1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 7 * Jaswinder Singh <jassi.brar@samsung.com> 8 */ 9 10 #include <linux/debugfs.h> 11 #include <linux/kernel.h> 12 #include <linux/io.h> 13 #include <linux/init.h> 14 #include <linux/slab.h> 15 #include <linux/module.h> 16 #include <linux/string.h> 17 #include <linux/delay.h> 18 #include <linux/interrupt.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/dmaengine.h> 21 #include <linux/amba/bus.h> 22 #include <linux/scatterlist.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/err.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/bug.h> 28 #include <linux/reset.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 #define PL330_MAX_BURST 16 35 36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 37 #define PL330_QUIRK_PERIPH_BURST BIT(1) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(KERN_CONT x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /* 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Pause was called while descriptor was BUSY. Due to hardware 408 * limitations, only termination is possible for descriptors 409 * that have been paused. 410 */ 411 PAUSED, 412 /* 413 * Sitting on the channel work_list but xfer done 414 * by PL330 core 415 */ 416 DONE, 417 }; 418 419 struct dma_pl330_chan { 420 /* Schedule desc completion */ 421 struct tasklet_struct task; 422 423 /* DMA-Engine Channel */ 424 struct dma_chan chan; 425 426 /* List of submitted descriptors */ 427 struct list_head submitted_list; 428 /* List of issued descriptors */ 429 struct list_head work_list; 430 /* List of completed descriptors */ 431 struct list_head completed_list; 432 433 /* Pointer to the DMAC that manages this channel, 434 * NULL if the channel is available to be acquired. 435 * As the parent, this DMAC also provides descriptors 436 * to the channel. 437 */ 438 struct pl330_dmac *dmac; 439 440 /* To protect channel manipulation */ 441 spinlock_t lock; 442 443 /* 444 * Hardware channel thread of PL330 DMAC. NULL if the channel is 445 * available. 446 */ 447 struct pl330_thread *thread; 448 449 /* For D-to-M and M-to-D channels */ 450 int burst_sz; /* the peripheral fifo width */ 451 int burst_len; /* the number of burst */ 452 phys_addr_t fifo_addr; 453 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 454 dma_addr_t fifo_dma; 455 enum dma_data_direction dir; 456 struct dma_slave_config slave_config; 457 458 /* for cyclic capability */ 459 bool cyclic; 460 461 /* for runtime pm tracking */ 462 bool active; 463 }; 464 465 struct pl330_dmac { 466 /* DMA-Engine Device */ 467 struct dma_device ddma; 468 469 /* Pool of descriptors available for the DMAC's channels */ 470 struct list_head desc_pool; 471 /* To protect desc_pool manipulation */ 472 spinlock_t pool_lock; 473 474 /* Size of MicroCode buffers for each channel. */ 475 unsigned mcbufsz; 476 /* ioremap'ed address of PL330 registers. */ 477 void __iomem *base; 478 /* Populated by the PL330 core driver during pl330_add */ 479 struct pl330_config pcfg; 480 481 spinlock_t lock; 482 /* Maximum possible events/irqs */ 483 int events[32]; 484 /* BUS address of MicroCode buffer */ 485 dma_addr_t mcode_bus; 486 /* CPU address of MicroCode buffer */ 487 void *mcode_cpu; 488 /* List of all Channel threads */ 489 struct pl330_thread *channels; 490 /* Pointer to the MANAGER thread */ 491 struct pl330_thread *manager; 492 /* To handle bad news in interrupt */ 493 struct tasklet_struct tasks; 494 struct _pl330_tbd dmac_tbd; 495 /* State of DMAC operation */ 496 enum pl330_dmac_state state; 497 /* Holds list of reqs with due callbacks */ 498 struct list_head req_done; 499 500 /* Peripheral channels connected to this DMAC */ 501 unsigned int num_peripherals; 502 struct dma_pl330_chan *peripherals; /* keep at end */ 503 int quirks; 504 505 struct reset_control *rstc; 506 struct reset_control *rstc_ocp; 507 }; 508 509 static struct pl330_of_quirks { 510 char *quirk; 511 int id; 512 } of_quirks[] = { 513 { 514 .quirk = "arm,pl330-broken-no-flushp", 515 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 516 }, 517 { 518 .quirk = "arm,pl330-periph-burst", 519 .id = PL330_QUIRK_PERIPH_BURST, 520 } 521 }; 522 523 struct dma_pl330_desc { 524 /* To attach to a queue as child */ 525 struct list_head node; 526 527 /* Descriptor for the DMA Engine API */ 528 struct dma_async_tx_descriptor txd; 529 530 /* Xfer for PL330 core */ 531 struct pl330_xfer px; 532 533 struct pl330_reqcfg rqcfg; 534 535 enum desc_status status; 536 537 int bytes_requested; 538 bool last; 539 540 /* The channel which currently holds this desc */ 541 struct dma_pl330_chan *pchan; 542 543 enum dma_transfer_direction rqtype; 544 /* Index of peripheral for the xfer. */ 545 unsigned peri:5; 546 /* Hook to attach to DMAC's list of reqs with due callback */ 547 struct list_head rqd; 548 }; 549 550 struct _xfer_spec { 551 u32 ccr; 552 struct dma_pl330_desc *desc; 553 }; 554 555 static int pl330_config_write(struct dma_chan *chan, 556 struct dma_slave_config *slave_config, 557 enum dma_transfer_direction direction); 558 559 static inline bool _queue_full(struct pl330_thread *thrd) 560 { 561 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 562 } 563 564 static inline bool is_manager(struct pl330_thread *thrd) 565 { 566 return thrd->dmac->manager == thrd; 567 } 568 569 /* If manager of the thread is in Non-Secure mode */ 570 static inline bool _manager_ns(struct pl330_thread *thrd) 571 { 572 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 573 } 574 575 static inline u32 get_revision(u32 periph_id) 576 { 577 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 578 } 579 580 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 581 { 582 if (dry_run) 583 return SZ_DMAEND; 584 585 buf[0] = CMD_DMAEND; 586 587 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 588 589 return SZ_DMAEND; 590 } 591 592 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 593 { 594 if (dry_run) 595 return SZ_DMAFLUSHP; 596 597 buf[0] = CMD_DMAFLUSHP; 598 599 peri &= 0x1f; 600 peri <<= 3; 601 buf[1] = peri; 602 603 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 604 605 return SZ_DMAFLUSHP; 606 } 607 608 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 609 { 610 if (dry_run) 611 return SZ_DMALD; 612 613 buf[0] = CMD_DMALD; 614 615 if (cond == SINGLE) 616 buf[0] |= (0 << 1) | (1 << 0); 617 else if (cond == BURST) 618 buf[0] |= (1 << 1) | (1 << 0); 619 620 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 621 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 622 623 return SZ_DMALD; 624 } 625 626 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 627 enum pl330_cond cond, u8 peri) 628 { 629 if (dry_run) 630 return SZ_DMALDP; 631 632 buf[0] = CMD_DMALDP; 633 634 if (cond == BURST) 635 buf[0] |= (1 << 1); 636 637 peri &= 0x1f; 638 peri <<= 3; 639 buf[1] = peri; 640 641 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 642 cond == SINGLE ? 'S' : 'B', peri >> 3); 643 644 return SZ_DMALDP; 645 } 646 647 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 648 unsigned loop, u8 cnt) 649 { 650 if (dry_run) 651 return SZ_DMALP; 652 653 buf[0] = CMD_DMALP; 654 655 if (loop) 656 buf[0] |= (1 << 1); 657 658 cnt--; /* DMAC increments by 1 internally */ 659 buf[1] = cnt; 660 661 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 662 663 return SZ_DMALP; 664 } 665 666 struct _arg_LPEND { 667 enum pl330_cond cond; 668 bool forever; 669 unsigned loop; 670 u8 bjump; 671 }; 672 673 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 674 const struct _arg_LPEND *arg) 675 { 676 enum pl330_cond cond = arg->cond; 677 bool forever = arg->forever; 678 unsigned loop = arg->loop; 679 u8 bjump = arg->bjump; 680 681 if (dry_run) 682 return SZ_DMALPEND; 683 684 buf[0] = CMD_DMALPEND; 685 686 if (loop) 687 buf[0] |= (1 << 2); 688 689 if (!forever) 690 buf[0] |= (1 << 4); 691 692 if (cond == SINGLE) 693 buf[0] |= (0 << 1) | (1 << 0); 694 else if (cond == BURST) 695 buf[0] |= (1 << 1) | (1 << 0); 696 697 buf[1] = bjump; 698 699 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 700 forever ? "FE" : "END", 701 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 702 loop ? '1' : '0', 703 bjump); 704 705 return SZ_DMALPEND; 706 } 707 708 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 709 { 710 if (dry_run) 711 return SZ_DMAKILL; 712 713 buf[0] = CMD_DMAKILL; 714 715 return SZ_DMAKILL; 716 } 717 718 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 719 enum dmamov_dst dst, u32 val) 720 { 721 if (dry_run) 722 return SZ_DMAMOV; 723 724 buf[0] = CMD_DMAMOV; 725 buf[1] = dst; 726 buf[2] = val; 727 buf[3] = val >> 8; 728 buf[4] = val >> 16; 729 buf[5] = val >> 24; 730 731 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 732 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 733 734 return SZ_DMAMOV; 735 } 736 737 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 738 { 739 if (dry_run) 740 return SZ_DMARMB; 741 742 buf[0] = CMD_DMARMB; 743 744 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 745 746 return SZ_DMARMB; 747 } 748 749 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 750 { 751 if (dry_run) 752 return SZ_DMASEV; 753 754 buf[0] = CMD_DMASEV; 755 756 ev &= 0x1f; 757 ev <<= 3; 758 buf[1] = ev; 759 760 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 761 762 return SZ_DMASEV; 763 } 764 765 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 766 { 767 if (dry_run) 768 return SZ_DMAST; 769 770 buf[0] = CMD_DMAST; 771 772 if (cond == SINGLE) 773 buf[0] |= (0 << 1) | (1 << 0); 774 else if (cond == BURST) 775 buf[0] |= (1 << 1) | (1 << 0); 776 777 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 778 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 779 780 return SZ_DMAST; 781 } 782 783 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 784 enum pl330_cond cond, u8 peri) 785 { 786 if (dry_run) 787 return SZ_DMASTP; 788 789 buf[0] = CMD_DMASTP; 790 791 if (cond == BURST) 792 buf[0] |= (1 << 1); 793 794 peri &= 0x1f; 795 peri <<= 3; 796 buf[1] = peri; 797 798 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 799 cond == SINGLE ? 'S' : 'B', peri >> 3); 800 801 return SZ_DMASTP; 802 } 803 804 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 805 enum pl330_cond cond, u8 peri) 806 { 807 if (dry_run) 808 return SZ_DMAWFP; 809 810 buf[0] = CMD_DMAWFP; 811 812 if (cond == SINGLE) 813 buf[0] |= (0 << 1) | (0 << 0); 814 else if (cond == BURST) 815 buf[0] |= (1 << 1) | (0 << 0); 816 else 817 buf[0] |= (0 << 1) | (1 << 0); 818 819 peri &= 0x1f; 820 peri <<= 3; 821 buf[1] = peri; 822 823 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 824 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 825 826 return SZ_DMAWFP; 827 } 828 829 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 830 { 831 if (dry_run) 832 return SZ_DMAWMB; 833 834 buf[0] = CMD_DMAWMB; 835 836 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 837 838 return SZ_DMAWMB; 839 } 840 841 struct _arg_GO { 842 u8 chan; 843 u32 addr; 844 unsigned ns; 845 }; 846 847 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 848 const struct _arg_GO *arg) 849 { 850 u8 chan = arg->chan; 851 u32 addr = arg->addr; 852 unsigned ns = arg->ns; 853 854 if (dry_run) 855 return SZ_DMAGO; 856 857 buf[0] = CMD_DMAGO; 858 buf[0] |= (ns << 1); 859 buf[1] = chan & 0x7; 860 buf[2] = addr; 861 buf[3] = addr >> 8; 862 buf[4] = addr >> 16; 863 buf[5] = addr >> 24; 864 865 return SZ_DMAGO; 866 } 867 868 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 869 870 /* Returns Time-Out */ 871 static bool _until_dmac_idle(struct pl330_thread *thrd) 872 { 873 void __iomem *regs = thrd->dmac->base; 874 unsigned long loops = msecs_to_loops(5); 875 876 do { 877 /* Until Manager is Idle */ 878 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 879 break; 880 881 cpu_relax(); 882 } while (--loops); 883 884 if (!loops) 885 return true; 886 887 return false; 888 } 889 890 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 891 u8 insn[], bool as_manager) 892 { 893 void __iomem *regs = thrd->dmac->base; 894 u32 val; 895 896 /* If timed out due to halted state-machine */ 897 if (_until_dmac_idle(thrd)) { 898 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 899 return; 900 } 901 902 val = (insn[0] << 16) | (insn[1] << 24); 903 if (!as_manager) { 904 val |= (1 << 0); 905 val |= (thrd->id << 8); /* Channel Number */ 906 } 907 writel(val, regs + DBGINST0); 908 909 val = le32_to_cpu(*((__le32 *)&insn[2])); 910 writel(val, regs + DBGINST1); 911 912 /* Get going */ 913 writel(0, regs + DBGCMD); 914 } 915 916 static inline u32 _state(struct pl330_thread *thrd) 917 { 918 void __iomem *regs = thrd->dmac->base; 919 u32 val; 920 921 if (is_manager(thrd)) 922 val = readl(regs + DS) & 0xf; 923 else 924 val = readl(regs + CS(thrd->id)) & 0xf; 925 926 switch (val) { 927 case DS_ST_STOP: 928 return PL330_STATE_STOPPED; 929 case DS_ST_EXEC: 930 return PL330_STATE_EXECUTING; 931 case DS_ST_CMISS: 932 return PL330_STATE_CACHEMISS; 933 case DS_ST_UPDTPC: 934 return PL330_STATE_UPDTPC; 935 case DS_ST_WFE: 936 return PL330_STATE_WFE; 937 case DS_ST_FAULT: 938 return PL330_STATE_FAULTING; 939 case DS_ST_ATBRR: 940 if (is_manager(thrd)) 941 return PL330_STATE_INVALID; 942 else 943 return PL330_STATE_ATBARRIER; 944 case DS_ST_QBUSY: 945 if (is_manager(thrd)) 946 return PL330_STATE_INVALID; 947 else 948 return PL330_STATE_QUEUEBUSY; 949 case DS_ST_WFP: 950 if (is_manager(thrd)) 951 return PL330_STATE_INVALID; 952 else 953 return PL330_STATE_WFP; 954 case DS_ST_KILL: 955 if (is_manager(thrd)) 956 return PL330_STATE_INVALID; 957 else 958 return PL330_STATE_KILLING; 959 case DS_ST_CMPLT: 960 if (is_manager(thrd)) 961 return PL330_STATE_INVALID; 962 else 963 return PL330_STATE_COMPLETING; 964 case DS_ST_FLTCMP: 965 if (is_manager(thrd)) 966 return PL330_STATE_INVALID; 967 else 968 return PL330_STATE_FAULT_COMPLETING; 969 default: 970 return PL330_STATE_INVALID; 971 } 972 } 973 974 static void _stop(struct pl330_thread *thrd) 975 { 976 void __iomem *regs = thrd->dmac->base; 977 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 978 u32 inten = readl(regs + INTEN); 979 980 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 981 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 982 983 /* Return if nothing needs to be done */ 984 if (_state(thrd) == PL330_STATE_COMPLETING 985 || _state(thrd) == PL330_STATE_KILLING 986 || _state(thrd) == PL330_STATE_STOPPED) 987 return; 988 989 _emit_KILL(0, insn); 990 991 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 992 993 /* clear the event */ 994 if (inten & (1 << thrd->ev)) 995 writel(1 << thrd->ev, regs + INTCLR); 996 /* Stop generating interrupts for SEV */ 997 writel(inten & ~(1 << thrd->ev), regs + INTEN); 998 } 999 1000 /* Start doing req 'idx' of thread 'thrd' */ 1001 static bool _trigger(struct pl330_thread *thrd) 1002 { 1003 void __iomem *regs = thrd->dmac->base; 1004 struct _pl330_req *req; 1005 struct dma_pl330_desc *desc; 1006 struct _arg_GO go; 1007 unsigned ns; 1008 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1009 int idx; 1010 1011 /* Return if already ACTIVE */ 1012 if (_state(thrd) != PL330_STATE_STOPPED) 1013 return true; 1014 1015 idx = 1 - thrd->lstenq; 1016 if (thrd->req[idx].desc != NULL) { 1017 req = &thrd->req[idx]; 1018 } else { 1019 idx = thrd->lstenq; 1020 if (thrd->req[idx].desc != NULL) 1021 req = &thrd->req[idx]; 1022 else 1023 req = NULL; 1024 } 1025 1026 /* Return if no request */ 1027 if (!req) 1028 return true; 1029 1030 /* Return if req is running */ 1031 if (idx == thrd->req_running) 1032 return true; 1033 1034 desc = req->desc; 1035 1036 ns = desc->rqcfg.nonsecure ? 1 : 0; 1037 1038 /* See 'Abort Sources' point-4 at Page 2-25 */ 1039 if (_manager_ns(thrd) && !ns) 1040 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1041 __func__, __LINE__); 1042 1043 go.chan = thrd->id; 1044 go.addr = req->mc_bus; 1045 go.ns = ns; 1046 _emit_GO(0, insn, &go); 1047 1048 /* Set to generate interrupts for SEV */ 1049 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1050 1051 /* Only manager can execute GO */ 1052 _execute_DBGINSN(thrd, insn, true); 1053 1054 thrd->req_running = idx; 1055 1056 if (desc->rqtype == DMA_MEM_TO_DEV || desc->rqtype == DMA_DEV_TO_MEM) 1057 UNTIL(thrd, PL330_STATE_WFP); 1058 1059 return true; 1060 } 1061 1062 static bool pl330_start_thread(struct pl330_thread *thrd) 1063 { 1064 switch (_state(thrd)) { 1065 case PL330_STATE_FAULT_COMPLETING: 1066 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1067 1068 if (_state(thrd) == PL330_STATE_KILLING) 1069 UNTIL(thrd, PL330_STATE_STOPPED) 1070 fallthrough; 1071 1072 case PL330_STATE_FAULTING: 1073 _stop(thrd); 1074 fallthrough; 1075 1076 case PL330_STATE_KILLING: 1077 case PL330_STATE_COMPLETING: 1078 UNTIL(thrd, PL330_STATE_STOPPED) 1079 fallthrough; 1080 1081 case PL330_STATE_STOPPED: 1082 return _trigger(thrd); 1083 1084 case PL330_STATE_WFP: 1085 case PL330_STATE_QUEUEBUSY: 1086 case PL330_STATE_ATBARRIER: 1087 case PL330_STATE_UPDTPC: 1088 case PL330_STATE_CACHEMISS: 1089 case PL330_STATE_EXECUTING: 1090 return true; 1091 1092 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1093 default: 1094 return false; 1095 } 1096 } 1097 1098 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1099 const struct _xfer_spec *pxs, int cyc) 1100 { 1101 int off = 0; 1102 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1103 1104 /* check lock-up free version */ 1105 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1106 while (cyc--) { 1107 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1108 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1109 } 1110 } else { 1111 while (cyc--) { 1112 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1113 off += _emit_RMB(dry_run, &buf[off]); 1114 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1115 off += _emit_WMB(dry_run, &buf[off]); 1116 } 1117 } 1118 1119 return off; 1120 } 1121 1122 static u32 _emit_load(unsigned int dry_run, u8 buf[], 1123 enum pl330_cond cond, enum dma_transfer_direction direction, 1124 u8 peri) 1125 { 1126 int off = 0; 1127 1128 switch (direction) { 1129 case DMA_MEM_TO_MEM: 1130 case DMA_MEM_TO_DEV: 1131 off += _emit_LD(dry_run, &buf[off], cond); 1132 break; 1133 1134 case DMA_DEV_TO_MEM: 1135 if (cond == ALWAYS) { 1136 off += _emit_LDP(dry_run, &buf[off], SINGLE, 1137 peri); 1138 off += _emit_LDP(dry_run, &buf[off], BURST, 1139 peri); 1140 } else { 1141 off += _emit_LDP(dry_run, &buf[off], cond, 1142 peri); 1143 } 1144 break; 1145 1146 default: 1147 /* this code should be unreachable */ 1148 WARN_ON(1); 1149 break; 1150 } 1151 1152 return off; 1153 } 1154 1155 static inline u32 _emit_store(unsigned int dry_run, u8 buf[], 1156 enum pl330_cond cond, enum dma_transfer_direction direction, 1157 u8 peri) 1158 { 1159 int off = 0; 1160 1161 switch (direction) { 1162 case DMA_MEM_TO_MEM: 1163 case DMA_DEV_TO_MEM: 1164 off += _emit_ST(dry_run, &buf[off], cond); 1165 break; 1166 1167 case DMA_MEM_TO_DEV: 1168 if (cond == ALWAYS) { 1169 off += _emit_STP(dry_run, &buf[off], SINGLE, 1170 peri); 1171 off += _emit_STP(dry_run, &buf[off], BURST, 1172 peri); 1173 } else { 1174 off += _emit_STP(dry_run, &buf[off], cond, 1175 peri); 1176 } 1177 break; 1178 1179 default: 1180 /* this code should be unreachable */ 1181 WARN_ON(1); 1182 break; 1183 } 1184 1185 return off; 1186 } 1187 1188 static inline int _ldst_peripheral(struct pl330_dmac *pl330, 1189 unsigned dry_run, u8 buf[], 1190 const struct _xfer_spec *pxs, int cyc, 1191 enum pl330_cond cond) 1192 { 1193 int off = 0; 1194 1195 /* 1196 * do FLUSHP at beginning to clear any stale dma requests before the 1197 * first WFP. 1198 */ 1199 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1200 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri); 1201 while (cyc--) { 1202 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1203 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype, 1204 pxs->desc->peri); 1205 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype, 1206 pxs->desc->peri); 1207 } 1208 1209 return off; 1210 } 1211 1212 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1213 const struct _xfer_spec *pxs, int cyc) 1214 { 1215 int off = 0; 1216 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE; 1217 1218 if (pl330->quirks & PL330_QUIRK_PERIPH_BURST) 1219 cond = BURST; 1220 1221 switch (pxs->desc->rqtype) { 1222 case DMA_MEM_TO_DEV: 1223 case DMA_DEV_TO_MEM: 1224 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc, 1225 cond); 1226 break; 1227 1228 case DMA_MEM_TO_MEM: 1229 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1230 break; 1231 1232 default: 1233 /* this code should be unreachable */ 1234 WARN_ON(1); 1235 break; 1236 } 1237 1238 return off; 1239 } 1240 1241 /* 1242 * only the unaligned burst transfers have the dregs. 1243 * so, still transfer dregs with a reduced size burst 1244 * for mem-to-mem, mem-to-dev or dev-to-mem. 1245 */ 1246 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[], 1247 const struct _xfer_spec *pxs, int transfer_length) 1248 { 1249 int off = 0; 1250 int dregs_ccr; 1251 1252 if (transfer_length == 0) 1253 return off; 1254 1255 /* 1256 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) / 1257 * BRST_SIZE(ccr) 1258 * the dregs len must be smaller than burst len, 1259 * so, for higher efficiency, we can modify CCR 1260 * to use a reduced size burst len for the dregs. 1261 */ 1262 dregs_ccr = pxs->ccr; 1263 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) | 1264 (0xf << CC_DSTBRSTLEN_SHFT)); 1265 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1266 CC_SRCBRSTLEN_SHFT); 1267 dregs_ccr |= (((transfer_length - 1) & 0xf) << 1268 CC_DSTBRSTLEN_SHFT); 1269 1270 switch (pxs->desc->rqtype) { 1271 case DMA_MEM_TO_DEV: 1272 case DMA_DEV_TO_MEM: 1273 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1274 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1, 1275 BURST); 1276 break; 1277 1278 case DMA_MEM_TO_MEM: 1279 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr); 1280 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1); 1281 break; 1282 1283 default: 1284 /* this code should be unreachable */ 1285 WARN_ON(1); 1286 break; 1287 } 1288 1289 return off; 1290 } 1291 1292 /* Returns bytes consumed and updates bursts */ 1293 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1294 unsigned long *bursts, const struct _xfer_spec *pxs) 1295 { 1296 int cyc, cycmax, szlp, szlpend, szbrst, off; 1297 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1298 struct _arg_LPEND lpend; 1299 1300 if (*bursts == 1) 1301 return _bursts(pl330, dry_run, buf, pxs, 1); 1302 1303 /* Max iterations possible in DMALP is 256 */ 1304 if (*bursts >= 256*256) { 1305 lcnt1 = 256; 1306 lcnt0 = 256; 1307 cyc = *bursts / lcnt1 / lcnt0; 1308 } else if (*bursts > 256) { 1309 lcnt1 = 256; 1310 lcnt0 = *bursts / lcnt1; 1311 cyc = 1; 1312 } else { 1313 lcnt1 = *bursts; 1314 lcnt0 = 0; 1315 cyc = 1; 1316 } 1317 1318 szlp = _emit_LP(1, buf, 0, 0); 1319 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1320 1321 lpend.cond = ALWAYS; 1322 lpend.forever = false; 1323 lpend.loop = 0; 1324 lpend.bjump = 0; 1325 szlpend = _emit_LPEND(1, buf, &lpend); 1326 1327 if (lcnt0) { 1328 szlp *= 2; 1329 szlpend *= 2; 1330 } 1331 1332 /* 1333 * Max bursts that we can unroll due to limit on the 1334 * size of backward jump that can be encoded in DMALPEND 1335 * which is 8-bits and hence 255 1336 */ 1337 cycmax = (255 - (szlp + szlpend)) / szbrst; 1338 1339 cyc = (cycmax < cyc) ? cycmax : cyc; 1340 1341 off = 0; 1342 1343 if (lcnt0) { 1344 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1345 ljmp0 = off; 1346 } 1347 1348 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1349 ljmp1 = off; 1350 1351 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1352 1353 lpend.cond = ALWAYS; 1354 lpend.forever = false; 1355 lpend.loop = 1; 1356 lpend.bjump = off - ljmp1; 1357 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1358 1359 if (lcnt0) { 1360 lpend.cond = ALWAYS; 1361 lpend.forever = false; 1362 lpend.loop = 0; 1363 lpend.bjump = off - ljmp0; 1364 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1365 } 1366 1367 *bursts = lcnt1 * cyc; 1368 if (lcnt0) 1369 *bursts *= lcnt0; 1370 1371 return off; 1372 } 1373 1374 static inline int _setup_loops(struct pl330_dmac *pl330, 1375 unsigned dry_run, u8 buf[], 1376 const struct _xfer_spec *pxs) 1377 { 1378 struct pl330_xfer *x = &pxs->desc->px; 1379 u32 ccr = pxs->ccr; 1380 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1381 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) / 1382 BRST_SIZE(ccr); 1383 int off = 0; 1384 1385 while (bursts) { 1386 c = bursts; 1387 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1388 bursts -= c; 1389 } 1390 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs); 1391 1392 return off; 1393 } 1394 1395 static inline int _setup_xfer(struct pl330_dmac *pl330, 1396 unsigned dry_run, u8 buf[], 1397 const struct _xfer_spec *pxs) 1398 { 1399 struct pl330_xfer *x = &pxs->desc->px; 1400 int off = 0; 1401 1402 /* DMAMOV SAR, x->src_addr */ 1403 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1404 /* DMAMOV DAR, x->dst_addr */ 1405 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1406 1407 /* Setup Loop(s) */ 1408 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1409 1410 return off; 1411 } 1412 1413 /* 1414 * A req is a sequence of one or more xfer units. 1415 * Returns the number of bytes taken to setup the MC for the req. 1416 */ 1417 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1418 struct pl330_thread *thrd, unsigned index, 1419 struct _xfer_spec *pxs) 1420 { 1421 struct _pl330_req *req = &thrd->req[index]; 1422 u8 *buf = req->mc_cpu; 1423 int off = 0; 1424 1425 PL330_DBGMC_START(req->mc_bus); 1426 1427 /* DMAMOV CCR, ccr */ 1428 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1429 1430 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1431 1432 /* DMASEV peripheral/event */ 1433 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1434 /* DMAEND */ 1435 off += _emit_END(dry_run, &buf[off]); 1436 1437 return off; 1438 } 1439 1440 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1441 { 1442 u32 ccr = 0; 1443 1444 if (rqc->src_inc) 1445 ccr |= CC_SRCINC; 1446 1447 if (rqc->dst_inc) 1448 ccr |= CC_DSTINC; 1449 1450 /* We set same protection levels for Src and DST for now */ 1451 if (rqc->privileged) 1452 ccr |= CC_SRCPRI | CC_DSTPRI; 1453 if (rqc->nonsecure) 1454 ccr |= CC_SRCNS | CC_DSTNS; 1455 if (rqc->insnaccess) 1456 ccr |= CC_SRCIA | CC_DSTIA; 1457 1458 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1459 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1460 1461 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1462 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1463 1464 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1465 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1466 1467 ccr |= (rqc->swap << CC_SWAP_SHFT); 1468 1469 return ccr; 1470 } 1471 1472 /* 1473 * Submit a list of xfers after which the client wants notification. 1474 * Client is not notified after each xfer unit, just once after all 1475 * xfer units are done or some error occurs. 1476 */ 1477 static int pl330_submit_req(struct pl330_thread *thrd, 1478 struct dma_pl330_desc *desc) 1479 { 1480 struct pl330_dmac *pl330 = thrd->dmac; 1481 struct _xfer_spec xs; 1482 unsigned long flags; 1483 unsigned idx; 1484 u32 ccr; 1485 int ret = 0; 1486 1487 switch (desc->rqtype) { 1488 case DMA_MEM_TO_DEV: 1489 break; 1490 1491 case DMA_DEV_TO_MEM: 1492 break; 1493 1494 case DMA_MEM_TO_MEM: 1495 break; 1496 1497 default: 1498 return -ENOTSUPP; 1499 } 1500 1501 if (pl330->state == DYING 1502 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1503 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1504 __func__, __LINE__); 1505 return -EAGAIN; 1506 } 1507 1508 /* If request for non-existing peripheral */ 1509 if (desc->rqtype != DMA_MEM_TO_MEM && 1510 desc->peri >= pl330->pcfg.num_peri) { 1511 dev_info(thrd->dmac->ddma.dev, 1512 "%s:%d Invalid peripheral(%u)!\n", 1513 __func__, __LINE__, desc->peri); 1514 return -EINVAL; 1515 } 1516 1517 spin_lock_irqsave(&pl330->lock, flags); 1518 1519 if (_queue_full(thrd)) { 1520 ret = -EAGAIN; 1521 goto xfer_exit; 1522 } 1523 1524 /* Prefer Secure Channel */ 1525 if (!_manager_ns(thrd)) 1526 desc->rqcfg.nonsecure = 0; 1527 else 1528 desc->rqcfg.nonsecure = 1; 1529 1530 ccr = _prepare_ccr(&desc->rqcfg); 1531 1532 idx = thrd->req[0].desc == NULL ? 0 : 1; 1533 1534 xs.ccr = ccr; 1535 xs.desc = desc; 1536 1537 /* First dry run to check if req is acceptable */ 1538 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1539 1540 if (ret > pl330->mcbufsz / 2) { 1541 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1542 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1543 ret = -ENOMEM; 1544 goto xfer_exit; 1545 } 1546 1547 /* Hook the request */ 1548 thrd->lstenq = idx; 1549 thrd->req[idx].desc = desc; 1550 _setup_req(pl330, 0, thrd, idx, &xs); 1551 1552 ret = 0; 1553 1554 xfer_exit: 1555 spin_unlock_irqrestore(&pl330->lock, flags); 1556 1557 return ret; 1558 } 1559 1560 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1561 { 1562 struct dma_pl330_chan *pch; 1563 unsigned long flags; 1564 1565 if (!desc) 1566 return; 1567 1568 pch = desc->pchan; 1569 1570 /* If desc aborted */ 1571 if (!pch) 1572 return; 1573 1574 spin_lock_irqsave(&pch->lock, flags); 1575 1576 desc->status = DONE; 1577 1578 spin_unlock_irqrestore(&pch->lock, flags); 1579 1580 tasklet_schedule(&pch->task); 1581 } 1582 1583 static void pl330_dotask(struct tasklet_struct *t) 1584 { 1585 struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks); 1586 unsigned long flags; 1587 int i; 1588 1589 spin_lock_irqsave(&pl330->lock, flags); 1590 1591 /* The DMAC itself gone nuts */ 1592 if (pl330->dmac_tbd.reset_dmac) { 1593 pl330->state = DYING; 1594 /* Reset the manager too */ 1595 pl330->dmac_tbd.reset_mngr = true; 1596 /* Clear the reset flag */ 1597 pl330->dmac_tbd.reset_dmac = false; 1598 } 1599 1600 if (pl330->dmac_tbd.reset_mngr) { 1601 _stop(pl330->manager); 1602 /* Reset all channels */ 1603 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1604 /* Clear the reset flag */ 1605 pl330->dmac_tbd.reset_mngr = false; 1606 } 1607 1608 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1609 1610 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1611 struct pl330_thread *thrd = &pl330->channels[i]; 1612 void __iomem *regs = pl330->base; 1613 enum pl330_op_err err; 1614 1615 _stop(thrd); 1616 1617 if (readl(regs + FSC) & (1 << thrd->id)) 1618 err = PL330_ERR_FAIL; 1619 else 1620 err = PL330_ERR_ABORT; 1621 1622 spin_unlock_irqrestore(&pl330->lock, flags); 1623 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1624 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1625 spin_lock_irqsave(&pl330->lock, flags); 1626 1627 thrd->req[0].desc = NULL; 1628 thrd->req[1].desc = NULL; 1629 thrd->req_running = -1; 1630 1631 /* Clear the reset flag */ 1632 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1633 } 1634 } 1635 1636 spin_unlock_irqrestore(&pl330->lock, flags); 1637 1638 return; 1639 } 1640 1641 /* Returns 1 if state was updated, 0 otherwise */ 1642 static int pl330_update(struct pl330_dmac *pl330) 1643 { 1644 struct dma_pl330_desc *descdone; 1645 unsigned long flags; 1646 void __iomem *regs; 1647 u32 val; 1648 int id, ev, ret = 0; 1649 1650 regs = pl330->base; 1651 1652 spin_lock_irqsave(&pl330->lock, flags); 1653 1654 val = readl(regs + FSM) & 0x1; 1655 if (val) 1656 pl330->dmac_tbd.reset_mngr = true; 1657 else 1658 pl330->dmac_tbd.reset_mngr = false; 1659 1660 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1661 pl330->dmac_tbd.reset_chan |= val; 1662 if (val) { 1663 int i = 0; 1664 while (i < pl330->pcfg.num_chan) { 1665 if (val & (1 << i)) { 1666 dev_info(pl330->ddma.dev, 1667 "Reset Channel-%d\t CS-%x FTC-%x\n", 1668 i, readl(regs + CS(i)), 1669 readl(regs + FTC(i))); 1670 _stop(&pl330->channels[i]); 1671 } 1672 i++; 1673 } 1674 } 1675 1676 /* Check which event happened i.e, thread notified */ 1677 val = readl(regs + ES); 1678 if (pl330->pcfg.num_events < 32 1679 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1680 pl330->dmac_tbd.reset_dmac = true; 1681 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1682 __LINE__); 1683 ret = 1; 1684 goto updt_exit; 1685 } 1686 1687 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1688 if (val & (1 << ev)) { /* Event occurred */ 1689 struct pl330_thread *thrd; 1690 u32 inten = readl(regs + INTEN); 1691 int active; 1692 1693 /* Clear the event */ 1694 if (inten & (1 << ev)) 1695 writel(1 << ev, regs + INTCLR); 1696 1697 ret = 1; 1698 1699 id = pl330->events[ev]; 1700 1701 thrd = &pl330->channels[id]; 1702 1703 active = thrd->req_running; 1704 if (active == -1) /* Aborted */ 1705 continue; 1706 1707 /* Detach the req */ 1708 descdone = thrd->req[active].desc; 1709 thrd->req[active].desc = NULL; 1710 1711 thrd->req_running = -1; 1712 1713 /* Get going again ASAP */ 1714 pl330_start_thread(thrd); 1715 1716 /* For now, just make a list of callbacks to be done */ 1717 list_add_tail(&descdone->rqd, &pl330->req_done); 1718 } 1719 } 1720 1721 /* Now that we are in no hurry, do the callbacks */ 1722 while (!list_empty(&pl330->req_done)) { 1723 descdone = list_first_entry(&pl330->req_done, 1724 struct dma_pl330_desc, rqd); 1725 list_del(&descdone->rqd); 1726 spin_unlock_irqrestore(&pl330->lock, flags); 1727 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1728 spin_lock_irqsave(&pl330->lock, flags); 1729 } 1730 1731 updt_exit: 1732 spin_unlock_irqrestore(&pl330->lock, flags); 1733 1734 if (pl330->dmac_tbd.reset_dmac 1735 || pl330->dmac_tbd.reset_mngr 1736 || pl330->dmac_tbd.reset_chan) { 1737 ret = 1; 1738 tasklet_schedule(&pl330->tasks); 1739 } 1740 1741 return ret; 1742 } 1743 1744 /* Reserve an event */ 1745 static inline int _alloc_event(struct pl330_thread *thrd) 1746 { 1747 struct pl330_dmac *pl330 = thrd->dmac; 1748 int ev; 1749 1750 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1751 if (pl330->events[ev] == -1) { 1752 pl330->events[ev] = thrd->id; 1753 return ev; 1754 } 1755 1756 return -1; 1757 } 1758 1759 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1760 { 1761 return pl330->pcfg.irq_ns & (1 << i); 1762 } 1763 1764 /* Upon success, returns IdentityToken for the 1765 * allocated channel, NULL otherwise. 1766 */ 1767 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1768 { 1769 struct pl330_thread *thrd = NULL; 1770 int chans, i; 1771 1772 if (pl330->state == DYING) 1773 return NULL; 1774 1775 chans = pl330->pcfg.num_chan; 1776 1777 for (i = 0; i < chans; i++) { 1778 thrd = &pl330->channels[i]; 1779 if ((thrd->free) && (!_manager_ns(thrd) || 1780 _chan_ns(pl330, i))) { 1781 thrd->ev = _alloc_event(thrd); 1782 if (thrd->ev >= 0) { 1783 thrd->free = false; 1784 thrd->lstenq = 1; 1785 thrd->req[0].desc = NULL; 1786 thrd->req[1].desc = NULL; 1787 thrd->req_running = -1; 1788 break; 1789 } 1790 } 1791 thrd = NULL; 1792 } 1793 1794 return thrd; 1795 } 1796 1797 /* Release an event */ 1798 static inline void _free_event(struct pl330_thread *thrd, int ev) 1799 { 1800 struct pl330_dmac *pl330 = thrd->dmac; 1801 1802 /* If the event is valid and was held by the thread */ 1803 if (ev >= 0 && ev < pl330->pcfg.num_events 1804 && pl330->events[ev] == thrd->id) 1805 pl330->events[ev] = -1; 1806 } 1807 1808 static void pl330_release_channel(struct pl330_thread *thrd) 1809 { 1810 if (!thrd || thrd->free) 1811 return; 1812 1813 _stop(thrd); 1814 1815 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1816 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1817 1818 _free_event(thrd, thrd->ev); 1819 thrd->free = true; 1820 } 1821 1822 /* Initialize the structure for PL330 configuration, that can be used 1823 * by the client driver the make best use of the DMAC 1824 */ 1825 static void read_dmac_config(struct pl330_dmac *pl330) 1826 { 1827 void __iomem *regs = pl330->base; 1828 u32 val; 1829 1830 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1831 val &= CRD_DATA_WIDTH_MASK; 1832 pl330->pcfg.data_bus_width = 8 * (1 << val); 1833 1834 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1835 val &= CRD_DATA_BUFF_MASK; 1836 pl330->pcfg.data_buf_dep = val + 1; 1837 1838 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1839 val &= CR0_NUM_CHANS_MASK; 1840 val += 1; 1841 pl330->pcfg.num_chan = val; 1842 1843 val = readl(regs + CR0); 1844 if (val & CR0_PERIPH_REQ_SET) { 1845 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1846 val += 1; 1847 pl330->pcfg.num_peri = val; 1848 pl330->pcfg.peri_ns = readl(regs + CR4); 1849 } else { 1850 pl330->pcfg.num_peri = 0; 1851 } 1852 1853 val = readl(regs + CR0); 1854 if (val & CR0_BOOT_MAN_NS) 1855 pl330->pcfg.mode |= DMAC_MODE_NS; 1856 else 1857 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1858 1859 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1860 val &= CR0_NUM_EVENTS_MASK; 1861 val += 1; 1862 pl330->pcfg.num_events = val; 1863 1864 pl330->pcfg.irq_ns = readl(regs + CR3); 1865 } 1866 1867 static inline void _reset_thread(struct pl330_thread *thrd) 1868 { 1869 struct pl330_dmac *pl330 = thrd->dmac; 1870 1871 thrd->req[0].mc_cpu = pl330->mcode_cpu 1872 + (thrd->id * pl330->mcbufsz); 1873 thrd->req[0].mc_bus = pl330->mcode_bus 1874 + (thrd->id * pl330->mcbufsz); 1875 thrd->req[0].desc = NULL; 1876 1877 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1878 + pl330->mcbufsz / 2; 1879 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1880 + pl330->mcbufsz / 2; 1881 thrd->req[1].desc = NULL; 1882 1883 thrd->req_running = -1; 1884 } 1885 1886 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1887 { 1888 int chans = pl330->pcfg.num_chan; 1889 struct pl330_thread *thrd; 1890 int i; 1891 1892 /* Allocate 1 Manager and 'chans' Channel threads */ 1893 pl330->channels = kcalloc(1 + chans, sizeof(*thrd), 1894 GFP_KERNEL); 1895 if (!pl330->channels) 1896 return -ENOMEM; 1897 1898 /* Init Channel threads */ 1899 for (i = 0; i < chans; i++) { 1900 thrd = &pl330->channels[i]; 1901 thrd->id = i; 1902 thrd->dmac = pl330; 1903 _reset_thread(thrd); 1904 thrd->free = true; 1905 } 1906 1907 /* MANAGER is indexed at the end */ 1908 thrd = &pl330->channels[chans]; 1909 thrd->id = chans; 1910 thrd->dmac = pl330; 1911 thrd->free = false; 1912 pl330->manager = thrd; 1913 1914 return 0; 1915 } 1916 1917 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1918 { 1919 int chans = pl330->pcfg.num_chan; 1920 int ret; 1921 1922 /* 1923 * Alloc MicroCode buffer for 'chans' Channel threads. 1924 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1925 */ 1926 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1927 chans * pl330->mcbufsz, 1928 &pl330->mcode_bus, GFP_KERNEL, 1929 DMA_ATTR_PRIVILEGED); 1930 if (!pl330->mcode_cpu) { 1931 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1932 __func__, __LINE__); 1933 return -ENOMEM; 1934 } 1935 1936 ret = dmac_alloc_threads(pl330); 1937 if (ret) { 1938 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1939 __func__, __LINE__); 1940 dma_free_attrs(pl330->ddma.dev, 1941 chans * pl330->mcbufsz, 1942 pl330->mcode_cpu, pl330->mcode_bus, 1943 DMA_ATTR_PRIVILEGED); 1944 return ret; 1945 } 1946 1947 return 0; 1948 } 1949 1950 static int pl330_add(struct pl330_dmac *pl330) 1951 { 1952 int i, ret; 1953 1954 /* Check if we can handle this DMAC */ 1955 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1956 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1957 pl330->pcfg.periph_id); 1958 return -EINVAL; 1959 } 1960 1961 /* Read the configuration of the DMAC */ 1962 read_dmac_config(pl330); 1963 1964 if (pl330->pcfg.num_events == 0) { 1965 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1966 __func__, __LINE__); 1967 return -EINVAL; 1968 } 1969 1970 spin_lock_init(&pl330->lock); 1971 1972 INIT_LIST_HEAD(&pl330->req_done); 1973 1974 /* Use default MC buffer size if not provided */ 1975 if (!pl330->mcbufsz) 1976 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1977 1978 /* Mark all events as free */ 1979 for (i = 0; i < pl330->pcfg.num_events; i++) 1980 pl330->events[i] = -1; 1981 1982 /* Allocate resources needed by the DMAC */ 1983 ret = dmac_alloc_resources(pl330); 1984 if (ret) { 1985 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1986 return ret; 1987 } 1988 1989 tasklet_setup(&pl330->tasks, pl330_dotask); 1990 1991 pl330->state = INIT; 1992 1993 return 0; 1994 } 1995 1996 static int dmac_free_threads(struct pl330_dmac *pl330) 1997 { 1998 struct pl330_thread *thrd; 1999 int i; 2000 2001 /* Release Channel threads */ 2002 for (i = 0; i < pl330->pcfg.num_chan; i++) { 2003 thrd = &pl330->channels[i]; 2004 pl330_release_channel(thrd); 2005 } 2006 2007 /* Free memory */ 2008 kfree(pl330->channels); 2009 2010 return 0; 2011 } 2012 2013 static void pl330_del(struct pl330_dmac *pl330) 2014 { 2015 pl330->state = UNINIT; 2016 2017 tasklet_kill(&pl330->tasks); 2018 2019 /* Free DMAC resources */ 2020 dmac_free_threads(pl330); 2021 2022 dma_free_attrs(pl330->ddma.dev, 2023 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 2024 pl330->mcode_bus, DMA_ATTR_PRIVILEGED); 2025 } 2026 2027 /* forward declaration */ 2028 static struct amba_driver pl330_driver; 2029 2030 static inline struct dma_pl330_chan * 2031 to_pchan(struct dma_chan *ch) 2032 { 2033 if (!ch) 2034 return NULL; 2035 2036 return container_of(ch, struct dma_pl330_chan, chan); 2037 } 2038 2039 static inline struct dma_pl330_desc * 2040 to_desc(struct dma_async_tx_descriptor *tx) 2041 { 2042 return container_of(tx, struct dma_pl330_desc, txd); 2043 } 2044 2045 static inline void fill_queue(struct dma_pl330_chan *pch) 2046 { 2047 struct dma_pl330_desc *desc; 2048 int ret; 2049 2050 list_for_each_entry(desc, &pch->work_list, node) { 2051 2052 /* If already submitted */ 2053 if (desc->status == BUSY || desc->status == PAUSED) 2054 continue; 2055 2056 ret = pl330_submit_req(pch->thread, desc); 2057 if (!ret) { 2058 desc->status = BUSY; 2059 } else if (ret == -EAGAIN) { 2060 /* QFull or DMAC Dying */ 2061 break; 2062 } else { 2063 /* Unacceptable request */ 2064 desc->status = DONE; 2065 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 2066 __func__, __LINE__, desc->txd.cookie); 2067 tasklet_schedule(&pch->task); 2068 } 2069 } 2070 } 2071 2072 static void pl330_tasklet(struct tasklet_struct *t) 2073 { 2074 struct dma_pl330_chan *pch = from_tasklet(pch, t, task); 2075 struct dma_pl330_desc *desc, *_dt; 2076 unsigned long flags; 2077 bool power_down = false; 2078 2079 spin_lock_irqsave(&pch->lock, flags); 2080 2081 /* Pick up ripe tomatoes */ 2082 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2083 if (desc->status == DONE) { 2084 if (!pch->cyclic) 2085 dma_cookie_complete(&desc->txd); 2086 list_move_tail(&desc->node, &pch->completed_list); 2087 } 2088 2089 /* Try to submit a req imm. next to the last completed cookie */ 2090 fill_queue(pch); 2091 2092 if (list_empty(&pch->work_list)) { 2093 spin_lock(&pch->thread->dmac->lock); 2094 _stop(pch->thread); 2095 spin_unlock(&pch->thread->dmac->lock); 2096 power_down = true; 2097 pch->active = false; 2098 } else { 2099 /* Make sure the PL330 Channel thread is active */ 2100 spin_lock(&pch->thread->dmac->lock); 2101 pl330_start_thread(pch->thread); 2102 spin_unlock(&pch->thread->dmac->lock); 2103 } 2104 2105 while (!list_empty(&pch->completed_list)) { 2106 struct dmaengine_desc_callback cb; 2107 2108 desc = list_first_entry(&pch->completed_list, 2109 struct dma_pl330_desc, node); 2110 2111 dmaengine_desc_get_callback(&desc->txd, &cb); 2112 2113 if (pch->cyclic) { 2114 desc->status = PREP; 2115 list_move_tail(&desc->node, &pch->work_list); 2116 if (power_down) { 2117 pch->active = true; 2118 spin_lock(&pch->thread->dmac->lock); 2119 pl330_start_thread(pch->thread); 2120 spin_unlock(&pch->thread->dmac->lock); 2121 power_down = false; 2122 } 2123 } else { 2124 desc->status = FREE; 2125 list_move_tail(&desc->node, &pch->dmac->desc_pool); 2126 } 2127 2128 dma_descriptor_unmap(&desc->txd); 2129 2130 if (dmaengine_desc_callback_valid(&cb)) { 2131 spin_unlock_irqrestore(&pch->lock, flags); 2132 dmaengine_desc_callback_invoke(&cb, NULL); 2133 spin_lock_irqsave(&pch->lock, flags); 2134 } 2135 } 2136 spin_unlock_irqrestore(&pch->lock, flags); 2137 2138 /* If work list empty, power down */ 2139 if (power_down) { 2140 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2141 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2142 } 2143 } 2144 2145 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2146 struct of_dma *ofdma) 2147 { 2148 int count = dma_spec->args_count; 2149 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2150 unsigned int chan_id; 2151 2152 if (!pl330) 2153 return NULL; 2154 2155 if (count != 1) 2156 return NULL; 2157 2158 chan_id = dma_spec->args[0]; 2159 if (chan_id >= pl330->num_peripherals) 2160 return NULL; 2161 2162 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2163 } 2164 2165 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2166 { 2167 struct dma_pl330_chan *pch = to_pchan(chan); 2168 struct pl330_dmac *pl330 = pch->dmac; 2169 unsigned long flags; 2170 2171 spin_lock_irqsave(&pl330->lock, flags); 2172 2173 dma_cookie_init(chan); 2174 pch->cyclic = false; 2175 2176 pch->thread = pl330_request_channel(pl330); 2177 if (!pch->thread) { 2178 spin_unlock_irqrestore(&pl330->lock, flags); 2179 return -ENOMEM; 2180 } 2181 2182 tasklet_setup(&pch->task, pl330_tasklet); 2183 2184 spin_unlock_irqrestore(&pl330->lock, flags); 2185 2186 return 1; 2187 } 2188 2189 /* 2190 * We need the data direction between the DMAC (the dma-mapping "device") and 2191 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2192 */ 2193 static enum dma_data_direction 2194 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2195 { 2196 switch (dir) { 2197 case DMA_MEM_TO_DEV: 2198 return DMA_FROM_DEVICE; 2199 case DMA_DEV_TO_MEM: 2200 return DMA_TO_DEVICE; 2201 case DMA_DEV_TO_DEV: 2202 return DMA_BIDIRECTIONAL; 2203 default: 2204 return DMA_NONE; 2205 } 2206 } 2207 2208 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2209 { 2210 if (pch->dir != DMA_NONE) 2211 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2212 1 << pch->burst_sz, pch->dir, 0); 2213 pch->dir = DMA_NONE; 2214 } 2215 2216 2217 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2218 enum dma_transfer_direction dir) 2219 { 2220 struct device *dev = pch->chan.device->dev; 2221 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2222 2223 /* Already mapped for this config? */ 2224 if (pch->dir == dma_dir) 2225 return true; 2226 2227 pl330_unprep_slave_fifo(pch); 2228 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2229 1 << pch->burst_sz, dma_dir, 0); 2230 if (dma_mapping_error(dev, pch->fifo_dma)) 2231 return false; 2232 2233 pch->dir = dma_dir; 2234 return true; 2235 } 2236 2237 static int fixup_burst_len(int max_burst_len, int quirks) 2238 { 2239 if (max_burst_len > PL330_MAX_BURST) 2240 return PL330_MAX_BURST; 2241 else if (max_burst_len < 1) 2242 return 1; 2243 else 2244 return max_burst_len; 2245 } 2246 2247 static int pl330_config_write(struct dma_chan *chan, 2248 struct dma_slave_config *slave_config, 2249 enum dma_transfer_direction direction) 2250 { 2251 struct dma_pl330_chan *pch = to_pchan(chan); 2252 2253 pl330_unprep_slave_fifo(pch); 2254 if (direction == DMA_MEM_TO_DEV) { 2255 if (slave_config->dst_addr) 2256 pch->fifo_addr = slave_config->dst_addr; 2257 if (slave_config->dst_addr_width) 2258 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2259 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst, 2260 pch->dmac->quirks); 2261 } else if (direction == DMA_DEV_TO_MEM) { 2262 if (slave_config->src_addr) 2263 pch->fifo_addr = slave_config->src_addr; 2264 if (slave_config->src_addr_width) 2265 pch->burst_sz = __ffs(slave_config->src_addr_width); 2266 pch->burst_len = fixup_burst_len(slave_config->src_maxburst, 2267 pch->dmac->quirks); 2268 } 2269 2270 return 0; 2271 } 2272 2273 static int pl330_config(struct dma_chan *chan, 2274 struct dma_slave_config *slave_config) 2275 { 2276 struct dma_pl330_chan *pch = to_pchan(chan); 2277 2278 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config)); 2279 2280 return 0; 2281 } 2282 2283 static int pl330_terminate_all(struct dma_chan *chan) 2284 { 2285 struct dma_pl330_chan *pch = to_pchan(chan); 2286 struct dma_pl330_desc *desc; 2287 unsigned long flags; 2288 struct pl330_dmac *pl330 = pch->dmac; 2289 bool power_down = false; 2290 2291 pm_runtime_get_sync(pl330->ddma.dev); 2292 spin_lock_irqsave(&pch->lock, flags); 2293 2294 spin_lock(&pl330->lock); 2295 _stop(pch->thread); 2296 pch->thread->req[0].desc = NULL; 2297 pch->thread->req[1].desc = NULL; 2298 pch->thread->req_running = -1; 2299 spin_unlock(&pl330->lock); 2300 2301 power_down = pch->active; 2302 pch->active = false; 2303 2304 /* Mark all desc done */ 2305 list_for_each_entry(desc, &pch->submitted_list, node) { 2306 desc->status = FREE; 2307 dma_cookie_complete(&desc->txd); 2308 } 2309 2310 list_for_each_entry(desc, &pch->work_list , node) { 2311 desc->status = FREE; 2312 dma_cookie_complete(&desc->txd); 2313 } 2314 2315 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2316 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2317 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2318 spin_unlock_irqrestore(&pch->lock, flags); 2319 pm_runtime_mark_last_busy(pl330->ddma.dev); 2320 if (power_down) 2321 pm_runtime_put_autosuspend(pl330->ddma.dev); 2322 pm_runtime_put_autosuspend(pl330->ddma.dev); 2323 2324 return 0; 2325 } 2326 2327 /* 2328 * We don't support DMA_RESUME command because of hardware 2329 * limitations, so after pausing the channel we cannot restore 2330 * it to active state. We have to terminate channel and setup 2331 * DMA transfer again. This pause feature was implemented to 2332 * allow safely read residue before channel termination. 2333 */ 2334 static int pl330_pause(struct dma_chan *chan) 2335 { 2336 struct dma_pl330_chan *pch = to_pchan(chan); 2337 struct pl330_dmac *pl330 = pch->dmac; 2338 struct dma_pl330_desc *desc; 2339 unsigned long flags; 2340 2341 pm_runtime_get_sync(pl330->ddma.dev); 2342 spin_lock_irqsave(&pch->lock, flags); 2343 2344 spin_lock(&pl330->lock); 2345 _stop(pch->thread); 2346 spin_unlock(&pl330->lock); 2347 2348 list_for_each_entry(desc, &pch->work_list, node) { 2349 if (desc->status == BUSY) 2350 desc->status = PAUSED; 2351 } 2352 spin_unlock_irqrestore(&pch->lock, flags); 2353 pm_runtime_mark_last_busy(pl330->ddma.dev); 2354 pm_runtime_put_autosuspend(pl330->ddma.dev); 2355 2356 return 0; 2357 } 2358 2359 static void pl330_free_chan_resources(struct dma_chan *chan) 2360 { 2361 struct dma_pl330_chan *pch = to_pchan(chan); 2362 struct pl330_dmac *pl330 = pch->dmac; 2363 unsigned long flags; 2364 2365 tasklet_kill(&pch->task); 2366 2367 pm_runtime_get_sync(pch->dmac->ddma.dev); 2368 spin_lock_irqsave(&pl330->lock, flags); 2369 2370 pl330_release_channel(pch->thread); 2371 pch->thread = NULL; 2372 2373 if (pch->cyclic) 2374 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2375 2376 spin_unlock_irqrestore(&pl330->lock, flags); 2377 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2378 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2379 pl330_unprep_slave_fifo(pch); 2380 } 2381 2382 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2383 struct dma_pl330_desc *desc) 2384 { 2385 struct pl330_thread *thrd = pch->thread; 2386 struct pl330_dmac *pl330 = pch->dmac; 2387 void __iomem *regs = thrd->dmac->base; 2388 u32 val, addr; 2389 2390 pm_runtime_get_sync(pl330->ddma.dev); 2391 val = addr = 0; 2392 if (desc->rqcfg.src_inc) { 2393 val = readl(regs + SA(thrd->id)); 2394 addr = desc->px.src_addr; 2395 } else { 2396 val = readl(regs + DA(thrd->id)); 2397 addr = desc->px.dst_addr; 2398 } 2399 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2400 pm_runtime_put_autosuspend(pl330->ddma.dev); 2401 2402 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2403 if (!val) 2404 return 0; 2405 2406 return val - addr; 2407 } 2408 2409 static enum dma_status 2410 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2411 struct dma_tx_state *txstate) 2412 { 2413 enum dma_status ret; 2414 unsigned long flags; 2415 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2416 struct dma_pl330_chan *pch = to_pchan(chan); 2417 unsigned int transferred, residual = 0; 2418 2419 ret = dma_cookie_status(chan, cookie, txstate); 2420 2421 if (!txstate) 2422 return ret; 2423 2424 if (ret == DMA_COMPLETE) 2425 goto out; 2426 2427 spin_lock_irqsave(&pch->lock, flags); 2428 spin_lock(&pch->thread->dmac->lock); 2429 2430 if (pch->thread->req_running != -1) 2431 running = pch->thread->req[pch->thread->req_running].desc; 2432 2433 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2434 2435 /* Check in pending list */ 2436 list_for_each_entry(desc, &pch->work_list, node) { 2437 if (desc->status == DONE) 2438 transferred = desc->bytes_requested; 2439 else if (running && desc == running) 2440 transferred = 2441 pl330_get_current_xferred_count(pch, desc); 2442 else if (desc->status == BUSY || desc->status == PAUSED) 2443 /* 2444 * Busy but not running means either just enqueued, 2445 * or finished and not yet marked done 2446 */ 2447 if (desc == last_enq) 2448 transferred = 0; 2449 else 2450 transferred = desc->bytes_requested; 2451 else 2452 transferred = 0; 2453 residual += desc->bytes_requested - transferred; 2454 if (desc->txd.cookie == cookie) { 2455 switch (desc->status) { 2456 case DONE: 2457 ret = DMA_COMPLETE; 2458 break; 2459 case PAUSED: 2460 ret = DMA_PAUSED; 2461 break; 2462 case PREP: 2463 case BUSY: 2464 ret = DMA_IN_PROGRESS; 2465 break; 2466 default: 2467 WARN_ON(1); 2468 } 2469 break; 2470 } 2471 if (desc->last) 2472 residual = 0; 2473 } 2474 spin_unlock(&pch->thread->dmac->lock); 2475 spin_unlock_irqrestore(&pch->lock, flags); 2476 2477 out: 2478 dma_set_residue(txstate, residual); 2479 2480 return ret; 2481 } 2482 2483 static void pl330_issue_pending(struct dma_chan *chan) 2484 { 2485 struct dma_pl330_chan *pch = to_pchan(chan); 2486 unsigned long flags; 2487 2488 spin_lock_irqsave(&pch->lock, flags); 2489 if (list_empty(&pch->work_list)) { 2490 /* 2491 * Warn on nothing pending. Empty submitted_list may 2492 * break our pm_runtime usage counter as it is 2493 * updated on work_list emptiness status. 2494 */ 2495 WARN_ON(list_empty(&pch->submitted_list)); 2496 pch->active = true; 2497 pm_runtime_get_sync(pch->dmac->ddma.dev); 2498 } 2499 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2500 spin_unlock_irqrestore(&pch->lock, flags); 2501 2502 pl330_tasklet(&pch->task); 2503 } 2504 2505 /* 2506 * We returned the last one of the circular list of descriptor(s) 2507 * from prep_xxx, so the argument to submit corresponds to the last 2508 * descriptor of the list. 2509 */ 2510 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2511 { 2512 struct dma_pl330_desc *desc, *last = to_desc(tx); 2513 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2514 dma_cookie_t cookie; 2515 unsigned long flags; 2516 2517 spin_lock_irqsave(&pch->lock, flags); 2518 2519 /* Assign cookies to all nodes */ 2520 while (!list_empty(&last->node)) { 2521 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2522 if (pch->cyclic) { 2523 desc->txd.callback = last->txd.callback; 2524 desc->txd.callback_param = last->txd.callback_param; 2525 } 2526 desc->last = false; 2527 2528 dma_cookie_assign(&desc->txd); 2529 2530 list_move_tail(&desc->node, &pch->submitted_list); 2531 } 2532 2533 last->last = true; 2534 cookie = dma_cookie_assign(&last->txd); 2535 list_add_tail(&last->node, &pch->submitted_list); 2536 spin_unlock_irqrestore(&pch->lock, flags); 2537 2538 return cookie; 2539 } 2540 2541 static inline void _init_desc(struct dma_pl330_desc *desc) 2542 { 2543 desc->rqcfg.swap = SWAP_NO; 2544 desc->rqcfg.scctl = CCTRL0; 2545 desc->rqcfg.dcctl = CCTRL0; 2546 desc->txd.tx_submit = pl330_tx_submit; 2547 2548 INIT_LIST_HEAD(&desc->node); 2549 } 2550 2551 /* Returns the number of descriptors added to the DMAC pool */ 2552 static int add_desc(struct list_head *pool, spinlock_t *lock, 2553 gfp_t flg, int count) 2554 { 2555 struct dma_pl330_desc *desc; 2556 unsigned long flags; 2557 int i; 2558 2559 desc = kcalloc(count, sizeof(*desc), flg); 2560 if (!desc) 2561 return 0; 2562 2563 spin_lock_irqsave(lock, flags); 2564 2565 for (i = 0; i < count; i++) { 2566 _init_desc(&desc[i]); 2567 list_add_tail(&desc[i].node, pool); 2568 } 2569 2570 spin_unlock_irqrestore(lock, flags); 2571 2572 return count; 2573 } 2574 2575 static struct dma_pl330_desc *pluck_desc(struct list_head *pool, 2576 spinlock_t *lock) 2577 { 2578 struct dma_pl330_desc *desc = NULL; 2579 unsigned long flags; 2580 2581 spin_lock_irqsave(lock, flags); 2582 2583 if (!list_empty(pool)) { 2584 desc = list_entry(pool->next, 2585 struct dma_pl330_desc, node); 2586 2587 list_del_init(&desc->node); 2588 2589 desc->status = PREP; 2590 desc->txd.callback = NULL; 2591 } 2592 2593 spin_unlock_irqrestore(lock, flags); 2594 2595 return desc; 2596 } 2597 2598 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2599 { 2600 struct pl330_dmac *pl330 = pch->dmac; 2601 u8 *peri_id = pch->chan.private; 2602 struct dma_pl330_desc *desc; 2603 2604 /* Pluck one desc from the pool of DMAC */ 2605 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock); 2606 2607 /* If the DMAC pool is empty, alloc new */ 2608 if (!desc) { 2609 static DEFINE_SPINLOCK(lock); 2610 LIST_HEAD(pool); 2611 2612 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1)) 2613 return NULL; 2614 2615 desc = pluck_desc(&pool, &lock); 2616 WARN_ON(!desc || !list_empty(&pool)); 2617 } 2618 2619 /* Initialize the descriptor */ 2620 desc->pchan = pch; 2621 desc->txd.cookie = 0; 2622 async_tx_ack(&desc->txd); 2623 2624 desc->peri = peri_id ? pch->chan.chan_id : 0; 2625 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2626 2627 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2628 2629 return desc; 2630 } 2631 2632 static inline void fill_px(struct pl330_xfer *px, 2633 dma_addr_t dst, dma_addr_t src, size_t len) 2634 { 2635 px->bytes = len; 2636 px->dst_addr = dst; 2637 px->src_addr = src; 2638 } 2639 2640 static struct dma_pl330_desc * 2641 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2642 dma_addr_t src, size_t len) 2643 { 2644 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2645 2646 if (!desc) { 2647 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2648 __func__, __LINE__); 2649 return NULL; 2650 } 2651 2652 /* 2653 * Ideally we should lookout for reqs bigger than 2654 * those that can be programmed with 256 bytes of 2655 * MC buffer, but considering a req size is seldom 2656 * going to be word-unaligned and more than 200MB, 2657 * we take it easy. 2658 * Also, should the limit is reached we'd rather 2659 * have the platform increase MC buffer size than 2660 * complicating this API driver. 2661 */ 2662 fill_px(&desc->px, dst, src, len); 2663 2664 return desc; 2665 } 2666 2667 /* Call after fixing burst size */ 2668 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2669 { 2670 struct dma_pl330_chan *pch = desc->pchan; 2671 struct pl330_dmac *pl330 = pch->dmac; 2672 int burst_len; 2673 2674 burst_len = pl330->pcfg.data_bus_width / 8; 2675 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2676 burst_len >>= desc->rqcfg.brst_size; 2677 2678 /* src/dst_burst_len can't be more than 16 */ 2679 if (burst_len > PL330_MAX_BURST) 2680 burst_len = PL330_MAX_BURST; 2681 2682 return burst_len; 2683 } 2684 2685 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2686 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2687 size_t period_len, enum dma_transfer_direction direction, 2688 unsigned long flags) 2689 { 2690 struct dma_pl330_desc *desc = NULL, *first = NULL; 2691 struct dma_pl330_chan *pch = to_pchan(chan); 2692 struct pl330_dmac *pl330 = pch->dmac; 2693 unsigned int i; 2694 dma_addr_t dst; 2695 dma_addr_t src; 2696 2697 if (len % period_len != 0) 2698 return NULL; 2699 2700 if (!is_slave_direction(direction)) { 2701 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2702 __func__, __LINE__); 2703 return NULL; 2704 } 2705 2706 pl330_config_write(chan, &pch->slave_config, direction); 2707 2708 if (!pl330_prep_slave_fifo(pch, direction)) 2709 return NULL; 2710 2711 for (i = 0; i < len / period_len; i++) { 2712 desc = pl330_get_desc(pch); 2713 if (!desc) { 2714 unsigned long iflags; 2715 2716 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2717 __func__, __LINE__); 2718 2719 if (!first) 2720 return NULL; 2721 2722 spin_lock_irqsave(&pl330->pool_lock, iflags); 2723 2724 while (!list_empty(&first->node)) { 2725 desc = list_entry(first->node.next, 2726 struct dma_pl330_desc, node); 2727 list_move_tail(&desc->node, &pl330->desc_pool); 2728 } 2729 2730 list_move_tail(&first->node, &pl330->desc_pool); 2731 2732 spin_unlock_irqrestore(&pl330->pool_lock, iflags); 2733 2734 return NULL; 2735 } 2736 2737 switch (direction) { 2738 case DMA_MEM_TO_DEV: 2739 desc->rqcfg.src_inc = 1; 2740 desc->rqcfg.dst_inc = 0; 2741 src = dma_addr; 2742 dst = pch->fifo_dma; 2743 break; 2744 case DMA_DEV_TO_MEM: 2745 desc->rqcfg.src_inc = 0; 2746 desc->rqcfg.dst_inc = 1; 2747 src = pch->fifo_dma; 2748 dst = dma_addr; 2749 break; 2750 default: 2751 break; 2752 } 2753 2754 desc->rqtype = direction; 2755 desc->rqcfg.brst_size = pch->burst_sz; 2756 desc->rqcfg.brst_len = pch->burst_len; 2757 desc->bytes_requested = period_len; 2758 fill_px(&desc->px, dst, src, period_len); 2759 2760 if (!first) 2761 first = desc; 2762 else 2763 list_add_tail(&desc->node, &first->node); 2764 2765 dma_addr += period_len; 2766 } 2767 2768 if (!desc) 2769 return NULL; 2770 2771 pch->cyclic = true; 2772 2773 return &desc->txd; 2774 } 2775 2776 static struct dma_async_tx_descriptor * 2777 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2778 dma_addr_t src, size_t len, unsigned long flags) 2779 { 2780 struct dma_pl330_desc *desc; 2781 struct dma_pl330_chan *pch = to_pchan(chan); 2782 struct pl330_dmac *pl330; 2783 int burst; 2784 2785 if (unlikely(!pch || !len)) 2786 return NULL; 2787 2788 pl330 = pch->dmac; 2789 2790 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2791 if (!desc) 2792 return NULL; 2793 2794 desc->rqcfg.src_inc = 1; 2795 desc->rqcfg.dst_inc = 1; 2796 desc->rqtype = DMA_MEM_TO_MEM; 2797 2798 /* Select max possible burst size */ 2799 burst = pl330->pcfg.data_bus_width / 8; 2800 2801 /* 2802 * Make sure we use a burst size that aligns with all the memcpy 2803 * parameters because our DMA programming algorithm doesn't cope with 2804 * transfers which straddle an entry in the DMA device's MFIFO. 2805 */ 2806 while ((src | dst | len) & (burst - 1)) 2807 burst /= 2; 2808 2809 desc->rqcfg.brst_size = 0; 2810 while (burst != (1 << desc->rqcfg.brst_size)) 2811 desc->rqcfg.brst_size++; 2812 2813 desc->rqcfg.brst_len = get_burst_len(desc, len); 2814 /* 2815 * If burst size is smaller than bus width then make sure we only 2816 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2817 */ 2818 if (burst * 8 < pl330->pcfg.data_bus_width) 2819 desc->rqcfg.brst_len = 1; 2820 2821 desc->bytes_requested = len; 2822 2823 return &desc->txd; 2824 } 2825 2826 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2827 struct dma_pl330_desc *first) 2828 { 2829 unsigned long flags; 2830 struct dma_pl330_desc *desc; 2831 2832 if (!first) 2833 return; 2834 2835 spin_lock_irqsave(&pl330->pool_lock, flags); 2836 2837 while (!list_empty(&first->node)) { 2838 desc = list_entry(first->node.next, 2839 struct dma_pl330_desc, node); 2840 list_move_tail(&desc->node, &pl330->desc_pool); 2841 } 2842 2843 list_move_tail(&first->node, &pl330->desc_pool); 2844 2845 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2846 } 2847 2848 static struct dma_async_tx_descriptor * 2849 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2850 unsigned int sg_len, enum dma_transfer_direction direction, 2851 unsigned long flg, void *context) 2852 { 2853 struct dma_pl330_desc *first, *desc = NULL; 2854 struct dma_pl330_chan *pch = to_pchan(chan); 2855 struct scatterlist *sg; 2856 int i; 2857 2858 if (unlikely(!pch || !sgl || !sg_len)) 2859 return NULL; 2860 2861 pl330_config_write(chan, &pch->slave_config, direction); 2862 2863 if (!pl330_prep_slave_fifo(pch, direction)) 2864 return NULL; 2865 2866 first = NULL; 2867 2868 for_each_sg(sgl, sg, sg_len, i) { 2869 2870 desc = pl330_get_desc(pch); 2871 if (!desc) { 2872 struct pl330_dmac *pl330 = pch->dmac; 2873 2874 dev_err(pch->dmac->ddma.dev, 2875 "%s:%d Unable to fetch desc\n", 2876 __func__, __LINE__); 2877 __pl330_giveback_desc(pl330, first); 2878 2879 return NULL; 2880 } 2881 2882 if (!first) 2883 first = desc; 2884 else 2885 list_add_tail(&desc->node, &first->node); 2886 2887 if (direction == DMA_MEM_TO_DEV) { 2888 desc->rqcfg.src_inc = 1; 2889 desc->rqcfg.dst_inc = 0; 2890 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2891 sg_dma_len(sg)); 2892 } else { 2893 desc->rqcfg.src_inc = 0; 2894 desc->rqcfg.dst_inc = 1; 2895 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2896 sg_dma_len(sg)); 2897 } 2898 2899 desc->rqcfg.brst_size = pch->burst_sz; 2900 desc->rqcfg.brst_len = pch->burst_len; 2901 desc->rqtype = direction; 2902 desc->bytes_requested = sg_dma_len(sg); 2903 } 2904 2905 /* Return the last desc in the chain */ 2906 return &desc->txd; 2907 } 2908 2909 static irqreturn_t pl330_irq_handler(int irq, void *data) 2910 { 2911 if (pl330_update(data)) 2912 return IRQ_HANDLED; 2913 else 2914 return IRQ_NONE; 2915 } 2916 2917 #define PL330_DMA_BUSWIDTHS \ 2918 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2919 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2920 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2921 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2922 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2923 2924 #ifdef CONFIG_DEBUG_FS 2925 static int pl330_debugfs_show(struct seq_file *s, void *data) 2926 { 2927 struct pl330_dmac *pl330 = s->private; 2928 int chans, pchs, ch, pr; 2929 2930 chans = pl330->pcfg.num_chan; 2931 pchs = pl330->num_peripherals; 2932 2933 seq_puts(s, "PL330 physical channels:\n"); 2934 seq_puts(s, "THREAD:\t\tCHANNEL:\n"); 2935 seq_puts(s, "--------\t-----\n"); 2936 for (ch = 0; ch < chans; ch++) { 2937 struct pl330_thread *thrd = &pl330->channels[ch]; 2938 int found = -1; 2939 2940 for (pr = 0; pr < pchs; pr++) { 2941 struct dma_pl330_chan *pch = &pl330->peripherals[pr]; 2942 2943 if (!pch->thread || thrd->id != pch->thread->id) 2944 continue; 2945 2946 found = pr; 2947 } 2948 2949 seq_printf(s, "%d\t\t", thrd->id); 2950 if (found == -1) 2951 seq_puts(s, "--\n"); 2952 else 2953 seq_printf(s, "%d\n", found); 2954 } 2955 2956 return 0; 2957 } 2958 2959 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs); 2960 2961 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2962 { 2963 debugfs_create_file(dev_name(pl330->ddma.dev), 2964 S_IFREG | 0444, NULL, pl330, 2965 &pl330_debugfs_fops); 2966 } 2967 #else 2968 static inline void init_pl330_debugfs(struct pl330_dmac *pl330) 2969 { 2970 } 2971 #endif 2972 2973 /* 2974 * Runtime PM callbacks are provided by amba/bus.c driver. 2975 * 2976 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2977 * bus driver will only disable/enable the clock in runtime PM callbacks. 2978 */ 2979 static int __maybe_unused pl330_suspend(struct device *dev) 2980 { 2981 struct amba_device *pcdev = to_amba_device(dev); 2982 2983 pm_runtime_force_suspend(dev); 2984 clk_unprepare(pcdev->pclk); 2985 2986 return 0; 2987 } 2988 2989 static int __maybe_unused pl330_resume(struct device *dev) 2990 { 2991 struct amba_device *pcdev = to_amba_device(dev); 2992 int ret; 2993 2994 ret = clk_prepare(pcdev->pclk); 2995 if (ret) 2996 return ret; 2997 2998 pm_runtime_force_resume(dev); 2999 3000 return ret; 3001 } 3002 3003 static const struct dev_pm_ops pl330_pm = { 3004 SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume) 3005 }; 3006 3007 static int 3008 pl330_probe(struct amba_device *adev, const struct amba_id *id) 3009 { 3010 struct pl330_config *pcfg; 3011 struct pl330_dmac *pl330; 3012 struct dma_pl330_chan *pch, *_p; 3013 struct dma_device *pd; 3014 struct resource *res; 3015 int i, ret, irq; 3016 int num_chan; 3017 struct device_node *np = adev->dev.of_node; 3018 3019 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 3020 if (ret) 3021 return ret; 3022 3023 /* Allocate a new DMAC and its Channels */ 3024 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 3025 if (!pl330) 3026 return -ENOMEM; 3027 3028 pd = &pl330->ddma; 3029 pd->dev = &adev->dev; 3030 3031 pl330->mcbufsz = 0; 3032 3033 /* get quirk */ 3034 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 3035 if (of_property_read_bool(np, of_quirks[i].quirk)) 3036 pl330->quirks |= of_quirks[i].id; 3037 3038 res = &adev->res; 3039 pl330->base = devm_ioremap_resource(&adev->dev, res); 3040 if (IS_ERR(pl330->base)) 3041 return PTR_ERR(pl330->base); 3042 3043 amba_set_drvdata(adev, pl330); 3044 3045 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma"); 3046 if (IS_ERR(pl330->rstc)) { 3047 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n"); 3048 } else { 3049 ret = reset_control_deassert(pl330->rstc); 3050 if (ret) { 3051 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n"); 3052 return ret; 3053 } 3054 } 3055 3056 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp"); 3057 if (IS_ERR(pl330->rstc_ocp)) { 3058 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp), 3059 "Failed to get OCP reset!\n"); 3060 } else { 3061 ret = reset_control_deassert(pl330->rstc_ocp); 3062 if (ret) { 3063 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n"); 3064 return ret; 3065 } 3066 } 3067 3068 for (i = 0; i < AMBA_NR_IRQS; i++) { 3069 irq = adev->irq[i]; 3070 if (irq) { 3071 ret = devm_request_irq(&adev->dev, irq, 3072 pl330_irq_handler, 0, 3073 dev_name(&adev->dev), pl330); 3074 if (ret) 3075 return ret; 3076 } else { 3077 break; 3078 } 3079 } 3080 3081 pcfg = &pl330->pcfg; 3082 3083 pcfg->periph_id = adev->periphid; 3084 ret = pl330_add(pl330); 3085 if (ret) 3086 return ret; 3087 3088 INIT_LIST_HEAD(&pl330->desc_pool); 3089 spin_lock_init(&pl330->pool_lock); 3090 3091 /* Create a descriptor pool of default size */ 3092 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock, 3093 GFP_KERNEL, NR_DEFAULT_DESC)) 3094 dev_warn(&adev->dev, "unable to allocate desc\n"); 3095 3096 INIT_LIST_HEAD(&pd->channels); 3097 3098 /* Initialize channel parameters */ 3099 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 3100 3101 pl330->num_peripherals = num_chan; 3102 3103 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL); 3104 if (!pl330->peripherals) { 3105 ret = -ENOMEM; 3106 goto probe_err2; 3107 } 3108 3109 for (i = 0; i < num_chan; i++) { 3110 pch = &pl330->peripherals[i]; 3111 3112 pch->chan.private = adev->dev.of_node; 3113 INIT_LIST_HEAD(&pch->submitted_list); 3114 INIT_LIST_HEAD(&pch->work_list); 3115 INIT_LIST_HEAD(&pch->completed_list); 3116 spin_lock_init(&pch->lock); 3117 pch->thread = NULL; 3118 pch->chan.device = pd; 3119 pch->dmac = pl330; 3120 pch->dir = DMA_NONE; 3121 3122 /* Add the channel to the DMAC list */ 3123 list_add_tail(&pch->chan.device_node, &pd->channels); 3124 } 3125 3126 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 3127 if (pcfg->num_peri) { 3128 dma_cap_set(DMA_SLAVE, pd->cap_mask); 3129 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 3130 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 3131 } 3132 3133 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 3134 pd->device_free_chan_resources = pl330_free_chan_resources; 3135 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 3136 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 3137 pd->device_tx_status = pl330_tx_status; 3138 pd->device_prep_slave_sg = pl330_prep_slave_sg; 3139 pd->device_config = pl330_config; 3140 pd->device_pause = pl330_pause; 3141 pd->device_terminate_all = pl330_terminate_all; 3142 pd->device_issue_pending = pl330_issue_pending; 3143 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 3144 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 3145 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3146 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3147 pd->max_burst = PL330_MAX_BURST; 3148 3149 ret = dma_async_device_register(pd); 3150 if (ret) { 3151 dev_err(&adev->dev, "unable to register DMAC\n"); 3152 goto probe_err3; 3153 } 3154 3155 if (adev->dev.of_node) { 3156 ret = of_dma_controller_register(adev->dev.of_node, 3157 of_dma_pl330_xlate, pl330); 3158 if (ret) { 3159 dev_err(&adev->dev, 3160 "unable to register DMA to the generic DT DMA helpers\n"); 3161 } 3162 } 3163 3164 /* 3165 * This is the limit for transfers with a buswidth of 1, larger 3166 * buswidths will have larger limits. 3167 */ 3168 ret = dma_set_max_seg_size(&adev->dev, 1900800); 3169 if (ret) 3170 dev_err(&adev->dev, "unable to set the seg size\n"); 3171 3172 3173 init_pl330_debugfs(pl330); 3174 dev_info(&adev->dev, 3175 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 3176 dev_info(&adev->dev, 3177 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 3178 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 3179 pcfg->num_peri, pcfg->num_events); 3180 3181 pm_runtime_irq_safe(&adev->dev); 3182 pm_runtime_use_autosuspend(&adev->dev); 3183 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 3184 pm_runtime_mark_last_busy(&adev->dev); 3185 pm_runtime_put_autosuspend(&adev->dev); 3186 3187 return 0; 3188 probe_err3: 3189 /* Idle the DMAC */ 3190 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3191 chan.device_node) { 3192 3193 /* Remove the channel */ 3194 list_del(&pch->chan.device_node); 3195 3196 /* Flush the channel */ 3197 if (pch->thread) { 3198 pl330_terminate_all(&pch->chan); 3199 pl330_free_chan_resources(&pch->chan); 3200 } 3201 } 3202 probe_err2: 3203 pl330_del(pl330); 3204 3205 if (pl330->rstc_ocp) 3206 reset_control_assert(pl330->rstc_ocp); 3207 3208 if (pl330->rstc) 3209 reset_control_assert(pl330->rstc); 3210 return ret; 3211 } 3212 3213 static void pl330_remove(struct amba_device *adev) 3214 { 3215 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 3216 struct dma_pl330_chan *pch, *_p; 3217 int i, irq; 3218 3219 pm_runtime_get_noresume(pl330->ddma.dev); 3220 3221 if (adev->dev.of_node) 3222 of_dma_controller_free(adev->dev.of_node); 3223 3224 for (i = 0; i < AMBA_NR_IRQS; i++) { 3225 irq = adev->irq[i]; 3226 if (irq) 3227 devm_free_irq(&adev->dev, irq, pl330); 3228 } 3229 3230 dma_async_device_unregister(&pl330->ddma); 3231 3232 /* Idle the DMAC */ 3233 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3234 chan.device_node) { 3235 3236 /* Remove the channel */ 3237 list_del(&pch->chan.device_node); 3238 3239 /* Flush the channel */ 3240 if (pch->thread) { 3241 pl330_terminate_all(&pch->chan); 3242 pl330_free_chan_resources(&pch->chan); 3243 } 3244 } 3245 3246 pl330_del(pl330); 3247 3248 if (pl330->rstc_ocp) 3249 reset_control_assert(pl330->rstc_ocp); 3250 3251 if (pl330->rstc) 3252 reset_control_assert(pl330->rstc); 3253 } 3254 3255 static const struct amba_id pl330_ids[] = { 3256 { 3257 .id = 0x00041330, 3258 .mask = 0x000fffff, 3259 }, 3260 { 0, 0 }, 3261 }; 3262 3263 MODULE_DEVICE_TABLE(amba, pl330_ids); 3264 3265 static struct amba_driver pl330_driver = { 3266 .drv = { 3267 .owner = THIS_MODULE, 3268 .name = "dma-pl330", 3269 .pm = &pl330_pm, 3270 }, 3271 .id_table = pl330_ids, 3272 .probe = pl330_probe, 3273 .remove = pl330_remove, 3274 }; 3275 3276 module_amba_driver(pl330_driver); 3277 3278 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3279 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3280 MODULE_LICENSE("GPL"); 3281