xref: /linux/drivers/dma/pl330.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/bug.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 #define PL330_MAX_BURST         16
37 
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39 
40 enum pl330_cachectrl {
41 	CCTRL0,		/* Noncacheable and nonbufferable */
42 	CCTRL1,		/* Bufferable only */
43 	CCTRL2,		/* Cacheable, but do not allocate */
44 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
45 	INVALID1,	/* AWCACHE = 0x1000 */
46 	INVALID2,
47 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
48 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
49 };
50 
51 enum pl330_byteswap {
52 	SWAP_NO,
53 	SWAP_2,
54 	SWAP_4,
55 	SWAP_8,
56 	SWAP_16,
57 };
58 
59 /* Register and Bit field Definitions */
60 #define DS			0x0
61 #define DS_ST_STOP		0x0
62 #define DS_ST_EXEC		0x1
63 #define DS_ST_CMISS		0x2
64 #define DS_ST_UPDTPC		0x3
65 #define DS_ST_WFE		0x4
66 #define DS_ST_ATBRR		0x5
67 #define DS_ST_QBUSY		0x6
68 #define DS_ST_WFP		0x7
69 #define DS_ST_KILL		0x8
70 #define DS_ST_CMPLT		0x9
71 #define DS_ST_FLTCMP		0xe
72 #define DS_ST_FAULT		0xf
73 
74 #define DPC			0x4
75 #define INTEN			0x20
76 #define ES			0x24
77 #define INTSTATUS		0x28
78 #define INTCLR			0x2c
79 #define FSM			0x30
80 #define FSC			0x34
81 #define FTM			0x38
82 
83 #define _FTC			0x40
84 #define FTC(n)			(_FTC + (n)*0x4)
85 
86 #define _CS			0x100
87 #define CS(n)			(_CS + (n)*0x8)
88 #define CS_CNS			(1 << 21)
89 
90 #define _CPC			0x104
91 #define CPC(n)			(_CPC + (n)*0x8)
92 
93 #define _SA			0x400
94 #define SA(n)			(_SA + (n)*0x20)
95 
96 #define _DA			0x404
97 #define DA(n)			(_DA + (n)*0x20)
98 
99 #define _CC			0x408
100 #define CC(n)			(_CC + (n)*0x20)
101 
102 #define CC_SRCINC		(1 << 0)
103 #define CC_DSTINC		(1 << 14)
104 #define CC_SRCPRI		(1 << 8)
105 #define CC_DSTPRI		(1 << 22)
106 #define CC_SRCNS		(1 << 9)
107 #define CC_DSTNS		(1 << 23)
108 #define CC_SRCIA		(1 << 10)
109 #define CC_DSTIA		(1 << 24)
110 #define CC_SRCBRSTLEN_SHFT	4
111 #define CC_DSTBRSTLEN_SHFT	18
112 #define CC_SRCBRSTSIZE_SHFT	1
113 #define CC_DSTBRSTSIZE_SHFT	15
114 #define CC_SRCCCTRL_SHFT	11
115 #define CC_SRCCCTRL_MASK	0x7
116 #define CC_DSTCCTRL_SHFT	25
117 #define CC_DRCCCTRL_MASK	0x7
118 #define CC_SWAP_SHFT		28
119 
120 #define _LC0			0x40c
121 #define LC0(n)			(_LC0 + (n)*0x20)
122 
123 #define _LC1			0x410
124 #define LC1(n)			(_LC1 + (n)*0x20)
125 
126 #define DBGSTATUS		0xd00
127 #define DBG_BUSY		(1 << 0)
128 
129 #define DBGCMD			0xd04
130 #define DBGINST0		0xd08
131 #define DBGINST1		0xd0c
132 
133 #define CR0			0xe00
134 #define CR1			0xe04
135 #define CR2			0xe08
136 #define CR3			0xe0c
137 #define CR4			0xe10
138 #define CRD			0xe14
139 
140 #define PERIPH_ID		0xfe0
141 #define PERIPH_REV_SHIFT	20
142 #define PERIPH_REV_MASK		0xf
143 #define PERIPH_REV_R0P0		0
144 #define PERIPH_REV_R1P0		1
145 #define PERIPH_REV_R1P1		2
146 
147 #define CR0_PERIPH_REQ_SET	(1 << 0)
148 #define CR0_BOOT_EN_SET		(1 << 1)
149 #define CR0_BOOT_MAN_NS		(1 << 2)
150 #define CR0_NUM_CHANS_SHIFT	4
151 #define CR0_NUM_CHANS_MASK	0x7
152 #define CR0_NUM_PERIPH_SHIFT	12
153 #define CR0_NUM_PERIPH_MASK	0x1f
154 #define CR0_NUM_EVENTS_SHIFT	17
155 #define CR0_NUM_EVENTS_MASK	0x1f
156 
157 #define CR1_ICACHE_LEN_SHIFT	0
158 #define CR1_ICACHE_LEN_MASK	0x7
159 #define CR1_NUM_ICACHELINES_SHIFT	4
160 #define CR1_NUM_ICACHELINES_MASK	0xf
161 
162 #define CRD_DATA_WIDTH_SHIFT	0
163 #define CRD_DATA_WIDTH_MASK	0x7
164 #define CRD_WR_CAP_SHIFT	4
165 #define CRD_WR_CAP_MASK		0x7
166 #define CRD_WR_Q_DEP_SHIFT	8
167 #define CRD_WR_Q_DEP_MASK	0xf
168 #define CRD_RD_CAP_SHIFT	12
169 #define CRD_RD_CAP_MASK		0x7
170 #define CRD_RD_Q_DEP_SHIFT	16
171 #define CRD_RD_Q_DEP_MASK	0xf
172 #define CRD_DATA_BUFF_SHIFT	20
173 #define CRD_DATA_BUFF_MASK	0x3ff
174 
175 #define PART			0x330
176 #define DESIGNER		0x41
177 #define REVISION		0x0
178 #define INTEG_CFG		0x0
179 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
180 
181 #define PL330_STATE_STOPPED		(1 << 0)
182 #define PL330_STATE_EXECUTING		(1 << 1)
183 #define PL330_STATE_WFE			(1 << 2)
184 #define PL330_STATE_FAULTING		(1 << 3)
185 #define PL330_STATE_COMPLETING		(1 << 4)
186 #define PL330_STATE_WFP			(1 << 5)
187 #define PL330_STATE_KILLING		(1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
189 #define PL330_STATE_CACHEMISS		(1 << 8)
190 #define PL330_STATE_UPDTPC		(1 << 9)
191 #define PL330_STATE_ATBARRIER		(1 << 10)
192 #define PL330_STATE_QUEUEBUSY		(1 << 11)
193 #define PL330_STATE_INVALID		(1 << 15)
194 
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
197 
198 #define CMD_DMAADDH		0x54
199 #define CMD_DMAEND		0x00
200 #define CMD_DMAFLUSHP		0x35
201 #define CMD_DMAGO		0xa0
202 #define CMD_DMALD		0x04
203 #define CMD_DMALDP		0x25
204 #define CMD_DMALP		0x20
205 #define CMD_DMALPEND		0x28
206 #define CMD_DMAKILL		0x01
207 #define CMD_DMAMOV		0xbc
208 #define CMD_DMANOP		0x18
209 #define CMD_DMARMB		0x12
210 #define CMD_DMASEV		0x34
211 #define CMD_DMAST		0x08
212 #define CMD_DMASTP		0x29
213 #define CMD_DMASTZ		0x0c
214 #define CMD_DMAWFE		0x36
215 #define CMD_DMAWFP		0x30
216 #define CMD_DMAWMB		0x13
217 
218 #define SZ_DMAADDH		3
219 #define SZ_DMAEND		1
220 #define SZ_DMAFLUSHP		2
221 #define SZ_DMALD		1
222 #define SZ_DMALDP		2
223 #define SZ_DMALP		2
224 #define SZ_DMALPEND		2
225 #define SZ_DMAKILL		1
226 #define SZ_DMAMOV		6
227 #define SZ_DMANOP		1
228 #define SZ_DMARMB		1
229 #define SZ_DMASEV		2
230 #define SZ_DMAST		1
231 #define SZ_DMASTP		2
232 #define SZ_DMASTZ		1
233 #define SZ_DMAWFE		2
234 #define SZ_DMAWFP		2
235 #define SZ_DMAWMB		1
236 #define SZ_DMAGO		6
237 
238 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240 
241 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243 
244 /*
245  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246  * at 1byte/burst for P<->M and M<->M respectively.
247  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248  * should be enough for P<->M and M<->M respectively.
249  */
250 #define MCODE_BUFF_PER_REQ	256
251 
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
254 
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...)	do { \
258 						printk("%x:", cmd_line); \
259 						printk(x); \
260 						cmd_line += off; \
261 					} while (0)
262 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
265 #define PL330_DBGMC_START(addr)		do {} while (0)
266 #endif
267 
268 /* The number of default descriptors */
269 
270 #define NR_DEFAULT_DESC	16
271 
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274 
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 	u32	periph_id;
278 #define DMAC_MODE_NS	(1 << 0)
279 	unsigned int	mode;
280 	unsigned int	data_bus_width:10; /* In number of bits */
281 	unsigned int	data_buf_dep:11;
282 	unsigned int	num_chan:4;
283 	unsigned int	num_peri:6;
284 	u32		peri_ns;
285 	unsigned int	num_events:6;
286 	u32		irq_ns;
287 };
288 
289 /**
290  * Request Configuration.
291  * The PL330 core does not modify this and uses the last
292  * working configuration if the request doesn't provide any.
293  *
294  * The Client may want to provide this info only for the
295  * first request and a request with new settings.
296  */
297 struct pl330_reqcfg {
298 	/* Address Incrementing */
299 	unsigned dst_inc:1;
300 	unsigned src_inc:1;
301 
302 	/*
303 	 * For now, the SRC & DST protection levels
304 	 * and burst size/length are assumed same.
305 	 */
306 	bool nonsecure;
307 	bool privileged;
308 	bool insnaccess;
309 	unsigned brst_len:5;
310 	unsigned brst_size:3; /* in power of 2 */
311 
312 	enum pl330_cachectrl dcctl;
313 	enum pl330_cachectrl scctl;
314 	enum pl330_byteswap swap;
315 	struct pl330_config *pcfg;
316 };
317 
318 /*
319  * One cycle of DMAC operation.
320  * There may be more than one xfer in a request.
321  */
322 struct pl330_xfer {
323 	u32 src_addr;
324 	u32 dst_addr;
325 	/* Size to xfer */
326 	u32 bytes;
327 };
328 
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 	/* The all xfers in the request were success. */
332 	PL330_ERR_NONE,
333 	/* If req aborted due to global error. */
334 	PL330_ERR_ABORT,
335 	/* If req failed due to problem with Channel. */
336 	PL330_ERR_FAIL,
337 };
338 
339 enum dmamov_dst {
340 	SAR = 0,
341 	CCR,
342 	DAR,
343 };
344 
345 enum pl330_dst {
346 	SRC = 0,
347 	DST,
348 };
349 
350 enum pl330_cond {
351 	SINGLE,
352 	BURST,
353 	ALWAYS,
354 };
355 
356 struct dma_pl330_desc;
357 
358 struct _pl330_req {
359 	u32 mc_bus;
360 	void *mc_cpu;
361 	struct dma_pl330_desc *desc;
362 };
363 
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 	bool reset_dmac;
367 	bool reset_mngr;
368 	u8 reset_chan;
369 };
370 
371 /* A DMAC Thread */
372 struct pl330_thread {
373 	u8 id;
374 	int ev;
375 	/* If the channel is not yet acquired by any client */
376 	bool free;
377 	/* Parent DMAC */
378 	struct pl330_dmac *dmac;
379 	/* Only two at a time */
380 	struct _pl330_req req[2];
381 	/* Index of the last enqueued request */
382 	unsigned lstenq;
383 	/* Index of the last submitted request or -1 if the DMA is stopped */
384 	int req_running;
385 };
386 
387 enum pl330_dmac_state {
388 	UNINIT,
389 	INIT,
390 	DYING,
391 };
392 
393 enum desc_status {
394 	/* In the DMAC pool */
395 	FREE,
396 	/*
397 	 * Allocated to some channel during prep_xxx
398 	 * Also may be sitting on the work_list.
399 	 */
400 	PREP,
401 	/*
402 	 * Sitting on the work_list and already submitted
403 	 * to the PL330 core. Not more than two descriptors
404 	 * of a channel can be BUSY at any time.
405 	 */
406 	BUSY,
407 	/*
408 	 * Sitting on the channel work_list but xfer done
409 	 * by PL330 core
410 	 */
411 	DONE,
412 };
413 
414 struct dma_pl330_chan {
415 	/* Schedule desc completion */
416 	struct tasklet_struct task;
417 
418 	/* DMA-Engine Channel */
419 	struct dma_chan chan;
420 
421 	/* List of submitted descriptors */
422 	struct list_head submitted_list;
423 	/* List of issued descriptors */
424 	struct list_head work_list;
425 	/* List of completed descriptors */
426 	struct list_head completed_list;
427 
428 	/* Pointer to the DMAC that manages this channel,
429 	 * NULL if the channel is available to be acquired.
430 	 * As the parent, this DMAC also provides descriptors
431 	 * to the channel.
432 	 */
433 	struct pl330_dmac *dmac;
434 
435 	/* To protect channel manipulation */
436 	spinlock_t lock;
437 
438 	/*
439 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 	 * available.
441 	 */
442 	struct pl330_thread *thread;
443 
444 	/* For D-to-M and M-to-D channels */
445 	int burst_sz; /* the peripheral fifo width */
446 	int burst_len; /* the number of burst */
447 	phys_addr_t fifo_addr;
448 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
449 	dma_addr_t fifo_dma;
450 	enum dma_data_direction dir;
451 	struct dma_slave_config slave_config;
452 
453 	/* for cyclic capability */
454 	bool cyclic;
455 
456 	/* for runtime pm tracking */
457 	bool active;
458 };
459 
460 struct pl330_dmac {
461 	/* DMA-Engine Device */
462 	struct dma_device ddma;
463 
464 	/* Holds info about sg limitations */
465 	struct device_dma_parameters dma_parms;
466 
467 	/* Pool of descriptors available for the DMAC's channels */
468 	struct list_head desc_pool;
469 	/* To protect desc_pool manipulation */
470 	spinlock_t pool_lock;
471 
472 	/* Size of MicroCode buffers for each channel. */
473 	unsigned mcbufsz;
474 	/* ioremap'ed address of PL330 registers. */
475 	void __iomem	*base;
476 	/* Populated by the PL330 core driver during pl330_add */
477 	struct pl330_config	pcfg;
478 
479 	spinlock_t		lock;
480 	/* Maximum possible events/irqs */
481 	int			events[32];
482 	/* BUS address of MicroCode buffer */
483 	dma_addr_t		mcode_bus;
484 	/* CPU address of MicroCode buffer */
485 	void			*mcode_cpu;
486 	/* List of all Channel threads */
487 	struct pl330_thread	*channels;
488 	/* Pointer to the MANAGER thread */
489 	struct pl330_thread	*manager;
490 	/* To handle bad news in interrupt */
491 	struct tasklet_struct	tasks;
492 	struct _pl330_tbd	dmac_tbd;
493 	/* State of DMAC operation */
494 	enum pl330_dmac_state	state;
495 	/* Holds list of reqs with due callbacks */
496 	struct list_head        req_done;
497 
498 	/* Peripheral channels connected to this DMAC */
499 	unsigned int num_peripherals;
500 	struct dma_pl330_chan *peripherals; /* keep at end */
501 	int quirks;
502 };
503 
504 static struct pl330_of_quirks {
505 	char *quirk;
506 	int id;
507 } of_quirks[] = {
508 	{
509 		.quirk = "arm,pl330-broken-no-flushp",
510 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
511 	}
512 };
513 
514 struct dma_pl330_desc {
515 	/* To attach to a queue as child */
516 	struct list_head node;
517 
518 	/* Descriptor for the DMA Engine API */
519 	struct dma_async_tx_descriptor txd;
520 
521 	/* Xfer for PL330 core */
522 	struct pl330_xfer px;
523 
524 	struct pl330_reqcfg rqcfg;
525 
526 	enum desc_status status;
527 
528 	int bytes_requested;
529 	bool last;
530 
531 	/* The channel which currently holds this desc */
532 	struct dma_pl330_chan *pchan;
533 
534 	enum dma_transfer_direction rqtype;
535 	/* Index of peripheral for the xfer. */
536 	unsigned peri:5;
537 	/* Hook to attach to DMAC's list of reqs with due callback */
538 	struct list_head rqd;
539 };
540 
541 struct _xfer_spec {
542 	u32 ccr;
543 	struct dma_pl330_desc *desc;
544 };
545 
546 static int pl330_config_write(struct dma_chan *chan,
547 			struct dma_slave_config *slave_config,
548 			enum dma_transfer_direction direction);
549 
550 static inline bool _queue_full(struct pl330_thread *thrd)
551 {
552 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
553 }
554 
555 static inline bool is_manager(struct pl330_thread *thrd)
556 {
557 	return thrd->dmac->manager == thrd;
558 }
559 
560 /* If manager of the thread is in Non-Secure mode */
561 static inline bool _manager_ns(struct pl330_thread *thrd)
562 {
563 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
564 }
565 
566 static inline u32 get_revision(u32 periph_id)
567 {
568 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
569 }
570 
571 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
572 {
573 	if (dry_run)
574 		return SZ_DMAEND;
575 
576 	buf[0] = CMD_DMAEND;
577 
578 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
579 
580 	return SZ_DMAEND;
581 }
582 
583 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
584 {
585 	if (dry_run)
586 		return SZ_DMAFLUSHP;
587 
588 	buf[0] = CMD_DMAFLUSHP;
589 
590 	peri &= 0x1f;
591 	peri <<= 3;
592 	buf[1] = peri;
593 
594 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
595 
596 	return SZ_DMAFLUSHP;
597 }
598 
599 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
600 {
601 	if (dry_run)
602 		return SZ_DMALD;
603 
604 	buf[0] = CMD_DMALD;
605 
606 	if (cond == SINGLE)
607 		buf[0] |= (0 << 1) | (1 << 0);
608 	else if (cond == BURST)
609 		buf[0] |= (1 << 1) | (1 << 0);
610 
611 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
612 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
613 
614 	return SZ_DMALD;
615 }
616 
617 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
618 		enum pl330_cond cond, u8 peri)
619 {
620 	if (dry_run)
621 		return SZ_DMALDP;
622 
623 	buf[0] = CMD_DMALDP;
624 
625 	if (cond == BURST)
626 		buf[0] |= (1 << 1);
627 
628 	peri &= 0x1f;
629 	peri <<= 3;
630 	buf[1] = peri;
631 
632 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
633 		cond == SINGLE ? 'S' : 'B', peri >> 3);
634 
635 	return SZ_DMALDP;
636 }
637 
638 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
639 		unsigned loop, u8 cnt)
640 {
641 	if (dry_run)
642 		return SZ_DMALP;
643 
644 	buf[0] = CMD_DMALP;
645 
646 	if (loop)
647 		buf[0] |= (1 << 1);
648 
649 	cnt--; /* DMAC increments by 1 internally */
650 	buf[1] = cnt;
651 
652 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
653 
654 	return SZ_DMALP;
655 }
656 
657 struct _arg_LPEND {
658 	enum pl330_cond cond;
659 	bool forever;
660 	unsigned loop;
661 	u8 bjump;
662 };
663 
664 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
665 		const struct _arg_LPEND *arg)
666 {
667 	enum pl330_cond cond = arg->cond;
668 	bool forever = arg->forever;
669 	unsigned loop = arg->loop;
670 	u8 bjump = arg->bjump;
671 
672 	if (dry_run)
673 		return SZ_DMALPEND;
674 
675 	buf[0] = CMD_DMALPEND;
676 
677 	if (loop)
678 		buf[0] |= (1 << 2);
679 
680 	if (!forever)
681 		buf[0] |= (1 << 4);
682 
683 	if (cond == SINGLE)
684 		buf[0] |= (0 << 1) | (1 << 0);
685 	else if (cond == BURST)
686 		buf[0] |= (1 << 1) | (1 << 0);
687 
688 	buf[1] = bjump;
689 
690 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
691 			forever ? "FE" : "END",
692 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
693 			loop ? '1' : '0',
694 			bjump);
695 
696 	return SZ_DMALPEND;
697 }
698 
699 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
700 {
701 	if (dry_run)
702 		return SZ_DMAKILL;
703 
704 	buf[0] = CMD_DMAKILL;
705 
706 	return SZ_DMAKILL;
707 }
708 
709 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
710 		enum dmamov_dst dst, u32 val)
711 {
712 	if (dry_run)
713 		return SZ_DMAMOV;
714 
715 	buf[0] = CMD_DMAMOV;
716 	buf[1] = dst;
717 	buf[2] = val;
718 	buf[3] = val >> 8;
719 	buf[4] = val >> 16;
720 	buf[5] = val >> 24;
721 
722 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
723 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
724 
725 	return SZ_DMAMOV;
726 }
727 
728 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
729 {
730 	if (dry_run)
731 		return SZ_DMARMB;
732 
733 	buf[0] = CMD_DMARMB;
734 
735 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
736 
737 	return SZ_DMARMB;
738 }
739 
740 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
741 {
742 	if (dry_run)
743 		return SZ_DMASEV;
744 
745 	buf[0] = CMD_DMASEV;
746 
747 	ev &= 0x1f;
748 	ev <<= 3;
749 	buf[1] = ev;
750 
751 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
752 
753 	return SZ_DMASEV;
754 }
755 
756 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
757 {
758 	if (dry_run)
759 		return SZ_DMAST;
760 
761 	buf[0] = CMD_DMAST;
762 
763 	if (cond == SINGLE)
764 		buf[0] |= (0 << 1) | (1 << 0);
765 	else if (cond == BURST)
766 		buf[0] |= (1 << 1) | (1 << 0);
767 
768 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
769 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
770 
771 	return SZ_DMAST;
772 }
773 
774 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
775 		enum pl330_cond cond, u8 peri)
776 {
777 	if (dry_run)
778 		return SZ_DMASTP;
779 
780 	buf[0] = CMD_DMASTP;
781 
782 	if (cond == BURST)
783 		buf[0] |= (1 << 1);
784 
785 	peri &= 0x1f;
786 	peri <<= 3;
787 	buf[1] = peri;
788 
789 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
790 		cond == SINGLE ? 'S' : 'B', peri >> 3);
791 
792 	return SZ_DMASTP;
793 }
794 
795 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
796 		enum pl330_cond cond, u8 peri)
797 {
798 	if (dry_run)
799 		return SZ_DMAWFP;
800 
801 	buf[0] = CMD_DMAWFP;
802 
803 	if (cond == SINGLE)
804 		buf[0] |= (0 << 1) | (0 << 0);
805 	else if (cond == BURST)
806 		buf[0] |= (1 << 1) | (0 << 0);
807 	else
808 		buf[0] |= (0 << 1) | (1 << 0);
809 
810 	peri &= 0x1f;
811 	peri <<= 3;
812 	buf[1] = peri;
813 
814 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
815 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
816 
817 	return SZ_DMAWFP;
818 }
819 
820 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
821 {
822 	if (dry_run)
823 		return SZ_DMAWMB;
824 
825 	buf[0] = CMD_DMAWMB;
826 
827 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
828 
829 	return SZ_DMAWMB;
830 }
831 
832 struct _arg_GO {
833 	u8 chan;
834 	u32 addr;
835 	unsigned ns;
836 };
837 
838 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
839 		const struct _arg_GO *arg)
840 {
841 	u8 chan = arg->chan;
842 	u32 addr = arg->addr;
843 	unsigned ns = arg->ns;
844 
845 	if (dry_run)
846 		return SZ_DMAGO;
847 
848 	buf[0] = CMD_DMAGO;
849 	buf[0] |= (ns << 1);
850 	buf[1] = chan & 0x7;
851 	buf[2] = addr;
852 	buf[3] = addr >> 8;
853 	buf[4] = addr >> 16;
854 	buf[5] = addr >> 24;
855 
856 	return SZ_DMAGO;
857 }
858 
859 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
860 
861 /* Returns Time-Out */
862 static bool _until_dmac_idle(struct pl330_thread *thrd)
863 {
864 	void __iomem *regs = thrd->dmac->base;
865 	unsigned long loops = msecs_to_loops(5);
866 
867 	do {
868 		/* Until Manager is Idle */
869 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
870 			break;
871 
872 		cpu_relax();
873 	} while (--loops);
874 
875 	if (!loops)
876 		return true;
877 
878 	return false;
879 }
880 
881 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
882 		u8 insn[], bool as_manager)
883 {
884 	void __iomem *regs = thrd->dmac->base;
885 	u32 val;
886 
887 	val = (insn[0] << 16) | (insn[1] << 24);
888 	if (!as_manager) {
889 		val |= (1 << 0);
890 		val |= (thrd->id << 8); /* Channel Number */
891 	}
892 	writel(val, regs + DBGINST0);
893 
894 	val = le32_to_cpu(*((__le32 *)&insn[2]));
895 	writel(val, regs + DBGINST1);
896 
897 	/* If timed out due to halted state-machine */
898 	if (_until_dmac_idle(thrd)) {
899 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
900 		return;
901 	}
902 
903 	/* Get going */
904 	writel(0, regs + DBGCMD);
905 }
906 
907 static inline u32 _state(struct pl330_thread *thrd)
908 {
909 	void __iomem *regs = thrd->dmac->base;
910 	u32 val;
911 
912 	if (is_manager(thrd))
913 		val = readl(regs + DS) & 0xf;
914 	else
915 		val = readl(regs + CS(thrd->id)) & 0xf;
916 
917 	switch (val) {
918 	case DS_ST_STOP:
919 		return PL330_STATE_STOPPED;
920 	case DS_ST_EXEC:
921 		return PL330_STATE_EXECUTING;
922 	case DS_ST_CMISS:
923 		return PL330_STATE_CACHEMISS;
924 	case DS_ST_UPDTPC:
925 		return PL330_STATE_UPDTPC;
926 	case DS_ST_WFE:
927 		return PL330_STATE_WFE;
928 	case DS_ST_FAULT:
929 		return PL330_STATE_FAULTING;
930 	case DS_ST_ATBRR:
931 		if (is_manager(thrd))
932 			return PL330_STATE_INVALID;
933 		else
934 			return PL330_STATE_ATBARRIER;
935 	case DS_ST_QBUSY:
936 		if (is_manager(thrd))
937 			return PL330_STATE_INVALID;
938 		else
939 			return PL330_STATE_QUEUEBUSY;
940 	case DS_ST_WFP:
941 		if (is_manager(thrd))
942 			return PL330_STATE_INVALID;
943 		else
944 			return PL330_STATE_WFP;
945 	case DS_ST_KILL:
946 		if (is_manager(thrd))
947 			return PL330_STATE_INVALID;
948 		else
949 			return PL330_STATE_KILLING;
950 	case DS_ST_CMPLT:
951 		if (is_manager(thrd))
952 			return PL330_STATE_INVALID;
953 		else
954 			return PL330_STATE_COMPLETING;
955 	case DS_ST_FLTCMP:
956 		if (is_manager(thrd))
957 			return PL330_STATE_INVALID;
958 		else
959 			return PL330_STATE_FAULT_COMPLETING;
960 	default:
961 		return PL330_STATE_INVALID;
962 	}
963 }
964 
965 static void _stop(struct pl330_thread *thrd)
966 {
967 	void __iomem *regs = thrd->dmac->base;
968 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
969 
970 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
971 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
972 
973 	/* Return if nothing needs to be done */
974 	if (_state(thrd) == PL330_STATE_COMPLETING
975 		  || _state(thrd) == PL330_STATE_KILLING
976 		  || _state(thrd) == PL330_STATE_STOPPED)
977 		return;
978 
979 	_emit_KILL(0, insn);
980 
981 	/* Stop generating interrupts for SEV */
982 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
983 
984 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
985 }
986 
987 /* Start doing req 'idx' of thread 'thrd' */
988 static bool _trigger(struct pl330_thread *thrd)
989 {
990 	void __iomem *regs = thrd->dmac->base;
991 	struct _pl330_req *req;
992 	struct dma_pl330_desc *desc;
993 	struct _arg_GO go;
994 	unsigned ns;
995 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
996 	int idx;
997 
998 	/* Return if already ACTIVE */
999 	if (_state(thrd) != PL330_STATE_STOPPED)
1000 		return true;
1001 
1002 	idx = 1 - thrd->lstenq;
1003 	if (thrd->req[idx].desc != NULL) {
1004 		req = &thrd->req[idx];
1005 	} else {
1006 		idx = thrd->lstenq;
1007 		if (thrd->req[idx].desc != NULL)
1008 			req = &thrd->req[idx];
1009 		else
1010 			req = NULL;
1011 	}
1012 
1013 	/* Return if no request */
1014 	if (!req)
1015 		return true;
1016 
1017 	/* Return if req is running */
1018 	if (idx == thrd->req_running)
1019 		return true;
1020 
1021 	desc = req->desc;
1022 
1023 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1024 
1025 	/* See 'Abort Sources' point-4 at Page 2-25 */
1026 	if (_manager_ns(thrd) && !ns)
1027 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1028 			__func__, __LINE__);
1029 
1030 	go.chan = thrd->id;
1031 	go.addr = req->mc_bus;
1032 	go.ns = ns;
1033 	_emit_GO(0, insn, &go);
1034 
1035 	/* Set to generate interrupts for SEV */
1036 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1037 
1038 	/* Only manager can execute GO */
1039 	_execute_DBGINSN(thrd, insn, true);
1040 
1041 	thrd->req_running = idx;
1042 
1043 	return true;
1044 }
1045 
1046 static bool _start(struct pl330_thread *thrd)
1047 {
1048 	switch (_state(thrd)) {
1049 	case PL330_STATE_FAULT_COMPLETING:
1050 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1051 
1052 		if (_state(thrd) == PL330_STATE_KILLING)
1053 			UNTIL(thrd, PL330_STATE_STOPPED)
1054 		/* fall through */
1055 
1056 	case PL330_STATE_FAULTING:
1057 		_stop(thrd);
1058 		/* fall through */
1059 
1060 	case PL330_STATE_KILLING:
1061 	case PL330_STATE_COMPLETING:
1062 		UNTIL(thrd, PL330_STATE_STOPPED)
1063 		/* fall through */
1064 
1065 	case PL330_STATE_STOPPED:
1066 		return _trigger(thrd);
1067 
1068 	case PL330_STATE_WFP:
1069 	case PL330_STATE_QUEUEBUSY:
1070 	case PL330_STATE_ATBARRIER:
1071 	case PL330_STATE_UPDTPC:
1072 	case PL330_STATE_CACHEMISS:
1073 	case PL330_STATE_EXECUTING:
1074 		return true;
1075 
1076 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1077 	default:
1078 		return false;
1079 	}
1080 }
1081 
1082 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1083 		const struct _xfer_spec *pxs, int cyc)
1084 {
1085 	int off = 0;
1086 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1087 
1088 	/* check lock-up free version */
1089 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1090 		while (cyc--) {
1091 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1092 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1093 		}
1094 	} else {
1095 		while (cyc--) {
1096 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1097 			off += _emit_RMB(dry_run, &buf[off]);
1098 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1099 			off += _emit_WMB(dry_run, &buf[off]);
1100 		}
1101 	}
1102 
1103 	return off;
1104 }
1105 
1106 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1107 	enum pl330_cond cond, enum dma_transfer_direction direction,
1108 	u8 peri)
1109 {
1110 	int off = 0;
1111 
1112 	switch (direction) {
1113 	case DMA_MEM_TO_MEM:
1114 		/* fall through */
1115 	case DMA_MEM_TO_DEV:
1116 		off += _emit_LD(dry_run, &buf[off], cond);
1117 		break;
1118 
1119 	case DMA_DEV_TO_MEM:
1120 		if (cond == ALWAYS) {
1121 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1122 				peri);
1123 			off += _emit_LDP(dry_run, &buf[off], BURST,
1124 				peri);
1125 		} else {
1126 			off += _emit_LDP(dry_run, &buf[off], cond,
1127 				peri);
1128 		}
1129 		break;
1130 
1131 	default:
1132 		/* this code should be unreachable */
1133 		WARN_ON(1);
1134 		break;
1135 	}
1136 
1137 	return off;
1138 }
1139 
1140 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1141 	enum pl330_cond cond, enum dma_transfer_direction direction,
1142 	u8 peri)
1143 {
1144 	int off = 0;
1145 
1146 	switch (direction) {
1147 	case DMA_MEM_TO_MEM:
1148 		/* fall through */
1149 	case DMA_DEV_TO_MEM:
1150 		off += _emit_ST(dry_run, &buf[off], cond);
1151 		break;
1152 
1153 	case DMA_MEM_TO_DEV:
1154 		if (cond == ALWAYS) {
1155 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1156 				peri);
1157 			off += _emit_STP(dry_run, &buf[off], BURST,
1158 				peri);
1159 		} else {
1160 			off += _emit_STP(dry_run, &buf[off], cond,
1161 				peri);
1162 		}
1163 		break;
1164 
1165 	default:
1166 		/* this code should be unreachable */
1167 		WARN_ON(1);
1168 		break;
1169 	}
1170 
1171 	return off;
1172 }
1173 
1174 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1175 				 unsigned dry_run, u8 buf[],
1176 				 const struct _xfer_spec *pxs, int cyc,
1177 				 enum pl330_cond cond)
1178 {
1179 	int off = 0;
1180 
1181 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1182 		cond = BURST;
1183 
1184 	/*
1185 	 * do FLUSHP at beginning to clear any stale dma requests before the
1186 	 * first WFP.
1187 	 */
1188 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1189 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1190 	while (cyc--) {
1191 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1192 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1193 			pxs->desc->peri);
1194 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1195 			pxs->desc->peri);
1196 	}
1197 
1198 	return off;
1199 }
1200 
1201 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1202 		const struct _xfer_spec *pxs, int cyc)
1203 {
1204 	int off = 0;
1205 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1206 
1207 	switch (pxs->desc->rqtype) {
1208 	case DMA_MEM_TO_DEV:
1209 		/* fall through */
1210 	case DMA_DEV_TO_MEM:
1211 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1212 			cond);
1213 		break;
1214 
1215 	case DMA_MEM_TO_MEM:
1216 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1217 		break;
1218 
1219 	default:
1220 		/* this code should be unreachable */
1221 		WARN_ON(1);
1222 		break;
1223 	}
1224 
1225 	return off;
1226 }
1227 
1228 /*
1229  * transfer dregs with single transfers to peripheral, or a reduced size burst
1230  * for mem-to-mem.
1231  */
1232 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1233 		const struct _xfer_spec *pxs, int transfer_length)
1234 {
1235 	int off = 0;
1236 	int dregs_ccr;
1237 
1238 	if (transfer_length == 0)
1239 		return off;
1240 
1241 	switch (pxs->desc->rqtype) {
1242 	case DMA_MEM_TO_DEV:
1243 		/* fall through */
1244 	case DMA_DEV_TO_MEM:
1245 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs,
1246 			transfer_length, SINGLE);
1247 		break;
1248 
1249 	case DMA_MEM_TO_MEM:
1250 		dregs_ccr = pxs->ccr;
1251 		dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1252 			(0xf << CC_DSTBRSTLEN_SHFT));
1253 		dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1254 			CC_SRCBRSTLEN_SHFT);
1255 		dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1256 			CC_DSTBRSTLEN_SHFT);
1257 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1258 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1259 		break;
1260 
1261 	default:
1262 		/* this code should be unreachable */
1263 		WARN_ON(1);
1264 		break;
1265 	}
1266 
1267 	return off;
1268 }
1269 
1270 /* Returns bytes consumed and updates bursts */
1271 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1272 		unsigned long *bursts, const struct _xfer_spec *pxs)
1273 {
1274 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1275 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1276 	struct _arg_LPEND lpend;
1277 
1278 	if (*bursts == 1)
1279 		return _bursts(pl330, dry_run, buf, pxs, 1);
1280 
1281 	/* Max iterations possible in DMALP is 256 */
1282 	if (*bursts >= 256*256) {
1283 		lcnt1 = 256;
1284 		lcnt0 = 256;
1285 		cyc = *bursts / lcnt1 / lcnt0;
1286 	} else if (*bursts > 256) {
1287 		lcnt1 = 256;
1288 		lcnt0 = *bursts / lcnt1;
1289 		cyc = 1;
1290 	} else {
1291 		lcnt1 = *bursts;
1292 		lcnt0 = 0;
1293 		cyc = 1;
1294 	}
1295 
1296 	szlp = _emit_LP(1, buf, 0, 0);
1297 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1298 
1299 	lpend.cond = ALWAYS;
1300 	lpend.forever = false;
1301 	lpend.loop = 0;
1302 	lpend.bjump = 0;
1303 	szlpend = _emit_LPEND(1, buf, &lpend);
1304 
1305 	if (lcnt0) {
1306 		szlp *= 2;
1307 		szlpend *= 2;
1308 	}
1309 
1310 	/*
1311 	 * Max bursts that we can unroll due to limit on the
1312 	 * size of backward jump that can be encoded in DMALPEND
1313 	 * which is 8-bits and hence 255
1314 	 */
1315 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1316 
1317 	cyc = (cycmax < cyc) ? cycmax : cyc;
1318 
1319 	off = 0;
1320 
1321 	if (lcnt0) {
1322 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1323 		ljmp0 = off;
1324 	}
1325 
1326 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1327 	ljmp1 = off;
1328 
1329 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1330 
1331 	lpend.cond = ALWAYS;
1332 	lpend.forever = false;
1333 	lpend.loop = 1;
1334 	lpend.bjump = off - ljmp1;
1335 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1336 
1337 	if (lcnt0) {
1338 		lpend.cond = ALWAYS;
1339 		lpend.forever = false;
1340 		lpend.loop = 0;
1341 		lpend.bjump = off - ljmp0;
1342 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1343 	}
1344 
1345 	*bursts = lcnt1 * cyc;
1346 	if (lcnt0)
1347 		*bursts *= lcnt0;
1348 
1349 	return off;
1350 }
1351 
1352 static inline int _setup_loops(struct pl330_dmac *pl330,
1353 			       unsigned dry_run, u8 buf[],
1354 			       const struct _xfer_spec *pxs)
1355 {
1356 	struct pl330_xfer *x = &pxs->desc->px;
1357 	u32 ccr = pxs->ccr;
1358 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1359 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1360 		BRST_SIZE(ccr);
1361 	int off = 0;
1362 
1363 	while (bursts) {
1364 		c = bursts;
1365 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1366 		bursts -= c;
1367 	}
1368 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1369 
1370 	return off;
1371 }
1372 
1373 static inline int _setup_xfer(struct pl330_dmac *pl330,
1374 			      unsigned dry_run, u8 buf[],
1375 			      const struct _xfer_spec *pxs)
1376 {
1377 	struct pl330_xfer *x = &pxs->desc->px;
1378 	int off = 0;
1379 
1380 	/* DMAMOV SAR, x->src_addr */
1381 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1382 	/* DMAMOV DAR, x->dst_addr */
1383 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1384 
1385 	/* Setup Loop(s) */
1386 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1387 
1388 	return off;
1389 }
1390 
1391 /*
1392  * A req is a sequence of one or more xfer units.
1393  * Returns the number of bytes taken to setup the MC for the req.
1394  */
1395 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1396 		      struct pl330_thread *thrd, unsigned index,
1397 		      struct _xfer_spec *pxs)
1398 {
1399 	struct _pl330_req *req = &thrd->req[index];
1400 	u8 *buf = req->mc_cpu;
1401 	int off = 0;
1402 
1403 	PL330_DBGMC_START(req->mc_bus);
1404 
1405 	/* DMAMOV CCR, ccr */
1406 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1407 
1408 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1409 
1410 	/* DMASEV peripheral/event */
1411 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1412 	/* DMAEND */
1413 	off += _emit_END(dry_run, &buf[off]);
1414 
1415 	return off;
1416 }
1417 
1418 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1419 {
1420 	u32 ccr = 0;
1421 
1422 	if (rqc->src_inc)
1423 		ccr |= CC_SRCINC;
1424 
1425 	if (rqc->dst_inc)
1426 		ccr |= CC_DSTINC;
1427 
1428 	/* We set same protection levels for Src and DST for now */
1429 	if (rqc->privileged)
1430 		ccr |= CC_SRCPRI | CC_DSTPRI;
1431 	if (rqc->nonsecure)
1432 		ccr |= CC_SRCNS | CC_DSTNS;
1433 	if (rqc->insnaccess)
1434 		ccr |= CC_SRCIA | CC_DSTIA;
1435 
1436 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1437 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1438 
1439 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1440 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1441 
1442 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1443 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1444 
1445 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1446 
1447 	return ccr;
1448 }
1449 
1450 /*
1451  * Submit a list of xfers after which the client wants notification.
1452  * Client is not notified after each xfer unit, just once after all
1453  * xfer units are done or some error occurs.
1454  */
1455 static int pl330_submit_req(struct pl330_thread *thrd,
1456 	struct dma_pl330_desc *desc)
1457 {
1458 	struct pl330_dmac *pl330 = thrd->dmac;
1459 	struct _xfer_spec xs;
1460 	unsigned long flags;
1461 	unsigned idx;
1462 	u32 ccr;
1463 	int ret = 0;
1464 
1465 	switch (desc->rqtype) {
1466 	case DMA_MEM_TO_DEV:
1467 		break;
1468 
1469 	case DMA_DEV_TO_MEM:
1470 		break;
1471 
1472 	case DMA_MEM_TO_MEM:
1473 		break;
1474 
1475 	default:
1476 		return -ENOTSUPP;
1477 	}
1478 
1479 	if (pl330->state == DYING
1480 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1481 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1482 			__func__, __LINE__);
1483 		return -EAGAIN;
1484 	}
1485 
1486 	/* If request for non-existing peripheral */
1487 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1488 	    desc->peri >= pl330->pcfg.num_peri) {
1489 		dev_info(thrd->dmac->ddma.dev,
1490 				"%s:%d Invalid peripheral(%u)!\n",
1491 				__func__, __LINE__, desc->peri);
1492 		return -EINVAL;
1493 	}
1494 
1495 	spin_lock_irqsave(&pl330->lock, flags);
1496 
1497 	if (_queue_full(thrd)) {
1498 		ret = -EAGAIN;
1499 		goto xfer_exit;
1500 	}
1501 
1502 	/* Prefer Secure Channel */
1503 	if (!_manager_ns(thrd))
1504 		desc->rqcfg.nonsecure = 0;
1505 	else
1506 		desc->rqcfg.nonsecure = 1;
1507 
1508 	ccr = _prepare_ccr(&desc->rqcfg);
1509 
1510 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1511 
1512 	xs.ccr = ccr;
1513 	xs.desc = desc;
1514 
1515 	/* First dry run to check if req is acceptable */
1516 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1517 	if (ret < 0)
1518 		goto xfer_exit;
1519 
1520 	if (ret > pl330->mcbufsz / 2) {
1521 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1522 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1523 		ret = -ENOMEM;
1524 		goto xfer_exit;
1525 	}
1526 
1527 	/* Hook the request */
1528 	thrd->lstenq = idx;
1529 	thrd->req[idx].desc = desc;
1530 	_setup_req(pl330, 0, thrd, idx, &xs);
1531 
1532 	ret = 0;
1533 
1534 xfer_exit:
1535 	spin_unlock_irqrestore(&pl330->lock, flags);
1536 
1537 	return ret;
1538 }
1539 
1540 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1541 {
1542 	struct dma_pl330_chan *pch;
1543 	unsigned long flags;
1544 
1545 	if (!desc)
1546 		return;
1547 
1548 	pch = desc->pchan;
1549 
1550 	/* If desc aborted */
1551 	if (!pch)
1552 		return;
1553 
1554 	spin_lock_irqsave(&pch->lock, flags);
1555 
1556 	desc->status = DONE;
1557 
1558 	spin_unlock_irqrestore(&pch->lock, flags);
1559 
1560 	tasklet_schedule(&pch->task);
1561 }
1562 
1563 static void pl330_dotask(unsigned long data)
1564 {
1565 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1566 	unsigned long flags;
1567 	int i;
1568 
1569 	spin_lock_irqsave(&pl330->lock, flags);
1570 
1571 	/* The DMAC itself gone nuts */
1572 	if (pl330->dmac_tbd.reset_dmac) {
1573 		pl330->state = DYING;
1574 		/* Reset the manager too */
1575 		pl330->dmac_tbd.reset_mngr = true;
1576 		/* Clear the reset flag */
1577 		pl330->dmac_tbd.reset_dmac = false;
1578 	}
1579 
1580 	if (pl330->dmac_tbd.reset_mngr) {
1581 		_stop(pl330->manager);
1582 		/* Reset all channels */
1583 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1584 		/* Clear the reset flag */
1585 		pl330->dmac_tbd.reset_mngr = false;
1586 	}
1587 
1588 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1589 
1590 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1591 			struct pl330_thread *thrd = &pl330->channels[i];
1592 			void __iomem *regs = pl330->base;
1593 			enum pl330_op_err err;
1594 
1595 			_stop(thrd);
1596 
1597 			if (readl(regs + FSC) & (1 << thrd->id))
1598 				err = PL330_ERR_FAIL;
1599 			else
1600 				err = PL330_ERR_ABORT;
1601 
1602 			spin_unlock_irqrestore(&pl330->lock, flags);
1603 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1604 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1605 			spin_lock_irqsave(&pl330->lock, flags);
1606 
1607 			thrd->req[0].desc = NULL;
1608 			thrd->req[1].desc = NULL;
1609 			thrd->req_running = -1;
1610 
1611 			/* Clear the reset flag */
1612 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1613 		}
1614 	}
1615 
1616 	spin_unlock_irqrestore(&pl330->lock, flags);
1617 
1618 	return;
1619 }
1620 
1621 /* Returns 1 if state was updated, 0 otherwise */
1622 static int pl330_update(struct pl330_dmac *pl330)
1623 {
1624 	struct dma_pl330_desc *descdone;
1625 	unsigned long flags;
1626 	void __iomem *regs;
1627 	u32 val;
1628 	int id, ev, ret = 0;
1629 
1630 	regs = pl330->base;
1631 
1632 	spin_lock_irqsave(&pl330->lock, flags);
1633 
1634 	val = readl(regs + FSM) & 0x1;
1635 	if (val)
1636 		pl330->dmac_tbd.reset_mngr = true;
1637 	else
1638 		pl330->dmac_tbd.reset_mngr = false;
1639 
1640 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1641 	pl330->dmac_tbd.reset_chan |= val;
1642 	if (val) {
1643 		int i = 0;
1644 		while (i < pl330->pcfg.num_chan) {
1645 			if (val & (1 << i)) {
1646 				dev_info(pl330->ddma.dev,
1647 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1648 						i, readl(regs + CS(i)),
1649 						readl(regs + FTC(i)));
1650 				_stop(&pl330->channels[i]);
1651 			}
1652 			i++;
1653 		}
1654 	}
1655 
1656 	/* Check which event happened i.e, thread notified */
1657 	val = readl(regs + ES);
1658 	if (pl330->pcfg.num_events < 32
1659 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1660 		pl330->dmac_tbd.reset_dmac = true;
1661 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1662 			__LINE__);
1663 		ret = 1;
1664 		goto updt_exit;
1665 	}
1666 
1667 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1668 		if (val & (1 << ev)) { /* Event occurred */
1669 			struct pl330_thread *thrd;
1670 			u32 inten = readl(regs + INTEN);
1671 			int active;
1672 
1673 			/* Clear the event */
1674 			if (inten & (1 << ev))
1675 				writel(1 << ev, regs + INTCLR);
1676 
1677 			ret = 1;
1678 
1679 			id = pl330->events[ev];
1680 
1681 			thrd = &pl330->channels[id];
1682 
1683 			active = thrd->req_running;
1684 			if (active == -1) /* Aborted */
1685 				continue;
1686 
1687 			/* Detach the req */
1688 			descdone = thrd->req[active].desc;
1689 			thrd->req[active].desc = NULL;
1690 
1691 			thrd->req_running = -1;
1692 
1693 			/* Get going again ASAP */
1694 			_start(thrd);
1695 
1696 			/* For now, just make a list of callbacks to be done */
1697 			list_add_tail(&descdone->rqd, &pl330->req_done);
1698 		}
1699 	}
1700 
1701 	/* Now that we are in no hurry, do the callbacks */
1702 	while (!list_empty(&pl330->req_done)) {
1703 		descdone = list_first_entry(&pl330->req_done,
1704 					    struct dma_pl330_desc, rqd);
1705 		list_del(&descdone->rqd);
1706 		spin_unlock_irqrestore(&pl330->lock, flags);
1707 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1708 		spin_lock_irqsave(&pl330->lock, flags);
1709 	}
1710 
1711 updt_exit:
1712 	spin_unlock_irqrestore(&pl330->lock, flags);
1713 
1714 	if (pl330->dmac_tbd.reset_dmac
1715 			|| pl330->dmac_tbd.reset_mngr
1716 			|| pl330->dmac_tbd.reset_chan) {
1717 		ret = 1;
1718 		tasklet_schedule(&pl330->tasks);
1719 	}
1720 
1721 	return ret;
1722 }
1723 
1724 /* Reserve an event */
1725 static inline int _alloc_event(struct pl330_thread *thrd)
1726 {
1727 	struct pl330_dmac *pl330 = thrd->dmac;
1728 	int ev;
1729 
1730 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1731 		if (pl330->events[ev] == -1) {
1732 			pl330->events[ev] = thrd->id;
1733 			return ev;
1734 		}
1735 
1736 	return -1;
1737 }
1738 
1739 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1740 {
1741 	return pl330->pcfg.irq_ns & (1 << i);
1742 }
1743 
1744 /* Upon success, returns IdentityToken for the
1745  * allocated channel, NULL otherwise.
1746  */
1747 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1748 {
1749 	struct pl330_thread *thrd = NULL;
1750 	int chans, i;
1751 
1752 	if (pl330->state == DYING)
1753 		return NULL;
1754 
1755 	chans = pl330->pcfg.num_chan;
1756 
1757 	for (i = 0; i < chans; i++) {
1758 		thrd = &pl330->channels[i];
1759 		if ((thrd->free) && (!_manager_ns(thrd) ||
1760 					_chan_ns(pl330, i))) {
1761 			thrd->ev = _alloc_event(thrd);
1762 			if (thrd->ev >= 0) {
1763 				thrd->free = false;
1764 				thrd->lstenq = 1;
1765 				thrd->req[0].desc = NULL;
1766 				thrd->req[1].desc = NULL;
1767 				thrd->req_running = -1;
1768 				break;
1769 			}
1770 		}
1771 		thrd = NULL;
1772 	}
1773 
1774 	return thrd;
1775 }
1776 
1777 /* Release an event */
1778 static inline void _free_event(struct pl330_thread *thrd, int ev)
1779 {
1780 	struct pl330_dmac *pl330 = thrd->dmac;
1781 
1782 	/* If the event is valid and was held by the thread */
1783 	if (ev >= 0 && ev < pl330->pcfg.num_events
1784 			&& pl330->events[ev] == thrd->id)
1785 		pl330->events[ev] = -1;
1786 }
1787 
1788 static void pl330_release_channel(struct pl330_thread *thrd)
1789 {
1790 	if (!thrd || thrd->free)
1791 		return;
1792 
1793 	_stop(thrd);
1794 
1795 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1796 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1797 
1798 	_free_event(thrd, thrd->ev);
1799 	thrd->free = true;
1800 }
1801 
1802 /* Initialize the structure for PL330 configuration, that can be used
1803  * by the client driver the make best use of the DMAC
1804  */
1805 static void read_dmac_config(struct pl330_dmac *pl330)
1806 {
1807 	void __iomem *regs = pl330->base;
1808 	u32 val;
1809 
1810 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1811 	val &= CRD_DATA_WIDTH_MASK;
1812 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1813 
1814 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1815 	val &= CRD_DATA_BUFF_MASK;
1816 	pl330->pcfg.data_buf_dep = val + 1;
1817 
1818 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1819 	val &= CR0_NUM_CHANS_MASK;
1820 	val += 1;
1821 	pl330->pcfg.num_chan = val;
1822 
1823 	val = readl(regs + CR0);
1824 	if (val & CR0_PERIPH_REQ_SET) {
1825 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1826 		val += 1;
1827 		pl330->pcfg.num_peri = val;
1828 		pl330->pcfg.peri_ns = readl(regs + CR4);
1829 	} else {
1830 		pl330->pcfg.num_peri = 0;
1831 	}
1832 
1833 	val = readl(regs + CR0);
1834 	if (val & CR0_BOOT_MAN_NS)
1835 		pl330->pcfg.mode |= DMAC_MODE_NS;
1836 	else
1837 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1838 
1839 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1840 	val &= CR0_NUM_EVENTS_MASK;
1841 	val += 1;
1842 	pl330->pcfg.num_events = val;
1843 
1844 	pl330->pcfg.irq_ns = readl(regs + CR3);
1845 }
1846 
1847 static inline void _reset_thread(struct pl330_thread *thrd)
1848 {
1849 	struct pl330_dmac *pl330 = thrd->dmac;
1850 
1851 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1852 				+ (thrd->id * pl330->mcbufsz);
1853 	thrd->req[0].mc_bus = pl330->mcode_bus
1854 				+ (thrd->id * pl330->mcbufsz);
1855 	thrd->req[0].desc = NULL;
1856 
1857 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1858 				+ pl330->mcbufsz / 2;
1859 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1860 				+ pl330->mcbufsz / 2;
1861 	thrd->req[1].desc = NULL;
1862 
1863 	thrd->req_running = -1;
1864 }
1865 
1866 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1867 {
1868 	int chans = pl330->pcfg.num_chan;
1869 	struct pl330_thread *thrd;
1870 	int i;
1871 
1872 	/* Allocate 1 Manager and 'chans' Channel threads */
1873 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1874 					GFP_KERNEL);
1875 	if (!pl330->channels)
1876 		return -ENOMEM;
1877 
1878 	/* Init Channel threads */
1879 	for (i = 0; i < chans; i++) {
1880 		thrd = &pl330->channels[i];
1881 		thrd->id = i;
1882 		thrd->dmac = pl330;
1883 		_reset_thread(thrd);
1884 		thrd->free = true;
1885 	}
1886 
1887 	/* MANAGER is indexed at the end */
1888 	thrd = &pl330->channels[chans];
1889 	thrd->id = chans;
1890 	thrd->dmac = pl330;
1891 	thrd->free = false;
1892 	pl330->manager = thrd;
1893 
1894 	return 0;
1895 }
1896 
1897 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1898 {
1899 	int chans = pl330->pcfg.num_chan;
1900 	int ret;
1901 
1902 	/*
1903 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1904 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1905 	 */
1906 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1907 				chans * pl330->mcbufsz,
1908 				&pl330->mcode_bus, GFP_KERNEL,
1909 				DMA_ATTR_PRIVILEGED);
1910 	if (!pl330->mcode_cpu) {
1911 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1912 			__func__, __LINE__);
1913 		return -ENOMEM;
1914 	}
1915 
1916 	ret = dmac_alloc_threads(pl330);
1917 	if (ret) {
1918 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1919 			__func__, __LINE__);
1920 		dma_free_coherent(pl330->ddma.dev,
1921 				chans * pl330->mcbufsz,
1922 				pl330->mcode_cpu, pl330->mcode_bus);
1923 		return ret;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static int pl330_add(struct pl330_dmac *pl330)
1930 {
1931 	int i, ret;
1932 
1933 	/* Check if we can handle this DMAC */
1934 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1935 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1936 			pl330->pcfg.periph_id);
1937 		return -EINVAL;
1938 	}
1939 
1940 	/* Read the configuration of the DMAC */
1941 	read_dmac_config(pl330);
1942 
1943 	if (pl330->pcfg.num_events == 0) {
1944 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1945 			__func__, __LINE__);
1946 		return -EINVAL;
1947 	}
1948 
1949 	spin_lock_init(&pl330->lock);
1950 
1951 	INIT_LIST_HEAD(&pl330->req_done);
1952 
1953 	/* Use default MC buffer size if not provided */
1954 	if (!pl330->mcbufsz)
1955 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1956 
1957 	/* Mark all events as free */
1958 	for (i = 0; i < pl330->pcfg.num_events; i++)
1959 		pl330->events[i] = -1;
1960 
1961 	/* Allocate resources needed by the DMAC */
1962 	ret = dmac_alloc_resources(pl330);
1963 	if (ret) {
1964 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1965 		return ret;
1966 	}
1967 
1968 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1969 
1970 	pl330->state = INIT;
1971 
1972 	return 0;
1973 }
1974 
1975 static int dmac_free_threads(struct pl330_dmac *pl330)
1976 {
1977 	struct pl330_thread *thrd;
1978 	int i;
1979 
1980 	/* Release Channel threads */
1981 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1982 		thrd = &pl330->channels[i];
1983 		pl330_release_channel(thrd);
1984 	}
1985 
1986 	/* Free memory */
1987 	kfree(pl330->channels);
1988 
1989 	return 0;
1990 }
1991 
1992 static void pl330_del(struct pl330_dmac *pl330)
1993 {
1994 	pl330->state = UNINIT;
1995 
1996 	tasklet_kill(&pl330->tasks);
1997 
1998 	/* Free DMAC resources */
1999 	dmac_free_threads(pl330);
2000 
2001 	dma_free_coherent(pl330->ddma.dev,
2002 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2003 		pl330->mcode_bus);
2004 }
2005 
2006 /* forward declaration */
2007 static struct amba_driver pl330_driver;
2008 
2009 static inline struct dma_pl330_chan *
2010 to_pchan(struct dma_chan *ch)
2011 {
2012 	if (!ch)
2013 		return NULL;
2014 
2015 	return container_of(ch, struct dma_pl330_chan, chan);
2016 }
2017 
2018 static inline struct dma_pl330_desc *
2019 to_desc(struct dma_async_tx_descriptor *tx)
2020 {
2021 	return container_of(tx, struct dma_pl330_desc, txd);
2022 }
2023 
2024 static inline void fill_queue(struct dma_pl330_chan *pch)
2025 {
2026 	struct dma_pl330_desc *desc;
2027 	int ret;
2028 
2029 	list_for_each_entry(desc, &pch->work_list, node) {
2030 
2031 		/* If already submitted */
2032 		if (desc->status == BUSY)
2033 			continue;
2034 
2035 		ret = pl330_submit_req(pch->thread, desc);
2036 		if (!ret) {
2037 			desc->status = BUSY;
2038 		} else if (ret == -EAGAIN) {
2039 			/* QFull or DMAC Dying */
2040 			break;
2041 		} else {
2042 			/* Unacceptable request */
2043 			desc->status = DONE;
2044 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2045 					__func__, __LINE__, desc->txd.cookie);
2046 			tasklet_schedule(&pch->task);
2047 		}
2048 	}
2049 }
2050 
2051 static void pl330_tasklet(unsigned long data)
2052 {
2053 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2054 	struct dma_pl330_desc *desc, *_dt;
2055 	unsigned long flags;
2056 	bool power_down = false;
2057 
2058 	spin_lock_irqsave(&pch->lock, flags);
2059 
2060 	/* Pick up ripe tomatoes */
2061 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2062 		if (desc->status == DONE) {
2063 			if (!pch->cyclic)
2064 				dma_cookie_complete(&desc->txd);
2065 			list_move_tail(&desc->node, &pch->completed_list);
2066 		}
2067 
2068 	/* Try to submit a req imm. next to the last completed cookie */
2069 	fill_queue(pch);
2070 
2071 	if (list_empty(&pch->work_list)) {
2072 		spin_lock(&pch->thread->dmac->lock);
2073 		_stop(pch->thread);
2074 		spin_unlock(&pch->thread->dmac->lock);
2075 		power_down = true;
2076 		pch->active = false;
2077 	} else {
2078 		/* Make sure the PL330 Channel thread is active */
2079 		spin_lock(&pch->thread->dmac->lock);
2080 		_start(pch->thread);
2081 		spin_unlock(&pch->thread->dmac->lock);
2082 	}
2083 
2084 	while (!list_empty(&pch->completed_list)) {
2085 		struct dmaengine_desc_callback cb;
2086 
2087 		desc = list_first_entry(&pch->completed_list,
2088 					struct dma_pl330_desc, node);
2089 
2090 		dmaengine_desc_get_callback(&desc->txd, &cb);
2091 
2092 		if (pch->cyclic) {
2093 			desc->status = PREP;
2094 			list_move_tail(&desc->node, &pch->work_list);
2095 			if (power_down) {
2096 				pch->active = true;
2097 				spin_lock(&pch->thread->dmac->lock);
2098 				_start(pch->thread);
2099 				spin_unlock(&pch->thread->dmac->lock);
2100 				power_down = false;
2101 			}
2102 		} else {
2103 			desc->status = FREE;
2104 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2105 		}
2106 
2107 		dma_descriptor_unmap(&desc->txd);
2108 
2109 		if (dmaengine_desc_callback_valid(&cb)) {
2110 			spin_unlock_irqrestore(&pch->lock, flags);
2111 			dmaengine_desc_callback_invoke(&cb, NULL);
2112 			spin_lock_irqsave(&pch->lock, flags);
2113 		}
2114 	}
2115 	spin_unlock_irqrestore(&pch->lock, flags);
2116 
2117 	/* If work list empty, power down */
2118 	if (power_down) {
2119 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2120 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2121 	}
2122 }
2123 
2124 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2125 						struct of_dma *ofdma)
2126 {
2127 	int count = dma_spec->args_count;
2128 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2129 	unsigned int chan_id;
2130 
2131 	if (!pl330)
2132 		return NULL;
2133 
2134 	if (count != 1)
2135 		return NULL;
2136 
2137 	chan_id = dma_spec->args[0];
2138 	if (chan_id >= pl330->num_peripherals)
2139 		return NULL;
2140 
2141 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2142 }
2143 
2144 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2145 {
2146 	struct dma_pl330_chan *pch = to_pchan(chan);
2147 	struct pl330_dmac *pl330 = pch->dmac;
2148 	unsigned long flags;
2149 
2150 	spin_lock_irqsave(&pl330->lock, flags);
2151 
2152 	dma_cookie_init(chan);
2153 	pch->cyclic = false;
2154 
2155 	pch->thread = pl330_request_channel(pl330);
2156 	if (!pch->thread) {
2157 		spin_unlock_irqrestore(&pl330->lock, flags);
2158 		return -ENOMEM;
2159 	}
2160 
2161 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2162 
2163 	spin_unlock_irqrestore(&pl330->lock, flags);
2164 
2165 	return 1;
2166 }
2167 
2168 /*
2169  * We need the data direction between the DMAC (the dma-mapping "device") and
2170  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2171  */
2172 static enum dma_data_direction
2173 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2174 {
2175 	switch (dir) {
2176 	case DMA_MEM_TO_DEV:
2177 		return DMA_FROM_DEVICE;
2178 	case DMA_DEV_TO_MEM:
2179 		return DMA_TO_DEVICE;
2180 	case DMA_DEV_TO_DEV:
2181 		return DMA_BIDIRECTIONAL;
2182 	default:
2183 		return DMA_NONE;
2184 	}
2185 }
2186 
2187 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2188 {
2189 	if (pch->dir != DMA_NONE)
2190 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2191 				   1 << pch->burst_sz, pch->dir, 0);
2192 	pch->dir = DMA_NONE;
2193 }
2194 
2195 
2196 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2197 				  enum dma_transfer_direction dir)
2198 {
2199 	struct device *dev = pch->chan.device->dev;
2200 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2201 
2202 	/* Already mapped for this config? */
2203 	if (pch->dir == dma_dir)
2204 		return true;
2205 
2206 	pl330_unprep_slave_fifo(pch);
2207 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2208 					 1 << pch->burst_sz, dma_dir, 0);
2209 	if (dma_mapping_error(dev, pch->fifo_dma))
2210 		return false;
2211 
2212 	pch->dir = dma_dir;
2213 	return true;
2214 }
2215 
2216 static int fixup_burst_len(int max_burst_len, int quirks)
2217 {
2218 	if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
2219 		return 1;
2220 	else if (max_burst_len > PL330_MAX_BURST)
2221 		return PL330_MAX_BURST;
2222 	else if (max_burst_len < 1)
2223 		return 1;
2224 	else
2225 		return max_burst_len;
2226 }
2227 
2228 static int pl330_config_write(struct dma_chan *chan,
2229 			struct dma_slave_config *slave_config,
2230 			enum dma_transfer_direction direction)
2231 {
2232 	struct dma_pl330_chan *pch = to_pchan(chan);
2233 
2234 	pl330_unprep_slave_fifo(pch);
2235 	if (direction == DMA_MEM_TO_DEV) {
2236 		if (slave_config->dst_addr)
2237 			pch->fifo_addr = slave_config->dst_addr;
2238 		if (slave_config->dst_addr_width)
2239 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2240 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2241 			pch->dmac->quirks);
2242 	} else if (direction == DMA_DEV_TO_MEM) {
2243 		if (slave_config->src_addr)
2244 			pch->fifo_addr = slave_config->src_addr;
2245 		if (slave_config->src_addr_width)
2246 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2247 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2248 			pch->dmac->quirks);
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static int pl330_config(struct dma_chan *chan,
2255 			struct dma_slave_config *slave_config)
2256 {
2257 	struct dma_pl330_chan *pch = to_pchan(chan);
2258 
2259 	memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2260 
2261 	return 0;
2262 }
2263 
2264 static int pl330_terminate_all(struct dma_chan *chan)
2265 {
2266 	struct dma_pl330_chan *pch = to_pchan(chan);
2267 	struct dma_pl330_desc *desc;
2268 	unsigned long flags;
2269 	struct pl330_dmac *pl330 = pch->dmac;
2270 	LIST_HEAD(list);
2271 	bool power_down = false;
2272 
2273 	pm_runtime_get_sync(pl330->ddma.dev);
2274 	spin_lock_irqsave(&pch->lock, flags);
2275 
2276 	spin_lock(&pl330->lock);
2277 	_stop(pch->thread);
2278 	pch->thread->req[0].desc = NULL;
2279 	pch->thread->req[1].desc = NULL;
2280 	pch->thread->req_running = -1;
2281 	spin_unlock(&pl330->lock);
2282 
2283 	power_down = pch->active;
2284 	pch->active = false;
2285 
2286 	/* Mark all desc done */
2287 	list_for_each_entry(desc, &pch->submitted_list, node) {
2288 		desc->status = FREE;
2289 		dma_cookie_complete(&desc->txd);
2290 	}
2291 
2292 	list_for_each_entry(desc, &pch->work_list , node) {
2293 		desc->status = FREE;
2294 		dma_cookie_complete(&desc->txd);
2295 	}
2296 
2297 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2298 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2299 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2300 	spin_unlock_irqrestore(&pch->lock, flags);
2301 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2302 	if (power_down)
2303 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2304 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2305 
2306 	return 0;
2307 }
2308 
2309 /*
2310  * We don't support DMA_RESUME command because of hardware
2311  * limitations, so after pausing the channel we cannot restore
2312  * it to active state. We have to terminate channel and setup
2313  * DMA transfer again. This pause feature was implemented to
2314  * allow safely read residue before channel termination.
2315  */
2316 static int pl330_pause(struct dma_chan *chan)
2317 {
2318 	struct dma_pl330_chan *pch = to_pchan(chan);
2319 	struct pl330_dmac *pl330 = pch->dmac;
2320 	unsigned long flags;
2321 
2322 	pm_runtime_get_sync(pl330->ddma.dev);
2323 	spin_lock_irqsave(&pch->lock, flags);
2324 
2325 	spin_lock(&pl330->lock);
2326 	_stop(pch->thread);
2327 	spin_unlock(&pl330->lock);
2328 
2329 	spin_unlock_irqrestore(&pch->lock, flags);
2330 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2331 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2332 
2333 	return 0;
2334 }
2335 
2336 static void pl330_free_chan_resources(struct dma_chan *chan)
2337 {
2338 	struct dma_pl330_chan *pch = to_pchan(chan);
2339 	struct pl330_dmac *pl330 = pch->dmac;
2340 	unsigned long flags;
2341 
2342 	tasklet_kill(&pch->task);
2343 
2344 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2345 	spin_lock_irqsave(&pl330->lock, flags);
2346 
2347 	pl330_release_channel(pch->thread);
2348 	pch->thread = NULL;
2349 
2350 	if (pch->cyclic)
2351 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2352 
2353 	spin_unlock_irqrestore(&pl330->lock, flags);
2354 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2355 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2356 	pl330_unprep_slave_fifo(pch);
2357 }
2358 
2359 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2360 					   struct dma_pl330_desc *desc)
2361 {
2362 	struct pl330_thread *thrd = pch->thread;
2363 	struct pl330_dmac *pl330 = pch->dmac;
2364 	void __iomem *regs = thrd->dmac->base;
2365 	u32 val, addr;
2366 
2367 	pm_runtime_get_sync(pl330->ddma.dev);
2368 	val = addr = 0;
2369 	if (desc->rqcfg.src_inc) {
2370 		val = readl(regs + SA(thrd->id));
2371 		addr = desc->px.src_addr;
2372 	} else {
2373 		val = readl(regs + DA(thrd->id));
2374 		addr = desc->px.dst_addr;
2375 	}
2376 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2377 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2378 
2379 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2380 	if (!val)
2381 		return 0;
2382 
2383 	return val - addr;
2384 }
2385 
2386 static enum dma_status
2387 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2388 		 struct dma_tx_state *txstate)
2389 {
2390 	enum dma_status ret;
2391 	unsigned long flags;
2392 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2393 	struct dma_pl330_chan *pch = to_pchan(chan);
2394 	unsigned int transferred, residual = 0;
2395 
2396 	ret = dma_cookie_status(chan, cookie, txstate);
2397 
2398 	if (!txstate)
2399 		return ret;
2400 
2401 	if (ret == DMA_COMPLETE)
2402 		goto out;
2403 
2404 	spin_lock_irqsave(&pch->lock, flags);
2405 	spin_lock(&pch->thread->dmac->lock);
2406 
2407 	if (pch->thread->req_running != -1)
2408 		running = pch->thread->req[pch->thread->req_running].desc;
2409 
2410 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2411 
2412 	/* Check in pending list */
2413 	list_for_each_entry(desc, &pch->work_list, node) {
2414 		if (desc->status == DONE)
2415 			transferred = desc->bytes_requested;
2416 		else if (running && desc == running)
2417 			transferred =
2418 				pl330_get_current_xferred_count(pch, desc);
2419 		else if (desc->status == BUSY)
2420 			/*
2421 			 * Busy but not running means either just enqueued,
2422 			 * or finished and not yet marked done
2423 			 */
2424 			if (desc == last_enq)
2425 				transferred = 0;
2426 			else
2427 				transferred = desc->bytes_requested;
2428 		else
2429 			transferred = 0;
2430 		residual += desc->bytes_requested - transferred;
2431 		if (desc->txd.cookie == cookie) {
2432 			switch (desc->status) {
2433 			case DONE:
2434 				ret = DMA_COMPLETE;
2435 				break;
2436 			case PREP:
2437 			case BUSY:
2438 				ret = DMA_IN_PROGRESS;
2439 				break;
2440 			default:
2441 				WARN_ON(1);
2442 			}
2443 			break;
2444 		}
2445 		if (desc->last)
2446 			residual = 0;
2447 	}
2448 	spin_unlock(&pch->thread->dmac->lock);
2449 	spin_unlock_irqrestore(&pch->lock, flags);
2450 
2451 out:
2452 	dma_set_residue(txstate, residual);
2453 
2454 	return ret;
2455 }
2456 
2457 static void pl330_issue_pending(struct dma_chan *chan)
2458 {
2459 	struct dma_pl330_chan *pch = to_pchan(chan);
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&pch->lock, flags);
2463 	if (list_empty(&pch->work_list)) {
2464 		/*
2465 		 * Warn on nothing pending. Empty submitted_list may
2466 		 * break our pm_runtime usage counter as it is
2467 		 * updated on work_list emptiness status.
2468 		 */
2469 		WARN_ON(list_empty(&pch->submitted_list));
2470 		pch->active = true;
2471 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2472 	}
2473 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2474 	spin_unlock_irqrestore(&pch->lock, flags);
2475 
2476 	pl330_tasklet((unsigned long)pch);
2477 }
2478 
2479 /*
2480  * We returned the last one of the circular list of descriptor(s)
2481  * from prep_xxx, so the argument to submit corresponds to the last
2482  * descriptor of the list.
2483  */
2484 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2485 {
2486 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2487 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2488 	dma_cookie_t cookie;
2489 	unsigned long flags;
2490 
2491 	spin_lock_irqsave(&pch->lock, flags);
2492 
2493 	/* Assign cookies to all nodes */
2494 	while (!list_empty(&last->node)) {
2495 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2496 		if (pch->cyclic) {
2497 			desc->txd.callback = last->txd.callback;
2498 			desc->txd.callback_param = last->txd.callback_param;
2499 		}
2500 		desc->last = false;
2501 
2502 		dma_cookie_assign(&desc->txd);
2503 
2504 		list_move_tail(&desc->node, &pch->submitted_list);
2505 	}
2506 
2507 	last->last = true;
2508 	cookie = dma_cookie_assign(&last->txd);
2509 	list_add_tail(&last->node, &pch->submitted_list);
2510 	spin_unlock_irqrestore(&pch->lock, flags);
2511 
2512 	return cookie;
2513 }
2514 
2515 static inline void _init_desc(struct dma_pl330_desc *desc)
2516 {
2517 	desc->rqcfg.swap = SWAP_NO;
2518 	desc->rqcfg.scctl = CCTRL0;
2519 	desc->rqcfg.dcctl = CCTRL0;
2520 	desc->txd.tx_submit = pl330_tx_submit;
2521 
2522 	INIT_LIST_HEAD(&desc->node);
2523 }
2524 
2525 /* Returns the number of descriptors added to the DMAC pool */
2526 static int add_desc(struct list_head *pool, spinlock_t *lock,
2527 		    gfp_t flg, int count)
2528 {
2529 	struct dma_pl330_desc *desc;
2530 	unsigned long flags;
2531 	int i;
2532 
2533 	desc = kcalloc(count, sizeof(*desc), flg);
2534 	if (!desc)
2535 		return 0;
2536 
2537 	spin_lock_irqsave(lock, flags);
2538 
2539 	for (i = 0; i < count; i++) {
2540 		_init_desc(&desc[i]);
2541 		list_add_tail(&desc[i].node, pool);
2542 	}
2543 
2544 	spin_unlock_irqrestore(lock, flags);
2545 
2546 	return count;
2547 }
2548 
2549 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2550 					 spinlock_t *lock)
2551 {
2552 	struct dma_pl330_desc *desc = NULL;
2553 	unsigned long flags;
2554 
2555 	spin_lock_irqsave(lock, flags);
2556 
2557 	if (!list_empty(pool)) {
2558 		desc = list_entry(pool->next,
2559 				struct dma_pl330_desc, node);
2560 
2561 		list_del_init(&desc->node);
2562 
2563 		desc->status = PREP;
2564 		desc->txd.callback = NULL;
2565 	}
2566 
2567 	spin_unlock_irqrestore(lock, flags);
2568 
2569 	return desc;
2570 }
2571 
2572 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2573 {
2574 	struct pl330_dmac *pl330 = pch->dmac;
2575 	u8 *peri_id = pch->chan.private;
2576 	struct dma_pl330_desc *desc;
2577 
2578 	/* Pluck one desc from the pool of DMAC */
2579 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2580 
2581 	/* If the DMAC pool is empty, alloc new */
2582 	if (!desc) {
2583 		DEFINE_SPINLOCK(lock);
2584 		LIST_HEAD(pool);
2585 
2586 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2587 			return NULL;
2588 
2589 		desc = pluck_desc(&pool, &lock);
2590 		WARN_ON(!desc || !list_empty(&pool));
2591 	}
2592 
2593 	/* Initialize the descriptor */
2594 	desc->pchan = pch;
2595 	desc->txd.cookie = 0;
2596 	async_tx_ack(&desc->txd);
2597 
2598 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2599 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2600 
2601 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2602 
2603 	return desc;
2604 }
2605 
2606 static inline void fill_px(struct pl330_xfer *px,
2607 		dma_addr_t dst, dma_addr_t src, size_t len)
2608 {
2609 	px->bytes = len;
2610 	px->dst_addr = dst;
2611 	px->src_addr = src;
2612 }
2613 
2614 static struct dma_pl330_desc *
2615 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2616 		dma_addr_t src, size_t len)
2617 {
2618 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2619 
2620 	if (!desc) {
2621 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2622 			__func__, __LINE__);
2623 		return NULL;
2624 	}
2625 
2626 	/*
2627 	 * Ideally we should lookout for reqs bigger than
2628 	 * those that can be programmed with 256 bytes of
2629 	 * MC buffer, but considering a req size is seldom
2630 	 * going to be word-unaligned and more than 200MB,
2631 	 * we take it easy.
2632 	 * Also, should the limit is reached we'd rather
2633 	 * have the platform increase MC buffer size than
2634 	 * complicating this API driver.
2635 	 */
2636 	fill_px(&desc->px, dst, src, len);
2637 
2638 	return desc;
2639 }
2640 
2641 /* Call after fixing burst size */
2642 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2643 {
2644 	struct dma_pl330_chan *pch = desc->pchan;
2645 	struct pl330_dmac *pl330 = pch->dmac;
2646 	int burst_len;
2647 
2648 	burst_len = pl330->pcfg.data_bus_width / 8;
2649 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2650 	burst_len >>= desc->rqcfg.brst_size;
2651 
2652 	/* src/dst_burst_len can't be more than 16 */
2653 	if (burst_len > PL330_MAX_BURST)
2654 		burst_len = PL330_MAX_BURST;
2655 
2656 	return burst_len;
2657 }
2658 
2659 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2660 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2661 		size_t period_len, enum dma_transfer_direction direction,
2662 		unsigned long flags)
2663 {
2664 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2665 	struct dma_pl330_chan *pch = to_pchan(chan);
2666 	struct pl330_dmac *pl330 = pch->dmac;
2667 	unsigned int i;
2668 	dma_addr_t dst;
2669 	dma_addr_t src;
2670 
2671 	if (len % period_len != 0)
2672 		return NULL;
2673 
2674 	if (!is_slave_direction(direction)) {
2675 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2676 		__func__, __LINE__);
2677 		return NULL;
2678 	}
2679 
2680 	pl330_config_write(chan, &pch->slave_config, direction);
2681 
2682 	if (!pl330_prep_slave_fifo(pch, direction))
2683 		return NULL;
2684 
2685 	for (i = 0; i < len / period_len; i++) {
2686 		desc = pl330_get_desc(pch);
2687 		if (!desc) {
2688 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2689 				__func__, __LINE__);
2690 
2691 			if (!first)
2692 				return NULL;
2693 
2694 			spin_lock_irqsave(&pl330->pool_lock, flags);
2695 
2696 			while (!list_empty(&first->node)) {
2697 				desc = list_entry(first->node.next,
2698 						struct dma_pl330_desc, node);
2699 				list_move_tail(&desc->node, &pl330->desc_pool);
2700 			}
2701 
2702 			list_move_tail(&first->node, &pl330->desc_pool);
2703 
2704 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2705 
2706 			return NULL;
2707 		}
2708 
2709 		switch (direction) {
2710 		case DMA_MEM_TO_DEV:
2711 			desc->rqcfg.src_inc = 1;
2712 			desc->rqcfg.dst_inc = 0;
2713 			src = dma_addr;
2714 			dst = pch->fifo_dma;
2715 			break;
2716 		case DMA_DEV_TO_MEM:
2717 			desc->rqcfg.src_inc = 0;
2718 			desc->rqcfg.dst_inc = 1;
2719 			src = pch->fifo_dma;
2720 			dst = dma_addr;
2721 			break;
2722 		default:
2723 			break;
2724 		}
2725 
2726 		desc->rqtype = direction;
2727 		desc->rqcfg.brst_size = pch->burst_sz;
2728 		desc->rqcfg.brst_len = pch->burst_len;
2729 		desc->bytes_requested = period_len;
2730 		fill_px(&desc->px, dst, src, period_len);
2731 
2732 		if (!first)
2733 			first = desc;
2734 		else
2735 			list_add_tail(&desc->node, &first->node);
2736 
2737 		dma_addr += period_len;
2738 	}
2739 
2740 	if (!desc)
2741 		return NULL;
2742 
2743 	pch->cyclic = true;
2744 	desc->txd.flags = flags;
2745 
2746 	return &desc->txd;
2747 }
2748 
2749 static struct dma_async_tx_descriptor *
2750 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2751 		dma_addr_t src, size_t len, unsigned long flags)
2752 {
2753 	struct dma_pl330_desc *desc;
2754 	struct dma_pl330_chan *pch = to_pchan(chan);
2755 	struct pl330_dmac *pl330;
2756 	int burst;
2757 
2758 	if (unlikely(!pch || !len))
2759 		return NULL;
2760 
2761 	pl330 = pch->dmac;
2762 
2763 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2764 	if (!desc)
2765 		return NULL;
2766 
2767 	desc->rqcfg.src_inc = 1;
2768 	desc->rqcfg.dst_inc = 1;
2769 	desc->rqtype = DMA_MEM_TO_MEM;
2770 
2771 	/* Select max possible burst size */
2772 	burst = pl330->pcfg.data_bus_width / 8;
2773 
2774 	/*
2775 	 * Make sure we use a burst size that aligns with all the memcpy
2776 	 * parameters because our DMA programming algorithm doesn't cope with
2777 	 * transfers which straddle an entry in the DMA device's MFIFO.
2778 	 */
2779 	while ((src | dst | len) & (burst - 1))
2780 		burst /= 2;
2781 
2782 	desc->rqcfg.brst_size = 0;
2783 	while (burst != (1 << desc->rqcfg.brst_size))
2784 		desc->rqcfg.brst_size++;
2785 
2786 	/*
2787 	 * If burst size is smaller than bus width then make sure we only
2788 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2789 	 */
2790 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2791 		desc->rqcfg.brst_len = 1;
2792 
2793 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2794 	desc->bytes_requested = len;
2795 
2796 	desc->txd.flags = flags;
2797 
2798 	return &desc->txd;
2799 }
2800 
2801 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2802 				  struct dma_pl330_desc *first)
2803 {
2804 	unsigned long flags;
2805 	struct dma_pl330_desc *desc;
2806 
2807 	if (!first)
2808 		return;
2809 
2810 	spin_lock_irqsave(&pl330->pool_lock, flags);
2811 
2812 	while (!list_empty(&first->node)) {
2813 		desc = list_entry(first->node.next,
2814 				struct dma_pl330_desc, node);
2815 		list_move_tail(&desc->node, &pl330->desc_pool);
2816 	}
2817 
2818 	list_move_tail(&first->node, &pl330->desc_pool);
2819 
2820 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2821 }
2822 
2823 static struct dma_async_tx_descriptor *
2824 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2825 		unsigned int sg_len, enum dma_transfer_direction direction,
2826 		unsigned long flg, void *context)
2827 {
2828 	struct dma_pl330_desc *first, *desc = NULL;
2829 	struct dma_pl330_chan *pch = to_pchan(chan);
2830 	struct scatterlist *sg;
2831 	int i;
2832 
2833 	if (unlikely(!pch || !sgl || !sg_len))
2834 		return NULL;
2835 
2836 	pl330_config_write(chan, &pch->slave_config, direction);
2837 
2838 	if (!pl330_prep_slave_fifo(pch, direction))
2839 		return NULL;
2840 
2841 	first = NULL;
2842 
2843 	for_each_sg(sgl, sg, sg_len, i) {
2844 
2845 		desc = pl330_get_desc(pch);
2846 		if (!desc) {
2847 			struct pl330_dmac *pl330 = pch->dmac;
2848 
2849 			dev_err(pch->dmac->ddma.dev,
2850 				"%s:%d Unable to fetch desc\n",
2851 				__func__, __LINE__);
2852 			__pl330_giveback_desc(pl330, first);
2853 
2854 			return NULL;
2855 		}
2856 
2857 		if (!first)
2858 			first = desc;
2859 		else
2860 			list_add_tail(&desc->node, &first->node);
2861 
2862 		if (direction == DMA_MEM_TO_DEV) {
2863 			desc->rqcfg.src_inc = 1;
2864 			desc->rqcfg.dst_inc = 0;
2865 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2866 				sg_dma_len(sg));
2867 		} else {
2868 			desc->rqcfg.src_inc = 0;
2869 			desc->rqcfg.dst_inc = 1;
2870 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2871 				sg_dma_len(sg));
2872 		}
2873 
2874 		desc->rqcfg.brst_size = pch->burst_sz;
2875 		desc->rqcfg.brst_len = pch->burst_len;
2876 		desc->rqtype = direction;
2877 		desc->bytes_requested = sg_dma_len(sg);
2878 	}
2879 
2880 	/* Return the last desc in the chain */
2881 	desc->txd.flags = flg;
2882 	return &desc->txd;
2883 }
2884 
2885 static irqreturn_t pl330_irq_handler(int irq, void *data)
2886 {
2887 	if (pl330_update(data))
2888 		return IRQ_HANDLED;
2889 	else
2890 		return IRQ_NONE;
2891 }
2892 
2893 #define PL330_DMA_BUSWIDTHS \
2894 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2895 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2896 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2897 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2898 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2899 
2900 /*
2901  * Runtime PM callbacks are provided by amba/bus.c driver.
2902  *
2903  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2904  * bus driver will only disable/enable the clock in runtime PM callbacks.
2905  */
2906 static int __maybe_unused pl330_suspend(struct device *dev)
2907 {
2908 	struct amba_device *pcdev = to_amba_device(dev);
2909 
2910 	pm_runtime_disable(dev);
2911 
2912 	if (!pm_runtime_status_suspended(dev)) {
2913 		/* amba did not disable the clock */
2914 		amba_pclk_disable(pcdev);
2915 	}
2916 	amba_pclk_unprepare(pcdev);
2917 
2918 	return 0;
2919 }
2920 
2921 static int __maybe_unused pl330_resume(struct device *dev)
2922 {
2923 	struct amba_device *pcdev = to_amba_device(dev);
2924 	int ret;
2925 
2926 	ret = amba_pclk_prepare(pcdev);
2927 	if (ret)
2928 		return ret;
2929 
2930 	if (!pm_runtime_status_suspended(dev))
2931 		ret = amba_pclk_enable(pcdev);
2932 
2933 	pm_runtime_enable(dev);
2934 
2935 	return ret;
2936 }
2937 
2938 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2939 
2940 static int
2941 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2942 {
2943 	struct pl330_config *pcfg;
2944 	struct pl330_dmac *pl330;
2945 	struct dma_pl330_chan *pch, *_p;
2946 	struct dma_device *pd;
2947 	struct resource *res;
2948 	int i, ret, irq;
2949 	int num_chan;
2950 	struct device_node *np = adev->dev.of_node;
2951 
2952 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2953 	if (ret)
2954 		return ret;
2955 
2956 	/* Allocate a new DMAC and its Channels */
2957 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2958 	if (!pl330)
2959 		return -ENOMEM;
2960 
2961 	pd = &pl330->ddma;
2962 	pd->dev = &adev->dev;
2963 
2964 	pl330->mcbufsz = 0;
2965 
2966 	/* get quirk */
2967 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2968 		if (of_property_read_bool(np, of_quirks[i].quirk))
2969 			pl330->quirks |= of_quirks[i].id;
2970 
2971 	res = &adev->res;
2972 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2973 	if (IS_ERR(pl330->base))
2974 		return PTR_ERR(pl330->base);
2975 
2976 	amba_set_drvdata(adev, pl330);
2977 
2978 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2979 		irq = adev->irq[i];
2980 		if (irq) {
2981 			ret = devm_request_irq(&adev->dev, irq,
2982 					       pl330_irq_handler, 0,
2983 					       dev_name(&adev->dev), pl330);
2984 			if (ret)
2985 				return ret;
2986 		} else {
2987 			break;
2988 		}
2989 	}
2990 
2991 	pcfg = &pl330->pcfg;
2992 
2993 	pcfg->periph_id = adev->periphid;
2994 	ret = pl330_add(pl330);
2995 	if (ret)
2996 		return ret;
2997 
2998 	INIT_LIST_HEAD(&pl330->desc_pool);
2999 	spin_lock_init(&pl330->pool_lock);
3000 
3001 	/* Create a descriptor pool of default size */
3002 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3003 		      GFP_KERNEL, NR_DEFAULT_DESC))
3004 		dev_warn(&adev->dev, "unable to allocate desc\n");
3005 
3006 	INIT_LIST_HEAD(&pd->channels);
3007 
3008 	/* Initialize channel parameters */
3009 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3010 
3011 	pl330->num_peripherals = num_chan;
3012 
3013 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3014 	if (!pl330->peripherals) {
3015 		ret = -ENOMEM;
3016 		goto probe_err2;
3017 	}
3018 
3019 	for (i = 0; i < num_chan; i++) {
3020 		pch = &pl330->peripherals[i];
3021 
3022 		pch->chan.private = adev->dev.of_node;
3023 		INIT_LIST_HEAD(&pch->submitted_list);
3024 		INIT_LIST_HEAD(&pch->work_list);
3025 		INIT_LIST_HEAD(&pch->completed_list);
3026 		spin_lock_init(&pch->lock);
3027 		pch->thread = NULL;
3028 		pch->chan.device = pd;
3029 		pch->dmac = pl330;
3030 		pch->dir = DMA_NONE;
3031 
3032 		/* Add the channel to the DMAC list */
3033 		list_add_tail(&pch->chan.device_node, &pd->channels);
3034 	}
3035 
3036 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3037 	if (pcfg->num_peri) {
3038 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3039 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3040 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3041 	}
3042 
3043 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3044 	pd->device_free_chan_resources = pl330_free_chan_resources;
3045 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3046 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3047 	pd->device_tx_status = pl330_tx_status;
3048 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3049 	pd->device_config = pl330_config;
3050 	pd->device_pause = pl330_pause;
3051 	pd->device_terminate_all = pl330_terminate_all;
3052 	pd->device_issue_pending = pl330_issue_pending;
3053 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3054 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3055 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3056 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3057 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
3058 			 1 : PL330_MAX_BURST);
3059 
3060 	ret = dma_async_device_register(pd);
3061 	if (ret) {
3062 		dev_err(&adev->dev, "unable to register DMAC\n");
3063 		goto probe_err3;
3064 	}
3065 
3066 	if (adev->dev.of_node) {
3067 		ret = of_dma_controller_register(adev->dev.of_node,
3068 					 of_dma_pl330_xlate, pl330);
3069 		if (ret) {
3070 			dev_err(&adev->dev,
3071 			"unable to register DMA to the generic DT DMA helpers\n");
3072 		}
3073 	}
3074 
3075 	adev->dev.dma_parms = &pl330->dma_parms;
3076 
3077 	/*
3078 	 * This is the limit for transfers with a buswidth of 1, larger
3079 	 * buswidths will have larger limits.
3080 	 */
3081 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3082 	if (ret)
3083 		dev_err(&adev->dev, "unable to set the seg size\n");
3084 
3085 
3086 	dev_info(&adev->dev,
3087 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3088 	dev_info(&adev->dev,
3089 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3090 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3091 		pcfg->num_peri, pcfg->num_events);
3092 
3093 	pm_runtime_irq_safe(&adev->dev);
3094 	pm_runtime_use_autosuspend(&adev->dev);
3095 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3096 	pm_runtime_mark_last_busy(&adev->dev);
3097 	pm_runtime_put_autosuspend(&adev->dev);
3098 
3099 	return 0;
3100 probe_err3:
3101 	/* Idle the DMAC */
3102 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3103 			chan.device_node) {
3104 
3105 		/* Remove the channel */
3106 		list_del(&pch->chan.device_node);
3107 
3108 		/* Flush the channel */
3109 		if (pch->thread) {
3110 			pl330_terminate_all(&pch->chan);
3111 			pl330_free_chan_resources(&pch->chan);
3112 		}
3113 	}
3114 probe_err2:
3115 	pl330_del(pl330);
3116 
3117 	return ret;
3118 }
3119 
3120 static int pl330_remove(struct amba_device *adev)
3121 {
3122 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3123 	struct dma_pl330_chan *pch, *_p;
3124 	int i, irq;
3125 
3126 	pm_runtime_get_noresume(pl330->ddma.dev);
3127 
3128 	if (adev->dev.of_node)
3129 		of_dma_controller_free(adev->dev.of_node);
3130 
3131 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3132 		irq = adev->irq[i];
3133 		if (irq)
3134 			devm_free_irq(&adev->dev, irq, pl330);
3135 	}
3136 
3137 	dma_async_device_unregister(&pl330->ddma);
3138 
3139 	/* Idle the DMAC */
3140 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3141 			chan.device_node) {
3142 
3143 		/* Remove the channel */
3144 		list_del(&pch->chan.device_node);
3145 
3146 		/* Flush the channel */
3147 		if (pch->thread) {
3148 			pl330_terminate_all(&pch->chan);
3149 			pl330_free_chan_resources(&pch->chan);
3150 		}
3151 	}
3152 
3153 	pl330_del(pl330);
3154 
3155 	return 0;
3156 }
3157 
3158 static const struct amba_id pl330_ids[] = {
3159 	{
3160 		.id	= 0x00041330,
3161 		.mask	= 0x000fffff,
3162 	},
3163 	{ 0, 0 },
3164 };
3165 
3166 MODULE_DEVICE_TABLE(amba, pl330_ids);
3167 
3168 static struct amba_driver pl330_driver = {
3169 	.drv = {
3170 		.owner = THIS_MODULE,
3171 		.name = "dma-pl330",
3172 		.pm = &pl330_pm,
3173 	},
3174 	.id_table = pl330_ids,
3175 	.probe = pl330_probe,
3176 	.remove = pl330_remove,
3177 };
3178 
3179 module_amba_driver(pl330_driver);
3180 
3181 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3182 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3183 MODULE_LICENSE("GPL");
3184