xref: /linux/drivers/dma/pl330.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30 
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN		8
33 #define PL330_MAX_IRQS		32
34 #define PL330_MAX_PERI		32
35 #define PL330_MAX_BURST         16
36 
37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /**
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Sitting on the channel work_list but xfer done
408 	 * by PL330 core
409 	 */
410 	DONE,
411 };
412 
413 struct dma_pl330_chan {
414 	/* Schedule desc completion */
415 	struct tasklet_struct task;
416 
417 	/* DMA-Engine Channel */
418 	struct dma_chan chan;
419 
420 	/* List of submitted descriptors */
421 	struct list_head submitted_list;
422 	/* List of issued descriptors */
423 	struct list_head work_list;
424 	/* List of completed descriptors */
425 	struct list_head completed_list;
426 
427 	/* Pointer to the DMAC that manages this channel,
428 	 * NULL if the channel is available to be acquired.
429 	 * As the parent, this DMAC also provides descriptors
430 	 * to the channel.
431 	 */
432 	struct pl330_dmac *dmac;
433 
434 	/* To protect channel manipulation */
435 	spinlock_t lock;
436 
437 	/*
438 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 	 * available.
440 	 */
441 	struct pl330_thread *thread;
442 
443 	/* For D-to-M and M-to-D channels */
444 	int burst_sz; /* the peripheral fifo width */
445 	int burst_len; /* the number of burst */
446 	dma_addr_t fifo_addr;
447 
448 	/* for cyclic capability */
449 	bool cyclic;
450 
451 	/* for runtime pm tracking */
452 	bool active;
453 };
454 
455 struct pl330_dmac {
456 	/* DMA-Engine Device */
457 	struct dma_device ddma;
458 
459 	/* Holds info about sg limitations */
460 	struct device_dma_parameters dma_parms;
461 
462 	/* Pool of descriptors available for the DMAC's channels */
463 	struct list_head desc_pool;
464 	/* To protect desc_pool manipulation */
465 	spinlock_t pool_lock;
466 
467 	/* Size of MicroCode buffers for each channel. */
468 	unsigned mcbufsz;
469 	/* ioremap'ed address of PL330 registers. */
470 	void __iomem	*base;
471 	/* Populated by the PL330 core driver during pl330_add */
472 	struct pl330_config	pcfg;
473 
474 	spinlock_t		lock;
475 	/* Maximum possible events/irqs */
476 	int			events[32];
477 	/* BUS address of MicroCode buffer */
478 	dma_addr_t		mcode_bus;
479 	/* CPU address of MicroCode buffer */
480 	void			*mcode_cpu;
481 	/* List of all Channel threads */
482 	struct pl330_thread	*channels;
483 	/* Pointer to the MANAGER thread */
484 	struct pl330_thread	*manager;
485 	/* To handle bad news in interrupt */
486 	struct tasklet_struct	tasks;
487 	struct _pl330_tbd	dmac_tbd;
488 	/* State of DMAC operation */
489 	enum pl330_dmac_state	state;
490 	/* Holds list of reqs with due callbacks */
491 	struct list_head        req_done;
492 
493 	/* Peripheral channels connected to this DMAC */
494 	unsigned int num_peripherals;
495 	struct dma_pl330_chan *peripherals; /* keep at end */
496 	int quirks;
497 };
498 
499 static struct pl330_of_quirks {
500 	char *quirk;
501 	int id;
502 } of_quirks[] = {
503 	{
504 		.quirk = "arm,pl330-broken-no-flushp",
505 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
506 	}
507 };
508 
509 struct dma_pl330_desc {
510 	/* To attach to a queue as child */
511 	struct list_head node;
512 
513 	/* Descriptor for the DMA Engine API */
514 	struct dma_async_tx_descriptor txd;
515 
516 	/* Xfer for PL330 core */
517 	struct pl330_xfer px;
518 
519 	struct pl330_reqcfg rqcfg;
520 
521 	enum desc_status status;
522 
523 	int bytes_requested;
524 	bool last;
525 
526 	/* The channel which currently holds this desc */
527 	struct dma_pl330_chan *pchan;
528 
529 	enum dma_transfer_direction rqtype;
530 	/* Index of peripheral for the xfer. */
531 	unsigned peri:5;
532 	/* Hook to attach to DMAC's list of reqs with due callback */
533 	struct list_head rqd;
534 };
535 
536 struct _xfer_spec {
537 	u32 ccr;
538 	struct dma_pl330_desc *desc;
539 };
540 
541 static inline bool _queue_empty(struct pl330_thread *thrd)
542 {
543 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
544 }
545 
546 static inline bool _queue_full(struct pl330_thread *thrd)
547 {
548 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
549 }
550 
551 static inline bool is_manager(struct pl330_thread *thrd)
552 {
553 	return thrd->dmac->manager == thrd;
554 }
555 
556 /* If manager of the thread is in Non-Secure mode */
557 static inline bool _manager_ns(struct pl330_thread *thrd)
558 {
559 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
560 }
561 
562 static inline u32 get_revision(u32 periph_id)
563 {
564 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
565 }
566 
567 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
568 		enum pl330_dst da, u16 val)
569 {
570 	if (dry_run)
571 		return SZ_DMAADDH;
572 
573 	buf[0] = CMD_DMAADDH;
574 	buf[0] |= (da << 1);
575 	buf[1] = val;
576 	buf[2] = val >> 8;
577 
578 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
579 		da == 1 ? "DA" : "SA", val);
580 
581 	return SZ_DMAADDH;
582 }
583 
584 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
585 {
586 	if (dry_run)
587 		return SZ_DMAEND;
588 
589 	buf[0] = CMD_DMAEND;
590 
591 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
592 
593 	return SZ_DMAEND;
594 }
595 
596 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
597 {
598 	if (dry_run)
599 		return SZ_DMAFLUSHP;
600 
601 	buf[0] = CMD_DMAFLUSHP;
602 
603 	peri &= 0x1f;
604 	peri <<= 3;
605 	buf[1] = peri;
606 
607 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
608 
609 	return SZ_DMAFLUSHP;
610 }
611 
612 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
613 {
614 	if (dry_run)
615 		return SZ_DMALD;
616 
617 	buf[0] = CMD_DMALD;
618 
619 	if (cond == SINGLE)
620 		buf[0] |= (0 << 1) | (1 << 0);
621 	else if (cond == BURST)
622 		buf[0] |= (1 << 1) | (1 << 0);
623 
624 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
625 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
626 
627 	return SZ_DMALD;
628 }
629 
630 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
631 		enum pl330_cond cond, u8 peri)
632 {
633 	if (dry_run)
634 		return SZ_DMALDP;
635 
636 	buf[0] = CMD_DMALDP;
637 
638 	if (cond == BURST)
639 		buf[0] |= (1 << 1);
640 
641 	peri &= 0x1f;
642 	peri <<= 3;
643 	buf[1] = peri;
644 
645 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
646 		cond == SINGLE ? 'S' : 'B', peri >> 3);
647 
648 	return SZ_DMALDP;
649 }
650 
651 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
652 		unsigned loop, u8 cnt)
653 {
654 	if (dry_run)
655 		return SZ_DMALP;
656 
657 	buf[0] = CMD_DMALP;
658 
659 	if (loop)
660 		buf[0] |= (1 << 1);
661 
662 	cnt--; /* DMAC increments by 1 internally */
663 	buf[1] = cnt;
664 
665 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
666 
667 	return SZ_DMALP;
668 }
669 
670 struct _arg_LPEND {
671 	enum pl330_cond cond;
672 	bool forever;
673 	unsigned loop;
674 	u8 bjump;
675 };
676 
677 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
678 		const struct _arg_LPEND *arg)
679 {
680 	enum pl330_cond cond = arg->cond;
681 	bool forever = arg->forever;
682 	unsigned loop = arg->loop;
683 	u8 bjump = arg->bjump;
684 
685 	if (dry_run)
686 		return SZ_DMALPEND;
687 
688 	buf[0] = CMD_DMALPEND;
689 
690 	if (loop)
691 		buf[0] |= (1 << 2);
692 
693 	if (!forever)
694 		buf[0] |= (1 << 4);
695 
696 	if (cond == SINGLE)
697 		buf[0] |= (0 << 1) | (1 << 0);
698 	else if (cond == BURST)
699 		buf[0] |= (1 << 1) | (1 << 0);
700 
701 	buf[1] = bjump;
702 
703 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
704 			forever ? "FE" : "END",
705 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
706 			loop ? '1' : '0',
707 			bjump);
708 
709 	return SZ_DMALPEND;
710 }
711 
712 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
713 {
714 	if (dry_run)
715 		return SZ_DMAKILL;
716 
717 	buf[0] = CMD_DMAKILL;
718 
719 	return SZ_DMAKILL;
720 }
721 
722 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
723 		enum dmamov_dst dst, u32 val)
724 {
725 	if (dry_run)
726 		return SZ_DMAMOV;
727 
728 	buf[0] = CMD_DMAMOV;
729 	buf[1] = dst;
730 	buf[2] = val;
731 	buf[3] = val >> 8;
732 	buf[4] = val >> 16;
733 	buf[5] = val >> 24;
734 
735 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
736 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
737 
738 	return SZ_DMAMOV;
739 }
740 
741 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
742 {
743 	if (dry_run)
744 		return SZ_DMANOP;
745 
746 	buf[0] = CMD_DMANOP;
747 
748 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
749 
750 	return SZ_DMANOP;
751 }
752 
753 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
754 {
755 	if (dry_run)
756 		return SZ_DMARMB;
757 
758 	buf[0] = CMD_DMARMB;
759 
760 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
761 
762 	return SZ_DMARMB;
763 }
764 
765 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
766 {
767 	if (dry_run)
768 		return SZ_DMASEV;
769 
770 	buf[0] = CMD_DMASEV;
771 
772 	ev &= 0x1f;
773 	ev <<= 3;
774 	buf[1] = ev;
775 
776 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
777 
778 	return SZ_DMASEV;
779 }
780 
781 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
782 {
783 	if (dry_run)
784 		return SZ_DMAST;
785 
786 	buf[0] = CMD_DMAST;
787 
788 	if (cond == SINGLE)
789 		buf[0] |= (0 << 1) | (1 << 0);
790 	else if (cond == BURST)
791 		buf[0] |= (1 << 1) | (1 << 0);
792 
793 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
794 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
795 
796 	return SZ_DMAST;
797 }
798 
799 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
800 		enum pl330_cond cond, u8 peri)
801 {
802 	if (dry_run)
803 		return SZ_DMASTP;
804 
805 	buf[0] = CMD_DMASTP;
806 
807 	if (cond == BURST)
808 		buf[0] |= (1 << 1);
809 
810 	peri &= 0x1f;
811 	peri <<= 3;
812 	buf[1] = peri;
813 
814 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
815 		cond == SINGLE ? 'S' : 'B', peri >> 3);
816 
817 	return SZ_DMASTP;
818 }
819 
820 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
821 {
822 	if (dry_run)
823 		return SZ_DMASTZ;
824 
825 	buf[0] = CMD_DMASTZ;
826 
827 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
828 
829 	return SZ_DMASTZ;
830 }
831 
832 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
833 		unsigned invalidate)
834 {
835 	if (dry_run)
836 		return SZ_DMAWFE;
837 
838 	buf[0] = CMD_DMAWFE;
839 
840 	ev &= 0x1f;
841 	ev <<= 3;
842 	buf[1] = ev;
843 
844 	if (invalidate)
845 		buf[1] |= (1 << 1);
846 
847 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
848 		ev >> 3, invalidate ? ", I" : "");
849 
850 	return SZ_DMAWFE;
851 }
852 
853 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
854 		enum pl330_cond cond, u8 peri)
855 {
856 	if (dry_run)
857 		return SZ_DMAWFP;
858 
859 	buf[0] = CMD_DMAWFP;
860 
861 	if (cond == SINGLE)
862 		buf[0] |= (0 << 1) | (0 << 0);
863 	else if (cond == BURST)
864 		buf[0] |= (1 << 1) | (0 << 0);
865 	else
866 		buf[0] |= (0 << 1) | (1 << 0);
867 
868 	peri &= 0x1f;
869 	peri <<= 3;
870 	buf[1] = peri;
871 
872 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
873 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
874 
875 	return SZ_DMAWFP;
876 }
877 
878 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
879 {
880 	if (dry_run)
881 		return SZ_DMAWMB;
882 
883 	buf[0] = CMD_DMAWMB;
884 
885 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
886 
887 	return SZ_DMAWMB;
888 }
889 
890 struct _arg_GO {
891 	u8 chan;
892 	u32 addr;
893 	unsigned ns;
894 };
895 
896 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
897 		const struct _arg_GO *arg)
898 {
899 	u8 chan = arg->chan;
900 	u32 addr = arg->addr;
901 	unsigned ns = arg->ns;
902 
903 	if (dry_run)
904 		return SZ_DMAGO;
905 
906 	buf[0] = CMD_DMAGO;
907 	buf[0] |= (ns << 1);
908 	buf[1] = chan & 0x7;
909 	buf[2] = addr;
910 	buf[3] = addr >> 8;
911 	buf[4] = addr >> 16;
912 	buf[5] = addr >> 24;
913 
914 	return SZ_DMAGO;
915 }
916 
917 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
918 
919 /* Returns Time-Out */
920 static bool _until_dmac_idle(struct pl330_thread *thrd)
921 {
922 	void __iomem *regs = thrd->dmac->base;
923 	unsigned long loops = msecs_to_loops(5);
924 
925 	do {
926 		/* Until Manager is Idle */
927 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
928 			break;
929 
930 		cpu_relax();
931 	} while (--loops);
932 
933 	if (!loops)
934 		return true;
935 
936 	return false;
937 }
938 
939 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
940 		u8 insn[], bool as_manager)
941 {
942 	void __iomem *regs = thrd->dmac->base;
943 	u32 val;
944 
945 	val = (insn[0] << 16) | (insn[1] << 24);
946 	if (!as_manager) {
947 		val |= (1 << 0);
948 		val |= (thrd->id << 8); /* Channel Number */
949 	}
950 	writel(val, regs + DBGINST0);
951 
952 	val = le32_to_cpu(*((__le32 *)&insn[2]));
953 	writel(val, regs + DBGINST1);
954 
955 	/* If timed out due to halted state-machine */
956 	if (_until_dmac_idle(thrd)) {
957 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
958 		return;
959 	}
960 
961 	/* Get going */
962 	writel(0, regs + DBGCMD);
963 }
964 
965 static inline u32 _state(struct pl330_thread *thrd)
966 {
967 	void __iomem *regs = thrd->dmac->base;
968 	u32 val;
969 
970 	if (is_manager(thrd))
971 		val = readl(regs + DS) & 0xf;
972 	else
973 		val = readl(regs + CS(thrd->id)) & 0xf;
974 
975 	switch (val) {
976 	case DS_ST_STOP:
977 		return PL330_STATE_STOPPED;
978 	case DS_ST_EXEC:
979 		return PL330_STATE_EXECUTING;
980 	case DS_ST_CMISS:
981 		return PL330_STATE_CACHEMISS;
982 	case DS_ST_UPDTPC:
983 		return PL330_STATE_UPDTPC;
984 	case DS_ST_WFE:
985 		return PL330_STATE_WFE;
986 	case DS_ST_FAULT:
987 		return PL330_STATE_FAULTING;
988 	case DS_ST_ATBRR:
989 		if (is_manager(thrd))
990 			return PL330_STATE_INVALID;
991 		else
992 			return PL330_STATE_ATBARRIER;
993 	case DS_ST_QBUSY:
994 		if (is_manager(thrd))
995 			return PL330_STATE_INVALID;
996 		else
997 			return PL330_STATE_QUEUEBUSY;
998 	case DS_ST_WFP:
999 		if (is_manager(thrd))
1000 			return PL330_STATE_INVALID;
1001 		else
1002 			return PL330_STATE_WFP;
1003 	case DS_ST_KILL:
1004 		if (is_manager(thrd))
1005 			return PL330_STATE_INVALID;
1006 		else
1007 			return PL330_STATE_KILLING;
1008 	case DS_ST_CMPLT:
1009 		if (is_manager(thrd))
1010 			return PL330_STATE_INVALID;
1011 		else
1012 			return PL330_STATE_COMPLETING;
1013 	case DS_ST_FLTCMP:
1014 		if (is_manager(thrd))
1015 			return PL330_STATE_INVALID;
1016 		else
1017 			return PL330_STATE_FAULT_COMPLETING;
1018 	default:
1019 		return PL330_STATE_INVALID;
1020 	}
1021 }
1022 
1023 static void _stop(struct pl330_thread *thrd)
1024 {
1025 	void __iomem *regs = thrd->dmac->base;
1026 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1027 
1028 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1029 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1030 
1031 	/* Return if nothing needs to be done */
1032 	if (_state(thrd) == PL330_STATE_COMPLETING
1033 		  || _state(thrd) == PL330_STATE_KILLING
1034 		  || _state(thrd) == PL330_STATE_STOPPED)
1035 		return;
1036 
1037 	_emit_KILL(0, insn);
1038 
1039 	/* Stop generating interrupts for SEV */
1040 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1041 
1042 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1043 }
1044 
1045 /* Start doing req 'idx' of thread 'thrd' */
1046 static bool _trigger(struct pl330_thread *thrd)
1047 {
1048 	void __iomem *regs = thrd->dmac->base;
1049 	struct _pl330_req *req;
1050 	struct dma_pl330_desc *desc;
1051 	struct _arg_GO go;
1052 	unsigned ns;
1053 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1054 	int idx;
1055 
1056 	/* Return if already ACTIVE */
1057 	if (_state(thrd) != PL330_STATE_STOPPED)
1058 		return true;
1059 
1060 	idx = 1 - thrd->lstenq;
1061 	if (thrd->req[idx].desc != NULL) {
1062 		req = &thrd->req[idx];
1063 	} else {
1064 		idx = thrd->lstenq;
1065 		if (thrd->req[idx].desc != NULL)
1066 			req = &thrd->req[idx];
1067 		else
1068 			req = NULL;
1069 	}
1070 
1071 	/* Return if no request */
1072 	if (!req)
1073 		return true;
1074 
1075 	/* Return if req is running */
1076 	if (idx == thrd->req_running)
1077 		return true;
1078 
1079 	desc = req->desc;
1080 
1081 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1082 
1083 	/* See 'Abort Sources' point-4 at Page 2-25 */
1084 	if (_manager_ns(thrd) && !ns)
1085 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1086 			__func__, __LINE__);
1087 
1088 	go.chan = thrd->id;
1089 	go.addr = req->mc_bus;
1090 	go.ns = ns;
1091 	_emit_GO(0, insn, &go);
1092 
1093 	/* Set to generate interrupts for SEV */
1094 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1095 
1096 	/* Only manager can execute GO */
1097 	_execute_DBGINSN(thrd, insn, true);
1098 
1099 	thrd->req_running = idx;
1100 
1101 	return true;
1102 }
1103 
1104 static bool _start(struct pl330_thread *thrd)
1105 {
1106 	switch (_state(thrd)) {
1107 	case PL330_STATE_FAULT_COMPLETING:
1108 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1109 
1110 		if (_state(thrd) == PL330_STATE_KILLING)
1111 			UNTIL(thrd, PL330_STATE_STOPPED)
1112 
1113 	case PL330_STATE_FAULTING:
1114 		_stop(thrd);
1115 
1116 	case PL330_STATE_KILLING:
1117 	case PL330_STATE_COMPLETING:
1118 		UNTIL(thrd, PL330_STATE_STOPPED)
1119 
1120 	case PL330_STATE_STOPPED:
1121 		return _trigger(thrd);
1122 
1123 	case PL330_STATE_WFP:
1124 	case PL330_STATE_QUEUEBUSY:
1125 	case PL330_STATE_ATBARRIER:
1126 	case PL330_STATE_UPDTPC:
1127 	case PL330_STATE_CACHEMISS:
1128 	case PL330_STATE_EXECUTING:
1129 		return true;
1130 
1131 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1132 	default:
1133 		return false;
1134 	}
1135 }
1136 
1137 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1138 		const struct _xfer_spec *pxs, int cyc)
1139 {
1140 	int off = 0;
1141 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1142 
1143 	/* check lock-up free version */
1144 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1145 		while (cyc--) {
1146 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1147 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1148 		}
1149 	} else {
1150 		while (cyc--) {
1151 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1152 			off += _emit_RMB(dry_run, &buf[off]);
1153 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1154 			off += _emit_WMB(dry_run, &buf[off]);
1155 		}
1156 	}
1157 
1158 	return off;
1159 }
1160 
1161 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1162 				 u8 buf[], const struct _xfer_spec *pxs,
1163 				 int cyc)
1164 {
1165 	int off = 0;
1166 	enum pl330_cond cond;
1167 
1168 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1169 		cond = BURST;
1170 	else
1171 		cond = SINGLE;
1172 
1173 	while (cyc--) {
1174 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1175 		off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1176 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1177 
1178 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1179 			off += _emit_FLUSHP(dry_run, &buf[off],
1180 					    pxs->desc->peri);
1181 	}
1182 
1183 	return off;
1184 }
1185 
1186 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1187 				 unsigned dry_run, u8 buf[],
1188 				 const struct _xfer_spec *pxs, int cyc)
1189 {
1190 	int off = 0;
1191 	enum pl330_cond cond;
1192 
1193 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1194 		cond = BURST;
1195 	else
1196 		cond = SINGLE;
1197 
1198 	while (cyc--) {
1199 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1200 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1201 		off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1202 
1203 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1204 			off += _emit_FLUSHP(dry_run, &buf[off],
1205 					    pxs->desc->peri);
1206 	}
1207 
1208 	return off;
1209 }
1210 
1211 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1212 		const struct _xfer_spec *pxs, int cyc)
1213 {
1214 	int off = 0;
1215 
1216 	switch (pxs->desc->rqtype) {
1217 	case DMA_MEM_TO_DEV:
1218 		off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1219 		break;
1220 	case DMA_DEV_TO_MEM:
1221 		off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1222 		break;
1223 	case DMA_MEM_TO_MEM:
1224 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1225 		break;
1226 	default:
1227 		off += 0x40000000; /* Scare off the Client */
1228 		break;
1229 	}
1230 
1231 	return off;
1232 }
1233 
1234 /* Returns bytes consumed and updates bursts */
1235 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1236 		unsigned long *bursts, const struct _xfer_spec *pxs)
1237 {
1238 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1239 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1240 	struct _arg_LPEND lpend;
1241 
1242 	if (*bursts == 1)
1243 		return _bursts(pl330, dry_run, buf, pxs, 1);
1244 
1245 	/* Max iterations possible in DMALP is 256 */
1246 	if (*bursts >= 256*256) {
1247 		lcnt1 = 256;
1248 		lcnt0 = 256;
1249 		cyc = *bursts / lcnt1 / lcnt0;
1250 	} else if (*bursts > 256) {
1251 		lcnt1 = 256;
1252 		lcnt0 = *bursts / lcnt1;
1253 		cyc = 1;
1254 	} else {
1255 		lcnt1 = *bursts;
1256 		lcnt0 = 0;
1257 		cyc = 1;
1258 	}
1259 
1260 	szlp = _emit_LP(1, buf, 0, 0);
1261 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1262 
1263 	lpend.cond = ALWAYS;
1264 	lpend.forever = false;
1265 	lpend.loop = 0;
1266 	lpend.bjump = 0;
1267 	szlpend = _emit_LPEND(1, buf, &lpend);
1268 
1269 	if (lcnt0) {
1270 		szlp *= 2;
1271 		szlpend *= 2;
1272 	}
1273 
1274 	/*
1275 	 * Max bursts that we can unroll due to limit on the
1276 	 * size of backward jump that can be encoded in DMALPEND
1277 	 * which is 8-bits and hence 255
1278 	 */
1279 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1280 
1281 	cyc = (cycmax < cyc) ? cycmax : cyc;
1282 
1283 	off = 0;
1284 
1285 	if (lcnt0) {
1286 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1287 		ljmp0 = off;
1288 	}
1289 
1290 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1291 	ljmp1 = off;
1292 
1293 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1294 
1295 	lpend.cond = ALWAYS;
1296 	lpend.forever = false;
1297 	lpend.loop = 1;
1298 	lpend.bjump = off - ljmp1;
1299 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1300 
1301 	if (lcnt0) {
1302 		lpend.cond = ALWAYS;
1303 		lpend.forever = false;
1304 		lpend.loop = 0;
1305 		lpend.bjump = off - ljmp0;
1306 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1307 	}
1308 
1309 	*bursts = lcnt1 * cyc;
1310 	if (lcnt0)
1311 		*bursts *= lcnt0;
1312 
1313 	return off;
1314 }
1315 
1316 static inline int _setup_loops(struct pl330_dmac *pl330,
1317 			       unsigned dry_run, u8 buf[],
1318 			       const struct _xfer_spec *pxs)
1319 {
1320 	struct pl330_xfer *x = &pxs->desc->px;
1321 	u32 ccr = pxs->ccr;
1322 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1323 	int off = 0;
1324 
1325 	while (bursts) {
1326 		c = bursts;
1327 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1328 		bursts -= c;
1329 	}
1330 
1331 	return off;
1332 }
1333 
1334 static inline int _setup_xfer(struct pl330_dmac *pl330,
1335 			      unsigned dry_run, u8 buf[],
1336 			      const struct _xfer_spec *pxs)
1337 {
1338 	struct pl330_xfer *x = &pxs->desc->px;
1339 	int off = 0;
1340 
1341 	/* DMAMOV SAR, x->src_addr */
1342 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1343 	/* DMAMOV DAR, x->dst_addr */
1344 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1345 
1346 	/* Setup Loop(s) */
1347 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1348 
1349 	return off;
1350 }
1351 
1352 /*
1353  * A req is a sequence of one or more xfer units.
1354  * Returns the number of bytes taken to setup the MC for the req.
1355  */
1356 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1357 		      struct pl330_thread *thrd, unsigned index,
1358 		      struct _xfer_spec *pxs)
1359 {
1360 	struct _pl330_req *req = &thrd->req[index];
1361 	struct pl330_xfer *x;
1362 	u8 *buf = req->mc_cpu;
1363 	int off = 0;
1364 
1365 	PL330_DBGMC_START(req->mc_bus);
1366 
1367 	/* DMAMOV CCR, ccr */
1368 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1369 
1370 	x = &pxs->desc->px;
1371 	/* Error if xfer length is not aligned at burst size */
1372 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1373 		return -EINVAL;
1374 
1375 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1376 
1377 	/* DMASEV peripheral/event */
1378 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1379 	/* DMAEND */
1380 	off += _emit_END(dry_run, &buf[off]);
1381 
1382 	return off;
1383 }
1384 
1385 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1386 {
1387 	u32 ccr = 0;
1388 
1389 	if (rqc->src_inc)
1390 		ccr |= CC_SRCINC;
1391 
1392 	if (rqc->dst_inc)
1393 		ccr |= CC_DSTINC;
1394 
1395 	/* We set same protection levels for Src and DST for now */
1396 	if (rqc->privileged)
1397 		ccr |= CC_SRCPRI | CC_DSTPRI;
1398 	if (rqc->nonsecure)
1399 		ccr |= CC_SRCNS | CC_DSTNS;
1400 	if (rqc->insnaccess)
1401 		ccr |= CC_SRCIA | CC_DSTIA;
1402 
1403 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1404 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1405 
1406 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1407 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1408 
1409 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1410 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1411 
1412 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1413 
1414 	return ccr;
1415 }
1416 
1417 /*
1418  * Submit a list of xfers after which the client wants notification.
1419  * Client is not notified after each xfer unit, just once after all
1420  * xfer units are done or some error occurs.
1421  */
1422 static int pl330_submit_req(struct pl330_thread *thrd,
1423 	struct dma_pl330_desc *desc)
1424 {
1425 	struct pl330_dmac *pl330 = thrd->dmac;
1426 	struct _xfer_spec xs;
1427 	unsigned long flags;
1428 	unsigned idx;
1429 	u32 ccr;
1430 	int ret = 0;
1431 
1432 	if (pl330->state == DYING
1433 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1434 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1435 			__func__, __LINE__);
1436 		return -EAGAIN;
1437 	}
1438 
1439 	/* If request for non-existing peripheral */
1440 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1441 	    desc->peri >= pl330->pcfg.num_peri) {
1442 		dev_info(thrd->dmac->ddma.dev,
1443 				"%s:%d Invalid peripheral(%u)!\n",
1444 				__func__, __LINE__, desc->peri);
1445 		return -EINVAL;
1446 	}
1447 
1448 	spin_lock_irqsave(&pl330->lock, flags);
1449 
1450 	if (_queue_full(thrd)) {
1451 		ret = -EAGAIN;
1452 		goto xfer_exit;
1453 	}
1454 
1455 	/* Prefer Secure Channel */
1456 	if (!_manager_ns(thrd))
1457 		desc->rqcfg.nonsecure = 0;
1458 	else
1459 		desc->rqcfg.nonsecure = 1;
1460 
1461 	ccr = _prepare_ccr(&desc->rqcfg);
1462 
1463 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1464 
1465 	xs.ccr = ccr;
1466 	xs.desc = desc;
1467 
1468 	/* First dry run to check if req is acceptable */
1469 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1470 	if (ret < 0)
1471 		goto xfer_exit;
1472 
1473 	if (ret > pl330->mcbufsz / 2) {
1474 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1475 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1476 		ret = -ENOMEM;
1477 		goto xfer_exit;
1478 	}
1479 
1480 	/* Hook the request */
1481 	thrd->lstenq = idx;
1482 	thrd->req[idx].desc = desc;
1483 	_setup_req(pl330, 0, thrd, idx, &xs);
1484 
1485 	ret = 0;
1486 
1487 xfer_exit:
1488 	spin_unlock_irqrestore(&pl330->lock, flags);
1489 
1490 	return ret;
1491 }
1492 
1493 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1494 {
1495 	struct dma_pl330_chan *pch;
1496 	unsigned long flags;
1497 
1498 	if (!desc)
1499 		return;
1500 
1501 	pch = desc->pchan;
1502 
1503 	/* If desc aborted */
1504 	if (!pch)
1505 		return;
1506 
1507 	spin_lock_irqsave(&pch->lock, flags);
1508 
1509 	desc->status = DONE;
1510 
1511 	spin_unlock_irqrestore(&pch->lock, flags);
1512 
1513 	tasklet_schedule(&pch->task);
1514 }
1515 
1516 static void pl330_dotask(unsigned long data)
1517 {
1518 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1519 	unsigned long flags;
1520 	int i;
1521 
1522 	spin_lock_irqsave(&pl330->lock, flags);
1523 
1524 	/* The DMAC itself gone nuts */
1525 	if (pl330->dmac_tbd.reset_dmac) {
1526 		pl330->state = DYING;
1527 		/* Reset the manager too */
1528 		pl330->dmac_tbd.reset_mngr = true;
1529 		/* Clear the reset flag */
1530 		pl330->dmac_tbd.reset_dmac = false;
1531 	}
1532 
1533 	if (pl330->dmac_tbd.reset_mngr) {
1534 		_stop(pl330->manager);
1535 		/* Reset all channels */
1536 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1537 		/* Clear the reset flag */
1538 		pl330->dmac_tbd.reset_mngr = false;
1539 	}
1540 
1541 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1542 
1543 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1544 			struct pl330_thread *thrd = &pl330->channels[i];
1545 			void __iomem *regs = pl330->base;
1546 			enum pl330_op_err err;
1547 
1548 			_stop(thrd);
1549 
1550 			if (readl(regs + FSC) & (1 << thrd->id))
1551 				err = PL330_ERR_FAIL;
1552 			else
1553 				err = PL330_ERR_ABORT;
1554 
1555 			spin_unlock_irqrestore(&pl330->lock, flags);
1556 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1557 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1558 			spin_lock_irqsave(&pl330->lock, flags);
1559 
1560 			thrd->req[0].desc = NULL;
1561 			thrd->req[1].desc = NULL;
1562 			thrd->req_running = -1;
1563 
1564 			/* Clear the reset flag */
1565 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1566 		}
1567 	}
1568 
1569 	spin_unlock_irqrestore(&pl330->lock, flags);
1570 
1571 	return;
1572 }
1573 
1574 /* Returns 1 if state was updated, 0 otherwise */
1575 static int pl330_update(struct pl330_dmac *pl330)
1576 {
1577 	struct dma_pl330_desc *descdone, *tmp;
1578 	unsigned long flags;
1579 	void __iomem *regs;
1580 	u32 val;
1581 	int id, ev, ret = 0;
1582 
1583 	regs = pl330->base;
1584 
1585 	spin_lock_irqsave(&pl330->lock, flags);
1586 
1587 	val = readl(regs + FSM) & 0x1;
1588 	if (val)
1589 		pl330->dmac_tbd.reset_mngr = true;
1590 	else
1591 		pl330->dmac_tbd.reset_mngr = false;
1592 
1593 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1594 	pl330->dmac_tbd.reset_chan |= val;
1595 	if (val) {
1596 		int i = 0;
1597 		while (i < pl330->pcfg.num_chan) {
1598 			if (val & (1 << i)) {
1599 				dev_info(pl330->ddma.dev,
1600 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1601 						i, readl(regs + CS(i)),
1602 						readl(regs + FTC(i)));
1603 				_stop(&pl330->channels[i]);
1604 			}
1605 			i++;
1606 		}
1607 	}
1608 
1609 	/* Check which event happened i.e, thread notified */
1610 	val = readl(regs + ES);
1611 	if (pl330->pcfg.num_events < 32
1612 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1613 		pl330->dmac_tbd.reset_dmac = true;
1614 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1615 			__LINE__);
1616 		ret = 1;
1617 		goto updt_exit;
1618 	}
1619 
1620 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1621 		if (val & (1 << ev)) { /* Event occurred */
1622 			struct pl330_thread *thrd;
1623 			u32 inten = readl(regs + INTEN);
1624 			int active;
1625 
1626 			/* Clear the event */
1627 			if (inten & (1 << ev))
1628 				writel(1 << ev, regs + INTCLR);
1629 
1630 			ret = 1;
1631 
1632 			id = pl330->events[ev];
1633 
1634 			thrd = &pl330->channels[id];
1635 
1636 			active = thrd->req_running;
1637 			if (active == -1) /* Aborted */
1638 				continue;
1639 
1640 			/* Detach the req */
1641 			descdone = thrd->req[active].desc;
1642 			thrd->req[active].desc = NULL;
1643 
1644 			thrd->req_running = -1;
1645 
1646 			/* Get going again ASAP */
1647 			_start(thrd);
1648 
1649 			/* For now, just make a list of callbacks to be done */
1650 			list_add_tail(&descdone->rqd, &pl330->req_done);
1651 		}
1652 	}
1653 
1654 	/* Now that we are in no hurry, do the callbacks */
1655 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1656 		list_del(&descdone->rqd);
1657 		spin_unlock_irqrestore(&pl330->lock, flags);
1658 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1659 		spin_lock_irqsave(&pl330->lock, flags);
1660 	}
1661 
1662 updt_exit:
1663 	spin_unlock_irqrestore(&pl330->lock, flags);
1664 
1665 	if (pl330->dmac_tbd.reset_dmac
1666 			|| pl330->dmac_tbd.reset_mngr
1667 			|| pl330->dmac_tbd.reset_chan) {
1668 		ret = 1;
1669 		tasklet_schedule(&pl330->tasks);
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 /* Reserve an event */
1676 static inline int _alloc_event(struct pl330_thread *thrd)
1677 {
1678 	struct pl330_dmac *pl330 = thrd->dmac;
1679 	int ev;
1680 
1681 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1682 		if (pl330->events[ev] == -1) {
1683 			pl330->events[ev] = thrd->id;
1684 			return ev;
1685 		}
1686 
1687 	return -1;
1688 }
1689 
1690 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1691 {
1692 	return pl330->pcfg.irq_ns & (1 << i);
1693 }
1694 
1695 /* Upon success, returns IdentityToken for the
1696  * allocated channel, NULL otherwise.
1697  */
1698 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1699 {
1700 	struct pl330_thread *thrd = NULL;
1701 	int chans, i;
1702 
1703 	if (pl330->state == DYING)
1704 		return NULL;
1705 
1706 	chans = pl330->pcfg.num_chan;
1707 
1708 	for (i = 0; i < chans; i++) {
1709 		thrd = &pl330->channels[i];
1710 		if ((thrd->free) && (!_manager_ns(thrd) ||
1711 					_chan_ns(pl330, i))) {
1712 			thrd->ev = _alloc_event(thrd);
1713 			if (thrd->ev >= 0) {
1714 				thrd->free = false;
1715 				thrd->lstenq = 1;
1716 				thrd->req[0].desc = NULL;
1717 				thrd->req[1].desc = NULL;
1718 				thrd->req_running = -1;
1719 				break;
1720 			}
1721 		}
1722 		thrd = NULL;
1723 	}
1724 
1725 	return thrd;
1726 }
1727 
1728 /* Release an event */
1729 static inline void _free_event(struct pl330_thread *thrd, int ev)
1730 {
1731 	struct pl330_dmac *pl330 = thrd->dmac;
1732 
1733 	/* If the event is valid and was held by the thread */
1734 	if (ev >= 0 && ev < pl330->pcfg.num_events
1735 			&& pl330->events[ev] == thrd->id)
1736 		pl330->events[ev] = -1;
1737 }
1738 
1739 static void pl330_release_channel(struct pl330_thread *thrd)
1740 {
1741 	struct pl330_dmac *pl330;
1742 
1743 	if (!thrd || thrd->free)
1744 		return;
1745 
1746 	_stop(thrd);
1747 
1748 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1749 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1750 
1751 	pl330 = thrd->dmac;
1752 
1753 	_free_event(thrd, thrd->ev);
1754 	thrd->free = true;
1755 }
1756 
1757 /* Initialize the structure for PL330 configuration, that can be used
1758  * by the client driver the make best use of the DMAC
1759  */
1760 static void read_dmac_config(struct pl330_dmac *pl330)
1761 {
1762 	void __iomem *regs = pl330->base;
1763 	u32 val;
1764 
1765 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1766 	val &= CRD_DATA_WIDTH_MASK;
1767 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1768 
1769 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1770 	val &= CRD_DATA_BUFF_MASK;
1771 	pl330->pcfg.data_buf_dep = val + 1;
1772 
1773 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1774 	val &= CR0_NUM_CHANS_MASK;
1775 	val += 1;
1776 	pl330->pcfg.num_chan = val;
1777 
1778 	val = readl(regs + CR0);
1779 	if (val & CR0_PERIPH_REQ_SET) {
1780 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1781 		val += 1;
1782 		pl330->pcfg.num_peri = val;
1783 		pl330->pcfg.peri_ns = readl(regs + CR4);
1784 	} else {
1785 		pl330->pcfg.num_peri = 0;
1786 	}
1787 
1788 	val = readl(regs + CR0);
1789 	if (val & CR0_BOOT_MAN_NS)
1790 		pl330->pcfg.mode |= DMAC_MODE_NS;
1791 	else
1792 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1793 
1794 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1795 	val &= CR0_NUM_EVENTS_MASK;
1796 	val += 1;
1797 	pl330->pcfg.num_events = val;
1798 
1799 	pl330->pcfg.irq_ns = readl(regs + CR3);
1800 }
1801 
1802 static inline void _reset_thread(struct pl330_thread *thrd)
1803 {
1804 	struct pl330_dmac *pl330 = thrd->dmac;
1805 
1806 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1807 				+ (thrd->id * pl330->mcbufsz);
1808 	thrd->req[0].mc_bus = pl330->mcode_bus
1809 				+ (thrd->id * pl330->mcbufsz);
1810 	thrd->req[0].desc = NULL;
1811 
1812 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1813 				+ pl330->mcbufsz / 2;
1814 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1815 				+ pl330->mcbufsz / 2;
1816 	thrd->req[1].desc = NULL;
1817 
1818 	thrd->req_running = -1;
1819 }
1820 
1821 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1822 {
1823 	int chans = pl330->pcfg.num_chan;
1824 	struct pl330_thread *thrd;
1825 	int i;
1826 
1827 	/* Allocate 1 Manager and 'chans' Channel threads */
1828 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1829 					GFP_KERNEL);
1830 	if (!pl330->channels)
1831 		return -ENOMEM;
1832 
1833 	/* Init Channel threads */
1834 	for (i = 0; i < chans; i++) {
1835 		thrd = &pl330->channels[i];
1836 		thrd->id = i;
1837 		thrd->dmac = pl330;
1838 		_reset_thread(thrd);
1839 		thrd->free = true;
1840 	}
1841 
1842 	/* MANAGER is indexed at the end */
1843 	thrd = &pl330->channels[chans];
1844 	thrd->id = chans;
1845 	thrd->dmac = pl330;
1846 	thrd->free = false;
1847 	pl330->manager = thrd;
1848 
1849 	return 0;
1850 }
1851 
1852 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1853 {
1854 	int chans = pl330->pcfg.num_chan;
1855 	int ret;
1856 
1857 	/*
1858 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1859 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1860 	 */
1861 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1862 				chans * pl330->mcbufsz,
1863 				&pl330->mcode_bus, GFP_KERNEL,
1864 				DMA_ATTR_PRIVILEGED);
1865 	if (!pl330->mcode_cpu) {
1866 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1867 			__func__, __LINE__);
1868 		return -ENOMEM;
1869 	}
1870 
1871 	ret = dmac_alloc_threads(pl330);
1872 	if (ret) {
1873 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1874 			__func__, __LINE__);
1875 		dma_free_coherent(pl330->ddma.dev,
1876 				chans * pl330->mcbufsz,
1877 				pl330->mcode_cpu, pl330->mcode_bus);
1878 		return ret;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 static int pl330_add(struct pl330_dmac *pl330)
1885 {
1886 	int i, ret;
1887 
1888 	/* Check if we can handle this DMAC */
1889 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1890 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1891 			pl330->pcfg.periph_id);
1892 		return -EINVAL;
1893 	}
1894 
1895 	/* Read the configuration of the DMAC */
1896 	read_dmac_config(pl330);
1897 
1898 	if (pl330->pcfg.num_events == 0) {
1899 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1900 			__func__, __LINE__);
1901 		return -EINVAL;
1902 	}
1903 
1904 	spin_lock_init(&pl330->lock);
1905 
1906 	INIT_LIST_HEAD(&pl330->req_done);
1907 
1908 	/* Use default MC buffer size if not provided */
1909 	if (!pl330->mcbufsz)
1910 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1911 
1912 	/* Mark all events as free */
1913 	for (i = 0; i < pl330->pcfg.num_events; i++)
1914 		pl330->events[i] = -1;
1915 
1916 	/* Allocate resources needed by the DMAC */
1917 	ret = dmac_alloc_resources(pl330);
1918 	if (ret) {
1919 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1920 		return ret;
1921 	}
1922 
1923 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1924 
1925 	pl330->state = INIT;
1926 
1927 	return 0;
1928 }
1929 
1930 static int dmac_free_threads(struct pl330_dmac *pl330)
1931 {
1932 	struct pl330_thread *thrd;
1933 	int i;
1934 
1935 	/* Release Channel threads */
1936 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1937 		thrd = &pl330->channels[i];
1938 		pl330_release_channel(thrd);
1939 	}
1940 
1941 	/* Free memory */
1942 	kfree(pl330->channels);
1943 
1944 	return 0;
1945 }
1946 
1947 static void pl330_del(struct pl330_dmac *pl330)
1948 {
1949 	pl330->state = UNINIT;
1950 
1951 	tasklet_kill(&pl330->tasks);
1952 
1953 	/* Free DMAC resources */
1954 	dmac_free_threads(pl330);
1955 
1956 	dma_free_coherent(pl330->ddma.dev,
1957 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1958 		pl330->mcode_bus);
1959 }
1960 
1961 /* forward declaration */
1962 static struct amba_driver pl330_driver;
1963 
1964 static inline struct dma_pl330_chan *
1965 to_pchan(struct dma_chan *ch)
1966 {
1967 	if (!ch)
1968 		return NULL;
1969 
1970 	return container_of(ch, struct dma_pl330_chan, chan);
1971 }
1972 
1973 static inline struct dma_pl330_desc *
1974 to_desc(struct dma_async_tx_descriptor *tx)
1975 {
1976 	return container_of(tx, struct dma_pl330_desc, txd);
1977 }
1978 
1979 static inline void fill_queue(struct dma_pl330_chan *pch)
1980 {
1981 	struct dma_pl330_desc *desc;
1982 	int ret;
1983 
1984 	list_for_each_entry(desc, &pch->work_list, node) {
1985 
1986 		/* If already submitted */
1987 		if (desc->status == BUSY)
1988 			continue;
1989 
1990 		ret = pl330_submit_req(pch->thread, desc);
1991 		if (!ret) {
1992 			desc->status = BUSY;
1993 		} else if (ret == -EAGAIN) {
1994 			/* QFull or DMAC Dying */
1995 			break;
1996 		} else {
1997 			/* Unacceptable request */
1998 			desc->status = DONE;
1999 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2000 					__func__, __LINE__, desc->txd.cookie);
2001 			tasklet_schedule(&pch->task);
2002 		}
2003 	}
2004 }
2005 
2006 static void pl330_tasklet(unsigned long data)
2007 {
2008 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2009 	struct dma_pl330_desc *desc, *_dt;
2010 	unsigned long flags;
2011 	bool power_down = false;
2012 
2013 	spin_lock_irqsave(&pch->lock, flags);
2014 
2015 	/* Pick up ripe tomatoes */
2016 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2017 		if (desc->status == DONE) {
2018 			if (!pch->cyclic)
2019 				dma_cookie_complete(&desc->txd);
2020 			list_move_tail(&desc->node, &pch->completed_list);
2021 		}
2022 
2023 	/* Try to submit a req imm. next to the last completed cookie */
2024 	fill_queue(pch);
2025 
2026 	if (list_empty(&pch->work_list)) {
2027 		spin_lock(&pch->thread->dmac->lock);
2028 		_stop(pch->thread);
2029 		spin_unlock(&pch->thread->dmac->lock);
2030 		power_down = true;
2031 		pch->active = false;
2032 	} else {
2033 		/* Make sure the PL330 Channel thread is active */
2034 		spin_lock(&pch->thread->dmac->lock);
2035 		_start(pch->thread);
2036 		spin_unlock(&pch->thread->dmac->lock);
2037 	}
2038 
2039 	while (!list_empty(&pch->completed_list)) {
2040 		struct dmaengine_desc_callback cb;
2041 
2042 		desc = list_first_entry(&pch->completed_list,
2043 					struct dma_pl330_desc, node);
2044 
2045 		dmaengine_desc_get_callback(&desc->txd, &cb);
2046 
2047 		if (pch->cyclic) {
2048 			desc->status = PREP;
2049 			list_move_tail(&desc->node, &pch->work_list);
2050 			if (power_down) {
2051 				pch->active = true;
2052 				spin_lock(&pch->thread->dmac->lock);
2053 				_start(pch->thread);
2054 				spin_unlock(&pch->thread->dmac->lock);
2055 				power_down = false;
2056 			}
2057 		} else {
2058 			desc->status = FREE;
2059 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2060 		}
2061 
2062 		dma_descriptor_unmap(&desc->txd);
2063 
2064 		if (dmaengine_desc_callback_valid(&cb)) {
2065 			spin_unlock_irqrestore(&pch->lock, flags);
2066 			dmaengine_desc_callback_invoke(&cb, NULL);
2067 			spin_lock_irqsave(&pch->lock, flags);
2068 		}
2069 	}
2070 	spin_unlock_irqrestore(&pch->lock, flags);
2071 
2072 	/* If work list empty, power down */
2073 	if (power_down) {
2074 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2075 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2076 	}
2077 }
2078 
2079 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2080 						struct of_dma *ofdma)
2081 {
2082 	int count = dma_spec->args_count;
2083 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2084 	unsigned int chan_id;
2085 
2086 	if (!pl330)
2087 		return NULL;
2088 
2089 	if (count != 1)
2090 		return NULL;
2091 
2092 	chan_id = dma_spec->args[0];
2093 	if (chan_id >= pl330->num_peripherals)
2094 		return NULL;
2095 
2096 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2097 }
2098 
2099 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2100 {
2101 	struct dma_pl330_chan *pch = to_pchan(chan);
2102 	struct pl330_dmac *pl330 = pch->dmac;
2103 	unsigned long flags;
2104 
2105 	spin_lock_irqsave(&pl330->lock, flags);
2106 
2107 	dma_cookie_init(chan);
2108 	pch->cyclic = false;
2109 
2110 	pch->thread = pl330_request_channel(pl330);
2111 	if (!pch->thread) {
2112 		spin_unlock_irqrestore(&pl330->lock, flags);
2113 		return -ENOMEM;
2114 	}
2115 
2116 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2117 
2118 	spin_unlock_irqrestore(&pl330->lock, flags);
2119 
2120 	return 1;
2121 }
2122 
2123 static int pl330_config(struct dma_chan *chan,
2124 			struct dma_slave_config *slave_config)
2125 {
2126 	struct dma_pl330_chan *pch = to_pchan(chan);
2127 
2128 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2129 		if (slave_config->dst_addr)
2130 			pch->fifo_addr = slave_config->dst_addr;
2131 		if (slave_config->dst_addr_width)
2132 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2133 		if (slave_config->dst_maxburst)
2134 			pch->burst_len = slave_config->dst_maxburst;
2135 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2136 		if (slave_config->src_addr)
2137 			pch->fifo_addr = slave_config->src_addr;
2138 		if (slave_config->src_addr_width)
2139 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2140 		if (slave_config->src_maxburst)
2141 			pch->burst_len = slave_config->src_maxburst;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static int pl330_terminate_all(struct dma_chan *chan)
2148 {
2149 	struct dma_pl330_chan *pch = to_pchan(chan);
2150 	struct dma_pl330_desc *desc;
2151 	unsigned long flags;
2152 	struct pl330_dmac *pl330 = pch->dmac;
2153 	LIST_HEAD(list);
2154 	bool power_down = false;
2155 
2156 	pm_runtime_get_sync(pl330->ddma.dev);
2157 	spin_lock_irqsave(&pch->lock, flags);
2158 	spin_lock(&pl330->lock);
2159 	_stop(pch->thread);
2160 	spin_unlock(&pl330->lock);
2161 
2162 	pch->thread->req[0].desc = NULL;
2163 	pch->thread->req[1].desc = NULL;
2164 	pch->thread->req_running = -1;
2165 	power_down = pch->active;
2166 	pch->active = false;
2167 
2168 	/* Mark all desc done */
2169 	list_for_each_entry(desc, &pch->submitted_list, node) {
2170 		desc->status = FREE;
2171 		dma_cookie_complete(&desc->txd);
2172 	}
2173 
2174 	list_for_each_entry(desc, &pch->work_list , node) {
2175 		desc->status = FREE;
2176 		dma_cookie_complete(&desc->txd);
2177 	}
2178 
2179 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2180 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2181 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2182 	spin_unlock_irqrestore(&pch->lock, flags);
2183 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2184 	if (power_down)
2185 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2186 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2187 
2188 	return 0;
2189 }
2190 
2191 /*
2192  * We don't support DMA_RESUME command because of hardware
2193  * limitations, so after pausing the channel we cannot restore
2194  * it to active state. We have to terminate channel and setup
2195  * DMA transfer again. This pause feature was implemented to
2196  * allow safely read residue before channel termination.
2197  */
2198 static int pl330_pause(struct dma_chan *chan)
2199 {
2200 	struct dma_pl330_chan *pch = to_pchan(chan);
2201 	struct pl330_dmac *pl330 = pch->dmac;
2202 	unsigned long flags;
2203 
2204 	pm_runtime_get_sync(pl330->ddma.dev);
2205 	spin_lock_irqsave(&pch->lock, flags);
2206 
2207 	spin_lock(&pl330->lock);
2208 	_stop(pch->thread);
2209 	spin_unlock(&pl330->lock);
2210 
2211 	spin_unlock_irqrestore(&pch->lock, flags);
2212 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2213 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2214 
2215 	return 0;
2216 }
2217 
2218 static void pl330_free_chan_resources(struct dma_chan *chan)
2219 {
2220 	struct dma_pl330_chan *pch = to_pchan(chan);
2221 	struct pl330_dmac *pl330 = pch->dmac;
2222 	unsigned long flags;
2223 
2224 	tasklet_kill(&pch->task);
2225 
2226 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2227 	spin_lock_irqsave(&pl330->lock, flags);
2228 
2229 	pl330_release_channel(pch->thread);
2230 	pch->thread = NULL;
2231 
2232 	if (pch->cyclic)
2233 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2234 
2235 	spin_unlock_irqrestore(&pl330->lock, flags);
2236 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2237 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2238 }
2239 
2240 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2241 					   struct dma_pl330_desc *desc)
2242 {
2243 	struct pl330_thread *thrd = pch->thread;
2244 	struct pl330_dmac *pl330 = pch->dmac;
2245 	void __iomem *regs = thrd->dmac->base;
2246 	u32 val, addr;
2247 
2248 	pm_runtime_get_sync(pl330->ddma.dev);
2249 	val = addr = 0;
2250 	if (desc->rqcfg.src_inc) {
2251 		val = readl(regs + SA(thrd->id));
2252 		addr = desc->px.src_addr;
2253 	} else {
2254 		val = readl(regs + DA(thrd->id));
2255 		addr = desc->px.dst_addr;
2256 	}
2257 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2258 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2259 
2260 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2261 	if (!val)
2262 		return 0;
2263 
2264 	return val - addr;
2265 }
2266 
2267 static enum dma_status
2268 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2269 		 struct dma_tx_state *txstate)
2270 {
2271 	enum dma_status ret;
2272 	unsigned long flags;
2273 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2274 	struct dma_pl330_chan *pch = to_pchan(chan);
2275 	unsigned int transferred, residual = 0;
2276 
2277 	ret = dma_cookie_status(chan, cookie, txstate);
2278 
2279 	if (!txstate)
2280 		return ret;
2281 
2282 	if (ret == DMA_COMPLETE)
2283 		goto out;
2284 
2285 	spin_lock_irqsave(&pch->lock, flags);
2286 	spin_lock(&pch->thread->dmac->lock);
2287 
2288 	if (pch->thread->req_running != -1)
2289 		running = pch->thread->req[pch->thread->req_running].desc;
2290 
2291 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2292 
2293 	/* Check in pending list */
2294 	list_for_each_entry(desc, &pch->work_list, node) {
2295 		if (desc->status == DONE)
2296 			transferred = desc->bytes_requested;
2297 		else if (running && desc == running)
2298 			transferred =
2299 				pl330_get_current_xferred_count(pch, desc);
2300 		else if (desc->status == BUSY)
2301 			/*
2302 			 * Busy but not running means either just enqueued,
2303 			 * or finished and not yet marked done
2304 			 */
2305 			if (desc == last_enq)
2306 				transferred = 0;
2307 			else
2308 				transferred = desc->bytes_requested;
2309 		else
2310 			transferred = 0;
2311 		residual += desc->bytes_requested - transferred;
2312 		if (desc->txd.cookie == cookie) {
2313 			switch (desc->status) {
2314 			case DONE:
2315 				ret = DMA_COMPLETE;
2316 				break;
2317 			case PREP:
2318 			case BUSY:
2319 				ret = DMA_IN_PROGRESS;
2320 				break;
2321 			default:
2322 				WARN_ON(1);
2323 			}
2324 			break;
2325 		}
2326 		if (desc->last)
2327 			residual = 0;
2328 	}
2329 	spin_unlock(&pch->thread->dmac->lock);
2330 	spin_unlock_irqrestore(&pch->lock, flags);
2331 
2332 out:
2333 	dma_set_residue(txstate, residual);
2334 
2335 	return ret;
2336 }
2337 
2338 static void pl330_issue_pending(struct dma_chan *chan)
2339 {
2340 	struct dma_pl330_chan *pch = to_pchan(chan);
2341 	unsigned long flags;
2342 
2343 	spin_lock_irqsave(&pch->lock, flags);
2344 	if (list_empty(&pch->work_list)) {
2345 		/*
2346 		 * Warn on nothing pending. Empty submitted_list may
2347 		 * break our pm_runtime usage counter as it is
2348 		 * updated on work_list emptiness status.
2349 		 */
2350 		WARN_ON(list_empty(&pch->submitted_list));
2351 		pch->active = true;
2352 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2353 	}
2354 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2355 	spin_unlock_irqrestore(&pch->lock, flags);
2356 
2357 	pl330_tasklet((unsigned long)pch);
2358 }
2359 
2360 /*
2361  * We returned the last one of the circular list of descriptor(s)
2362  * from prep_xxx, so the argument to submit corresponds to the last
2363  * descriptor of the list.
2364  */
2365 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2366 {
2367 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2368 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2369 	dma_cookie_t cookie;
2370 	unsigned long flags;
2371 
2372 	spin_lock_irqsave(&pch->lock, flags);
2373 
2374 	/* Assign cookies to all nodes */
2375 	while (!list_empty(&last->node)) {
2376 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2377 		if (pch->cyclic) {
2378 			desc->txd.callback = last->txd.callback;
2379 			desc->txd.callback_param = last->txd.callback_param;
2380 		}
2381 		desc->last = false;
2382 
2383 		dma_cookie_assign(&desc->txd);
2384 
2385 		list_move_tail(&desc->node, &pch->submitted_list);
2386 	}
2387 
2388 	last->last = true;
2389 	cookie = dma_cookie_assign(&last->txd);
2390 	list_add_tail(&last->node, &pch->submitted_list);
2391 	spin_unlock_irqrestore(&pch->lock, flags);
2392 
2393 	return cookie;
2394 }
2395 
2396 static inline void _init_desc(struct dma_pl330_desc *desc)
2397 {
2398 	desc->rqcfg.swap = SWAP_NO;
2399 	desc->rqcfg.scctl = CCTRL0;
2400 	desc->rqcfg.dcctl = CCTRL0;
2401 	desc->txd.tx_submit = pl330_tx_submit;
2402 
2403 	INIT_LIST_HEAD(&desc->node);
2404 }
2405 
2406 /* Returns the number of descriptors added to the DMAC pool */
2407 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2408 {
2409 	struct dma_pl330_desc *desc;
2410 	unsigned long flags;
2411 	int i;
2412 
2413 	desc = kcalloc(count, sizeof(*desc), flg);
2414 	if (!desc)
2415 		return 0;
2416 
2417 	spin_lock_irqsave(&pl330->pool_lock, flags);
2418 
2419 	for (i = 0; i < count; i++) {
2420 		_init_desc(&desc[i]);
2421 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2422 	}
2423 
2424 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2425 
2426 	return count;
2427 }
2428 
2429 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2430 {
2431 	struct dma_pl330_desc *desc = NULL;
2432 	unsigned long flags;
2433 
2434 	spin_lock_irqsave(&pl330->pool_lock, flags);
2435 
2436 	if (!list_empty(&pl330->desc_pool)) {
2437 		desc = list_entry(pl330->desc_pool.next,
2438 				struct dma_pl330_desc, node);
2439 
2440 		list_del_init(&desc->node);
2441 
2442 		desc->status = PREP;
2443 		desc->txd.callback = NULL;
2444 	}
2445 
2446 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2447 
2448 	return desc;
2449 }
2450 
2451 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2452 {
2453 	struct pl330_dmac *pl330 = pch->dmac;
2454 	u8 *peri_id = pch->chan.private;
2455 	struct dma_pl330_desc *desc;
2456 
2457 	/* Pluck one desc from the pool of DMAC */
2458 	desc = pluck_desc(pl330);
2459 
2460 	/* If the DMAC pool is empty, alloc new */
2461 	if (!desc) {
2462 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2463 			return NULL;
2464 
2465 		/* Try again */
2466 		desc = pluck_desc(pl330);
2467 		if (!desc) {
2468 			dev_err(pch->dmac->ddma.dev,
2469 				"%s:%d ALERT!\n", __func__, __LINE__);
2470 			return NULL;
2471 		}
2472 	}
2473 
2474 	/* Initialize the descriptor */
2475 	desc->pchan = pch;
2476 	desc->txd.cookie = 0;
2477 	async_tx_ack(&desc->txd);
2478 
2479 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2480 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2481 
2482 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2483 
2484 	return desc;
2485 }
2486 
2487 static inline void fill_px(struct pl330_xfer *px,
2488 		dma_addr_t dst, dma_addr_t src, size_t len)
2489 {
2490 	px->bytes = len;
2491 	px->dst_addr = dst;
2492 	px->src_addr = src;
2493 }
2494 
2495 static struct dma_pl330_desc *
2496 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2497 		dma_addr_t src, size_t len)
2498 {
2499 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2500 
2501 	if (!desc) {
2502 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2503 			__func__, __LINE__);
2504 		return NULL;
2505 	}
2506 
2507 	/*
2508 	 * Ideally we should lookout for reqs bigger than
2509 	 * those that can be programmed with 256 bytes of
2510 	 * MC buffer, but considering a req size is seldom
2511 	 * going to be word-unaligned and more than 200MB,
2512 	 * we take it easy.
2513 	 * Also, should the limit is reached we'd rather
2514 	 * have the platform increase MC buffer size than
2515 	 * complicating this API driver.
2516 	 */
2517 	fill_px(&desc->px, dst, src, len);
2518 
2519 	return desc;
2520 }
2521 
2522 /* Call after fixing burst size */
2523 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2524 {
2525 	struct dma_pl330_chan *pch = desc->pchan;
2526 	struct pl330_dmac *pl330 = pch->dmac;
2527 	int burst_len;
2528 
2529 	burst_len = pl330->pcfg.data_bus_width / 8;
2530 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2531 	burst_len >>= desc->rqcfg.brst_size;
2532 
2533 	/* src/dst_burst_len can't be more than 16 */
2534 	if (burst_len > 16)
2535 		burst_len = 16;
2536 
2537 	while (burst_len > 1) {
2538 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2539 			break;
2540 		burst_len--;
2541 	}
2542 
2543 	return burst_len;
2544 }
2545 
2546 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2547 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2548 		size_t period_len, enum dma_transfer_direction direction,
2549 		unsigned long flags)
2550 {
2551 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2552 	struct dma_pl330_chan *pch = to_pchan(chan);
2553 	struct pl330_dmac *pl330 = pch->dmac;
2554 	unsigned int i;
2555 	dma_addr_t dst;
2556 	dma_addr_t src;
2557 
2558 	if (len % period_len != 0)
2559 		return NULL;
2560 
2561 	if (!is_slave_direction(direction)) {
2562 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2563 		__func__, __LINE__);
2564 		return NULL;
2565 	}
2566 
2567 	for (i = 0; i < len / period_len; i++) {
2568 		desc = pl330_get_desc(pch);
2569 		if (!desc) {
2570 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2571 				__func__, __LINE__);
2572 
2573 			if (!first)
2574 				return NULL;
2575 
2576 			spin_lock_irqsave(&pl330->pool_lock, flags);
2577 
2578 			while (!list_empty(&first->node)) {
2579 				desc = list_entry(first->node.next,
2580 						struct dma_pl330_desc, node);
2581 				list_move_tail(&desc->node, &pl330->desc_pool);
2582 			}
2583 
2584 			list_move_tail(&first->node, &pl330->desc_pool);
2585 
2586 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2587 
2588 			return NULL;
2589 		}
2590 
2591 		switch (direction) {
2592 		case DMA_MEM_TO_DEV:
2593 			desc->rqcfg.src_inc = 1;
2594 			desc->rqcfg.dst_inc = 0;
2595 			src = dma_addr;
2596 			dst = pch->fifo_addr;
2597 			break;
2598 		case DMA_DEV_TO_MEM:
2599 			desc->rqcfg.src_inc = 0;
2600 			desc->rqcfg.dst_inc = 1;
2601 			src = pch->fifo_addr;
2602 			dst = dma_addr;
2603 			break;
2604 		default:
2605 			break;
2606 		}
2607 
2608 		desc->rqtype = direction;
2609 		desc->rqcfg.brst_size = pch->burst_sz;
2610 		desc->rqcfg.brst_len = 1;
2611 		desc->bytes_requested = period_len;
2612 		fill_px(&desc->px, dst, src, period_len);
2613 
2614 		if (!first)
2615 			first = desc;
2616 		else
2617 			list_add_tail(&desc->node, &first->node);
2618 
2619 		dma_addr += period_len;
2620 	}
2621 
2622 	if (!desc)
2623 		return NULL;
2624 
2625 	pch->cyclic = true;
2626 	desc->txd.flags = flags;
2627 
2628 	return &desc->txd;
2629 }
2630 
2631 static struct dma_async_tx_descriptor *
2632 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2633 		dma_addr_t src, size_t len, unsigned long flags)
2634 {
2635 	struct dma_pl330_desc *desc;
2636 	struct dma_pl330_chan *pch = to_pchan(chan);
2637 	struct pl330_dmac *pl330;
2638 	int burst;
2639 
2640 	if (unlikely(!pch || !len))
2641 		return NULL;
2642 
2643 	pl330 = pch->dmac;
2644 
2645 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2646 	if (!desc)
2647 		return NULL;
2648 
2649 	desc->rqcfg.src_inc = 1;
2650 	desc->rqcfg.dst_inc = 1;
2651 	desc->rqtype = DMA_MEM_TO_MEM;
2652 
2653 	/* Select max possible burst size */
2654 	burst = pl330->pcfg.data_bus_width / 8;
2655 
2656 	/*
2657 	 * Make sure we use a burst size that aligns with all the memcpy
2658 	 * parameters because our DMA programming algorithm doesn't cope with
2659 	 * transfers which straddle an entry in the DMA device's MFIFO.
2660 	 */
2661 	while ((src | dst | len) & (burst - 1))
2662 		burst /= 2;
2663 
2664 	desc->rqcfg.brst_size = 0;
2665 	while (burst != (1 << desc->rqcfg.brst_size))
2666 		desc->rqcfg.brst_size++;
2667 
2668 	/*
2669 	 * If burst size is smaller than bus width then make sure we only
2670 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2671 	 */
2672 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2673 		desc->rqcfg.brst_len = 1;
2674 
2675 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2676 	desc->bytes_requested = len;
2677 
2678 	desc->txd.flags = flags;
2679 
2680 	return &desc->txd;
2681 }
2682 
2683 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2684 				  struct dma_pl330_desc *first)
2685 {
2686 	unsigned long flags;
2687 	struct dma_pl330_desc *desc;
2688 
2689 	if (!first)
2690 		return;
2691 
2692 	spin_lock_irqsave(&pl330->pool_lock, flags);
2693 
2694 	while (!list_empty(&first->node)) {
2695 		desc = list_entry(first->node.next,
2696 				struct dma_pl330_desc, node);
2697 		list_move_tail(&desc->node, &pl330->desc_pool);
2698 	}
2699 
2700 	list_move_tail(&first->node, &pl330->desc_pool);
2701 
2702 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2703 }
2704 
2705 static struct dma_async_tx_descriptor *
2706 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2707 		unsigned int sg_len, enum dma_transfer_direction direction,
2708 		unsigned long flg, void *context)
2709 {
2710 	struct dma_pl330_desc *first, *desc = NULL;
2711 	struct dma_pl330_chan *pch = to_pchan(chan);
2712 	struct scatterlist *sg;
2713 	int i;
2714 	dma_addr_t addr;
2715 
2716 	if (unlikely(!pch || !sgl || !sg_len))
2717 		return NULL;
2718 
2719 	addr = pch->fifo_addr;
2720 
2721 	first = NULL;
2722 
2723 	for_each_sg(sgl, sg, sg_len, i) {
2724 
2725 		desc = pl330_get_desc(pch);
2726 		if (!desc) {
2727 			struct pl330_dmac *pl330 = pch->dmac;
2728 
2729 			dev_err(pch->dmac->ddma.dev,
2730 				"%s:%d Unable to fetch desc\n",
2731 				__func__, __LINE__);
2732 			__pl330_giveback_desc(pl330, first);
2733 
2734 			return NULL;
2735 		}
2736 
2737 		if (!first)
2738 			first = desc;
2739 		else
2740 			list_add_tail(&desc->node, &first->node);
2741 
2742 		if (direction == DMA_MEM_TO_DEV) {
2743 			desc->rqcfg.src_inc = 1;
2744 			desc->rqcfg.dst_inc = 0;
2745 			fill_px(&desc->px,
2746 				addr, sg_dma_address(sg), sg_dma_len(sg));
2747 		} else {
2748 			desc->rqcfg.src_inc = 0;
2749 			desc->rqcfg.dst_inc = 1;
2750 			fill_px(&desc->px,
2751 				sg_dma_address(sg), addr, sg_dma_len(sg));
2752 		}
2753 
2754 		desc->rqcfg.brst_size = pch->burst_sz;
2755 		desc->rqcfg.brst_len = 1;
2756 		desc->rqtype = direction;
2757 		desc->bytes_requested = sg_dma_len(sg);
2758 	}
2759 
2760 	/* Return the last desc in the chain */
2761 	desc->txd.flags = flg;
2762 	return &desc->txd;
2763 }
2764 
2765 static irqreturn_t pl330_irq_handler(int irq, void *data)
2766 {
2767 	if (pl330_update(data))
2768 		return IRQ_HANDLED;
2769 	else
2770 		return IRQ_NONE;
2771 }
2772 
2773 #define PL330_DMA_BUSWIDTHS \
2774 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2775 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2776 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2777 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2778 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2779 
2780 /*
2781  * Runtime PM callbacks are provided by amba/bus.c driver.
2782  *
2783  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2784  * bus driver will only disable/enable the clock in runtime PM callbacks.
2785  */
2786 static int __maybe_unused pl330_suspend(struct device *dev)
2787 {
2788 	struct amba_device *pcdev = to_amba_device(dev);
2789 
2790 	pm_runtime_disable(dev);
2791 
2792 	if (!pm_runtime_status_suspended(dev)) {
2793 		/* amba did not disable the clock */
2794 		amba_pclk_disable(pcdev);
2795 	}
2796 	amba_pclk_unprepare(pcdev);
2797 
2798 	return 0;
2799 }
2800 
2801 static int __maybe_unused pl330_resume(struct device *dev)
2802 {
2803 	struct amba_device *pcdev = to_amba_device(dev);
2804 	int ret;
2805 
2806 	ret = amba_pclk_prepare(pcdev);
2807 	if (ret)
2808 		return ret;
2809 
2810 	if (!pm_runtime_status_suspended(dev))
2811 		ret = amba_pclk_enable(pcdev);
2812 
2813 	pm_runtime_enable(dev);
2814 
2815 	return ret;
2816 }
2817 
2818 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2819 
2820 static int
2821 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2822 {
2823 	struct pl330_config *pcfg;
2824 	struct pl330_dmac *pl330;
2825 	struct dma_pl330_chan *pch, *_p;
2826 	struct dma_device *pd;
2827 	struct resource *res;
2828 	int i, ret, irq;
2829 	int num_chan;
2830 	struct device_node *np = adev->dev.of_node;
2831 
2832 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2833 	if (ret)
2834 		return ret;
2835 
2836 	/* Allocate a new DMAC and its Channels */
2837 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2838 	if (!pl330)
2839 		return -ENOMEM;
2840 
2841 	pd = &pl330->ddma;
2842 	pd->dev = &adev->dev;
2843 
2844 	pl330->mcbufsz = 0;
2845 
2846 	/* get quirk */
2847 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2848 		if (of_property_read_bool(np, of_quirks[i].quirk))
2849 			pl330->quirks |= of_quirks[i].id;
2850 
2851 	res = &adev->res;
2852 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2853 	if (IS_ERR(pl330->base))
2854 		return PTR_ERR(pl330->base);
2855 
2856 	amba_set_drvdata(adev, pl330);
2857 
2858 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2859 		irq = adev->irq[i];
2860 		if (irq) {
2861 			ret = devm_request_irq(&adev->dev, irq,
2862 					       pl330_irq_handler, 0,
2863 					       dev_name(&adev->dev), pl330);
2864 			if (ret)
2865 				return ret;
2866 		} else {
2867 			break;
2868 		}
2869 	}
2870 
2871 	pcfg = &pl330->pcfg;
2872 
2873 	pcfg->periph_id = adev->periphid;
2874 	ret = pl330_add(pl330);
2875 	if (ret)
2876 		return ret;
2877 
2878 	INIT_LIST_HEAD(&pl330->desc_pool);
2879 	spin_lock_init(&pl330->pool_lock);
2880 
2881 	/* Create a descriptor pool of default size */
2882 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2883 		dev_warn(&adev->dev, "unable to allocate desc\n");
2884 
2885 	INIT_LIST_HEAD(&pd->channels);
2886 
2887 	/* Initialize channel parameters */
2888 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2889 
2890 	pl330->num_peripherals = num_chan;
2891 
2892 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2893 	if (!pl330->peripherals) {
2894 		ret = -ENOMEM;
2895 		goto probe_err2;
2896 	}
2897 
2898 	for (i = 0; i < num_chan; i++) {
2899 		pch = &pl330->peripherals[i];
2900 
2901 		pch->chan.private = adev->dev.of_node;
2902 		INIT_LIST_HEAD(&pch->submitted_list);
2903 		INIT_LIST_HEAD(&pch->work_list);
2904 		INIT_LIST_HEAD(&pch->completed_list);
2905 		spin_lock_init(&pch->lock);
2906 		pch->thread = NULL;
2907 		pch->chan.device = pd;
2908 		pch->dmac = pl330;
2909 
2910 		/* Add the channel to the DMAC list */
2911 		list_add_tail(&pch->chan.device_node, &pd->channels);
2912 	}
2913 
2914 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2915 	if (pcfg->num_peri) {
2916 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
2917 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2918 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2919 	}
2920 
2921 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2922 	pd->device_free_chan_resources = pl330_free_chan_resources;
2923 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2924 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2925 	pd->device_tx_status = pl330_tx_status;
2926 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2927 	pd->device_config = pl330_config;
2928 	pd->device_pause = pl330_pause;
2929 	pd->device_terminate_all = pl330_terminate_all;
2930 	pd->device_issue_pending = pl330_issue_pending;
2931 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2932 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2933 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2934 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2935 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2936 			 1 : PL330_MAX_BURST);
2937 
2938 	ret = dma_async_device_register(pd);
2939 	if (ret) {
2940 		dev_err(&adev->dev, "unable to register DMAC\n");
2941 		goto probe_err3;
2942 	}
2943 
2944 	if (adev->dev.of_node) {
2945 		ret = of_dma_controller_register(adev->dev.of_node,
2946 					 of_dma_pl330_xlate, pl330);
2947 		if (ret) {
2948 			dev_err(&adev->dev,
2949 			"unable to register DMA to the generic DT DMA helpers\n");
2950 		}
2951 	}
2952 
2953 	adev->dev.dma_parms = &pl330->dma_parms;
2954 
2955 	/*
2956 	 * This is the limit for transfers with a buswidth of 1, larger
2957 	 * buswidths will have larger limits.
2958 	 */
2959 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2960 	if (ret)
2961 		dev_err(&adev->dev, "unable to set the seg size\n");
2962 
2963 
2964 	dev_info(&adev->dev,
2965 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2966 	dev_info(&adev->dev,
2967 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2968 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2969 		pcfg->num_peri, pcfg->num_events);
2970 
2971 	pm_runtime_irq_safe(&adev->dev);
2972 	pm_runtime_use_autosuspend(&adev->dev);
2973 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2974 	pm_runtime_mark_last_busy(&adev->dev);
2975 	pm_runtime_put_autosuspend(&adev->dev);
2976 
2977 	return 0;
2978 probe_err3:
2979 	/* Idle the DMAC */
2980 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2981 			chan.device_node) {
2982 
2983 		/* Remove the channel */
2984 		list_del(&pch->chan.device_node);
2985 
2986 		/* Flush the channel */
2987 		if (pch->thread) {
2988 			pl330_terminate_all(&pch->chan);
2989 			pl330_free_chan_resources(&pch->chan);
2990 		}
2991 	}
2992 probe_err2:
2993 	pl330_del(pl330);
2994 
2995 	return ret;
2996 }
2997 
2998 static int pl330_remove(struct amba_device *adev)
2999 {
3000 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3001 	struct dma_pl330_chan *pch, *_p;
3002 	int i, irq;
3003 
3004 	pm_runtime_get_noresume(pl330->ddma.dev);
3005 
3006 	if (adev->dev.of_node)
3007 		of_dma_controller_free(adev->dev.of_node);
3008 
3009 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3010 		irq = adev->irq[i];
3011 		devm_free_irq(&adev->dev, irq, pl330);
3012 	}
3013 
3014 	dma_async_device_unregister(&pl330->ddma);
3015 
3016 	/* Idle the DMAC */
3017 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3018 			chan.device_node) {
3019 
3020 		/* Remove the channel */
3021 		list_del(&pch->chan.device_node);
3022 
3023 		/* Flush the channel */
3024 		if (pch->thread) {
3025 			pl330_terminate_all(&pch->chan);
3026 			pl330_free_chan_resources(&pch->chan);
3027 		}
3028 	}
3029 
3030 	pl330_del(pl330);
3031 
3032 	return 0;
3033 }
3034 
3035 static struct amba_id pl330_ids[] = {
3036 	{
3037 		.id	= 0x00041330,
3038 		.mask	= 0x000fffff,
3039 	},
3040 	{ 0, 0 },
3041 };
3042 
3043 MODULE_DEVICE_TABLE(amba, pl330_ids);
3044 
3045 static struct amba_driver pl330_driver = {
3046 	.drv = {
3047 		.owner = THIS_MODULE,
3048 		.name = "dma-pl330",
3049 		.pm = &pl330_pm,
3050 	},
3051 	.id_table = pl330_ids,
3052 	.probe = pl330_probe,
3053 	.remove = pl330_remove,
3054 };
3055 
3056 module_amba_driver(pl330_driver);
3057 
3058 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3059 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3060 MODULE_LICENSE("GPL");
3061