1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/scatterlist.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/err.h> 30 #include <linux/pm_runtime.h> 31 32 #include "dmaengine.h" 33 #define PL330_MAX_CHAN 8 34 #define PL330_MAX_IRQS 32 35 #define PL330_MAX_PERI 32 36 37 enum pl330_cachectrl { 38 CCTRL0, /* Noncacheable and nonbufferable */ 39 CCTRL1, /* Bufferable only */ 40 CCTRL2, /* Cacheable, but do not allocate */ 41 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 42 INVALID1, /* AWCACHE = 0x1000 */ 43 INVALID2, 44 CCTRL6, /* Cacheable write-through, allocate on writes only */ 45 CCTRL7, /* Cacheable write-back, allocate on writes only */ 46 }; 47 48 enum pl330_byteswap { 49 SWAP_NO, 50 SWAP_2, 51 SWAP_4, 52 SWAP_8, 53 SWAP_16, 54 }; 55 56 /* Register and Bit field Definitions */ 57 #define DS 0x0 58 #define DS_ST_STOP 0x0 59 #define DS_ST_EXEC 0x1 60 #define DS_ST_CMISS 0x2 61 #define DS_ST_UPDTPC 0x3 62 #define DS_ST_WFE 0x4 63 #define DS_ST_ATBRR 0x5 64 #define DS_ST_QBUSY 0x6 65 #define DS_ST_WFP 0x7 66 #define DS_ST_KILL 0x8 67 #define DS_ST_CMPLT 0x9 68 #define DS_ST_FLTCMP 0xe 69 #define DS_ST_FAULT 0xf 70 71 #define DPC 0x4 72 #define INTEN 0x20 73 #define ES 0x24 74 #define INTSTATUS 0x28 75 #define INTCLR 0x2c 76 #define FSM 0x30 77 #define FSC 0x34 78 #define FTM 0x38 79 80 #define _FTC 0x40 81 #define FTC(n) (_FTC + (n)*0x4) 82 83 #define _CS 0x100 84 #define CS(n) (_CS + (n)*0x8) 85 #define CS_CNS (1 << 21) 86 87 #define _CPC 0x104 88 #define CPC(n) (_CPC + (n)*0x8) 89 90 #define _SA 0x400 91 #define SA(n) (_SA + (n)*0x20) 92 93 #define _DA 0x404 94 #define DA(n) (_DA + (n)*0x20) 95 96 #define _CC 0x408 97 #define CC(n) (_CC + (n)*0x20) 98 99 #define CC_SRCINC (1 << 0) 100 #define CC_DSTINC (1 << 14) 101 #define CC_SRCPRI (1 << 8) 102 #define CC_DSTPRI (1 << 22) 103 #define CC_SRCNS (1 << 9) 104 #define CC_DSTNS (1 << 23) 105 #define CC_SRCIA (1 << 10) 106 #define CC_DSTIA (1 << 24) 107 #define CC_SRCBRSTLEN_SHFT 4 108 #define CC_DSTBRSTLEN_SHFT 18 109 #define CC_SRCBRSTSIZE_SHFT 1 110 #define CC_DSTBRSTSIZE_SHFT 15 111 #define CC_SRCCCTRL_SHFT 11 112 #define CC_SRCCCTRL_MASK 0x7 113 #define CC_DSTCCTRL_SHFT 25 114 #define CC_DRCCCTRL_MASK 0x7 115 #define CC_SWAP_SHFT 28 116 117 #define _LC0 0x40c 118 #define LC0(n) (_LC0 + (n)*0x20) 119 120 #define _LC1 0x410 121 #define LC1(n) (_LC1 + (n)*0x20) 122 123 #define DBGSTATUS 0xd00 124 #define DBG_BUSY (1 << 0) 125 126 #define DBGCMD 0xd04 127 #define DBGINST0 0xd08 128 #define DBGINST1 0xd0c 129 130 #define CR0 0xe00 131 #define CR1 0xe04 132 #define CR2 0xe08 133 #define CR3 0xe0c 134 #define CR4 0xe10 135 #define CRD 0xe14 136 137 #define PERIPH_ID 0xfe0 138 #define PERIPH_REV_SHIFT 20 139 #define PERIPH_REV_MASK 0xf 140 #define PERIPH_REV_R0P0 0 141 #define PERIPH_REV_R1P0 1 142 #define PERIPH_REV_R1P1 2 143 144 #define CR0_PERIPH_REQ_SET (1 << 0) 145 #define CR0_BOOT_EN_SET (1 << 1) 146 #define CR0_BOOT_MAN_NS (1 << 2) 147 #define CR0_NUM_CHANS_SHIFT 4 148 #define CR0_NUM_CHANS_MASK 0x7 149 #define CR0_NUM_PERIPH_SHIFT 12 150 #define CR0_NUM_PERIPH_MASK 0x1f 151 #define CR0_NUM_EVENTS_SHIFT 17 152 #define CR0_NUM_EVENTS_MASK 0x1f 153 154 #define CR1_ICACHE_LEN_SHIFT 0 155 #define CR1_ICACHE_LEN_MASK 0x7 156 #define CR1_NUM_ICACHELINES_SHIFT 4 157 #define CR1_NUM_ICACHELINES_MASK 0xf 158 159 #define CRD_DATA_WIDTH_SHIFT 0 160 #define CRD_DATA_WIDTH_MASK 0x7 161 #define CRD_WR_CAP_SHIFT 4 162 #define CRD_WR_CAP_MASK 0x7 163 #define CRD_WR_Q_DEP_SHIFT 8 164 #define CRD_WR_Q_DEP_MASK 0xf 165 #define CRD_RD_CAP_SHIFT 12 166 #define CRD_RD_CAP_MASK 0x7 167 #define CRD_RD_Q_DEP_SHIFT 16 168 #define CRD_RD_Q_DEP_MASK 0xf 169 #define CRD_DATA_BUFF_SHIFT 20 170 #define CRD_DATA_BUFF_MASK 0x3ff 171 172 #define PART 0x330 173 #define DESIGNER 0x41 174 #define REVISION 0x0 175 #define INTEG_CFG 0x0 176 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 177 178 #define PL330_STATE_STOPPED (1 << 0) 179 #define PL330_STATE_EXECUTING (1 << 1) 180 #define PL330_STATE_WFE (1 << 2) 181 #define PL330_STATE_FAULTING (1 << 3) 182 #define PL330_STATE_COMPLETING (1 << 4) 183 #define PL330_STATE_WFP (1 << 5) 184 #define PL330_STATE_KILLING (1 << 6) 185 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 186 #define PL330_STATE_CACHEMISS (1 << 8) 187 #define PL330_STATE_UPDTPC (1 << 9) 188 #define PL330_STATE_ATBARRIER (1 << 10) 189 #define PL330_STATE_QUEUEBUSY (1 << 11) 190 #define PL330_STATE_INVALID (1 << 15) 191 192 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 193 | PL330_STATE_WFE | PL330_STATE_FAULTING) 194 195 #define CMD_DMAADDH 0x54 196 #define CMD_DMAEND 0x00 197 #define CMD_DMAFLUSHP 0x35 198 #define CMD_DMAGO 0xa0 199 #define CMD_DMALD 0x04 200 #define CMD_DMALDP 0x25 201 #define CMD_DMALP 0x20 202 #define CMD_DMALPEND 0x28 203 #define CMD_DMAKILL 0x01 204 #define CMD_DMAMOV 0xbc 205 #define CMD_DMANOP 0x18 206 #define CMD_DMARMB 0x12 207 #define CMD_DMASEV 0x34 208 #define CMD_DMAST 0x08 209 #define CMD_DMASTP 0x29 210 #define CMD_DMASTZ 0x0c 211 #define CMD_DMAWFE 0x36 212 #define CMD_DMAWFP 0x30 213 #define CMD_DMAWMB 0x13 214 215 #define SZ_DMAADDH 3 216 #define SZ_DMAEND 1 217 #define SZ_DMAFLUSHP 2 218 #define SZ_DMALD 1 219 #define SZ_DMALDP 2 220 #define SZ_DMALP 2 221 #define SZ_DMALPEND 2 222 #define SZ_DMAKILL 1 223 #define SZ_DMAMOV 6 224 #define SZ_DMANOP 1 225 #define SZ_DMARMB 1 226 #define SZ_DMASEV 2 227 #define SZ_DMAST 1 228 #define SZ_DMASTP 2 229 #define SZ_DMASTZ 1 230 #define SZ_DMAWFE 2 231 #define SZ_DMAWFP 2 232 #define SZ_DMAWMB 1 233 #define SZ_DMAGO 6 234 235 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 236 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 237 238 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 239 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 240 241 /* 242 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 243 * at 1byte/burst for P<->M and M<->M respectively. 244 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 245 * should be enough for P<->M and M<->M respectively. 246 */ 247 #define MCODE_BUFF_PER_REQ 256 248 249 /* Use this _only_ to wait on transient states */ 250 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 251 252 #ifdef PL330_DEBUG_MCGEN 253 static unsigned cmd_line; 254 #define PL330_DBGCMD_DUMP(off, x...) do { \ 255 printk("%x:", cmd_line); \ 256 printk(x); \ 257 cmd_line += off; \ 258 } while (0) 259 #define PL330_DBGMC_START(addr) (cmd_line = addr) 260 #else 261 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 262 #define PL330_DBGMC_START(addr) do {} while (0) 263 #endif 264 265 /* The number of default descriptors */ 266 267 #define NR_DEFAULT_DESC 16 268 269 /* Delay for runtime PM autosuspend, ms */ 270 #define PL330_AUTOSUSPEND_DELAY 20 271 272 /* Populated by the PL330 core driver for DMA API driver's info */ 273 struct pl330_config { 274 u32 periph_id; 275 #define DMAC_MODE_NS (1 << 0) 276 unsigned int mode; 277 unsigned int data_bus_width:10; /* In number of bits */ 278 unsigned int data_buf_dep:11; 279 unsigned int num_chan:4; 280 unsigned int num_peri:6; 281 u32 peri_ns; 282 unsigned int num_events:6; 283 u32 irq_ns; 284 }; 285 286 /** 287 * Request Configuration. 288 * The PL330 core does not modify this and uses the last 289 * working configuration if the request doesn't provide any. 290 * 291 * The Client may want to provide this info only for the 292 * first request and a request with new settings. 293 */ 294 struct pl330_reqcfg { 295 /* Address Incrementing */ 296 unsigned dst_inc:1; 297 unsigned src_inc:1; 298 299 /* 300 * For now, the SRC & DST protection levels 301 * and burst size/length are assumed same. 302 */ 303 bool nonsecure; 304 bool privileged; 305 bool insnaccess; 306 unsigned brst_len:5; 307 unsigned brst_size:3; /* in power of 2 */ 308 309 enum pl330_cachectrl dcctl; 310 enum pl330_cachectrl scctl; 311 enum pl330_byteswap swap; 312 struct pl330_config *pcfg; 313 }; 314 315 /* 316 * One cycle of DMAC operation. 317 * There may be more than one xfer in a request. 318 */ 319 struct pl330_xfer { 320 u32 src_addr; 321 u32 dst_addr; 322 /* Size to xfer */ 323 u32 bytes; 324 }; 325 326 /* The xfer callbacks are made with one of these arguments. */ 327 enum pl330_op_err { 328 /* The all xfers in the request were success. */ 329 PL330_ERR_NONE, 330 /* If req aborted due to global error. */ 331 PL330_ERR_ABORT, 332 /* If req failed due to problem with Channel. */ 333 PL330_ERR_FAIL, 334 }; 335 336 enum dmamov_dst { 337 SAR = 0, 338 CCR, 339 DAR, 340 }; 341 342 enum pl330_dst { 343 SRC = 0, 344 DST, 345 }; 346 347 enum pl330_cond { 348 SINGLE, 349 BURST, 350 ALWAYS, 351 }; 352 353 struct dma_pl330_desc; 354 355 struct _pl330_req { 356 u32 mc_bus; 357 void *mc_cpu; 358 struct dma_pl330_desc *desc; 359 }; 360 361 /* ToBeDone for tasklet */ 362 struct _pl330_tbd { 363 bool reset_dmac; 364 bool reset_mngr; 365 u8 reset_chan; 366 }; 367 368 /* A DMAC Thread */ 369 struct pl330_thread { 370 u8 id; 371 int ev; 372 /* If the channel is not yet acquired by any client */ 373 bool free; 374 /* Parent DMAC */ 375 struct pl330_dmac *dmac; 376 /* Only two at a time */ 377 struct _pl330_req req[2]; 378 /* Index of the last enqueued request */ 379 unsigned lstenq; 380 /* Index of the last submitted request or -1 if the DMA is stopped */ 381 int req_running; 382 }; 383 384 enum pl330_dmac_state { 385 UNINIT, 386 INIT, 387 DYING, 388 }; 389 390 enum desc_status { 391 /* In the DMAC pool */ 392 FREE, 393 /* 394 * Allocated to some channel during prep_xxx 395 * Also may be sitting on the work_list. 396 */ 397 PREP, 398 /* 399 * Sitting on the work_list and already submitted 400 * to the PL330 core. Not more than two descriptors 401 * of a channel can be BUSY at any time. 402 */ 403 BUSY, 404 /* 405 * Sitting on the channel work_list but xfer done 406 * by PL330 core 407 */ 408 DONE, 409 }; 410 411 struct dma_pl330_chan { 412 /* Schedule desc completion */ 413 struct tasklet_struct task; 414 415 /* DMA-Engine Channel */ 416 struct dma_chan chan; 417 418 /* List of submitted descriptors */ 419 struct list_head submitted_list; 420 /* List of issued descriptors */ 421 struct list_head work_list; 422 /* List of completed descriptors */ 423 struct list_head completed_list; 424 425 /* Pointer to the DMAC that manages this channel, 426 * NULL if the channel is available to be acquired. 427 * As the parent, this DMAC also provides descriptors 428 * to the channel. 429 */ 430 struct pl330_dmac *dmac; 431 432 /* To protect channel manipulation */ 433 spinlock_t lock; 434 435 /* 436 * Hardware channel thread of PL330 DMAC. NULL if the channel is 437 * available. 438 */ 439 struct pl330_thread *thread; 440 441 /* For D-to-M and M-to-D channels */ 442 int burst_sz; /* the peripheral fifo width */ 443 int burst_len; /* the number of burst */ 444 dma_addr_t fifo_addr; 445 446 /* for cyclic capability */ 447 bool cyclic; 448 }; 449 450 struct pl330_dmac { 451 /* DMA-Engine Device */ 452 struct dma_device ddma; 453 454 /* Holds info about sg limitations */ 455 struct device_dma_parameters dma_parms; 456 457 /* Pool of descriptors available for the DMAC's channels */ 458 struct list_head desc_pool; 459 /* To protect desc_pool manipulation */ 460 spinlock_t pool_lock; 461 462 /* Size of MicroCode buffers for each channel. */ 463 unsigned mcbufsz; 464 /* ioremap'ed address of PL330 registers. */ 465 void __iomem *base; 466 /* Populated by the PL330 core driver during pl330_add */ 467 struct pl330_config pcfg; 468 469 spinlock_t lock; 470 /* Maximum possible events/irqs */ 471 int events[32]; 472 /* BUS address of MicroCode buffer */ 473 dma_addr_t mcode_bus; 474 /* CPU address of MicroCode buffer */ 475 void *mcode_cpu; 476 /* List of all Channel threads */ 477 struct pl330_thread *channels; 478 /* Pointer to the MANAGER thread */ 479 struct pl330_thread *manager; 480 /* To handle bad news in interrupt */ 481 struct tasklet_struct tasks; 482 struct _pl330_tbd dmac_tbd; 483 /* State of DMAC operation */ 484 enum pl330_dmac_state state; 485 /* Holds list of reqs with due callbacks */ 486 struct list_head req_done; 487 488 /* Peripheral channels connected to this DMAC */ 489 unsigned int num_peripherals; 490 struct dma_pl330_chan *peripherals; /* keep at end */ 491 }; 492 493 struct dma_pl330_desc { 494 /* To attach to a queue as child */ 495 struct list_head node; 496 497 /* Descriptor for the DMA Engine API */ 498 struct dma_async_tx_descriptor txd; 499 500 /* Xfer for PL330 core */ 501 struct pl330_xfer px; 502 503 struct pl330_reqcfg rqcfg; 504 505 enum desc_status status; 506 507 int bytes_requested; 508 bool last; 509 510 /* The channel which currently holds this desc */ 511 struct dma_pl330_chan *pchan; 512 513 enum dma_transfer_direction rqtype; 514 /* Index of peripheral for the xfer. */ 515 unsigned peri:5; 516 /* Hook to attach to DMAC's list of reqs with due callback */ 517 struct list_head rqd; 518 }; 519 520 struct _xfer_spec { 521 u32 ccr; 522 struct dma_pl330_desc *desc; 523 }; 524 525 static inline bool _queue_empty(struct pl330_thread *thrd) 526 { 527 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL; 528 } 529 530 static inline bool _queue_full(struct pl330_thread *thrd) 531 { 532 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 533 } 534 535 static inline bool is_manager(struct pl330_thread *thrd) 536 { 537 return thrd->dmac->manager == thrd; 538 } 539 540 /* If manager of the thread is in Non-Secure mode */ 541 static inline bool _manager_ns(struct pl330_thread *thrd) 542 { 543 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 544 } 545 546 static inline u32 get_revision(u32 periph_id) 547 { 548 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 549 } 550 551 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 552 enum pl330_dst da, u16 val) 553 { 554 if (dry_run) 555 return SZ_DMAADDH; 556 557 buf[0] = CMD_DMAADDH; 558 buf[0] |= (da << 1); 559 *((__le16 *)&buf[1]) = cpu_to_le16(val); 560 561 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 562 da == 1 ? "DA" : "SA", val); 563 564 return SZ_DMAADDH; 565 } 566 567 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 568 { 569 if (dry_run) 570 return SZ_DMAEND; 571 572 buf[0] = CMD_DMAEND; 573 574 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 575 576 return SZ_DMAEND; 577 } 578 579 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 580 { 581 if (dry_run) 582 return SZ_DMAFLUSHP; 583 584 buf[0] = CMD_DMAFLUSHP; 585 586 peri &= 0x1f; 587 peri <<= 3; 588 buf[1] = peri; 589 590 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 591 592 return SZ_DMAFLUSHP; 593 } 594 595 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 596 { 597 if (dry_run) 598 return SZ_DMALD; 599 600 buf[0] = CMD_DMALD; 601 602 if (cond == SINGLE) 603 buf[0] |= (0 << 1) | (1 << 0); 604 else if (cond == BURST) 605 buf[0] |= (1 << 1) | (1 << 0); 606 607 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 608 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 609 610 return SZ_DMALD; 611 } 612 613 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 614 enum pl330_cond cond, u8 peri) 615 { 616 if (dry_run) 617 return SZ_DMALDP; 618 619 buf[0] = CMD_DMALDP; 620 621 if (cond == BURST) 622 buf[0] |= (1 << 1); 623 624 peri &= 0x1f; 625 peri <<= 3; 626 buf[1] = peri; 627 628 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 629 cond == SINGLE ? 'S' : 'B', peri >> 3); 630 631 return SZ_DMALDP; 632 } 633 634 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 635 unsigned loop, u8 cnt) 636 { 637 if (dry_run) 638 return SZ_DMALP; 639 640 buf[0] = CMD_DMALP; 641 642 if (loop) 643 buf[0] |= (1 << 1); 644 645 cnt--; /* DMAC increments by 1 internally */ 646 buf[1] = cnt; 647 648 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 649 650 return SZ_DMALP; 651 } 652 653 struct _arg_LPEND { 654 enum pl330_cond cond; 655 bool forever; 656 unsigned loop; 657 u8 bjump; 658 }; 659 660 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 661 const struct _arg_LPEND *arg) 662 { 663 enum pl330_cond cond = arg->cond; 664 bool forever = arg->forever; 665 unsigned loop = arg->loop; 666 u8 bjump = arg->bjump; 667 668 if (dry_run) 669 return SZ_DMALPEND; 670 671 buf[0] = CMD_DMALPEND; 672 673 if (loop) 674 buf[0] |= (1 << 2); 675 676 if (!forever) 677 buf[0] |= (1 << 4); 678 679 if (cond == SINGLE) 680 buf[0] |= (0 << 1) | (1 << 0); 681 else if (cond == BURST) 682 buf[0] |= (1 << 1) | (1 << 0); 683 684 buf[1] = bjump; 685 686 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 687 forever ? "FE" : "END", 688 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 689 loop ? '1' : '0', 690 bjump); 691 692 return SZ_DMALPEND; 693 } 694 695 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 696 { 697 if (dry_run) 698 return SZ_DMAKILL; 699 700 buf[0] = CMD_DMAKILL; 701 702 return SZ_DMAKILL; 703 } 704 705 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 706 enum dmamov_dst dst, u32 val) 707 { 708 if (dry_run) 709 return SZ_DMAMOV; 710 711 buf[0] = CMD_DMAMOV; 712 buf[1] = dst; 713 *((__le32 *)&buf[2]) = cpu_to_le32(val); 714 715 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 716 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 717 718 return SZ_DMAMOV; 719 } 720 721 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 722 { 723 if (dry_run) 724 return SZ_DMANOP; 725 726 buf[0] = CMD_DMANOP; 727 728 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 729 730 return SZ_DMANOP; 731 } 732 733 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 734 { 735 if (dry_run) 736 return SZ_DMARMB; 737 738 buf[0] = CMD_DMARMB; 739 740 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 741 742 return SZ_DMARMB; 743 } 744 745 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 746 { 747 if (dry_run) 748 return SZ_DMASEV; 749 750 buf[0] = CMD_DMASEV; 751 752 ev &= 0x1f; 753 ev <<= 3; 754 buf[1] = ev; 755 756 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 757 758 return SZ_DMASEV; 759 } 760 761 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 762 { 763 if (dry_run) 764 return SZ_DMAST; 765 766 buf[0] = CMD_DMAST; 767 768 if (cond == SINGLE) 769 buf[0] |= (0 << 1) | (1 << 0); 770 else if (cond == BURST) 771 buf[0] |= (1 << 1) | (1 << 0); 772 773 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 774 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 775 776 return SZ_DMAST; 777 } 778 779 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 780 enum pl330_cond cond, u8 peri) 781 { 782 if (dry_run) 783 return SZ_DMASTP; 784 785 buf[0] = CMD_DMASTP; 786 787 if (cond == BURST) 788 buf[0] |= (1 << 1); 789 790 peri &= 0x1f; 791 peri <<= 3; 792 buf[1] = peri; 793 794 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 795 cond == SINGLE ? 'S' : 'B', peri >> 3); 796 797 return SZ_DMASTP; 798 } 799 800 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 801 { 802 if (dry_run) 803 return SZ_DMASTZ; 804 805 buf[0] = CMD_DMASTZ; 806 807 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 808 809 return SZ_DMASTZ; 810 } 811 812 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 813 unsigned invalidate) 814 { 815 if (dry_run) 816 return SZ_DMAWFE; 817 818 buf[0] = CMD_DMAWFE; 819 820 ev &= 0x1f; 821 ev <<= 3; 822 buf[1] = ev; 823 824 if (invalidate) 825 buf[1] |= (1 << 1); 826 827 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 828 ev >> 3, invalidate ? ", I" : ""); 829 830 return SZ_DMAWFE; 831 } 832 833 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 834 enum pl330_cond cond, u8 peri) 835 { 836 if (dry_run) 837 return SZ_DMAWFP; 838 839 buf[0] = CMD_DMAWFP; 840 841 if (cond == SINGLE) 842 buf[0] |= (0 << 1) | (0 << 0); 843 else if (cond == BURST) 844 buf[0] |= (1 << 1) | (0 << 0); 845 else 846 buf[0] |= (0 << 1) | (1 << 0); 847 848 peri &= 0x1f; 849 peri <<= 3; 850 buf[1] = peri; 851 852 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 853 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 854 855 return SZ_DMAWFP; 856 } 857 858 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 859 { 860 if (dry_run) 861 return SZ_DMAWMB; 862 863 buf[0] = CMD_DMAWMB; 864 865 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 866 867 return SZ_DMAWMB; 868 } 869 870 struct _arg_GO { 871 u8 chan; 872 u32 addr; 873 unsigned ns; 874 }; 875 876 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 877 const struct _arg_GO *arg) 878 { 879 u8 chan = arg->chan; 880 u32 addr = arg->addr; 881 unsigned ns = arg->ns; 882 883 if (dry_run) 884 return SZ_DMAGO; 885 886 buf[0] = CMD_DMAGO; 887 buf[0] |= (ns << 1); 888 889 buf[1] = chan & 0x7; 890 891 *((__le32 *)&buf[2]) = cpu_to_le32(addr); 892 893 return SZ_DMAGO; 894 } 895 896 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 897 898 /* Returns Time-Out */ 899 static bool _until_dmac_idle(struct pl330_thread *thrd) 900 { 901 void __iomem *regs = thrd->dmac->base; 902 unsigned long loops = msecs_to_loops(5); 903 904 do { 905 /* Until Manager is Idle */ 906 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 907 break; 908 909 cpu_relax(); 910 } while (--loops); 911 912 if (!loops) 913 return true; 914 915 return false; 916 } 917 918 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 919 u8 insn[], bool as_manager) 920 { 921 void __iomem *regs = thrd->dmac->base; 922 u32 val; 923 924 val = (insn[0] << 16) | (insn[1] << 24); 925 if (!as_manager) { 926 val |= (1 << 0); 927 val |= (thrd->id << 8); /* Channel Number */ 928 } 929 writel(val, regs + DBGINST0); 930 931 val = le32_to_cpu(*((__le32 *)&insn[2])); 932 writel(val, regs + DBGINST1); 933 934 /* If timed out due to halted state-machine */ 935 if (_until_dmac_idle(thrd)) { 936 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 937 return; 938 } 939 940 /* Get going */ 941 writel(0, regs + DBGCMD); 942 } 943 944 static inline u32 _state(struct pl330_thread *thrd) 945 { 946 void __iomem *regs = thrd->dmac->base; 947 u32 val; 948 949 if (is_manager(thrd)) 950 val = readl(regs + DS) & 0xf; 951 else 952 val = readl(regs + CS(thrd->id)) & 0xf; 953 954 switch (val) { 955 case DS_ST_STOP: 956 return PL330_STATE_STOPPED; 957 case DS_ST_EXEC: 958 return PL330_STATE_EXECUTING; 959 case DS_ST_CMISS: 960 return PL330_STATE_CACHEMISS; 961 case DS_ST_UPDTPC: 962 return PL330_STATE_UPDTPC; 963 case DS_ST_WFE: 964 return PL330_STATE_WFE; 965 case DS_ST_FAULT: 966 return PL330_STATE_FAULTING; 967 case DS_ST_ATBRR: 968 if (is_manager(thrd)) 969 return PL330_STATE_INVALID; 970 else 971 return PL330_STATE_ATBARRIER; 972 case DS_ST_QBUSY: 973 if (is_manager(thrd)) 974 return PL330_STATE_INVALID; 975 else 976 return PL330_STATE_QUEUEBUSY; 977 case DS_ST_WFP: 978 if (is_manager(thrd)) 979 return PL330_STATE_INVALID; 980 else 981 return PL330_STATE_WFP; 982 case DS_ST_KILL: 983 if (is_manager(thrd)) 984 return PL330_STATE_INVALID; 985 else 986 return PL330_STATE_KILLING; 987 case DS_ST_CMPLT: 988 if (is_manager(thrd)) 989 return PL330_STATE_INVALID; 990 else 991 return PL330_STATE_COMPLETING; 992 case DS_ST_FLTCMP: 993 if (is_manager(thrd)) 994 return PL330_STATE_INVALID; 995 else 996 return PL330_STATE_FAULT_COMPLETING; 997 default: 998 return PL330_STATE_INVALID; 999 } 1000 } 1001 1002 static void _stop(struct pl330_thread *thrd) 1003 { 1004 void __iomem *regs = thrd->dmac->base; 1005 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1006 1007 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1008 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1009 1010 /* Return if nothing needs to be done */ 1011 if (_state(thrd) == PL330_STATE_COMPLETING 1012 || _state(thrd) == PL330_STATE_KILLING 1013 || _state(thrd) == PL330_STATE_STOPPED) 1014 return; 1015 1016 _emit_KILL(0, insn); 1017 1018 /* Stop generating interrupts for SEV */ 1019 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1020 1021 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1022 } 1023 1024 /* Start doing req 'idx' of thread 'thrd' */ 1025 static bool _trigger(struct pl330_thread *thrd) 1026 { 1027 void __iomem *regs = thrd->dmac->base; 1028 struct _pl330_req *req; 1029 struct dma_pl330_desc *desc; 1030 struct _arg_GO go; 1031 unsigned ns; 1032 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1033 int idx; 1034 1035 /* Return if already ACTIVE */ 1036 if (_state(thrd) != PL330_STATE_STOPPED) 1037 return true; 1038 1039 idx = 1 - thrd->lstenq; 1040 if (thrd->req[idx].desc != NULL) { 1041 req = &thrd->req[idx]; 1042 } else { 1043 idx = thrd->lstenq; 1044 if (thrd->req[idx].desc != NULL) 1045 req = &thrd->req[idx]; 1046 else 1047 req = NULL; 1048 } 1049 1050 /* Return if no request */ 1051 if (!req) 1052 return true; 1053 1054 /* Return if req is running */ 1055 if (idx == thrd->req_running) 1056 return true; 1057 1058 desc = req->desc; 1059 1060 ns = desc->rqcfg.nonsecure ? 1 : 0; 1061 1062 /* See 'Abort Sources' point-4 at Page 2-25 */ 1063 if (_manager_ns(thrd) && !ns) 1064 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1065 __func__, __LINE__); 1066 1067 go.chan = thrd->id; 1068 go.addr = req->mc_bus; 1069 go.ns = ns; 1070 _emit_GO(0, insn, &go); 1071 1072 /* Set to generate interrupts for SEV */ 1073 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1074 1075 /* Only manager can execute GO */ 1076 _execute_DBGINSN(thrd, insn, true); 1077 1078 thrd->req_running = idx; 1079 1080 return true; 1081 } 1082 1083 static bool _start(struct pl330_thread *thrd) 1084 { 1085 switch (_state(thrd)) { 1086 case PL330_STATE_FAULT_COMPLETING: 1087 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1088 1089 if (_state(thrd) == PL330_STATE_KILLING) 1090 UNTIL(thrd, PL330_STATE_STOPPED) 1091 1092 case PL330_STATE_FAULTING: 1093 _stop(thrd); 1094 1095 case PL330_STATE_KILLING: 1096 case PL330_STATE_COMPLETING: 1097 UNTIL(thrd, PL330_STATE_STOPPED) 1098 1099 case PL330_STATE_STOPPED: 1100 return _trigger(thrd); 1101 1102 case PL330_STATE_WFP: 1103 case PL330_STATE_QUEUEBUSY: 1104 case PL330_STATE_ATBARRIER: 1105 case PL330_STATE_UPDTPC: 1106 case PL330_STATE_CACHEMISS: 1107 case PL330_STATE_EXECUTING: 1108 return true; 1109 1110 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1111 default: 1112 return false; 1113 } 1114 } 1115 1116 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1117 const struct _xfer_spec *pxs, int cyc) 1118 { 1119 int off = 0; 1120 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1121 1122 /* check lock-up free version */ 1123 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1124 while (cyc--) { 1125 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1126 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1127 } 1128 } else { 1129 while (cyc--) { 1130 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1131 off += _emit_RMB(dry_run, &buf[off]); 1132 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1133 off += _emit_WMB(dry_run, &buf[off]); 1134 } 1135 } 1136 1137 return off; 1138 } 1139 1140 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1141 const struct _xfer_spec *pxs, int cyc) 1142 { 1143 int off = 0; 1144 1145 while (cyc--) { 1146 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1147 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1148 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1149 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1150 } 1151 1152 return off; 1153 } 1154 1155 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1156 const struct _xfer_spec *pxs, int cyc) 1157 { 1158 int off = 0; 1159 1160 while (cyc--) { 1161 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1162 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1163 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->desc->peri); 1164 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1165 } 1166 1167 return off; 1168 } 1169 1170 static int _bursts(unsigned dry_run, u8 buf[], 1171 const struct _xfer_spec *pxs, int cyc) 1172 { 1173 int off = 0; 1174 1175 switch (pxs->desc->rqtype) { 1176 case DMA_MEM_TO_DEV: 1177 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1178 break; 1179 case DMA_DEV_TO_MEM: 1180 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1181 break; 1182 case DMA_MEM_TO_MEM: 1183 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1184 break; 1185 default: 1186 off += 0x40000000; /* Scare off the Client */ 1187 break; 1188 } 1189 1190 return off; 1191 } 1192 1193 /* Returns bytes consumed and updates bursts */ 1194 static inline int _loop(unsigned dry_run, u8 buf[], 1195 unsigned long *bursts, const struct _xfer_spec *pxs) 1196 { 1197 int cyc, cycmax, szlp, szlpend, szbrst, off; 1198 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1199 struct _arg_LPEND lpend; 1200 1201 if (*bursts == 1) 1202 return _bursts(dry_run, buf, pxs, 1); 1203 1204 /* Max iterations possible in DMALP is 256 */ 1205 if (*bursts >= 256*256) { 1206 lcnt1 = 256; 1207 lcnt0 = 256; 1208 cyc = *bursts / lcnt1 / lcnt0; 1209 } else if (*bursts > 256) { 1210 lcnt1 = 256; 1211 lcnt0 = *bursts / lcnt1; 1212 cyc = 1; 1213 } else { 1214 lcnt1 = *bursts; 1215 lcnt0 = 0; 1216 cyc = 1; 1217 } 1218 1219 szlp = _emit_LP(1, buf, 0, 0); 1220 szbrst = _bursts(1, buf, pxs, 1); 1221 1222 lpend.cond = ALWAYS; 1223 lpend.forever = false; 1224 lpend.loop = 0; 1225 lpend.bjump = 0; 1226 szlpend = _emit_LPEND(1, buf, &lpend); 1227 1228 if (lcnt0) { 1229 szlp *= 2; 1230 szlpend *= 2; 1231 } 1232 1233 /* 1234 * Max bursts that we can unroll due to limit on the 1235 * size of backward jump that can be encoded in DMALPEND 1236 * which is 8-bits and hence 255 1237 */ 1238 cycmax = (255 - (szlp + szlpend)) / szbrst; 1239 1240 cyc = (cycmax < cyc) ? cycmax : cyc; 1241 1242 off = 0; 1243 1244 if (lcnt0) { 1245 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1246 ljmp0 = off; 1247 } 1248 1249 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1250 ljmp1 = off; 1251 1252 off += _bursts(dry_run, &buf[off], pxs, cyc); 1253 1254 lpend.cond = ALWAYS; 1255 lpend.forever = false; 1256 lpend.loop = 1; 1257 lpend.bjump = off - ljmp1; 1258 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1259 1260 if (lcnt0) { 1261 lpend.cond = ALWAYS; 1262 lpend.forever = false; 1263 lpend.loop = 0; 1264 lpend.bjump = off - ljmp0; 1265 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1266 } 1267 1268 *bursts = lcnt1 * cyc; 1269 if (lcnt0) 1270 *bursts *= lcnt0; 1271 1272 return off; 1273 } 1274 1275 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1276 const struct _xfer_spec *pxs) 1277 { 1278 struct pl330_xfer *x = &pxs->desc->px; 1279 u32 ccr = pxs->ccr; 1280 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1281 int off = 0; 1282 1283 while (bursts) { 1284 c = bursts; 1285 off += _loop(dry_run, &buf[off], &c, pxs); 1286 bursts -= c; 1287 } 1288 1289 return off; 1290 } 1291 1292 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1293 const struct _xfer_spec *pxs) 1294 { 1295 struct pl330_xfer *x = &pxs->desc->px; 1296 int off = 0; 1297 1298 /* DMAMOV SAR, x->src_addr */ 1299 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1300 /* DMAMOV DAR, x->dst_addr */ 1301 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1302 1303 /* Setup Loop(s) */ 1304 off += _setup_loops(dry_run, &buf[off], pxs); 1305 1306 return off; 1307 } 1308 1309 /* 1310 * A req is a sequence of one or more xfer units. 1311 * Returns the number of bytes taken to setup the MC for the req. 1312 */ 1313 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1314 unsigned index, struct _xfer_spec *pxs) 1315 { 1316 struct _pl330_req *req = &thrd->req[index]; 1317 struct pl330_xfer *x; 1318 u8 *buf = req->mc_cpu; 1319 int off = 0; 1320 1321 PL330_DBGMC_START(req->mc_bus); 1322 1323 /* DMAMOV CCR, ccr */ 1324 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1325 1326 x = &pxs->desc->px; 1327 /* Error if xfer length is not aligned at burst size */ 1328 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1329 return -EINVAL; 1330 1331 off += _setup_xfer(dry_run, &buf[off], pxs); 1332 1333 /* DMASEV peripheral/event */ 1334 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1335 /* DMAEND */ 1336 off += _emit_END(dry_run, &buf[off]); 1337 1338 return off; 1339 } 1340 1341 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1342 { 1343 u32 ccr = 0; 1344 1345 if (rqc->src_inc) 1346 ccr |= CC_SRCINC; 1347 1348 if (rqc->dst_inc) 1349 ccr |= CC_DSTINC; 1350 1351 /* We set same protection levels for Src and DST for now */ 1352 if (rqc->privileged) 1353 ccr |= CC_SRCPRI | CC_DSTPRI; 1354 if (rqc->nonsecure) 1355 ccr |= CC_SRCNS | CC_DSTNS; 1356 if (rqc->insnaccess) 1357 ccr |= CC_SRCIA | CC_DSTIA; 1358 1359 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1360 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1361 1362 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1363 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1364 1365 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1366 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1367 1368 ccr |= (rqc->swap << CC_SWAP_SHFT); 1369 1370 return ccr; 1371 } 1372 1373 /* 1374 * Submit a list of xfers after which the client wants notification. 1375 * Client is not notified after each xfer unit, just once after all 1376 * xfer units are done or some error occurs. 1377 */ 1378 static int pl330_submit_req(struct pl330_thread *thrd, 1379 struct dma_pl330_desc *desc) 1380 { 1381 struct pl330_dmac *pl330 = thrd->dmac; 1382 struct _xfer_spec xs; 1383 unsigned long flags; 1384 unsigned idx; 1385 u32 ccr; 1386 int ret = 0; 1387 1388 if (pl330->state == DYING 1389 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1390 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1391 __func__, __LINE__); 1392 return -EAGAIN; 1393 } 1394 1395 /* If request for non-existing peripheral */ 1396 if (desc->rqtype != DMA_MEM_TO_MEM && 1397 desc->peri >= pl330->pcfg.num_peri) { 1398 dev_info(thrd->dmac->ddma.dev, 1399 "%s:%d Invalid peripheral(%u)!\n", 1400 __func__, __LINE__, desc->peri); 1401 return -EINVAL; 1402 } 1403 1404 spin_lock_irqsave(&pl330->lock, flags); 1405 1406 if (_queue_full(thrd)) { 1407 ret = -EAGAIN; 1408 goto xfer_exit; 1409 } 1410 1411 /* Prefer Secure Channel */ 1412 if (!_manager_ns(thrd)) 1413 desc->rqcfg.nonsecure = 0; 1414 else 1415 desc->rqcfg.nonsecure = 1; 1416 1417 ccr = _prepare_ccr(&desc->rqcfg); 1418 1419 idx = thrd->req[0].desc == NULL ? 0 : 1; 1420 1421 xs.ccr = ccr; 1422 xs.desc = desc; 1423 1424 /* First dry run to check if req is acceptable */ 1425 ret = _setup_req(1, thrd, idx, &xs); 1426 if (ret < 0) 1427 goto xfer_exit; 1428 1429 if (ret > pl330->mcbufsz / 2) { 1430 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1431 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1432 ret = -ENOMEM; 1433 goto xfer_exit; 1434 } 1435 1436 /* Hook the request */ 1437 thrd->lstenq = idx; 1438 thrd->req[idx].desc = desc; 1439 _setup_req(0, thrd, idx, &xs); 1440 1441 ret = 0; 1442 1443 xfer_exit: 1444 spin_unlock_irqrestore(&pl330->lock, flags); 1445 1446 return ret; 1447 } 1448 1449 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1450 { 1451 struct dma_pl330_chan *pch; 1452 unsigned long flags; 1453 1454 if (!desc) 1455 return; 1456 1457 pch = desc->pchan; 1458 1459 /* If desc aborted */ 1460 if (!pch) 1461 return; 1462 1463 spin_lock_irqsave(&pch->lock, flags); 1464 1465 desc->status = DONE; 1466 1467 spin_unlock_irqrestore(&pch->lock, flags); 1468 1469 tasklet_schedule(&pch->task); 1470 } 1471 1472 static void pl330_dotask(unsigned long data) 1473 { 1474 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1475 unsigned long flags; 1476 int i; 1477 1478 spin_lock_irqsave(&pl330->lock, flags); 1479 1480 /* The DMAC itself gone nuts */ 1481 if (pl330->dmac_tbd.reset_dmac) { 1482 pl330->state = DYING; 1483 /* Reset the manager too */ 1484 pl330->dmac_tbd.reset_mngr = true; 1485 /* Clear the reset flag */ 1486 pl330->dmac_tbd.reset_dmac = false; 1487 } 1488 1489 if (pl330->dmac_tbd.reset_mngr) { 1490 _stop(pl330->manager); 1491 /* Reset all channels */ 1492 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1493 /* Clear the reset flag */ 1494 pl330->dmac_tbd.reset_mngr = false; 1495 } 1496 1497 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1498 1499 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1500 struct pl330_thread *thrd = &pl330->channels[i]; 1501 void __iomem *regs = pl330->base; 1502 enum pl330_op_err err; 1503 1504 _stop(thrd); 1505 1506 if (readl(regs + FSC) & (1 << thrd->id)) 1507 err = PL330_ERR_FAIL; 1508 else 1509 err = PL330_ERR_ABORT; 1510 1511 spin_unlock_irqrestore(&pl330->lock, flags); 1512 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1513 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1514 spin_lock_irqsave(&pl330->lock, flags); 1515 1516 thrd->req[0].desc = NULL; 1517 thrd->req[1].desc = NULL; 1518 thrd->req_running = -1; 1519 1520 /* Clear the reset flag */ 1521 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1522 } 1523 } 1524 1525 spin_unlock_irqrestore(&pl330->lock, flags); 1526 1527 return; 1528 } 1529 1530 /* Returns 1 if state was updated, 0 otherwise */ 1531 static int pl330_update(struct pl330_dmac *pl330) 1532 { 1533 struct dma_pl330_desc *descdone, *tmp; 1534 unsigned long flags; 1535 void __iomem *regs; 1536 u32 val; 1537 int id, ev, ret = 0; 1538 1539 regs = pl330->base; 1540 1541 spin_lock_irqsave(&pl330->lock, flags); 1542 1543 val = readl(regs + FSM) & 0x1; 1544 if (val) 1545 pl330->dmac_tbd.reset_mngr = true; 1546 else 1547 pl330->dmac_tbd.reset_mngr = false; 1548 1549 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1550 pl330->dmac_tbd.reset_chan |= val; 1551 if (val) { 1552 int i = 0; 1553 while (i < pl330->pcfg.num_chan) { 1554 if (val & (1 << i)) { 1555 dev_info(pl330->ddma.dev, 1556 "Reset Channel-%d\t CS-%x FTC-%x\n", 1557 i, readl(regs + CS(i)), 1558 readl(regs + FTC(i))); 1559 _stop(&pl330->channels[i]); 1560 } 1561 i++; 1562 } 1563 } 1564 1565 /* Check which event happened i.e, thread notified */ 1566 val = readl(regs + ES); 1567 if (pl330->pcfg.num_events < 32 1568 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1569 pl330->dmac_tbd.reset_dmac = true; 1570 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1571 __LINE__); 1572 ret = 1; 1573 goto updt_exit; 1574 } 1575 1576 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1577 if (val & (1 << ev)) { /* Event occurred */ 1578 struct pl330_thread *thrd; 1579 u32 inten = readl(regs + INTEN); 1580 int active; 1581 1582 /* Clear the event */ 1583 if (inten & (1 << ev)) 1584 writel(1 << ev, regs + INTCLR); 1585 1586 ret = 1; 1587 1588 id = pl330->events[ev]; 1589 1590 thrd = &pl330->channels[id]; 1591 1592 active = thrd->req_running; 1593 if (active == -1) /* Aborted */ 1594 continue; 1595 1596 /* Detach the req */ 1597 descdone = thrd->req[active].desc; 1598 thrd->req[active].desc = NULL; 1599 1600 thrd->req_running = -1; 1601 1602 /* Get going again ASAP */ 1603 _start(thrd); 1604 1605 /* For now, just make a list of callbacks to be done */ 1606 list_add_tail(&descdone->rqd, &pl330->req_done); 1607 } 1608 } 1609 1610 /* Now that we are in no hurry, do the callbacks */ 1611 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) { 1612 list_del(&descdone->rqd); 1613 spin_unlock_irqrestore(&pl330->lock, flags); 1614 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1615 spin_lock_irqsave(&pl330->lock, flags); 1616 } 1617 1618 updt_exit: 1619 spin_unlock_irqrestore(&pl330->lock, flags); 1620 1621 if (pl330->dmac_tbd.reset_dmac 1622 || pl330->dmac_tbd.reset_mngr 1623 || pl330->dmac_tbd.reset_chan) { 1624 ret = 1; 1625 tasklet_schedule(&pl330->tasks); 1626 } 1627 1628 return ret; 1629 } 1630 1631 /* Reserve an event */ 1632 static inline int _alloc_event(struct pl330_thread *thrd) 1633 { 1634 struct pl330_dmac *pl330 = thrd->dmac; 1635 int ev; 1636 1637 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1638 if (pl330->events[ev] == -1) { 1639 pl330->events[ev] = thrd->id; 1640 return ev; 1641 } 1642 1643 return -1; 1644 } 1645 1646 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1647 { 1648 return pl330->pcfg.irq_ns & (1 << i); 1649 } 1650 1651 /* Upon success, returns IdentityToken for the 1652 * allocated channel, NULL otherwise. 1653 */ 1654 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1655 { 1656 struct pl330_thread *thrd = NULL; 1657 unsigned long flags; 1658 int chans, i; 1659 1660 if (pl330->state == DYING) 1661 return NULL; 1662 1663 chans = pl330->pcfg.num_chan; 1664 1665 spin_lock_irqsave(&pl330->lock, flags); 1666 1667 for (i = 0; i < chans; i++) { 1668 thrd = &pl330->channels[i]; 1669 if ((thrd->free) && (!_manager_ns(thrd) || 1670 _chan_ns(pl330, i))) { 1671 thrd->ev = _alloc_event(thrd); 1672 if (thrd->ev >= 0) { 1673 thrd->free = false; 1674 thrd->lstenq = 1; 1675 thrd->req[0].desc = NULL; 1676 thrd->req[1].desc = NULL; 1677 thrd->req_running = -1; 1678 break; 1679 } 1680 } 1681 thrd = NULL; 1682 } 1683 1684 spin_unlock_irqrestore(&pl330->lock, flags); 1685 1686 return thrd; 1687 } 1688 1689 /* Release an event */ 1690 static inline void _free_event(struct pl330_thread *thrd, int ev) 1691 { 1692 struct pl330_dmac *pl330 = thrd->dmac; 1693 1694 /* If the event is valid and was held by the thread */ 1695 if (ev >= 0 && ev < pl330->pcfg.num_events 1696 && pl330->events[ev] == thrd->id) 1697 pl330->events[ev] = -1; 1698 } 1699 1700 static void pl330_release_channel(struct pl330_thread *thrd) 1701 { 1702 struct pl330_dmac *pl330; 1703 unsigned long flags; 1704 1705 if (!thrd || thrd->free) 1706 return; 1707 1708 _stop(thrd); 1709 1710 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1711 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1712 1713 pl330 = thrd->dmac; 1714 1715 spin_lock_irqsave(&pl330->lock, flags); 1716 _free_event(thrd, thrd->ev); 1717 thrd->free = true; 1718 spin_unlock_irqrestore(&pl330->lock, flags); 1719 } 1720 1721 /* Initialize the structure for PL330 configuration, that can be used 1722 * by the client driver the make best use of the DMAC 1723 */ 1724 static void read_dmac_config(struct pl330_dmac *pl330) 1725 { 1726 void __iomem *regs = pl330->base; 1727 u32 val; 1728 1729 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1730 val &= CRD_DATA_WIDTH_MASK; 1731 pl330->pcfg.data_bus_width = 8 * (1 << val); 1732 1733 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1734 val &= CRD_DATA_BUFF_MASK; 1735 pl330->pcfg.data_buf_dep = val + 1; 1736 1737 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1738 val &= CR0_NUM_CHANS_MASK; 1739 val += 1; 1740 pl330->pcfg.num_chan = val; 1741 1742 val = readl(regs + CR0); 1743 if (val & CR0_PERIPH_REQ_SET) { 1744 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1745 val += 1; 1746 pl330->pcfg.num_peri = val; 1747 pl330->pcfg.peri_ns = readl(regs + CR4); 1748 } else { 1749 pl330->pcfg.num_peri = 0; 1750 } 1751 1752 val = readl(regs + CR0); 1753 if (val & CR0_BOOT_MAN_NS) 1754 pl330->pcfg.mode |= DMAC_MODE_NS; 1755 else 1756 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1757 1758 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1759 val &= CR0_NUM_EVENTS_MASK; 1760 val += 1; 1761 pl330->pcfg.num_events = val; 1762 1763 pl330->pcfg.irq_ns = readl(regs + CR3); 1764 } 1765 1766 static inline void _reset_thread(struct pl330_thread *thrd) 1767 { 1768 struct pl330_dmac *pl330 = thrd->dmac; 1769 1770 thrd->req[0].mc_cpu = pl330->mcode_cpu 1771 + (thrd->id * pl330->mcbufsz); 1772 thrd->req[0].mc_bus = pl330->mcode_bus 1773 + (thrd->id * pl330->mcbufsz); 1774 thrd->req[0].desc = NULL; 1775 1776 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1777 + pl330->mcbufsz / 2; 1778 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1779 + pl330->mcbufsz / 2; 1780 thrd->req[1].desc = NULL; 1781 1782 thrd->req_running = -1; 1783 } 1784 1785 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1786 { 1787 int chans = pl330->pcfg.num_chan; 1788 struct pl330_thread *thrd; 1789 int i; 1790 1791 /* Allocate 1 Manager and 'chans' Channel threads */ 1792 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1793 GFP_KERNEL); 1794 if (!pl330->channels) 1795 return -ENOMEM; 1796 1797 /* Init Channel threads */ 1798 for (i = 0; i < chans; i++) { 1799 thrd = &pl330->channels[i]; 1800 thrd->id = i; 1801 thrd->dmac = pl330; 1802 _reset_thread(thrd); 1803 thrd->free = true; 1804 } 1805 1806 /* MANAGER is indexed at the end */ 1807 thrd = &pl330->channels[chans]; 1808 thrd->id = chans; 1809 thrd->dmac = pl330; 1810 thrd->free = false; 1811 pl330->manager = thrd; 1812 1813 return 0; 1814 } 1815 1816 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1817 { 1818 int chans = pl330->pcfg.num_chan; 1819 int ret; 1820 1821 /* 1822 * Alloc MicroCode buffer for 'chans' Channel threads. 1823 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1824 */ 1825 pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev, 1826 chans * pl330->mcbufsz, 1827 &pl330->mcode_bus, GFP_KERNEL); 1828 if (!pl330->mcode_cpu) { 1829 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1830 __func__, __LINE__); 1831 return -ENOMEM; 1832 } 1833 1834 ret = dmac_alloc_threads(pl330); 1835 if (ret) { 1836 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1837 __func__, __LINE__); 1838 dma_free_coherent(pl330->ddma.dev, 1839 chans * pl330->mcbufsz, 1840 pl330->mcode_cpu, pl330->mcode_bus); 1841 return ret; 1842 } 1843 1844 return 0; 1845 } 1846 1847 static int pl330_add(struct pl330_dmac *pl330) 1848 { 1849 void __iomem *regs; 1850 int i, ret; 1851 1852 regs = pl330->base; 1853 1854 /* Check if we can handle this DMAC */ 1855 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1856 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1857 pl330->pcfg.periph_id); 1858 return -EINVAL; 1859 } 1860 1861 /* Read the configuration of the DMAC */ 1862 read_dmac_config(pl330); 1863 1864 if (pl330->pcfg.num_events == 0) { 1865 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1866 __func__, __LINE__); 1867 return -EINVAL; 1868 } 1869 1870 spin_lock_init(&pl330->lock); 1871 1872 INIT_LIST_HEAD(&pl330->req_done); 1873 1874 /* Use default MC buffer size if not provided */ 1875 if (!pl330->mcbufsz) 1876 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1877 1878 /* Mark all events as free */ 1879 for (i = 0; i < pl330->pcfg.num_events; i++) 1880 pl330->events[i] = -1; 1881 1882 /* Allocate resources needed by the DMAC */ 1883 ret = dmac_alloc_resources(pl330); 1884 if (ret) { 1885 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1886 return ret; 1887 } 1888 1889 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1890 1891 pl330->state = INIT; 1892 1893 return 0; 1894 } 1895 1896 static int dmac_free_threads(struct pl330_dmac *pl330) 1897 { 1898 struct pl330_thread *thrd; 1899 int i; 1900 1901 /* Release Channel threads */ 1902 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1903 thrd = &pl330->channels[i]; 1904 pl330_release_channel(thrd); 1905 } 1906 1907 /* Free memory */ 1908 kfree(pl330->channels); 1909 1910 return 0; 1911 } 1912 1913 static void pl330_del(struct pl330_dmac *pl330) 1914 { 1915 pl330->state = UNINIT; 1916 1917 tasklet_kill(&pl330->tasks); 1918 1919 /* Free DMAC resources */ 1920 dmac_free_threads(pl330); 1921 1922 dma_free_coherent(pl330->ddma.dev, 1923 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1924 pl330->mcode_bus); 1925 } 1926 1927 /* forward declaration */ 1928 static struct amba_driver pl330_driver; 1929 1930 static inline struct dma_pl330_chan * 1931 to_pchan(struct dma_chan *ch) 1932 { 1933 if (!ch) 1934 return NULL; 1935 1936 return container_of(ch, struct dma_pl330_chan, chan); 1937 } 1938 1939 static inline struct dma_pl330_desc * 1940 to_desc(struct dma_async_tx_descriptor *tx) 1941 { 1942 return container_of(tx, struct dma_pl330_desc, txd); 1943 } 1944 1945 static inline void fill_queue(struct dma_pl330_chan *pch) 1946 { 1947 struct dma_pl330_desc *desc; 1948 int ret; 1949 1950 list_for_each_entry(desc, &pch->work_list, node) { 1951 1952 /* If already submitted */ 1953 if (desc->status == BUSY) 1954 continue; 1955 1956 ret = pl330_submit_req(pch->thread, desc); 1957 if (!ret) { 1958 desc->status = BUSY; 1959 } else if (ret == -EAGAIN) { 1960 /* QFull or DMAC Dying */ 1961 break; 1962 } else { 1963 /* Unacceptable request */ 1964 desc->status = DONE; 1965 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 1966 __func__, __LINE__, desc->txd.cookie); 1967 tasklet_schedule(&pch->task); 1968 } 1969 } 1970 } 1971 1972 static void pl330_tasklet(unsigned long data) 1973 { 1974 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 1975 struct dma_pl330_desc *desc, *_dt; 1976 unsigned long flags; 1977 bool power_down = false; 1978 1979 spin_lock_irqsave(&pch->lock, flags); 1980 1981 /* Pick up ripe tomatoes */ 1982 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 1983 if (desc->status == DONE) { 1984 if (!pch->cyclic) 1985 dma_cookie_complete(&desc->txd); 1986 list_move_tail(&desc->node, &pch->completed_list); 1987 } 1988 1989 /* Try to submit a req imm. next to the last completed cookie */ 1990 fill_queue(pch); 1991 1992 if (list_empty(&pch->work_list)) { 1993 spin_lock(&pch->thread->dmac->lock); 1994 _stop(pch->thread); 1995 spin_unlock(&pch->thread->dmac->lock); 1996 power_down = true; 1997 } else { 1998 /* Make sure the PL330 Channel thread is active */ 1999 spin_lock(&pch->thread->dmac->lock); 2000 _start(pch->thread); 2001 spin_unlock(&pch->thread->dmac->lock); 2002 } 2003 2004 while (!list_empty(&pch->completed_list)) { 2005 dma_async_tx_callback callback; 2006 void *callback_param; 2007 2008 desc = list_first_entry(&pch->completed_list, 2009 struct dma_pl330_desc, node); 2010 2011 callback = desc->txd.callback; 2012 callback_param = desc->txd.callback_param; 2013 2014 if (pch->cyclic) { 2015 desc->status = PREP; 2016 list_move_tail(&desc->node, &pch->work_list); 2017 if (power_down) { 2018 spin_lock(&pch->thread->dmac->lock); 2019 _start(pch->thread); 2020 spin_unlock(&pch->thread->dmac->lock); 2021 power_down = false; 2022 } 2023 } else { 2024 desc->status = FREE; 2025 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2026 } 2027 2028 dma_descriptor_unmap(&desc->txd); 2029 2030 if (callback) { 2031 spin_unlock_irqrestore(&pch->lock, flags); 2032 callback(callback_param); 2033 spin_lock_irqsave(&pch->lock, flags); 2034 } 2035 } 2036 spin_unlock_irqrestore(&pch->lock, flags); 2037 2038 /* If work list empty, power down */ 2039 if (power_down) { 2040 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2041 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2042 } 2043 } 2044 2045 bool pl330_filter(struct dma_chan *chan, void *param) 2046 { 2047 u8 *peri_id; 2048 2049 if (chan->device->dev->driver != &pl330_driver.drv) 2050 return false; 2051 2052 peri_id = chan->private; 2053 return *peri_id == (unsigned long)param; 2054 } 2055 EXPORT_SYMBOL(pl330_filter); 2056 2057 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2058 struct of_dma *ofdma) 2059 { 2060 int count = dma_spec->args_count; 2061 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2062 unsigned int chan_id; 2063 2064 if (!pl330) 2065 return NULL; 2066 2067 if (count != 1) 2068 return NULL; 2069 2070 chan_id = dma_spec->args[0]; 2071 if (chan_id >= pl330->num_peripherals) 2072 return NULL; 2073 2074 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2075 } 2076 2077 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2078 { 2079 struct dma_pl330_chan *pch = to_pchan(chan); 2080 struct pl330_dmac *pl330 = pch->dmac; 2081 unsigned long flags; 2082 2083 spin_lock_irqsave(&pch->lock, flags); 2084 2085 dma_cookie_init(chan); 2086 pch->cyclic = false; 2087 2088 pch->thread = pl330_request_channel(pl330); 2089 if (!pch->thread) { 2090 spin_unlock_irqrestore(&pch->lock, flags); 2091 return -ENOMEM; 2092 } 2093 2094 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2095 2096 spin_unlock_irqrestore(&pch->lock, flags); 2097 2098 return 1; 2099 } 2100 2101 static int pl330_config(struct dma_chan *chan, 2102 struct dma_slave_config *slave_config) 2103 { 2104 struct dma_pl330_chan *pch = to_pchan(chan); 2105 2106 if (slave_config->direction == DMA_MEM_TO_DEV) { 2107 if (slave_config->dst_addr) 2108 pch->fifo_addr = slave_config->dst_addr; 2109 if (slave_config->dst_addr_width) 2110 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2111 if (slave_config->dst_maxburst) 2112 pch->burst_len = slave_config->dst_maxburst; 2113 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2114 if (slave_config->src_addr) 2115 pch->fifo_addr = slave_config->src_addr; 2116 if (slave_config->src_addr_width) 2117 pch->burst_sz = __ffs(slave_config->src_addr_width); 2118 if (slave_config->src_maxburst) 2119 pch->burst_len = slave_config->src_maxburst; 2120 } 2121 2122 return 0; 2123 } 2124 2125 static int pl330_terminate_all(struct dma_chan *chan) 2126 { 2127 struct dma_pl330_chan *pch = to_pchan(chan); 2128 struct dma_pl330_desc *desc; 2129 unsigned long flags; 2130 struct pl330_dmac *pl330 = pch->dmac; 2131 LIST_HEAD(list); 2132 2133 pm_runtime_get_sync(pl330->ddma.dev); 2134 spin_lock_irqsave(&pch->lock, flags); 2135 spin_lock(&pl330->lock); 2136 _stop(pch->thread); 2137 spin_unlock(&pl330->lock); 2138 2139 pch->thread->req[0].desc = NULL; 2140 pch->thread->req[1].desc = NULL; 2141 pch->thread->req_running = -1; 2142 2143 /* Mark all desc done */ 2144 list_for_each_entry(desc, &pch->submitted_list, node) { 2145 desc->status = FREE; 2146 dma_cookie_complete(&desc->txd); 2147 } 2148 2149 list_for_each_entry(desc, &pch->work_list , node) { 2150 desc->status = FREE; 2151 dma_cookie_complete(&desc->txd); 2152 } 2153 2154 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2155 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2156 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2157 spin_unlock_irqrestore(&pch->lock, flags); 2158 pm_runtime_mark_last_busy(pl330->ddma.dev); 2159 pm_runtime_put_autosuspend(pl330->ddma.dev); 2160 2161 return 0; 2162 } 2163 2164 /* 2165 * We don't support DMA_RESUME command because of hardware 2166 * limitations, so after pausing the channel we cannot restore 2167 * it to active state. We have to terminate channel and setup 2168 * DMA transfer again. This pause feature was implemented to 2169 * allow safely read residue before channel termination. 2170 */ 2171 static int pl330_pause(struct dma_chan *chan) 2172 { 2173 struct dma_pl330_chan *pch = to_pchan(chan); 2174 struct pl330_dmac *pl330 = pch->dmac; 2175 unsigned long flags; 2176 2177 pm_runtime_get_sync(pl330->ddma.dev); 2178 spin_lock_irqsave(&pch->lock, flags); 2179 2180 spin_lock(&pl330->lock); 2181 _stop(pch->thread); 2182 spin_unlock(&pl330->lock); 2183 2184 spin_unlock_irqrestore(&pch->lock, flags); 2185 pm_runtime_mark_last_busy(pl330->ddma.dev); 2186 pm_runtime_put_autosuspend(pl330->ddma.dev); 2187 2188 return 0; 2189 } 2190 2191 static void pl330_free_chan_resources(struct dma_chan *chan) 2192 { 2193 struct dma_pl330_chan *pch = to_pchan(chan); 2194 unsigned long flags; 2195 2196 tasklet_kill(&pch->task); 2197 2198 pm_runtime_get_sync(pch->dmac->ddma.dev); 2199 spin_lock_irqsave(&pch->lock, flags); 2200 2201 pl330_release_channel(pch->thread); 2202 pch->thread = NULL; 2203 2204 if (pch->cyclic) 2205 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2206 2207 spin_unlock_irqrestore(&pch->lock, flags); 2208 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2209 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2210 } 2211 2212 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2213 struct dma_pl330_desc *desc) 2214 { 2215 struct pl330_thread *thrd = pch->thread; 2216 struct pl330_dmac *pl330 = pch->dmac; 2217 void __iomem *regs = thrd->dmac->base; 2218 u32 val, addr; 2219 2220 pm_runtime_get_sync(pl330->ddma.dev); 2221 val = addr = 0; 2222 if (desc->rqcfg.src_inc) { 2223 val = readl(regs + SA(thrd->id)); 2224 addr = desc->px.src_addr; 2225 } else { 2226 val = readl(regs + DA(thrd->id)); 2227 addr = desc->px.dst_addr; 2228 } 2229 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2230 pm_runtime_put_autosuspend(pl330->ddma.dev); 2231 return val - addr; 2232 } 2233 2234 static enum dma_status 2235 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2236 struct dma_tx_state *txstate) 2237 { 2238 enum dma_status ret; 2239 unsigned long flags; 2240 struct dma_pl330_desc *desc, *running = NULL; 2241 struct dma_pl330_chan *pch = to_pchan(chan); 2242 unsigned int transferred, residual = 0; 2243 2244 ret = dma_cookie_status(chan, cookie, txstate); 2245 2246 if (!txstate) 2247 return ret; 2248 2249 if (ret == DMA_COMPLETE) 2250 goto out; 2251 2252 spin_lock_irqsave(&pch->lock, flags); 2253 2254 if (pch->thread->req_running != -1) 2255 running = pch->thread->req[pch->thread->req_running].desc; 2256 2257 /* Check in pending list */ 2258 list_for_each_entry(desc, &pch->work_list, node) { 2259 if (desc->status == DONE) 2260 transferred = desc->bytes_requested; 2261 else if (running && desc == running) 2262 transferred = 2263 pl330_get_current_xferred_count(pch, desc); 2264 else 2265 transferred = 0; 2266 residual += desc->bytes_requested - transferred; 2267 if (desc->txd.cookie == cookie) { 2268 switch (desc->status) { 2269 case DONE: 2270 ret = DMA_COMPLETE; 2271 break; 2272 case PREP: 2273 case BUSY: 2274 ret = DMA_IN_PROGRESS; 2275 break; 2276 default: 2277 WARN_ON(1); 2278 } 2279 break; 2280 } 2281 if (desc->last) 2282 residual = 0; 2283 } 2284 spin_unlock_irqrestore(&pch->lock, flags); 2285 2286 out: 2287 dma_set_residue(txstate, residual); 2288 2289 return ret; 2290 } 2291 2292 static void pl330_issue_pending(struct dma_chan *chan) 2293 { 2294 struct dma_pl330_chan *pch = to_pchan(chan); 2295 unsigned long flags; 2296 2297 spin_lock_irqsave(&pch->lock, flags); 2298 if (list_empty(&pch->work_list)) { 2299 /* 2300 * Warn on nothing pending. Empty submitted_list may 2301 * break our pm_runtime usage counter as it is 2302 * updated on work_list emptiness status. 2303 */ 2304 WARN_ON(list_empty(&pch->submitted_list)); 2305 pm_runtime_get_sync(pch->dmac->ddma.dev); 2306 } 2307 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2308 spin_unlock_irqrestore(&pch->lock, flags); 2309 2310 pl330_tasklet((unsigned long)pch); 2311 } 2312 2313 /* 2314 * We returned the last one of the circular list of descriptor(s) 2315 * from prep_xxx, so the argument to submit corresponds to the last 2316 * descriptor of the list. 2317 */ 2318 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2319 { 2320 struct dma_pl330_desc *desc, *last = to_desc(tx); 2321 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2322 dma_cookie_t cookie; 2323 unsigned long flags; 2324 2325 spin_lock_irqsave(&pch->lock, flags); 2326 2327 /* Assign cookies to all nodes */ 2328 while (!list_empty(&last->node)) { 2329 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2330 if (pch->cyclic) { 2331 desc->txd.callback = last->txd.callback; 2332 desc->txd.callback_param = last->txd.callback_param; 2333 } 2334 desc->last = false; 2335 2336 dma_cookie_assign(&desc->txd); 2337 2338 list_move_tail(&desc->node, &pch->submitted_list); 2339 } 2340 2341 last->last = true; 2342 cookie = dma_cookie_assign(&last->txd); 2343 list_add_tail(&last->node, &pch->submitted_list); 2344 spin_unlock_irqrestore(&pch->lock, flags); 2345 2346 return cookie; 2347 } 2348 2349 static inline void _init_desc(struct dma_pl330_desc *desc) 2350 { 2351 desc->rqcfg.swap = SWAP_NO; 2352 desc->rqcfg.scctl = CCTRL0; 2353 desc->rqcfg.dcctl = CCTRL0; 2354 desc->txd.tx_submit = pl330_tx_submit; 2355 2356 INIT_LIST_HEAD(&desc->node); 2357 } 2358 2359 /* Returns the number of descriptors added to the DMAC pool */ 2360 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count) 2361 { 2362 struct dma_pl330_desc *desc; 2363 unsigned long flags; 2364 int i; 2365 2366 desc = kcalloc(count, sizeof(*desc), flg); 2367 if (!desc) 2368 return 0; 2369 2370 spin_lock_irqsave(&pl330->pool_lock, flags); 2371 2372 for (i = 0; i < count; i++) { 2373 _init_desc(&desc[i]); 2374 list_add_tail(&desc[i].node, &pl330->desc_pool); 2375 } 2376 2377 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2378 2379 return count; 2380 } 2381 2382 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330) 2383 { 2384 struct dma_pl330_desc *desc = NULL; 2385 unsigned long flags; 2386 2387 spin_lock_irqsave(&pl330->pool_lock, flags); 2388 2389 if (!list_empty(&pl330->desc_pool)) { 2390 desc = list_entry(pl330->desc_pool.next, 2391 struct dma_pl330_desc, node); 2392 2393 list_del_init(&desc->node); 2394 2395 desc->status = PREP; 2396 desc->txd.callback = NULL; 2397 } 2398 2399 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2400 2401 return desc; 2402 } 2403 2404 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2405 { 2406 struct pl330_dmac *pl330 = pch->dmac; 2407 u8 *peri_id = pch->chan.private; 2408 struct dma_pl330_desc *desc; 2409 2410 /* Pluck one desc from the pool of DMAC */ 2411 desc = pluck_desc(pl330); 2412 2413 /* If the DMAC pool is empty, alloc new */ 2414 if (!desc) { 2415 if (!add_desc(pl330, GFP_ATOMIC, 1)) 2416 return NULL; 2417 2418 /* Try again */ 2419 desc = pluck_desc(pl330); 2420 if (!desc) { 2421 dev_err(pch->dmac->ddma.dev, 2422 "%s:%d ALERT!\n", __func__, __LINE__); 2423 return NULL; 2424 } 2425 } 2426 2427 /* Initialize the descriptor */ 2428 desc->pchan = pch; 2429 desc->txd.cookie = 0; 2430 async_tx_ack(&desc->txd); 2431 2432 desc->peri = peri_id ? pch->chan.chan_id : 0; 2433 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2434 2435 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2436 2437 return desc; 2438 } 2439 2440 static inline void fill_px(struct pl330_xfer *px, 2441 dma_addr_t dst, dma_addr_t src, size_t len) 2442 { 2443 px->bytes = len; 2444 px->dst_addr = dst; 2445 px->src_addr = src; 2446 } 2447 2448 static struct dma_pl330_desc * 2449 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2450 dma_addr_t src, size_t len) 2451 { 2452 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2453 2454 if (!desc) { 2455 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2456 __func__, __LINE__); 2457 return NULL; 2458 } 2459 2460 /* 2461 * Ideally we should lookout for reqs bigger than 2462 * those that can be programmed with 256 bytes of 2463 * MC buffer, but considering a req size is seldom 2464 * going to be word-unaligned and more than 200MB, 2465 * we take it easy. 2466 * Also, should the limit is reached we'd rather 2467 * have the platform increase MC buffer size than 2468 * complicating this API driver. 2469 */ 2470 fill_px(&desc->px, dst, src, len); 2471 2472 return desc; 2473 } 2474 2475 /* Call after fixing burst size */ 2476 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2477 { 2478 struct dma_pl330_chan *pch = desc->pchan; 2479 struct pl330_dmac *pl330 = pch->dmac; 2480 int burst_len; 2481 2482 burst_len = pl330->pcfg.data_bus_width / 8; 2483 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2484 burst_len >>= desc->rqcfg.brst_size; 2485 2486 /* src/dst_burst_len can't be more than 16 */ 2487 if (burst_len > 16) 2488 burst_len = 16; 2489 2490 while (burst_len > 1) { 2491 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2492 break; 2493 burst_len--; 2494 } 2495 2496 return burst_len; 2497 } 2498 2499 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2500 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2501 size_t period_len, enum dma_transfer_direction direction, 2502 unsigned long flags) 2503 { 2504 struct dma_pl330_desc *desc = NULL, *first = NULL; 2505 struct dma_pl330_chan *pch = to_pchan(chan); 2506 struct pl330_dmac *pl330 = pch->dmac; 2507 unsigned int i; 2508 dma_addr_t dst; 2509 dma_addr_t src; 2510 2511 if (len % period_len != 0) 2512 return NULL; 2513 2514 if (!is_slave_direction(direction)) { 2515 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2516 __func__, __LINE__); 2517 return NULL; 2518 } 2519 2520 for (i = 0; i < len / period_len; i++) { 2521 desc = pl330_get_desc(pch); 2522 if (!desc) { 2523 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2524 __func__, __LINE__); 2525 2526 if (!first) 2527 return NULL; 2528 2529 spin_lock_irqsave(&pl330->pool_lock, flags); 2530 2531 while (!list_empty(&first->node)) { 2532 desc = list_entry(first->node.next, 2533 struct dma_pl330_desc, node); 2534 list_move_tail(&desc->node, &pl330->desc_pool); 2535 } 2536 2537 list_move_tail(&first->node, &pl330->desc_pool); 2538 2539 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2540 2541 return NULL; 2542 } 2543 2544 switch (direction) { 2545 case DMA_MEM_TO_DEV: 2546 desc->rqcfg.src_inc = 1; 2547 desc->rqcfg.dst_inc = 0; 2548 src = dma_addr; 2549 dst = pch->fifo_addr; 2550 break; 2551 case DMA_DEV_TO_MEM: 2552 desc->rqcfg.src_inc = 0; 2553 desc->rqcfg.dst_inc = 1; 2554 src = pch->fifo_addr; 2555 dst = dma_addr; 2556 break; 2557 default: 2558 break; 2559 } 2560 2561 desc->rqtype = direction; 2562 desc->rqcfg.brst_size = pch->burst_sz; 2563 desc->rqcfg.brst_len = 1; 2564 desc->bytes_requested = period_len; 2565 fill_px(&desc->px, dst, src, period_len); 2566 2567 if (!first) 2568 first = desc; 2569 else 2570 list_add_tail(&desc->node, &first->node); 2571 2572 dma_addr += period_len; 2573 } 2574 2575 if (!desc) 2576 return NULL; 2577 2578 pch->cyclic = true; 2579 desc->txd.flags = flags; 2580 2581 return &desc->txd; 2582 } 2583 2584 static struct dma_async_tx_descriptor * 2585 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2586 dma_addr_t src, size_t len, unsigned long flags) 2587 { 2588 struct dma_pl330_desc *desc; 2589 struct dma_pl330_chan *pch = to_pchan(chan); 2590 struct pl330_dmac *pl330; 2591 int burst; 2592 2593 if (unlikely(!pch || !len)) 2594 return NULL; 2595 2596 pl330 = pch->dmac; 2597 2598 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2599 if (!desc) 2600 return NULL; 2601 2602 desc->rqcfg.src_inc = 1; 2603 desc->rqcfg.dst_inc = 1; 2604 desc->rqtype = DMA_MEM_TO_MEM; 2605 2606 /* Select max possible burst size */ 2607 burst = pl330->pcfg.data_bus_width / 8; 2608 2609 /* 2610 * Make sure we use a burst size that aligns with all the memcpy 2611 * parameters because our DMA programming algorithm doesn't cope with 2612 * transfers which straddle an entry in the DMA device's MFIFO. 2613 */ 2614 while ((src | dst | len) & (burst - 1)) 2615 burst /= 2; 2616 2617 desc->rqcfg.brst_size = 0; 2618 while (burst != (1 << desc->rqcfg.brst_size)) 2619 desc->rqcfg.brst_size++; 2620 2621 /* 2622 * If burst size is smaller than bus width then make sure we only 2623 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2624 */ 2625 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2626 desc->rqcfg.brst_len = 1; 2627 2628 desc->rqcfg.brst_len = get_burst_len(desc, len); 2629 desc->bytes_requested = len; 2630 2631 desc->txd.flags = flags; 2632 2633 return &desc->txd; 2634 } 2635 2636 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2637 struct dma_pl330_desc *first) 2638 { 2639 unsigned long flags; 2640 struct dma_pl330_desc *desc; 2641 2642 if (!first) 2643 return; 2644 2645 spin_lock_irqsave(&pl330->pool_lock, flags); 2646 2647 while (!list_empty(&first->node)) { 2648 desc = list_entry(first->node.next, 2649 struct dma_pl330_desc, node); 2650 list_move_tail(&desc->node, &pl330->desc_pool); 2651 } 2652 2653 list_move_tail(&first->node, &pl330->desc_pool); 2654 2655 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2656 } 2657 2658 static struct dma_async_tx_descriptor * 2659 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2660 unsigned int sg_len, enum dma_transfer_direction direction, 2661 unsigned long flg, void *context) 2662 { 2663 struct dma_pl330_desc *first, *desc = NULL; 2664 struct dma_pl330_chan *pch = to_pchan(chan); 2665 struct scatterlist *sg; 2666 int i; 2667 dma_addr_t addr; 2668 2669 if (unlikely(!pch || !sgl || !sg_len)) 2670 return NULL; 2671 2672 addr = pch->fifo_addr; 2673 2674 first = NULL; 2675 2676 for_each_sg(sgl, sg, sg_len, i) { 2677 2678 desc = pl330_get_desc(pch); 2679 if (!desc) { 2680 struct pl330_dmac *pl330 = pch->dmac; 2681 2682 dev_err(pch->dmac->ddma.dev, 2683 "%s:%d Unable to fetch desc\n", 2684 __func__, __LINE__); 2685 __pl330_giveback_desc(pl330, first); 2686 2687 return NULL; 2688 } 2689 2690 if (!first) 2691 first = desc; 2692 else 2693 list_add_tail(&desc->node, &first->node); 2694 2695 if (direction == DMA_MEM_TO_DEV) { 2696 desc->rqcfg.src_inc = 1; 2697 desc->rqcfg.dst_inc = 0; 2698 fill_px(&desc->px, 2699 addr, sg_dma_address(sg), sg_dma_len(sg)); 2700 } else { 2701 desc->rqcfg.src_inc = 0; 2702 desc->rqcfg.dst_inc = 1; 2703 fill_px(&desc->px, 2704 sg_dma_address(sg), addr, sg_dma_len(sg)); 2705 } 2706 2707 desc->rqcfg.brst_size = pch->burst_sz; 2708 desc->rqcfg.brst_len = 1; 2709 desc->rqtype = direction; 2710 desc->bytes_requested = sg_dma_len(sg); 2711 } 2712 2713 /* Return the last desc in the chain */ 2714 desc->txd.flags = flg; 2715 return &desc->txd; 2716 } 2717 2718 static irqreturn_t pl330_irq_handler(int irq, void *data) 2719 { 2720 if (pl330_update(data)) 2721 return IRQ_HANDLED; 2722 else 2723 return IRQ_NONE; 2724 } 2725 2726 #define PL330_DMA_BUSWIDTHS \ 2727 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2728 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2729 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2730 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2731 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2732 2733 /* 2734 * Runtime PM callbacks are provided by amba/bus.c driver. 2735 * 2736 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2737 * bus driver will only disable/enable the clock in runtime PM callbacks. 2738 */ 2739 static int __maybe_unused pl330_suspend(struct device *dev) 2740 { 2741 struct amba_device *pcdev = to_amba_device(dev); 2742 2743 pm_runtime_disable(dev); 2744 2745 if (!pm_runtime_status_suspended(dev)) { 2746 /* amba did not disable the clock */ 2747 amba_pclk_disable(pcdev); 2748 } 2749 amba_pclk_unprepare(pcdev); 2750 2751 return 0; 2752 } 2753 2754 static int __maybe_unused pl330_resume(struct device *dev) 2755 { 2756 struct amba_device *pcdev = to_amba_device(dev); 2757 int ret; 2758 2759 ret = amba_pclk_prepare(pcdev); 2760 if (ret) 2761 return ret; 2762 2763 if (!pm_runtime_status_suspended(dev)) 2764 ret = amba_pclk_enable(pcdev); 2765 2766 pm_runtime_enable(dev); 2767 2768 return ret; 2769 } 2770 2771 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2772 2773 static int 2774 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2775 { 2776 struct dma_pl330_platdata *pdat; 2777 struct pl330_config *pcfg; 2778 struct pl330_dmac *pl330; 2779 struct dma_pl330_chan *pch, *_p; 2780 struct dma_device *pd; 2781 struct resource *res; 2782 int i, ret, irq; 2783 int num_chan; 2784 2785 pdat = dev_get_platdata(&adev->dev); 2786 2787 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2788 if (ret) 2789 return ret; 2790 2791 /* Allocate a new DMAC and its Channels */ 2792 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2793 if (!pl330) { 2794 dev_err(&adev->dev, "unable to allocate mem\n"); 2795 return -ENOMEM; 2796 } 2797 2798 pd = &pl330->ddma; 2799 pd->dev = &adev->dev; 2800 2801 pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2802 2803 res = &adev->res; 2804 pl330->base = devm_ioremap_resource(&adev->dev, res); 2805 if (IS_ERR(pl330->base)) 2806 return PTR_ERR(pl330->base); 2807 2808 amba_set_drvdata(adev, pl330); 2809 2810 for (i = 0; i < AMBA_NR_IRQS; i++) { 2811 irq = adev->irq[i]; 2812 if (irq) { 2813 ret = devm_request_irq(&adev->dev, irq, 2814 pl330_irq_handler, 0, 2815 dev_name(&adev->dev), pl330); 2816 if (ret) 2817 return ret; 2818 } else { 2819 break; 2820 } 2821 } 2822 2823 pcfg = &pl330->pcfg; 2824 2825 pcfg->periph_id = adev->periphid; 2826 ret = pl330_add(pl330); 2827 if (ret) 2828 return ret; 2829 2830 INIT_LIST_HEAD(&pl330->desc_pool); 2831 spin_lock_init(&pl330->pool_lock); 2832 2833 /* Create a descriptor pool of default size */ 2834 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC)) 2835 dev_warn(&adev->dev, "unable to allocate desc\n"); 2836 2837 INIT_LIST_HEAD(&pd->channels); 2838 2839 /* Initialize channel parameters */ 2840 if (pdat) 2841 num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan); 2842 else 2843 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2844 2845 pl330->num_peripherals = num_chan; 2846 2847 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2848 if (!pl330->peripherals) { 2849 ret = -ENOMEM; 2850 dev_err(&adev->dev, "unable to allocate pl330->peripherals\n"); 2851 goto probe_err2; 2852 } 2853 2854 for (i = 0; i < num_chan; i++) { 2855 pch = &pl330->peripherals[i]; 2856 if (!adev->dev.of_node) 2857 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2858 else 2859 pch->chan.private = adev->dev.of_node; 2860 2861 INIT_LIST_HEAD(&pch->submitted_list); 2862 INIT_LIST_HEAD(&pch->work_list); 2863 INIT_LIST_HEAD(&pch->completed_list); 2864 spin_lock_init(&pch->lock); 2865 pch->thread = NULL; 2866 pch->chan.device = pd; 2867 pch->dmac = pl330; 2868 2869 /* Add the channel to the DMAC list */ 2870 list_add_tail(&pch->chan.device_node, &pd->channels); 2871 } 2872 2873 if (pdat) { 2874 pd->cap_mask = pdat->cap_mask; 2875 } else { 2876 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2877 if (pcfg->num_peri) { 2878 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2879 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2880 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2881 } 2882 } 2883 2884 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2885 pd->device_free_chan_resources = pl330_free_chan_resources; 2886 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2887 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2888 pd->device_tx_status = pl330_tx_status; 2889 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2890 pd->device_config = pl330_config; 2891 pd->device_pause = pl330_pause; 2892 pd->device_terminate_all = pl330_terminate_all; 2893 pd->device_issue_pending = pl330_issue_pending; 2894 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 2895 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 2896 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2897 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2898 2899 ret = dma_async_device_register(pd); 2900 if (ret) { 2901 dev_err(&adev->dev, "unable to register DMAC\n"); 2902 goto probe_err3; 2903 } 2904 2905 if (adev->dev.of_node) { 2906 ret = of_dma_controller_register(adev->dev.of_node, 2907 of_dma_pl330_xlate, pl330); 2908 if (ret) { 2909 dev_err(&adev->dev, 2910 "unable to register DMA to the generic DT DMA helpers\n"); 2911 } 2912 } 2913 2914 adev->dev.dma_parms = &pl330->dma_parms; 2915 2916 /* 2917 * This is the limit for transfers with a buswidth of 1, larger 2918 * buswidths will have larger limits. 2919 */ 2920 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2921 if (ret) 2922 dev_err(&adev->dev, "unable to set the seg size\n"); 2923 2924 2925 dev_info(&adev->dev, 2926 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 2927 dev_info(&adev->dev, 2928 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2929 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2930 pcfg->num_peri, pcfg->num_events); 2931 2932 pm_runtime_irq_safe(&adev->dev); 2933 pm_runtime_use_autosuspend(&adev->dev); 2934 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 2935 pm_runtime_mark_last_busy(&adev->dev); 2936 pm_runtime_put_autosuspend(&adev->dev); 2937 2938 return 0; 2939 probe_err3: 2940 /* Idle the DMAC */ 2941 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2942 chan.device_node) { 2943 2944 /* Remove the channel */ 2945 list_del(&pch->chan.device_node); 2946 2947 /* Flush the channel */ 2948 if (pch->thread) { 2949 pl330_terminate_all(&pch->chan); 2950 pl330_free_chan_resources(&pch->chan); 2951 } 2952 } 2953 probe_err2: 2954 pl330_del(pl330); 2955 2956 return ret; 2957 } 2958 2959 static int pl330_remove(struct amba_device *adev) 2960 { 2961 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 2962 struct dma_pl330_chan *pch, *_p; 2963 2964 pm_runtime_get_noresume(pl330->ddma.dev); 2965 2966 if (adev->dev.of_node) 2967 of_dma_controller_free(adev->dev.of_node); 2968 2969 dma_async_device_unregister(&pl330->ddma); 2970 2971 /* Idle the DMAC */ 2972 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2973 chan.device_node) { 2974 2975 /* Remove the channel */ 2976 list_del(&pch->chan.device_node); 2977 2978 /* Flush the channel */ 2979 if (pch->thread) { 2980 pl330_terminate_all(&pch->chan); 2981 pl330_free_chan_resources(&pch->chan); 2982 } 2983 } 2984 2985 pl330_del(pl330); 2986 2987 return 0; 2988 } 2989 2990 static struct amba_id pl330_ids[] = { 2991 { 2992 .id = 0x00041330, 2993 .mask = 0x000fffff, 2994 }, 2995 { 0, 0 }, 2996 }; 2997 2998 MODULE_DEVICE_TABLE(amba, pl330_ids); 2999 3000 static struct amba_driver pl330_driver = { 3001 .drv = { 3002 .owner = THIS_MODULE, 3003 .name = "dma-pl330", 3004 .pm = &pl330_pm, 3005 }, 3006 .id_table = pl330_ids, 3007 .probe = pl330_probe, 3008 .remove = pl330_remove, 3009 }; 3010 3011 module_amba_driver(pl330_driver); 3012 3013 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3014 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3015 MODULE_LICENSE("GPL"); 3016