZ_DMAEND; 696 } 697 698 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 699 { 700 if (dry_run) 701 return SZ_DMAFLUSHP; 702 703 buf[0] = CMD_DMAFLUSHP; 704 705 peri &= 0x1f; 706 peri <<= 3; 707 buf[1] = peri; 708 709 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 710 711 return SZ_DMAFLUSHP; 712 } 713 714 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 715 { 716 if (dry_run) 717 return SZ_DMALD; 718 719 buf[0] = CMD_DMALD; 720 721 if (cond == SINGLE) 722 buf[0] |= (0 << 1) | (1 << 0); 723 else if (cond == BURST) 724 buf[0] |= (1 << 1) | (1 << 0); 725 726 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 727 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 728 729 return SZ_DMALD; 730 } 731 732 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 733 enum pl330_cond cond, u8 peri) 734 { 735 if (dry_run) 736 return SZ_DMALDP; 737 738 buf[0] = CMD_DMALDP; 739 740 if (cond == BURST) 741 buf[0] |= (1 << 1); 742 743 peri &= 0x1f; 744 peri <<= 3; 745 buf[1] = peri; 746 747 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 748 cond == SINGLE ? 'S' : 'B', peri >> 3); 749 750 return SZ_DMALDP; 751 } 752 753 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 754 unsigned loop, u8 cnt) 755 { 756 if (dry_run) 757 return SZ_DMALP; 758 759 buf[0] = CMD_DMALP; 760 761 if (loop) 762 buf[0] |= (1 << 1); 763 764 cnt--; /* DMAC increments by 1 internally */ 765 buf[1] = cnt; 766 767 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 768 769 return SZ_DMALP; 770 } 771 772 struct _arg_LPEND { 773 enum pl330_cond cond; 774 bool forever; 775 unsigned loop; 776 u8 bjump; 777 }; 778 779 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 780 const struct _arg_LPEND *arg) 781 { 782 enum pl330_cond cond = arg->cond; 783 bool forever = arg->forever; 784 unsigned loop = arg->loop; 785 u8 bjump = arg->bjump; 786 787 if (dry_run) 788 return SZ_DMALPEND; 789 790 buf[0] = CMD_DMALPEND; 791 792 if (loop) 793 buf[0] |= (1 << 2); 794 795 if (!forever) 796 buf[0] |= (1 << 4); 797 798 if (cond == SINGLE) 799 buf[0] |= (0 << 1) | (1 << 0); 800 else if (cond == BURST) 801 buf[0] |= (1 << 1) | (1 << 0); 802 803 buf[1] = bjump; 804 805 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 806 forever ? "FE" : "END", 807 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 808 loop ? '1' : '0', 809 bjump); 810 811 return SZ_DMALPEND; 812 } 813 814 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 815 { 816 if (dry_run) 817 return SZ_DMAKILL; 818 819 buf[0] = CMD_DMAKILL; 820 821 return SZ_DMAKILL; 822 } 823 824 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 825 enum dmamov_dst dst, u32 val) 826 { 827 if (dry_run) 828 return SZ_DMAMOV; 829 830 buf[0] = CMD_DMAMOV; 831 buf[1] = dst; 832 *((u32 *)&buf[2]) = val; 833 834 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 835 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 836 837 return SZ_DMAMOV; 838 } 839 840 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 841 { 842 if (dry_run) 843 return SZ_DMANOP; 844 845 buf[0] = CMD_DMANOP; 846 847 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 848 849 return SZ_DMANOP; 850 } 851 852 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 853 { 854 if (dry_run) 855 return SZ_DMARMB; 856 857 buf[0] = CMD_DMARMB; 858 859 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 860 861 return SZ_DMARMB; 862 } 863 864 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 865 { 866 if (dry_run) 867 return SZ_DMASEV; 868 869 buf[0] = CMD_DMASEV; 870 871 ev &= 0x1f; 872 ev <<= 3; 873 buf[1] = ev; 874 875 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 876 877 return SZ_DMASEV; 878 } 879 880 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 881 { 882 if (dry_run) 883 return SZ_DMAST; 884 885 buf[0] = CMD_DMAST; 886 887 if (cond == SINGLE) 888 buf[0] |= (0 << 1) | (1 << 0); 889 else if (cond == BURST) 890 buf[0] |= (1 << 1) | (1 << 0); 891 892 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 893 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 894 895 return SZ_DMAST; 896 } 897 898 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 899 enum pl330_cond cond, u8 peri) 900 { 901 if (dry_run) 902 return SZ_DMASTP; 903 904 buf[0] = CMD_DMASTP; 905 906 if (cond == BURST) 907 buf[0] |= (1 << 1); 908 909 peri &= 0x1f; 910 peri <<= 3; 911 buf[1] = peri; 912 913 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 914 cond == SINGLE ? 'S' : 'B', peri >> 3); 915 916 return SZ_DMASTP; 917 } 918 919 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 920 { 921 if (dry_run) 922 return SZ_DMASTZ; 923 924 buf[0] = CMD_DMASTZ; 925 926 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 927 928 return SZ_DMASTZ; 929 } 930 931 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 932 unsigned invalidate) 933 { 934 if (dry_run) 935 return SZ_DMAWFE; 936 937 buf[0] = CMD_DMAWFE; 938 939 ev &= 0x1f; 940 ev <<= 3; 941 buf[1] = ev; 942 943 if (invalidate) 944 buf[1] |= (1 << 1); 945 946 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 947 ev >> 3, invalidate ? ", I" : ""); 948 949 return SZ_DMAWFE; 950 } 951 952 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 953 enum pl330_cond cond, u8 peri) 954 { 955 if (dry_run) 956 return SZ_DMAWFP; 957 958 buf[0] = CMD_DMAWFP; 959 960 if (cond == SINGLE) 961 buf[0] |= (0 << 1) | (0 << 0); 962 else if (cond == BURST) 963 buf[0] |= (1 << 1) | (0 << 0); 964 else 965 buf[0] |= (0 << 1) | (1 << 0); 966 967 peri &= 0x1f; 968 peri <<= 3; 969 buf[1] = peri; 970 971 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 972 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 973 974 return SZ_DMAWFP; 975 } 976 977 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 978 { 979 if (dry_run) 980 return SZ_DMAWMB; 981 982 buf[0] = CMD_DMAWMB; 983 984 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 985 986 return SZ_DMAWMB; 987 } 988 989 struct _arg_GO { 990 u8 chan; 991 u32 addr; 992 unsigned ns; 993 }; 994 995 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 996 const struct _arg_GO *arg) 997 { 998 u8 chan = arg->chan; 999 u32 addr = arg->addr; 1000 unsigned ns = arg->ns; 1001 1002 if (dry_run) 1003 return SZ_DMAGO; 1004 1005 buf[0] = CMD_DMAGO; 1006 buf[0] |= (ns << 1); 1007 1008 buf[1] = chan & 0x7; 1009 1010 *((u32 *)&buf[2]) = addr; 1011 1012 return SZ_DMAGO; 1013 } 1014 1015 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1016 1017 /* Returns Time-Out */ 1018 static bool _until_dmac_idle(struct pl330_thread *thrd) 1019 { 1020 void __iomem *regs = thrd->dmac->pinfo->base; 1021 unsigned long loops = msecs_to_loops(5); 1022 1023 do { 1024 /* Until Manager is Idle */ 1025 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1026 break; 1027 1028 cpu_relax(); 1029 } while (--loops); 1030 1031 if (!loops) 1032 return true; 1033 1034 return false; 1035 } 1036 1037 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1038 u8 insn[], bool as_manager) 1039 { 1040 void __iomem *regs = thrd->dmac->pinfo->base; 1041 u32 val; 1042 1043 val = (insn[0] << 16) | (insn[1] << 24); 1044 if (!as_manager) { 1045 val |= (1 << 0); 1046 val |= (thrd->id << 8); /* Channel Number */ 1047 } 1048 writel(val, regs + DBGINST0); 1049 1050 val = *((u32 *)&insn[2]); 1051 writel(val, regs + DBGINST1); 1052 1053 /* If timed out due to halted state-machine */ 1054 if (_until_dmac_idle(thrd)) { 1055 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1056 return; 1057 } 1058 1059 /* Get going */ 1060 writel(0, regs + DBGCMD); 1061 } 1062 1063 /* 1064 * Mark a _pl330_req as free. 1065 * We do it by writing DMAEND as the first instruction 1066 * because no valid request is going to have DMAEND as 1067 * its first instruction to execute. 1068 */ 1069 static void mark_free(struct pl330_thread *thrd, int idx) 1070 { 1071 struct _pl330_req *req = &thrd->req[idx]; 1072 1073 _emit_END(0, req->mc_cpu); 1074 req->mc_len = 0; 1075 1076 thrd->req_running = -1; 1077 } 1078 1079 static inline u32 _state(struct pl330_thread *thrd) 1080 { 1081 void __iomem *regs = thrd->dmac->pinfo->base; 1082 u32 val; 1083 1084 if (is_manager(thrd)) 1085 val = readl(regs + DS) & 0xf; 1086 else 1087 val = readl(regs + CS(thrd->id)) & 0xf; 1088 1089 switch (val) { 1090 case DS_ST_STOP: 1091 return PL330_STATE_STOPPED; 1092 case DS_ST_EXEC: 1093 return PL330_STATE_EXECUTING; 1094 case DS_ST_CMISS: 1095 return PL330_STATE_CACHEMISS; 1096 case DS_ST_UPDTPC: 1097 return PL330_STATE_UPDTPC; 1098 case DS_ST_WFE: 1099 return PL330_STATE_WFE; 1100 case DS_ST_FAULT: 1101 return PL330_STATE_FAULTING; 1102 case DS_ST_ATBRR: 1103 if (is_manager(thrd)) 1104 return PL330_STATE_INVALID; 1105 else 1106 return PL330_STATE_ATBARRIER; 1107 case DS_ST_QBUSY: 1108 if (is_manager(thrd)) 1109 return PL330_STATE_INVALID; 1110 else 1111 return PL330_STATE_QUEUEBUSY; 1112 case DS_ST_WFP: 1113 if (is_manager(thrd)) 1114 return PL330_STATE_INVALID; 1115 else 1116 return PL330_STATE_WFP; 1117 case DS_ST_KILL: 1118 if (is_manager(thrd)) 1119 return PL330_STATE_INVALID; 1120 else 1121 return PL330_STATE_KILLING; 1122 case DS_ST_CMPLT: 1123 if (is_manager(thrd)) 1124 return PL330_STATE_INVALID; 1125 else 1126 return PL330_STATE_COMPLETING; 1127 case DS_ST_FLTCMP: 1128 if (is_manager(thrd)) 1129 return PL330_STATE_INVALID; 1130 else 1131 return PL330_STATE_FAULT_COMPLETING; 1132 default: 1133 return PL330_STATE_INVALID; 1134 } 1135 } 1136 1137 static void _stop(struct pl330_thread *thrd) 1138 { 1139 void __iomem *regs = thrd->dmac->pinfo->base; 1140 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1141 1142 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1143 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1144 1145 /* Return if nothing needs to be done */ 1146 if (_state(thrd) == PL330_STATE_COMPLETING 1147 || _state(thrd) == PL330_STATE_KILLING 1148 || _state(thrd) == PL330_STATE_STOPPED) 1149 return; 1150 1151 _emit_KILL(0, insn); 1152 1153 /* Stop generating interrupts for SEV */ 1154 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1155 1156 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1157 } 1158 1159 /* Start doing req 'idx' of thread 'thrd' */ 1160 static bool _trigger(struct pl330_thread *thrd) 1161 { 1162 void __iomem *regs = thrd->dmac->pinfo->base; 1163 struct _pl330_req *req; 1164 struct pl330_req *r; 1165 struct _arg_GO go; 1166 unsigned ns; 1167 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1168 int idx; 1169 1170 /* Return if already ACTIVE */ 1171 if (_state(thrd) != PL330_STATE_STOPPED) 1172 return true; 1173 1174 idx = 1 - thrd->lstenq; 1175 if (!IS_FREE(&thrd->req[idx])) 1176 req = &thrd->req[idx]; 1177 else { 1178 idx = thrd->lstenq; 1179 if (!IS_FREE(&thrd->req[idx])) 1180 req = &thrd->req[idx]; 1181 else 1182 req = NULL; 1183 } 1184 1185 /* Return if no request */ 1186 if (!req || !req->r) 1187 return true; 1188 1189 r = req->r; 1190 1191 if (r->cfg) 1192 ns = r->cfg->nonsecure ? 1 : 0; 1193 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1194 ns = 1; 1195 else 1196 ns = 0; 1197 1198 /* See 'Abort Sources' point-4 at Page 2-25 */ 1199 if (_manager_ns(thrd) && !ns) 1200 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1201 __func__, __LINE__); 1202 1203 go.chan = thrd->id; 1204 go.addr = req->mc_bus; 1205 go.ns = ns; 1206 _emit_GO(0, insn, &go); 1207 1208 /* Set to generate interrupts for SEV */ 1209 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1210 1211 /* Only manager can execute GO */ 1212 _execute_DBGINSN(thrd, insn, true); 1213 1214 thrd->req_running = idx; 1215 1216 return true; 1217 } 1218 1219 static bool _start(struct pl330_thread *thrd) 1220 { 1221 switch (_state(thrd)) { 1222 case PL330_STATE_FAULT_COMPLETING: 1223 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1224 1225 if (_state(thrd) == PL330_STATE_KILLING) 1226 UNTIL(thrd, PL330_STATE_STOPPED) 1227 1228 case PL330_STATE_FAULTING: 1229 _stop(thrd); 1230 1231 case PL330_STATE_KILLING: 1232 case PL330_STATE_COMPLETING: 1233 UNTIL(thrd, PL330_STATE_STOPPED) 1234 1235 case PL330_STATE_STOPPED: 1236 return _trigger(thrd); 1237 1238 case PL330_STATE_WFP: 1239 case PL330_STATE_QUEUEBUSY: 1240 case PL330_STATE_ATBARRIER: 1241 case PL330_STATE_UPDTPC: 1242 case PL330_STATE_CACHEMISS: 1243 case PL330_STATE_EXECUTING: 1244 return true; 1245 1246 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1247 default: 1248 return false; 1249 } 1250 } 1251 1252 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1253 const struct _xfer_spec *pxs, int cyc) 1254 { 1255 int off = 0; 1256 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1257 1258 /* check lock-up free version */ 1259 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1260 while (cyc--) { 1261 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1262 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1263 } 1264 } else { 1265 while (cyc--) { 1266 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1267 off += _emit_RMB(dry_run, &buf[off]); 1268 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1269 off += _emit_WMB(dry_run, &buf[off]); 1270 } 1271 } 1272 1273 return off; 1274 } 1275 1276 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1277 const struct _xfer_spec *pxs, int cyc) 1278 { 1279 int off = 0; 1280 1281 while (cyc--) { 1282 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1283 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1284 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1285 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1286 } 1287 1288 return off; 1289 } 1290 1291 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1292 const struct _xfer_spec *pxs, int cyc) 1293 { 1294 int off = 0; 1295 1296 while (cyc--) { 1297 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1298 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1299 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1300 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1301 } 1302 1303 return off; 1304 } 1305 1306 static int _bursts(unsigned dry_run, u8 buf[], 1307 const struct _xfer_spec *pxs, int cyc) 1308 { 1309 int off = 0; 1310 1311 switch (pxs->r->rqtype) { 1312 case MEMTODEV: 1313 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1314 break; 1315 case DEVTOMEM: 1316 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1317 break; 1318 case MEMTOMEM: 1319 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1320 break; 1321 default: 1322 off += 0x40000000; /* Scare off the Client */ 1323 break; 1324 } 1325 1326 return off; 1327 } 1328 1329 /* Returns bytes consumed and updates bursts */ 1330 static inline int _loop(unsigned dry_run, u8 buf[], 1331 unsigned long *bursts, const struct _xfer_spec *pxs) 1332 { 1333 int cyc, cycmax, szlp, szlpend, szbrst, off; 1334 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1335 struct _arg_LPEND lpend; 1336 1337 /* Max iterations possible in DMALP is 256 */ 1338 if (*bursts >= 256*256) { 1339 lcnt1 = 256; 1340 lcnt0 = 256; 1341 cyc = *bursts / lcnt1 / lcnt0; 1342 } else if (*bursts > 256) { 1343 lcnt1 = 256; 1344 lcnt0 = *bursts / lcnt1; 1345 cyc = 1; 1346 } else { 1347 lcnt1 = *bursts; 1348 lcnt0 = 0; 1349 cyc = 1; 1350 } 1351 1352 szlp = _emit_LP(1, buf, 0, 0); 1353 szbrst = _bursts(1, buf, pxs, 1); 1354 1355 lpend.cond = ALWAYS; 1356 lpend.forever = false; 1357 lpend.loop = 0; 1358 lpend.bjump = 0; 1359 szlpend = _emit_LPEND(1, buf, &lpend); 1360 1361 if (lcnt0) { 1362 szlp *= 2; 1363 szlpend *= 2; 1364 } 1365 1366 /* 1367 * Max bursts that we can unroll due to limit on the 1368 * size of backward jump that can be encoded in DMALPEND 1369 * which is 8-bits and hence 255 1370 */ 1371 cycmax = (255 - (szlp + szlpend)) / szbrst; 1372 1373 cyc = (cycmax < cyc) ? cycmax : cyc; 1374 1375 off = 0; 1376 1377 if (lcnt0) { 1378 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1379 ljmp0 = off; 1380 } 1381 1382 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1383 ljmp1 = off; 1384 1385 off += _bursts(dry_run, &buf[off], pxs, cyc); 1386 1387 lpend.cond = ALWAYS; 1388 lpend.forever = false; 1389 lpend.loop = 1; 1390 lpend.bjump = off - ljmp1; 1391 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1392 1393 if (lcnt0) { 1394 lpend.cond = ALWAYS; 1395 lpend.forever = false; 1396 lpend.loop = 0; 1397 lpend.bjump = off - ljmp0; 1398 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1399 } 1400 1401 *bursts = lcnt1 * cyc; 1402 if (lcnt0) 1403 *bursts *= lcnt0; 1404 1405 return off; 1406 } 1407 1408 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1409 const struct _xfer_spec *pxs) 1410 { 1411 struct pl330_xfer *x = pxs->x; 1412 u32 ccr = pxs->ccr; 1413 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1414 int off = 0; 1415 1416 while (bursts) { 1417 c = bursts; 1418 off += _loop(dry_run, &buf[off], &c, pxs); 1419 bursts -= c; 1420 } 1421 1422 return off; 1423 } 1424 1425 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1426 const struct _xfer_spec *pxs) 1427 { 1428 struct pl330_xfer *x = pxs->x; 1429 int off = 0; 1430 1431 /* DMAMOV SAR, x->src_addr */ 1432 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1433 /* DMAMOV DAR, x->dst_addr */ 1434 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1435 1436 /* Setup Loop(s) */ 1437 off += _setup_loops(dry_run, &buf[off], pxs); 1438 1439 return off; 1440 } 1441 1442 /* 1443 * A req is a sequence of one or more xfer units. 1444 * Returns the number of bytes taken to setup the MC for the req. 1445 */ 1446 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1447 unsigned index, struct _xfer_spec *pxs) 1448 { 1449 struct _pl330_req *req = &thrd->req[index]; 1450 struct pl330_xfer *x; 1451 u8 *buf = req->mc_cpu; 1452 int off = 0; 1453 1454 PL330_DBGMC_START(req->mc_bus); 1455 1456 /* DMAMOV CCR, ccr */ 1457 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1458 1459 x = pxs->r->x; 1460 do { 1461 /* Error if xfer length is not aligned at burst size */ 1462 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1463 return -EINVAL; 1464 1465 pxs->x = x; 1466 off += _setup_xfer(dry_run, &buf[off], pxs); 1467 1468 x = x->next; 1469 } while (x); 1470 1471 /* DMASEV peripheral/event */ 1472 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1473 /* DMAEND */ 1474 off += _emit_END(dry_run, &buf[off]); 1475 1476 return off; 1477 } 1478 1479 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1480 { 1481 u32 ccr = 0; 1482 1483 if (rqc->src_inc) 1484 ccr |= CC_SRCINC; 1485 1486 if (rqc->dst_inc) 1487 ccr |= CC_DSTINC; 1488 1489 /* We set same protection levels for Src and DST for now */ 1490 if (rqc->privileged) 1491 ccr |= CC_SRCPRI | CC_DSTPRI; 1492 if (rqc->nonsecure) 1493 ccr |= CC_SRCNS | CC_DSTNS; 1494 if (rqc->insnaccess) 1495 ccr |= CC_SRCIA | CC_DSTIA; 1496 1497 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1498 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1499 1500 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1501 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1502 1503 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1504 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1505 1506 ccr |= (rqc->swap << CC_SWAP_SHFT); 1507 1508 return ccr; 1509 } 1510 1511 static inline bool _is_valid(u32 ccr) 1512 { 1513 enum pl330_dstcachectrl dcctl; 1514 enum pl330_srccachectrl scctl; 1515 1516 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1517 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1518 1519 if (dcctl == DINVALID1 || dcctl == DINVALID2 1520 || scctl == SINVALID1 || scctl == SINVALID2) 1521 return false; 1522 else 1523 return true; 1524 } 1525 1526 /* 1527 * Submit a list of xfers after which the client wants notification. 1528 * Client is not notified after each xfer unit, just once after all 1529 * xfer units are done or some error occurs. 1530 */ 1531 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1532 { 1533 struct pl330_thread *thrd = ch_id; 1534 struct pl330_dmac *pl330; 1535 struct pl330_info *pi; 1536 struct _xfer_spec xs; 1537 unsigned long flags; 1538 void __iomem *regs; 1539 unsigned idx; 1540 u32 ccr; 1541 int ret = 0; 1542 1543 /* No Req or Unacquired Channel or DMAC */ 1544 if (!r || !thrd || thrd->free) 1545 return -EINVAL; 1546 1547 pl330 = thrd->dmac; 1548 pi = pl330->pinfo; 1549 regs = pi->base; 1550 1551 if (pl330->state == DYING 1552 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1553 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1554 __func__, __LINE__); 1555 return -EAGAIN; 1556 } 1557 1558 /* If request for non-existing peripheral */ 1559 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1560 dev_info(thrd->dmac->pinfo->dev, 1561 "%s:%d Invalid peripheral(%u)!\n", 1562 __func__, __LINE__, r->peri); 1563 return -EINVAL; 1564 } 1565 1566 spin_lock_irqsave(&pl330->lock, flags); 1567 1568 if (_queue_full(thrd)) { 1569 ret = -EAGAIN; 1570 goto xfer_exit; 1571 } 1572 1573 1574 /* Use last settings, if not provided */ 1575 if (r->cfg) { 1576 /* Prefer Secure Channel */ 1577 if (!_manager_ns(thrd)) 1578 r->cfg->nonsecure = 0; 1579 else 1580 r->cfg->nonsecure = 1; 1581 1582 ccr = _prepare_ccr(r->cfg); 1583 } else { 1584 ccr = readl(regs + CC(thrd->id)); 1585 } 1586 1587 /* If this req doesn't have valid xfer settings */ 1588 if (!_is_valid(ccr)) { 1589 ret = -EINVAL; 1590 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1591 __func__, __LINE__, ccr); 1592 goto xfer_exit; 1593 } 1594 1595 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1596 1597 xs.ccr = ccr; 1598 xs.r = r; 1599 1600 /* First dry run to check if req is acceptable */ 1601 ret = _setup_req(1, thrd, idx, &xs); 1602 if (ret < 0) 1603 goto xfer_exit; 1604 1605 if (ret > pi->mcbufsz / 2) { 1606 dev_info(thrd->dmac->pinfo->dev, 1607 "%s:%d Trying increasing mcbufsz\n", 1608 __func__, __LINE__); 1609 ret = -ENOMEM; 1610 goto xfer_exit; 1611 } 1612 1613 /* Hook the request */ 1614 thrd->lstenq = idx; 1615 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1616 thrd->req[idx].r = r; 1617 1618 ret = 0; 1619 1620 xfer_exit: 1621 spin_unlock_irqrestore(&pl330->lock, flags); 1622 1623 return ret; 1624 } 1625 1626 static void pl330_dotask(unsigned long data) 1627 { 1628 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1629 struct pl330_info *pi = pl330->pinfo; 1630 unsigned long flags; 1631 int i; 1632 1633 spin_lock_irqsave(&pl330->lock, flags); 1634 1635 /* The DMAC itself gone nuts */ 1636 if (pl330->dmac_tbd.reset_dmac) { 1637 pl330->state = DYING; 1638 /* Reset the manager too */ 1639 pl330->dmac_tbd.reset_mngr = true; 1640 /* Clear the reset flag */ 1641 pl330->dmac_tbd.reset_dmac = false; 1642 } 1643 1644 if (pl330->dmac_tbd.reset_mngr) { 1645 _stop(pl330->manager); 1646 /* Reset all channels */ 1647 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1648 /* Clear the reset flag */ 1649 pl330->dmac_tbd.reset_mngr = false; 1650 } 1651 1652 for (i = 0; i < pi->pcfg.num_chan; i++) { 1653 1654 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1655 struct pl330_thread *thrd = &pl330->channels[i]; 1656 void __iomem *regs = pi->base; 1657 enum pl330_op_err err; 1658 1659 _stop(thrd); 1660 1661 if (readl(regs + FSC) & (1 << thrd->id)) 1662 err = PL330_ERR_FAIL; 1663 else 1664 err = PL330_ERR_ABORT; 1665 1666 spin_unlock_irqrestore(&pl330->lock, flags); 1667 1668 _callback(thrd->req[1 - thrd->lstenq].r, err); 1669 _callback(thrd->req[thrd->lstenq].r, err); 1670 1671 spin_lock_irqsave(&pl330->lock, flags); 1672 1673 thrd->req[0].r = NULL; 1674 thrd->req[1].r = NULL; 1675 mark_free(thrd, 0); 1676 mark_free(thrd, 1); 1677 1678 /* Clear the reset flag */ 1679 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1680 } 1681 } 1682 1683 spin_unlock_irqrestore(&pl330->lock, flags); 1684 1685 return; 1686 } 1687 1688 /* Returns 1 if state was updated, 0 otherwise */ 1689 static int pl330_update(const struct pl330_info *pi) 1690 { 1691 struct pl330_req *rqdone, *tmp; 1692 struct pl330_dmac *pl330; 1693 unsigned long flags; 1694 void __iomem *regs; 1695 u32 val; 1696 int id, ev, ret = 0; 1697 1698 if (!pi || !pi->pl330_data) 1699 return 0; 1700 1701 regs = pi->base; 1702 pl330 = pi->pl330_data; 1703 1704 spin_lock_irqsave(&pl330->lock, flags); 1705 1706 val = readl(regs + FSM) & 0x1; 1707 if (val) 1708 pl330->dmac_tbd.reset_mngr = true; 1709 else 1710 pl330->dmac_tbd.reset_mngr = false; 1711 1712 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1713 pl330->dmac_tbd.reset_chan |= val; 1714 if (val) { 1715 int i = 0; 1716 while (i < pi->pcfg.num_chan) { 1717 if (val & (1 << i)) { 1718 dev_info(pi->dev, 1719 "Reset Channel-%d\t CS-%x FTC-%x\n", 1720 i, readl(regs + CS(i)), 1721 readl(regs + FTC(i))); 1722 _stop(&pl330->channels[i]); 1723 } 1724 i++; 1725 } 1726 } 1727 1728 /* Check which event happened i.e, thread notified */ 1729 val = readl(regs + ES); 1730 if (pi->pcfg.num_events < 32 1731 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1732 pl330->dmac_tbd.reset_dmac = true; 1733 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1734 ret = 1; 1735 goto updt_exit; 1736 } 1737 1738 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1739 if (val & (1 << ev)) { /* Event occurred */ 1740 struct pl330_thread *thrd; 1741 u32 inten = readl(regs + INTEN); 1742 int active; 1743 1744 /* Clear the event */ 1745 if (inten & (1 << ev)) 1746 writel(1 << ev, regs + INTCLR); 1747 1748 ret = 1; 1749 1750 id = pl330->events[ev]; 1751 1752 thrd = &pl330->channels[id]; 1753 1754 active = thrd->req_running; 1755 if (active == -1) /* Aborted */ 1756 continue; 1757 1758 /* Detach the req */ 1759 rqdone = thrd->req[active].r; 1760 thrd->req[active].r = NULL; 1761 1762 mark_free(thrd, active); 1763 1764 /* Get going again ASAP */ 1765 _start(thrd); 1766 1767 /* For now, just make a list of callbacks to be done */ 1768 list_add_tail(&rqdone->rqd, &pl330->req_done); 1769 } 1770 } 1771 1772 /* Now that we are in no hurry, do the callbacks */ 1773 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1774 list_del(&rqdone->rqd); 1775 1776 spin_unlock_irqrestore(&pl330->lock, flags); 1777 _callback(rqdone, PL330_ERR_NONE); 1778 spin_lock_irqsave(&pl330->lock, flags); 1779 } 1780 1781 updt_exit: 1782 spin_unlock_irqrestore(&pl330->lock, flags); 1783 1784 if (pl330->dmac_tbd.reset_dmac 1785 || pl330->dmac_tbd.reset_mngr 1786 || pl330->dmac_tbd.reset_chan) { 1787 ret = 1; 1788 tasklet_schedule(&pl330->tasks); 1789 } 1790 1791 return ret; 1792 } 1793 1794 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1795 { 1796 struct pl330_thread *thrd = ch_id; 1797 struct pl330_dmac *pl330; 1798 unsigned long flags; 1799 int ret = 0, active; 1800 1801 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1802 return -EINVAL; 1803 1804 pl330 = thrd->dmac; 1805 active = thrd->req_running; 1806 1807 spin_lock_irqsave(&pl330->lock, flags); 1808 1809 switch (op) { 1810 case PL330_OP_FLUSH: 1811 /* Make sure the channel is stopped */ 1812 _stop(thrd); 1813 1814 thrd->req[0].r = NULL; 1815 thrd->req[1].r = NULL; 1816 mark_free(thrd, 0); 1817 mark_free(thrd, 1); 1818 break; 1819 1820 case PL330_OP_ABORT: 1821 /* Make sure the channel is stopped */ 1822 _stop(thrd); 1823 1824 /* ABORT is only for the active req */ 1825 if (active == -1) 1826 break; 1827 1828 thrd->req[active].r = NULL; 1829 mark_free(thrd, active); 1830 1831 /* Start the next */ 1832 case PL330_OP_START: 1833 if ((active == -1) && !_start(thrd)) 1834 ret = -EIO; 1835 break; 1836 1837 default: 1838 ret = -EINVAL; 1839 } 1840 1841 spin_unlock_irqrestore(&pl330->lock, flags); 1842 return ret; 1843 } 1844 1845 /* Reserve an event */ 1846 static inline int _alloc_event(struct pl330_thread *thrd) 1847 { 1848 struct pl330_dmac *pl330 = thrd->dmac; 1849 struct pl330_info *pi = pl330->pinfo; 1850 int ev; 1851 1852 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1853 if (pl330->events[ev] == -1) { 1854 pl330->events[ev] = thrd->id; 1855 return ev; 1856 } 1857 1858 return -1; 1859 } 1860 1861 static bool _chan_ns(const struct pl330_info *pi, int i) 1862 { 1863 return pi->pcfg.irq_ns & (1 << i); 1864 } 1865 1866 /* Upon success, returns IdentityToken for the 1867 * allocated channel, NULL otherwise. 1868 */ 1869 static void *pl330_request_channel(const struct pl330_info *pi) 1870 { 1871 struct pl330_thread *thrd = NULL; 1872 struct pl330_dmac *pl330; 1873 unsigned long flags; 1874 int chans, i; 1875 1876 if (!pi || !pi->pl330_data) 1877 return NULL; 1878 1879 pl330 = pi->pl330_data; 1880 1881 if (pl330->state == DYING) 1882 return NULL; 1883 1884 chans = pi->pcfg.num_chan; 1885 1886 spin_lock_irqsave(&pl330->lock, flags); 1887 1888 for (i = 0; i < chans; i++) { 1889 thrd = &pl330->channels[i]; 1890 if ((thrd->free) && (!_manager_ns(thrd) || 1891 _chan_ns(pi, i))) { 1892 thrd->ev = _alloc_event(thrd); 1893 if (thrd->ev >= 0) { 1894 thrd->free = false; 1895 thrd->lstenq = 1; 1896 thrd->req[0].r = NULL; 1897 mark_free(thrd, 0); 1898 thrd->req[1].r = NULL; 1899 mark_free(thrd, 1); 1900 break; 1901 } 1902 } 1903 thrd = NULL; 1904 } 1905 1906 spin_unlock_irqrestore(&pl330->lock, flags); 1907 1908 return thrd; 1909 } 1910 1911 /* Release an event */ 1912 static inline void _free_event(struct pl330_thread *thrd, int ev) 1913 { 1914 struct pl330_dmac *pl330 = thrd->dmac; 1915 struct pl330_info *pi = pl330->pinfo; 1916 1917 /* If the event is valid and was held by the thread */ 1918 if (ev >= 0 && ev < pi->pcfg.num_events 1919 && pl330->events[ev] == thrd->id) 1920 pl330->events[ev] = -1; 1921 } 1922 1923 static void pl330_release_channel(void *ch_id) 1924 { 1925 struct pl330_thread *thrd = ch_id; 1926 struct pl330_dmac *pl330; 1927 unsigned long flags; 1928 1929 if (!thrd || thrd->free) 1930 return; 1931 1932 _stop(thrd); 1933 1934 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1935 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1936 1937 pl330 = thrd->dmac; 1938 1939 spin_lock_irqsave(&pl330->lock, flags); 1940 _free_event(thrd, thrd->ev); 1941 thrd->free = true; 1942 spin_unlock_irqrestore(&pl330->lock, flags); 1943 } 1944 1945 /* Initialize the structure for PL330 configuration, that can be used 1946 * by the client driver the make best use of the DMAC 1947 */ 1948 static void read_dmac_config(struct pl330_info *pi) 1949 { 1950 void __iomem *regs = pi->base; 1951 u32 val; 1952 1953 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1954 val &= CRD_DATA_WIDTH_MASK; 1955 pi->pcfg.data_bus_width = 8 * (1 << val); 1956 1957 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1958 val &= CRD_DATA_BUFF_MASK; 1959 pi->pcfg.data_buf_dep = val + 1; 1960 1961 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1962 val &= CR0_NUM_CHANS_MASK; 1963 val += 1; 1964 pi->pcfg.num_chan = val; 1965 1966 val = readl(regs + CR0); 1967 if (val & CR0_PERIPH_REQ_SET) { 1968 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1969 val += 1; 1970 pi->pcfg.num_peri = val; 1971 pi->pcfg.peri_ns = readl(regs + CR4); 1972 } else { 1973 pi->pcfg.num_peri = 0; 1974 } 1975 1976 val = readl(regs + CR0); 1977 if (val & CR0_BOOT_MAN_NS) 1978 pi->pcfg.mode |= DMAC_MODE_NS; 1979 else 1980 pi->pcfg.mode &= ~DMAC_MODE_NS; 1981 1982 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1983 val &= CR0_NUM_EVENTS_MASK; 1984 val += 1; 1985 pi->pcfg.num_events = val; 1986 1987 pi->pcfg.irq_ns = readl(regs + CR3); 1988 1989 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1990 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1991 } 1992 1993 static inline void _reset_thread(struct pl330_thread *thrd) 1994 { 1995 struct pl330_dmac *pl330 = thrd->dmac; 1996 struct pl330_info *pi = pl330->pinfo; 1997 1998 thrd->req[0].mc_cpu = pl330->mcode_cpu 1999 + (thrd->id * pi->mcbufsz); 2000 thrd->req[0].mc_bus = pl330->mcode_bus 2001 + (thrd->id * pi->mcbufsz); 2002 thrd->req[0].r = NULL; 2003 mark_free(thrd, 0); 2004 2005 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2006 + pi->mcbufsz / 2; 2007 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2008 + pi->mcbufsz / 2; 2009 thrd->req[1].r = NULL; 2010 mark_free(thrd, 1); 2011 } 2012 2013 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2014 { 2015 struct pl330_info *pi = pl330->pinfo; 2016 int chans = pi->pcfg.num_chan; 2017 struct pl330_thread *thrd; 2018 int i; 2019 2020 /* Allocate 1 Manager and 'chans' Channel threads */ 2021 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2022 GFP_KERNEL); 2023 if (!pl330->channels) 2024 return -ENOMEM; 2025 2026 /* Init Channel threads */ 2027 for (i = 0; i < chans; i++) { 2028 thrd = &pl330->channels[i]; 2029 thrd->id = i; 2030 thrd->dmac = pl330; 2031 _reset_thread(thrd); 2032 thrd->free = true; 2033 } 2034 2035 /* MANAGER is indexed at the end */ 2036 thrd = &pl330->channels[chans]; 2037 thrd->id = chans; 2038 thrd->dmac = pl330; 2039 thrd->free = false; 2040 pl330->manager = thrd; 2041 2042 return 0; 2043 } 2044 2045 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2046 { 2047 struct pl330_info *pi = pl330->pinfo; 2048 int chans = pi->pcfg.num_chan; 2049 int ret; 2050 2051 /* 2052 * Alloc MicroCode buffer for 'chans' Channel threads. 2053 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2054 */ 2055 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2056 chans * pi->mcbufsz, 2057 &pl330->mcode_bus, GFP_KERNEL); 2058 if (!pl330->mcode_cpu) { 2059 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2060 __func__, __LINE__); 2061 return -ENOMEM; 2062 } 2063 2064 ret = dmac_alloc_threads(pl330); 2065 if (ret) { 2066 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2067 __func__, __LINE__); 2068 dma_free_coherent(pi->dev, 2069 chans * pi->mcbufsz, 2070 pl330->mcode_cpu, pl330->mcode_bus); 2071 return ret; 2072 } 2073 2074 return 0; 2075 } 2076 2077 static int pl330_add(struct pl330_info *pi) 2078 { 2079 struct pl330_dmac *pl330; 2080 void __iomem *regs; 2081 int i, ret; 2082 2083 if (!pi || !pi->dev) 2084 return -EINVAL; 2085 2086 /* If already added */ 2087 if (pi->pl330_data) 2088 return -EINVAL; 2089 2090 /* 2091 * If the SoC can perform reset on the DMAC, then do it 2092 * before reading its configuration. 2093 */ 2094 if (pi->dmac_reset) 2095 pi->dmac_reset(pi); 2096 2097 regs = pi->base; 2098 2099 /* Check if we can handle this DMAC */ 2100 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2101 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2102 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2103 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2104 return -EINVAL; 2105 } 2106 2107 /* Read the configuration of the DMAC */ 2108 read_dmac_config(pi); 2109 2110 if (pi->pcfg.num_events == 0) { 2111 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2112 __func__, __LINE__); 2113 return -EINVAL; 2114 } 2115 2116 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2117 if (!pl330) { 2118 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2119 __func__, __LINE__); 2120 return -ENOMEM; 2121 } 2122 2123 /* Assign the info structure and private data */ 2124 pl330->pinfo = pi; 2125 pi->pl330_data = pl330; 2126 2127 spin_lock_init(&pl330->lock); 2128 2129 INIT_LIST_HEAD(&pl330->req_done); 2130 2131 /* Use default MC buffer size if not provided */ 2132 if (!pi->mcbufsz) 2133 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2134 2135 /* Mark all events as free */ 2136 for (i = 0; i < pi->pcfg.num_events; i++) 2137 pl330->events[i] = -1; 2138 2139 /* Allocate resources needed by the DMAC */ 2140 ret = dmac_alloc_resources(pl330); 2141 if (ret) { 2142 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2143 kfree(pl330); 2144 return ret; 2145 } 2146 2147 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2148 2149 pl330->state = INIT; 2150 2151 return 0; 2152 } 2153 2154 static int dmac_free_threads(struct pl330_dmac *pl330) 2155 { 2156 struct pl330_info *pi = pl330->pinfo; 2157 int chans = pi->pcfg.num_chan; 2158 struct pl330_thread *thrd; 2159 int i; 2160 2161 /* Release Channel threads */ 2162 for (i = 0; i < chans; i++) { 2163 thrd = &pl330->channels[i]; 2164 pl330_release_channel((void *)thrd); 2165 } 2166 2167 /* Free memory */ 2168 kfree(pl330->channels); 2169 2170 return 0; 2171 } 2172 2173 static void dmac_free_resources(struct pl330_dmac *pl330) 2174 { 2175 struct pl330_info *pi = pl330->pinfo; 2176 int chans = pi->pcfg.num_chan; 2177 2178 dmac_free_threads(pl330); 2179 2180 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2181 pl330->mcode_cpu, pl330->mcode_bus); 2182 } 2183 2184 static void pl330_del(struct pl330_info *pi) 2185 { 2186 struct pl330_dmac *pl330; 2187 2188 if (!pi || !pi->pl330_data) 2189 return; 2190 2191 pl330 = pi->pl330_data; 2192 2193 pl330->state = UNINIT; 2194 2195 tasklet_kill(&pl330->tasks); 2196 2197 /* Free DMAC resources */ 2198 dmac_free_resources(pl330); 2199 2200 kfree(pl330); 2201 pi->pl330_data = NULL; 2202 } 2203 2204 /* forward declaration */ 2205 static struct amba_driver pl330_driver; 2206 2207 static inline struct dma_pl330_chan * 2208 to_pchan(struct dma_chan *ch) 2209 { 2210 if (!ch) 2211 return NULL; 2212 2213 return container_of(ch, struct dma_pl330_chan, chan); 2214 } 2215 2216 static inline struct dma_pl330_desc * 2217 to_desc(struct dma_async_tx_descriptor *tx) 2218 { 2219 return container_of(tx, struct dma_pl330_desc, txd); 2220 } 2221 2222 static inline void free_desc_list(struct list_head *list) 2223 { 2224 struct dma_pl330_dmac *pdmac; 2225 struct dma_pl330_desc *desc; 2226 struct dma_pl330_chan *pch = NULL; 2227 unsigned long flags; 2228 2229 /* Finish off the work list */ 2230 list_for_each_entry(desc, list, node) { 2231 dma_async_tx_callback callback; 2232 void *param; 2233 2234 /* All desc in a list belong to same channel */ 2235 pch = desc->pchan; 2236 callback = desc->txd.callback; 2237 param = desc->txd.callback_param; 2238 2239 if (callback) 2240 callback(param); 2241 2242 desc->pchan = NULL; 2243 } 2244 2245 /* pch will be unset if list was empty */ 2246 if (!pch) 2247 return; 2248 2249 pdmac = pch->dmac; 2250 2251 spin_lock_irqsave(&pdmac->pool_lock, flags); 2252 list_splice_tail_init(list, &pdmac->desc_pool); 2253 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2254 } 2255 2256 static inline void handle_cyclic_desc_list(struct list_head *list) 2257 { 2258 struct dma_pl330_desc *desc; 2259 struct dma_pl330_chan *pch = NULL; 2260 unsigned long flags; 2261 2262 list_for_each_entry(desc, list, node) { 2263 dma_async_tx_callback callback; 2264 2265 /* Change status to reload it */ 2266 desc->status = PREP; 2267 pch = desc->pchan; 2268 callback = desc->txd.callback; 2269 if (callback) 2270 callback(desc->txd.callback_param); 2271 } 2272 2273 /* pch will be unset if list was empty */ 2274 if (!pch) 2275 return; 2276 2277 spin_lock_irqsave(&pch->lock, flags); 2278 list_splice_tail_init(list, &pch->work_list); 2279 spin_unlock_irqrestore(&pch->lock, flags); 2280 } 2281 2282 static inline void fill_queue(struct dma_pl330_chan *pch) 2283 { 2284 struct dma_pl330_desc *desc; 2285 int ret; 2286 2287 list_for_each_entry(desc, &pch->work_list, node) { 2288 2289 /* If already submitted */ 2290 if (desc->status == BUSY) 2291 break; 2292 2293 ret = pl330_submit_req(pch->pl330_chid, 2294 &desc->req); 2295 if (!ret) { 2296 desc->status = BUSY; 2297 break; 2298 } else if (ret == -EAGAIN) { 2299 /* QFull or DMAC Dying */ 2300 break; 2301 } else { 2302 /* Unacceptable request */ 2303 desc->status = DONE; 2304 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2305 __func__, __LINE__, desc->txd.cookie); 2306 tasklet_schedule(&pch->task); 2307 } 2308 } 2309 } 2310 2311 static void pl330_tasklet(unsigned long data) 2312 { 2313 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2314 struct dma_pl330_desc *desc, *_dt; 2315 unsigned long flags; 2316 LIST_HEAD(list); 2317 2318 spin_lock_irqsave(&pch->lock, flags); 2319 2320 /* Pick up ripe tomatoes */ 2321 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2322 if (desc->status == DONE) { 2323 if (!pch->cyclic) 2324 dma_cookie_complete(&desc->txd); 2325 list_move_tail(&desc->node, &list); 2326 } 2327 2328 /* Try to submit a req imm. next to the last completed cookie */ 2329 fill_queue(pch); 2330 2331 /* Make sure the PL330 Channel thread is active */ 2332 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2333 2334 spin_unlock_irqrestore(&pch->lock, flags); 2335 2336 if (pch->cyclic) 2337 handle_cyclic_desc_list(&list); 2338 else 2339 free_desc_list(&list); 2340 } 2341 2342 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2343 { 2344 struct dma_pl330_desc *desc = token; 2345 struct dma_pl330_chan *pch = desc->pchan; 2346 unsigned long flags; 2347 2348 /* If desc aborted */ 2349 if (!pch) 2350 return; 2351 2352 spin_lock_irqsave(&pch->lock, flags); 2353 2354 desc->status = DONE; 2355 2356 spin_unlock_irqrestore(&pch->lock, flags); 2357 2358 tasklet_schedule(&pch->task); 2359 } 2360 2361 static bool pl330_dt_filter(struct dma_chan *chan, void *param) 2362 { 2363 struct dma_pl330_filter_args *fargs = param; 2364 2365 if (chan->device != &fargs->pdmac->ddma) 2366 return false; 2367 2368 return (chan->chan_id == fargs->chan_id); 2369 } 2370 2371 bool pl330_filter(struct dma_chan *chan, void *param) 2372 { 2373 u8 *peri_id; 2374 2375 if (chan->device->dev->driver != &pl330_driver.drv) 2376 return false; 2377 2378 peri_id = chan->private; 2379 return *peri_id == (unsigned)param; 2380 } 2381 EXPORT_SYMBOL(pl330_filter); 2382 2383 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2384 struct of_dma *ofdma) 2385 { 2386 int count = dma_spec->args_count; 2387 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data; 2388 struct dma_pl330_filter_args fargs; 2389 dma_cap_mask_t cap; 2390 2391 if (!pdmac) 2392 return NULL; 2393 2394 if (count != 1) 2395 return NULL; 2396 2397 fargs.pdmac = pdmac; 2398 fargs.chan_id = dma_spec->args[0]; 2399 2400 dma_cap_zero(cap); 2401 dma_cap_set(DMA_SLAVE, cap); 2402 dma_cap_set(DMA_CYCLIC, cap); 2403 2404 return dma_request_channel(cap, pl330_dt_filter, &fargs); 2405 } 2406 2407 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2408 { 2409 struct dma_pl330_chan *pch = to_pchan(chan); 2410 struct dma_pl330_dmac *pdmac = pch->dmac; 2411 unsigned long flags; 2412 2413 spin_lock_irqsave(&pch->lock, flags); 2414 2415 dma_cookie_init(chan); 2416 pch->cyclic = false; 2417 2418 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2419 if (!pch->pl330_chid) { 2420 spin_unlock_irqrestore(&pch->lock, flags); 2421 return -ENOMEM; 2422 } 2423 2424 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2425 2426 spin_unlock_irqrestore(&pch->lock, flags); 2427 2428 return 1; 2429 } 2430 2431 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2432 { 2433 struct dma_pl330_chan *pch = to_pchan(chan); 2434 struct dma_pl330_desc *desc, *_dt; 2435 unsigned long flags; 2436 struct dma_pl330_dmac *pdmac = pch->dmac; 2437 struct dma_slave_config *slave_config; 2438 LIST_HEAD(list); 2439 2440 switch (cmd) { 2441 case DMA_TERMINATE_ALL: 2442 spin_lock_irqsave(&pch->lock, flags); 2443 2444 /* FLUSH the PL330 Channel thread */ 2445 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2446 2447 /* Mark all desc done */ 2448 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2449 desc->status = DONE; 2450 list_move_tail(&desc->node, &list); 2451 } 2452 2453 list_splice_tail_init(&list, &pdmac->desc_pool); 2454 spin_unlock_irqrestore(&pch->lock, flags); 2455 break; 2456 case DMA_SLAVE_CONFIG: 2457 slave_config = (struct dma_slave_config *)arg; 2458 2459 if (slave_config->direction == DMA_MEM_TO_DEV) { 2460 if (slave_config->dst_addr) 2461 pch->fifo_addr = slave_config->dst_addr; 2462 if (slave_config->dst_addr_width) 2463 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2464 if (slave_config->dst_maxburst) 2465 pch->burst_len = slave_config->dst_maxburst; 2466 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2467 if (slave_config->src_addr) 2468 pch->fifo_addr = slave_config->src_addr; 2469 if (slave_config->src_addr_width) 2470 pch->burst_sz = __ffs(slave_config->src_addr_width); 2471 if (slave_config->src_maxburst) 2472 pch->burst_len = slave_config->src_maxburst; 2473 } 2474 break; 2475 default: 2476 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2477 return -ENXIO; 2478 } 2479 2480 return 0; 2481 } 2482 2483 static void pl330_free_chan_resources(struct dma_chan *chan) 2484 { 2485 struct dma_pl330_chan *pch = to_pchan(chan); 2486 unsigned long flags; 2487 2488 spin_lock_irqsave(&pch->lock, flags); 2489 2490 tasklet_kill(&pch->task); 2491 2492 pl330_release_channel(pch->pl330_chid); 2493 pch->pl330_chid = NULL; 2494 2495 if (pch->cyclic) 2496 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2497 2498 spin_unlock_irqrestore(&pch->lock, flags); 2499 } 2500 2501 static enum dma_status 2502 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2503 struct dma_tx_state *txstate) 2504 { 2505 return dma_cookie_status(chan, cookie, txstate); 2506 } 2507 2508 static void pl330_issue_pending(struct dma_chan *chan) 2509 { 2510 pl330_tasklet((unsigned long) to_pchan(chan)); 2511 } 2512 2513 /* 2514 * We returned the last one of the circular list of descriptor(s) 2515 * from prep_xxx, so the argument to submit corresponds to the last 2516 * descriptor of the list. 2517 */ 2518 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2519 { 2520 struct dma_pl330_desc *desc, *last = to_desc(tx); 2521 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2522 dma_cookie_t cookie; 2523 unsigned long flags; 2524 2525 spin_lock_irqsave(&pch->lock, flags); 2526 2527 /* Assign cookies to all nodes */ 2528 while (!list_empty(&last->node)) { 2529 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2530 2531 dma_cookie_assign(&desc->txd); 2532 2533 list_move_tail(&desc->node, &pch->work_list); 2534 } 2535 2536 cookie = dma_cookie_assign(&last->txd); 2537 list_add_tail(&last->node, &pch->work_list); 2538 spin_unlock_irqrestore(&pch->lock, flags); 2539 2540 return cookie; 2541 } 2542 2543 static inline void _init_desc(struct dma_pl330_desc *desc) 2544 { 2545 desc->pchan = NULL; 2546 desc->req.x = &desc->px; 2547 desc->req.token = desc; 2548 desc->rqcfg.swap = SWAP_NO; 2549 desc->rqcfg.privileged = 0; 2550 desc->rqcfg.insnaccess = 0; 2551 desc->rqcfg.scctl = SCCTRL0; 2552 desc->rqcfg.dcctl = DCCTRL0; 2553 desc->req.cfg = &desc->rqcfg; 2554 desc->req.xfer_cb = dma_pl330_rqcb; 2555 desc->txd.tx_submit = pl330_tx_submit; 2556 2557 INIT_LIST_HEAD(&desc->node); 2558 } 2559 2560 /* Returns the number of descriptors added to the DMAC pool */ 2561 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2562 { 2563 struct dma_pl330_desc *desc; 2564 unsigned long flags; 2565 int i; 2566 2567 if (!pdmac) 2568 return 0; 2569 2570 desc = kmalloc(count * sizeof(*desc), flg); 2571 if (!desc) 2572 return 0; 2573 2574 spin_lock_irqsave(&pdmac->pool_lock, flags); 2575 2576 for (i = 0; i < count; i++) { 2577 _init_desc(&desc[i]); 2578 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2579 } 2580 2581 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2582 2583 return count; 2584 } 2585 2586 static struct dma_pl330_desc * 2587 pluck_desc(struct dma_pl330_dmac *pdmac) 2588 { 2589 struct dma_pl330_desc *desc = NULL; 2590 unsigned long flags; 2591 2592 if (!pdmac) 2593 return NULL; 2594 2595 spin_lock_irqsave(&pdmac->pool_lock, flags); 2596 2597 if (!list_empty(&pdmac->desc_pool)) { 2598 desc = list_entry(pdmac->desc_pool.next, 2599 struct dma_pl330_desc, node); 2600 2601 list_del_init(&desc->node); 2602 2603 desc->status = PREP; 2604 desc->txd.callback = NULL; 2605 } 2606 2607 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2608 2609 return desc; 2610 } 2611 2612 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2613 { 2614 struct dma_pl330_dmac *pdmac = pch->dmac; 2615 u8 *peri_id = pch->chan.private; 2616 struct dma_pl330_desc *desc; 2617 2618 /* Pluck one desc from the pool of DMAC */ 2619 desc = pluck_desc(pdmac); 2620 2621 /* If the DMAC pool is empty, alloc new */ 2622 if (!desc) { 2623 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2624 return NULL; 2625 2626 /* Try again */ 2627 desc = pluck_desc(pdmac); 2628 if (!desc) { 2629 dev_err(pch->dmac->pif.dev, 2630 "%s:%d ALERT!\n", __func__, __LINE__); 2631 return NULL; 2632 } 2633 } 2634 2635 /* Initialize the descriptor */ 2636 desc->pchan = pch; 2637 desc->txd.cookie = 0; 2638 async_tx_ack(&desc->txd); 2639 2640 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2641 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2642 2643 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2644 2645 return desc; 2646 } 2647 2648 static inline void fill_px(struct pl330_xfer *px, 2649 dma_addr_t dst, dma_addr_t src, size_t len) 2650 { 2651 px->next = NULL; 2652 px->bytes = len; 2653 px->dst_addr = dst; 2654 px->src_addr = src; 2655 } 2656 2657 static struct dma_pl330_desc * 2658 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2659 dma_addr_t src, size_t len) 2660 { 2661 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2662 2663 if (!desc) { 2664 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2665 __func__, __LINE__); 2666 return NULL; 2667 } 2668 2669 /* 2670 * Ideally we should lookout for reqs bigger than 2671 * those that can be programmed with 256 bytes of 2672 * MC buffer, but considering a req size is seldom 2673 * going to be word-unaligned and more than 200MB, 2674 * we take it easy. 2675 * Also, should the limit is reached we'd rather 2676 * have the platform increase MC buffer size than 2677 * complicating this API driver. 2678 */ 2679 fill_px(&desc->px, dst, src, len); 2680 2681 return desc; 2682 } 2683 2684 /* Call after fixing burst size */ 2685 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2686 { 2687 struct dma_pl330_chan *pch = desc->pchan; 2688 struct pl330_info *pi = &pch->dmac->pif; 2689 int burst_len; 2690 2691 burst_len = pi->pcfg.data_bus_width / 8; 2692 burst_len *= pi->pcfg.data_buf_dep; 2693 burst_len >>= desc->rqcfg.brst_size; 2694 2695 /* src/dst_burst_len can't be more than 16 */ 2696 if (burst_len > 16) 2697 burst_len = 16; 2698 2699 while (burst_len > 1) { 2700 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2701 break; 2702 burst_len--; 2703 } 2704 2705 return burst_len; 2706 } 2707 2708 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2709 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2710 size_t period_len, enum dma_transfer_direction direction, 2711 unsigned long flags, void *context) 2712 { 2713 struct dma_pl330_desc *desc; 2714 struct dma_pl330_chan *pch = to_pchan(chan); 2715 dma_addr_t dst; 2716 dma_addr_t src; 2717 2718 desc = pl330_get_desc(pch); 2719 if (!desc) { 2720 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2721 __func__, __LINE__); 2722 return NULL; 2723 } 2724 2725 switch (direction) { 2726 case DMA_MEM_TO_DEV: 2727 desc->rqcfg.src_inc = 1; 2728 desc->rqcfg.dst_inc = 0; 2729 desc->req.rqtype = MEMTODEV; 2730 src = dma_addr; 2731 dst = pch->fifo_addr; 2732 break; 2733 case DMA_DEV_TO_MEM: 2734 desc->rqcfg.src_inc = 0; 2735 desc->rqcfg.dst_inc = 1; 2736 desc->req.rqtype = DEVTOMEM; 2737 src = pch->fifo_addr; 2738 dst = dma_addr; 2739 break; 2740 default: 2741 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2742 __func__, __LINE__); 2743 return NULL; 2744 } 2745 2746 desc->rqcfg.brst_size = pch->burst_sz; 2747 desc->rqcfg.brst_len = 1; 2748 2749 pch->cyclic = true; 2750 2751 fill_px(&desc->px, dst, src, period_len); 2752 2753 return &desc->txd; 2754 } 2755 2756 static struct dma_async_tx_descriptor * 2757 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2758 dma_addr_t src, size_t len, unsigned long flags) 2759 { 2760 struct dma_pl330_desc *desc; 2761 struct dma_pl330_chan *pch = to_pchan(chan); 2762 struct pl330_info *pi; 2763 int burst; 2764 2765 if (unlikely(!pch || !len)) 2766 return NULL; 2767 2768 pi = &pch->dmac->pif; 2769 2770 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2771 if (!desc) 2772 return NULL; 2773 2774 desc->rqcfg.src_inc = 1; 2775 desc->rqcfg.dst_inc = 1; 2776 desc->req.rqtype = MEMTOMEM; 2777 2778 /* Select max possible burst size */ 2779 burst = pi->pcfg.data_bus_width / 8; 2780 2781 while (burst > 1) { 2782 if (!(len % burst)) 2783 break; 2784 burst /= 2; 2785 } 2786 2787 desc->rqcfg.brst_size = 0; 2788 while (burst != (1 << desc->rqcfg.brst_size)) 2789 desc->rqcfg.brst_size++; 2790 2791 desc->rqcfg.brst_len = get_burst_len(desc, len); 2792 2793 desc->txd.flags = flags; 2794 2795 return &desc->txd; 2796 } 2797 2798 static struct dma_async_tx_descriptor * 2799 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2800 unsigned int sg_len, enum dma_transfer_direction direction, 2801 unsigned long flg, void *context) 2802 { 2803 struct dma_pl330_desc *first, *desc = NULL; 2804 struct dma_pl330_chan *pch = to_pchan(chan); 2805 struct scatterlist *sg; 2806 unsigned long flags; 2807 int i; 2808 dma_addr_t addr; 2809 2810 if (unlikely(!pch || !sgl || !sg_len)) 2811 return NULL; 2812 2813 addr = pch->fifo_addr; 2814 2815 first = NULL; 2816 2817 for_each_sg(sgl, sg, sg_len, i) { 2818 2819 desc = pl330_get_desc(pch); 2820 if (!desc) { 2821 struct dma_pl330_dmac *pdmac = pch->dmac; 2822 2823 dev_err(pch->dmac->pif.dev, 2824 "%s:%d Unable to fetch desc\n", 2825 __func__, __LINE__); 2826 if (!first) 2827 return NULL; 2828 2829 spin_lock_irqsave(&pdmac->pool_lock, flags); 2830 2831 while (!list_empty(&first->node)) { 2832 desc = list_entry(first->node.next, 2833 struct dma_pl330_desc, node); 2834 list_move_tail(&desc->node, &pdmac->desc_pool); 2835 } 2836 2837 list_move_tail(&first->node, &pdmac->desc_pool); 2838 2839 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2840 2841 return NULL; 2842 } 2843 2844 if (!first) 2845 first = desc; 2846 else 2847 list_add_tail(&desc->node, &first->node); 2848 2849 if (direction == DMA_MEM_TO_DEV) { 2850 desc->rqcfg.src_inc = 1; 2851 desc->rqcfg.dst_inc = 0; 2852 desc->req.rqtype = MEMTODEV; 2853 fill_px(&desc->px, 2854 addr, sg_dma_address(sg), sg_dma_len(sg)); 2855 } else { 2856 desc->rqcfg.src_inc = 0; 2857 desc->rqcfg.dst_inc = 1; 2858 desc->req.rqtype = DEVTOMEM; 2859 fill_px(&desc->px, 2860 sg_dma_address(sg), addr, sg_dma_len(sg)); 2861 } 2862 2863 desc->rqcfg.brst_size = pch->burst_sz; 2864 desc->rqcfg.brst_len = 1; 2865 } 2866 2867 /* Return the last desc in the chain */ 2868 desc->txd.flags = flg; 2869 return &desc->txd; 2870 } 2871 2872 static irqreturn_t pl330_irq_handler(int irq, void *data) 2873 { 2874 if (pl330_update(data)) 2875 return IRQ_HANDLED; 2876 else 2877 return IRQ_NONE; 2878 } 2879 2880 static int 2881 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2882 { 2883 struct dma_pl330_platdata *pdat; 2884 struct dma_pl330_dmac *pdmac; 2885 struct dma_pl330_chan *pch, *_p; 2886 struct pl330_info *pi; 2887 struct dma_device *pd; 2888 struct resource *res; 2889 int i, ret, irq; 2890 int num_chan; 2891 2892 pdat = adev->dev.platform_data; 2893 2894 /* Allocate a new DMAC and its Channels */ 2895 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL); 2896 if (!pdmac) { 2897 dev_err(&adev->dev, "unable to allocate mem\n"); 2898 return -ENOMEM; 2899 } 2900 2901 pi = &pdmac->pif; 2902 pi->dev = &adev->dev; 2903 pi->pl330_data = NULL; 2904 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2905 2906 res = &adev->res; 2907 pi->base = devm_request_and_ioremap(&adev->dev, res); 2908 if (!pi->base) 2909 return -ENXIO; 2910 2911 amba_set_drvdata(adev, pdmac); 2912 2913 irq = adev->irq[0]; 2914 ret = request_irq(irq, pl330_irq_handler, 0, 2915 dev_name(&adev->dev), pi); 2916 if (ret) 2917 return ret; 2918 2919 ret = pl330_add(pi); 2920 if (ret) 2921 goto probe_err1; 2922 2923 INIT_LIST_HEAD(&pdmac->desc_pool); 2924 spin_lock_init(&pdmac->pool_lock); 2925 2926 /* Create a descriptor pool of default size */ 2927 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2928 dev_warn(&adev->dev, "unable to allocate desc\n"); 2929 2930 pd = &pdmac->ddma; 2931 INIT_LIST_HEAD(&pd->channels); 2932 2933 /* Initialize channel parameters */ 2934 if (pdat) 2935 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2936 else 2937 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2938 2939 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2940 if (!pdmac->peripherals) { 2941 ret = -ENOMEM; 2942 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n"); 2943 goto probe_err2; 2944 } 2945 2946 for (i = 0; i < num_chan; i++) { 2947 pch = &pdmac->peripherals[i]; 2948 if (!adev->dev.of_node) 2949 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2950 else 2951 pch->chan.private = adev->dev.of_node; 2952 2953 INIT_LIST_HEAD(&pch->work_list); 2954 spin_lock_init(&pch->lock); 2955 pch->pl330_chid = NULL; 2956 pch->chan.device = pd; 2957 pch->dmac = pdmac; 2958 2959 /* Add the channel to the DMAC list */ 2960 list_add_tail(&pch->chan.device_node, &pd->channels); 2961 } 2962 2963 pd->dev = &adev->dev; 2964 if (pdat) { 2965 pd->cap_mask = pdat->cap_mask; 2966 } else { 2967 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2968 if (pi->pcfg.num_peri) { 2969 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2970 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2971 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2972 } 2973 } 2974 2975 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2976 pd->device_free_chan_resources = pl330_free_chan_resources; 2977 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2978 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2979 pd->device_tx_status = pl330_tx_status; 2980 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2981 pd->device_control = pl330_control; 2982 pd->device_issue_pending = pl330_issue_pending; 2983 2984 ret = dma_async_device_register(pd); 2985 if (ret) { 2986 dev_err(&adev->dev, "unable to register DMAC\n"); 2987 goto probe_err3; 2988 } 2989 2990 if (adev->dev.of_node) { 2991 ret = of_dma_controller_register(adev->dev.of_node, 2992 of_dma_pl330_xlate, pdmac); 2993 if (ret) { 2994 dev_err(&adev->dev, 2995 "unable to register DMA to the generic DT DMA helpers\n"); 2996 } 2997 } 2998 2999 dev_info(&adev->dev, 3000 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 3001 dev_info(&adev->dev, 3002 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3003 pi->pcfg.data_buf_dep, 3004 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 3005 pi->pcfg.num_peri, pi->pcfg.num_events); 3006 3007 return 0; 3008 probe_err3: 3009 amba_set_drvdata(adev, NULL); 3010 3011 /* Idle the DMAC */ 3012 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3013 chan.device_node) { 3014 3015 /* Remove the channel */ 3016 list_del(&pch->chan.device_node); 3017 3018 /* Flush the channel */ 3019 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3020 pl330_free_chan_resources(&pch->chan); 3021 } 3022 probe_err2: 3023 pl330_del(pi); 3024 probe_err1: 3025 free_irq(irq, pi); 3026 3027 return ret; 3028 } 3029 3030 static int pl330_remove(struct amba_device *adev) 3031 { 3032 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3033 struct dma_pl330_chan *pch, *_p; 3034 struct pl330_info *pi; 3035 int irq; 3036 3037 if (!pdmac) 3038 return 0; 3039 3040 if (adev->dev.of_node) 3041 of_dma_controller_free(adev->dev.of_node); 3042 3043 dma_async_device_unregister(&pdmac->ddma); 3044 amba_set_drvdata(adev, NULL); 3045 3046 /* Idle the DMAC */ 3047 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3048 chan.device_node) { 3049 3050 /* Remove the channel */ 3051 list_del(&pch->chan.device_node); 3052 3053 /* Flush the channel */ 3054 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3055 pl330_free_chan_resources(&pch->chan); 3056 } 3057 3058 pi = &pdmac->pif; 3059 3060 pl330_del(pi); 3061 3062 irq = adev->irq[0]; 3063 free_irq(irq, pi); 3064 3065 return 0; 3066 } 3067 3068 static struct amba_id pl330_ids[] = { 3069 { 3070 .id = 0x00041330, 3071 .mask = 0x000fffff, 3072 }, 3073 { 0, 0 }, 3074 }; 3075 3076 MODULE_DEVICE_TABLE(amba, pl330_ids); 3077 3078 static struct amba_driver pl330_driver = { 3079 .drv = { 3080 .owner = THIS_MODULE, 3081 .name = "dma-pl330", 3082 }, 3083 .id_table = pl330_ids, 3084 .probe = pl330_probe, 3085 .remove = pl330_remove, 3086 }; 3087 3088 module_amba_driver(pl330_driver); 3089 3090 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3091 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3092 MODULE_LICENSE("GPL"); 3093