xref: /linux/drivers/dma/pl330.c (revision 6f0310a126f1a46cac366327751bb7eb8941bdde)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 #define PL330_MAX_BURST         16
37 
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39 
40 enum pl330_cachectrl {
41 	CCTRL0,		/* Noncacheable and nonbufferable */
42 	CCTRL1,		/* Bufferable only */
43 	CCTRL2,		/* Cacheable, but do not allocate */
44 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
45 	INVALID1,	/* AWCACHE = 0x1000 */
46 	INVALID2,
47 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
48 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
49 };
50 
51 enum pl330_byteswap {
52 	SWAP_NO,
53 	SWAP_2,
54 	SWAP_4,
55 	SWAP_8,
56 	SWAP_16,
57 };
58 
59 /* Register and Bit field Definitions */
60 #define DS			0x0
61 #define DS_ST_STOP		0x0
62 #define DS_ST_EXEC		0x1
63 #define DS_ST_CMISS		0x2
64 #define DS_ST_UPDTPC		0x3
65 #define DS_ST_WFE		0x4
66 #define DS_ST_ATBRR		0x5
67 #define DS_ST_QBUSY		0x6
68 #define DS_ST_WFP		0x7
69 #define DS_ST_KILL		0x8
70 #define DS_ST_CMPLT		0x9
71 #define DS_ST_FLTCMP		0xe
72 #define DS_ST_FAULT		0xf
73 
74 #define DPC			0x4
75 #define INTEN			0x20
76 #define ES			0x24
77 #define INTSTATUS		0x28
78 #define INTCLR			0x2c
79 #define FSM			0x30
80 #define FSC			0x34
81 #define FTM			0x38
82 
83 #define _FTC			0x40
84 #define FTC(n)			(_FTC + (n)*0x4)
85 
86 #define _CS			0x100
87 #define CS(n)			(_CS + (n)*0x8)
88 #define CS_CNS			(1 << 21)
89 
90 #define _CPC			0x104
91 #define CPC(n)			(_CPC + (n)*0x8)
92 
93 #define _SA			0x400
94 #define SA(n)			(_SA + (n)*0x20)
95 
96 #define _DA			0x404
97 #define DA(n)			(_DA + (n)*0x20)
98 
99 #define _CC			0x408
100 #define CC(n)			(_CC + (n)*0x20)
101 
102 #define CC_SRCINC		(1 << 0)
103 #define CC_DSTINC		(1 << 14)
104 #define CC_SRCPRI		(1 << 8)
105 #define CC_DSTPRI		(1 << 22)
106 #define CC_SRCNS		(1 << 9)
107 #define CC_DSTNS		(1 << 23)
108 #define CC_SRCIA		(1 << 10)
109 #define CC_DSTIA		(1 << 24)
110 #define CC_SRCBRSTLEN_SHFT	4
111 #define CC_DSTBRSTLEN_SHFT	18
112 #define CC_SRCBRSTSIZE_SHFT	1
113 #define CC_DSTBRSTSIZE_SHFT	15
114 #define CC_SRCCCTRL_SHFT	11
115 #define CC_SRCCCTRL_MASK	0x7
116 #define CC_DSTCCTRL_SHFT	25
117 #define CC_DRCCCTRL_MASK	0x7
118 #define CC_SWAP_SHFT		28
119 
120 #define _LC0			0x40c
121 #define LC0(n)			(_LC0 + (n)*0x20)
122 
123 #define _LC1			0x410
124 #define LC1(n)			(_LC1 + (n)*0x20)
125 
126 #define DBGSTATUS		0xd00
127 #define DBG_BUSY		(1 << 0)
128 
129 #define DBGCMD			0xd04
130 #define DBGINST0		0xd08
131 #define DBGINST1		0xd0c
132 
133 #define CR0			0xe00
134 #define CR1			0xe04
135 #define CR2			0xe08
136 #define CR3			0xe0c
137 #define CR4			0xe10
138 #define CRD			0xe14
139 
140 #define PERIPH_ID		0xfe0
141 #define PERIPH_REV_SHIFT	20
142 #define PERIPH_REV_MASK		0xf
143 #define PERIPH_REV_R0P0		0
144 #define PERIPH_REV_R1P0		1
145 #define PERIPH_REV_R1P1		2
146 
147 #define CR0_PERIPH_REQ_SET	(1 << 0)
148 #define CR0_BOOT_EN_SET		(1 << 1)
149 #define CR0_BOOT_MAN_NS		(1 << 2)
150 #define CR0_NUM_CHANS_SHIFT	4
151 #define CR0_NUM_CHANS_MASK	0x7
152 #define CR0_NUM_PERIPH_SHIFT	12
153 #define CR0_NUM_PERIPH_MASK	0x1f
154 #define CR0_NUM_EVENTS_SHIFT	17
155 #define CR0_NUM_EVENTS_MASK	0x1f
156 
157 #define CR1_ICACHE_LEN_SHIFT	0
158 #define CR1_ICACHE_LEN_MASK	0x7
159 #define CR1_NUM_ICACHELINES_SHIFT	4
160 #define CR1_NUM_ICACHELINES_MASK	0xf
161 
162 #define CRD_DATA_WIDTH_SHIFT	0
163 #define CRD_DATA_WIDTH_MASK	0x7
164 #define CRD_WR_CAP_SHIFT	4
165 #define CRD_WR_CAP_MASK		0x7
166 #define CRD_WR_Q_DEP_SHIFT	8
167 #define CRD_WR_Q_DEP_MASK	0xf
168 #define CRD_RD_CAP_SHIFT	12
169 #define CRD_RD_CAP_MASK		0x7
170 #define CRD_RD_Q_DEP_SHIFT	16
171 #define CRD_RD_Q_DEP_MASK	0xf
172 #define CRD_DATA_BUFF_SHIFT	20
173 #define CRD_DATA_BUFF_MASK	0x3ff
174 
175 #define PART			0x330
176 #define DESIGNER		0x41
177 #define REVISION		0x0
178 #define INTEG_CFG		0x0
179 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
180 
181 #define PL330_STATE_STOPPED		(1 << 0)
182 #define PL330_STATE_EXECUTING		(1 << 1)
183 #define PL330_STATE_WFE			(1 << 2)
184 #define PL330_STATE_FAULTING		(1 << 3)
185 #define PL330_STATE_COMPLETING		(1 << 4)
186 #define PL330_STATE_WFP			(1 << 5)
187 #define PL330_STATE_KILLING		(1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
189 #define PL330_STATE_CACHEMISS		(1 << 8)
190 #define PL330_STATE_UPDTPC		(1 << 9)
191 #define PL330_STATE_ATBARRIER		(1 << 10)
192 #define PL330_STATE_QUEUEBUSY		(1 << 11)
193 #define PL330_STATE_INVALID		(1 << 15)
194 
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
197 
198 #define CMD_DMAADDH		0x54
199 #define CMD_DMAEND		0x00
200 #define CMD_DMAFLUSHP		0x35
201 #define CMD_DMAGO		0xa0
202 #define CMD_DMALD		0x04
203 #define CMD_DMALDP		0x25
204 #define CMD_DMALP		0x20
205 #define CMD_DMALPEND		0x28
206 #define CMD_DMAKILL		0x01
207 #define CMD_DMAMOV		0xbc
208 #define CMD_DMANOP		0x18
209 #define CMD_DMARMB		0x12
210 #define CMD_DMASEV		0x34
211 #define CMD_DMAST		0x08
212 #define CMD_DMASTP		0x29
213 #define CMD_DMASTZ		0x0c
214 #define CMD_DMAWFE		0x36
215 #define CMD_DMAWFP		0x30
216 #define CMD_DMAWMB		0x13
217 
218 #define SZ_DMAADDH		3
219 #define SZ_DMAEND		1
220 #define SZ_DMAFLUSHP		2
221 #define SZ_DMALD		1
222 #define SZ_DMALDP		2
223 #define SZ_DMALP		2
224 #define SZ_DMALPEND		2
225 #define SZ_DMAKILL		1
226 #define SZ_DMAMOV		6
227 #define SZ_DMANOP		1
228 #define SZ_DMARMB		1
229 #define SZ_DMASEV		2
230 #define SZ_DMAST		1
231 #define SZ_DMASTP		2
232 #define SZ_DMASTZ		1
233 #define SZ_DMAWFE		2
234 #define SZ_DMAWFP		2
235 #define SZ_DMAWMB		1
236 #define SZ_DMAGO		6
237 
238 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240 
241 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243 
244 /*
245  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246  * at 1byte/burst for P<->M and M<->M respectively.
247  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248  * should be enough for P<->M and M<->M respectively.
249  */
250 #define MCODE_BUFF_PER_REQ	256
251 
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
254 
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...)	do { \
258 						printk("%x:", cmd_line); \
259 						printk(x); \
260 						cmd_line += off; \
261 					} while (0)
262 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
265 #define PL330_DBGMC_START(addr)		do {} while (0)
266 #endif
267 
268 /* The number of default descriptors */
269 
270 #define NR_DEFAULT_DESC	16
271 
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274 
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 	u32	periph_id;
278 #define DMAC_MODE_NS	(1 << 0)
279 	unsigned int	mode;
280 	unsigned int	data_bus_width:10; /* In number of bits */
281 	unsigned int	data_buf_dep:11;
282 	unsigned int	num_chan:4;
283 	unsigned int	num_peri:6;
284 	u32		peri_ns;
285 	unsigned int	num_events:6;
286 	u32		irq_ns;
287 };
288 
289 /**
290  * Request Configuration.
291  * The PL330 core does not modify this and uses the last
292  * working configuration if the request doesn't provide any.
293  *
294  * The Client may want to provide this info only for the
295  * first request and a request with new settings.
296  */
297 struct pl330_reqcfg {
298 	/* Address Incrementing */
299 	unsigned dst_inc:1;
300 	unsigned src_inc:1;
301 
302 	/*
303 	 * For now, the SRC & DST protection levels
304 	 * and burst size/length are assumed same.
305 	 */
306 	bool nonsecure;
307 	bool privileged;
308 	bool insnaccess;
309 	unsigned brst_len:5;
310 	unsigned brst_size:3; /* in power of 2 */
311 
312 	enum pl330_cachectrl dcctl;
313 	enum pl330_cachectrl scctl;
314 	enum pl330_byteswap swap;
315 	struct pl330_config *pcfg;
316 };
317 
318 /*
319  * One cycle of DMAC operation.
320  * There may be more than one xfer in a request.
321  */
322 struct pl330_xfer {
323 	u32 src_addr;
324 	u32 dst_addr;
325 	/* Size to xfer */
326 	u32 bytes;
327 };
328 
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 	/* The all xfers in the request were success. */
332 	PL330_ERR_NONE,
333 	/* If req aborted due to global error. */
334 	PL330_ERR_ABORT,
335 	/* If req failed due to problem with Channel. */
336 	PL330_ERR_FAIL,
337 };
338 
339 enum dmamov_dst {
340 	SAR = 0,
341 	CCR,
342 	DAR,
343 };
344 
345 enum pl330_dst {
346 	SRC = 0,
347 	DST,
348 };
349 
350 enum pl330_cond {
351 	SINGLE,
352 	BURST,
353 	ALWAYS,
354 };
355 
356 struct dma_pl330_desc;
357 
358 struct _pl330_req {
359 	u32 mc_bus;
360 	void *mc_cpu;
361 	struct dma_pl330_desc *desc;
362 };
363 
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 	bool reset_dmac;
367 	bool reset_mngr;
368 	u8 reset_chan;
369 };
370 
371 /* A DMAC Thread */
372 struct pl330_thread {
373 	u8 id;
374 	int ev;
375 	/* If the channel is not yet acquired by any client */
376 	bool free;
377 	/* Parent DMAC */
378 	struct pl330_dmac *dmac;
379 	/* Only two at a time */
380 	struct _pl330_req req[2];
381 	/* Index of the last enqueued request */
382 	unsigned lstenq;
383 	/* Index of the last submitted request or -1 if the DMA is stopped */
384 	int req_running;
385 };
386 
387 enum pl330_dmac_state {
388 	UNINIT,
389 	INIT,
390 	DYING,
391 };
392 
393 enum desc_status {
394 	/* In the DMAC pool */
395 	FREE,
396 	/*
397 	 * Allocated to some channel during prep_xxx
398 	 * Also may be sitting on the work_list.
399 	 */
400 	PREP,
401 	/*
402 	 * Sitting on the work_list and already submitted
403 	 * to the PL330 core. Not more than two descriptors
404 	 * of a channel can be BUSY at any time.
405 	 */
406 	BUSY,
407 	/*
408 	 * Sitting on the channel work_list but xfer done
409 	 * by PL330 core
410 	 */
411 	DONE,
412 };
413 
414 struct dma_pl330_chan {
415 	/* Schedule desc completion */
416 	struct tasklet_struct task;
417 
418 	/* DMA-Engine Channel */
419 	struct dma_chan chan;
420 
421 	/* List of submitted descriptors */
422 	struct list_head submitted_list;
423 	/* List of issued descriptors */
424 	struct list_head work_list;
425 	/* List of completed descriptors */
426 	struct list_head completed_list;
427 
428 	/* Pointer to the DMAC that manages this channel,
429 	 * NULL if the channel is available to be acquired.
430 	 * As the parent, this DMAC also provides descriptors
431 	 * to the channel.
432 	 */
433 	struct pl330_dmac *dmac;
434 
435 	/* To protect channel manipulation */
436 	spinlock_t lock;
437 
438 	/*
439 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 	 * available.
441 	 */
442 	struct pl330_thread *thread;
443 
444 	/* For D-to-M and M-to-D channels */
445 	int burst_sz; /* the peripheral fifo width */
446 	int burst_len; /* the number of burst */
447 	dma_addr_t fifo_addr;
448 
449 	/* for cyclic capability */
450 	bool cyclic;
451 
452 	/* for runtime pm tracking */
453 	bool active;
454 };
455 
456 struct pl330_dmac {
457 	/* DMA-Engine Device */
458 	struct dma_device ddma;
459 
460 	/* Holds info about sg limitations */
461 	struct device_dma_parameters dma_parms;
462 
463 	/* Pool of descriptors available for the DMAC's channels */
464 	struct list_head desc_pool;
465 	/* To protect desc_pool manipulation */
466 	spinlock_t pool_lock;
467 
468 	/* Size of MicroCode buffers for each channel. */
469 	unsigned mcbufsz;
470 	/* ioremap'ed address of PL330 registers. */
471 	void __iomem	*base;
472 	/* Populated by the PL330 core driver during pl330_add */
473 	struct pl330_config	pcfg;
474 
475 	spinlock_t		lock;
476 	/* Maximum possible events/irqs */
477 	int			events[32];
478 	/* BUS address of MicroCode buffer */
479 	dma_addr_t		mcode_bus;
480 	/* CPU address of MicroCode buffer */
481 	void			*mcode_cpu;
482 	/* List of all Channel threads */
483 	struct pl330_thread	*channels;
484 	/* Pointer to the MANAGER thread */
485 	struct pl330_thread	*manager;
486 	/* To handle bad news in interrupt */
487 	struct tasklet_struct	tasks;
488 	struct _pl330_tbd	dmac_tbd;
489 	/* State of DMAC operation */
490 	enum pl330_dmac_state	state;
491 	/* Holds list of reqs with due callbacks */
492 	struct list_head        req_done;
493 
494 	/* Peripheral channels connected to this DMAC */
495 	unsigned int num_peripherals;
496 	struct dma_pl330_chan *peripherals; /* keep at end */
497 	int quirks;
498 };
499 
500 static struct pl330_of_quirks {
501 	char *quirk;
502 	int id;
503 } of_quirks[] = {
504 	{
505 		.quirk = "arm,pl330-broken-no-flushp",
506 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
507 	}
508 };
509 
510 struct dma_pl330_desc {
511 	/* To attach to a queue as child */
512 	struct list_head node;
513 
514 	/* Descriptor for the DMA Engine API */
515 	struct dma_async_tx_descriptor txd;
516 
517 	/* Xfer for PL330 core */
518 	struct pl330_xfer px;
519 
520 	struct pl330_reqcfg rqcfg;
521 
522 	enum desc_status status;
523 
524 	int bytes_requested;
525 	bool last;
526 
527 	/* The channel which currently holds this desc */
528 	struct dma_pl330_chan *pchan;
529 
530 	enum dma_transfer_direction rqtype;
531 	/* Index of peripheral for the xfer. */
532 	unsigned peri:5;
533 	/* Hook to attach to DMAC's list of reqs with due callback */
534 	struct list_head rqd;
535 };
536 
537 struct _xfer_spec {
538 	u32 ccr;
539 	struct dma_pl330_desc *desc;
540 };
541 
542 static inline bool _queue_empty(struct pl330_thread *thrd)
543 {
544 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
545 }
546 
547 static inline bool _queue_full(struct pl330_thread *thrd)
548 {
549 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
550 }
551 
552 static inline bool is_manager(struct pl330_thread *thrd)
553 {
554 	return thrd->dmac->manager == thrd;
555 }
556 
557 /* If manager of the thread is in Non-Secure mode */
558 static inline bool _manager_ns(struct pl330_thread *thrd)
559 {
560 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
561 }
562 
563 static inline u32 get_revision(u32 periph_id)
564 {
565 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
566 }
567 
568 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
569 		enum pl330_dst da, u16 val)
570 {
571 	if (dry_run)
572 		return SZ_DMAADDH;
573 
574 	buf[0] = CMD_DMAADDH;
575 	buf[0] |= (da << 1);
576 	buf[1] = val;
577 	buf[2] = val >> 8;
578 
579 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
580 		da == 1 ? "DA" : "SA", val);
581 
582 	return SZ_DMAADDH;
583 }
584 
585 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
586 {
587 	if (dry_run)
588 		return SZ_DMAEND;
589 
590 	buf[0] = CMD_DMAEND;
591 
592 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
593 
594 	return SZ_DMAEND;
595 }
596 
597 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
598 {
599 	if (dry_run)
600 		return SZ_DMAFLUSHP;
601 
602 	buf[0] = CMD_DMAFLUSHP;
603 
604 	peri &= 0x1f;
605 	peri <<= 3;
606 	buf[1] = peri;
607 
608 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
609 
610 	return SZ_DMAFLUSHP;
611 }
612 
613 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
614 {
615 	if (dry_run)
616 		return SZ_DMALD;
617 
618 	buf[0] = CMD_DMALD;
619 
620 	if (cond == SINGLE)
621 		buf[0] |= (0 << 1) | (1 << 0);
622 	else if (cond == BURST)
623 		buf[0] |= (1 << 1) | (1 << 0);
624 
625 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
626 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
627 
628 	return SZ_DMALD;
629 }
630 
631 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
632 		enum pl330_cond cond, u8 peri)
633 {
634 	if (dry_run)
635 		return SZ_DMALDP;
636 
637 	buf[0] = CMD_DMALDP;
638 
639 	if (cond == BURST)
640 		buf[0] |= (1 << 1);
641 
642 	peri &= 0x1f;
643 	peri <<= 3;
644 	buf[1] = peri;
645 
646 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
647 		cond == SINGLE ? 'S' : 'B', peri >> 3);
648 
649 	return SZ_DMALDP;
650 }
651 
652 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
653 		unsigned loop, u8 cnt)
654 {
655 	if (dry_run)
656 		return SZ_DMALP;
657 
658 	buf[0] = CMD_DMALP;
659 
660 	if (loop)
661 		buf[0] |= (1 << 1);
662 
663 	cnt--; /* DMAC increments by 1 internally */
664 	buf[1] = cnt;
665 
666 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
667 
668 	return SZ_DMALP;
669 }
670 
671 struct _arg_LPEND {
672 	enum pl330_cond cond;
673 	bool forever;
674 	unsigned loop;
675 	u8 bjump;
676 };
677 
678 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
679 		const struct _arg_LPEND *arg)
680 {
681 	enum pl330_cond cond = arg->cond;
682 	bool forever = arg->forever;
683 	unsigned loop = arg->loop;
684 	u8 bjump = arg->bjump;
685 
686 	if (dry_run)
687 		return SZ_DMALPEND;
688 
689 	buf[0] = CMD_DMALPEND;
690 
691 	if (loop)
692 		buf[0] |= (1 << 2);
693 
694 	if (!forever)
695 		buf[0] |= (1 << 4);
696 
697 	if (cond == SINGLE)
698 		buf[0] |= (0 << 1) | (1 << 0);
699 	else if (cond == BURST)
700 		buf[0] |= (1 << 1) | (1 << 0);
701 
702 	buf[1] = bjump;
703 
704 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
705 			forever ? "FE" : "END",
706 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
707 			loop ? '1' : '0',
708 			bjump);
709 
710 	return SZ_DMALPEND;
711 }
712 
713 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
714 {
715 	if (dry_run)
716 		return SZ_DMAKILL;
717 
718 	buf[0] = CMD_DMAKILL;
719 
720 	return SZ_DMAKILL;
721 }
722 
723 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
724 		enum dmamov_dst dst, u32 val)
725 {
726 	if (dry_run)
727 		return SZ_DMAMOV;
728 
729 	buf[0] = CMD_DMAMOV;
730 	buf[1] = dst;
731 	buf[2] = val;
732 	buf[3] = val >> 8;
733 	buf[4] = val >> 16;
734 	buf[5] = val >> 24;
735 
736 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
737 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
738 
739 	return SZ_DMAMOV;
740 }
741 
742 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
743 {
744 	if (dry_run)
745 		return SZ_DMANOP;
746 
747 	buf[0] = CMD_DMANOP;
748 
749 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
750 
751 	return SZ_DMANOP;
752 }
753 
754 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
755 {
756 	if (dry_run)
757 		return SZ_DMARMB;
758 
759 	buf[0] = CMD_DMARMB;
760 
761 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
762 
763 	return SZ_DMARMB;
764 }
765 
766 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
767 {
768 	if (dry_run)
769 		return SZ_DMASEV;
770 
771 	buf[0] = CMD_DMASEV;
772 
773 	ev &= 0x1f;
774 	ev <<= 3;
775 	buf[1] = ev;
776 
777 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
778 
779 	return SZ_DMASEV;
780 }
781 
782 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
783 {
784 	if (dry_run)
785 		return SZ_DMAST;
786 
787 	buf[0] = CMD_DMAST;
788 
789 	if (cond == SINGLE)
790 		buf[0] |= (0 << 1) | (1 << 0);
791 	else if (cond == BURST)
792 		buf[0] |= (1 << 1) | (1 << 0);
793 
794 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
795 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
796 
797 	return SZ_DMAST;
798 }
799 
800 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
801 		enum pl330_cond cond, u8 peri)
802 {
803 	if (dry_run)
804 		return SZ_DMASTP;
805 
806 	buf[0] = CMD_DMASTP;
807 
808 	if (cond == BURST)
809 		buf[0] |= (1 << 1);
810 
811 	peri &= 0x1f;
812 	peri <<= 3;
813 	buf[1] = peri;
814 
815 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
816 		cond == SINGLE ? 'S' : 'B', peri >> 3);
817 
818 	return SZ_DMASTP;
819 }
820 
821 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
822 {
823 	if (dry_run)
824 		return SZ_DMASTZ;
825 
826 	buf[0] = CMD_DMASTZ;
827 
828 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
829 
830 	return SZ_DMASTZ;
831 }
832 
833 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
834 		unsigned invalidate)
835 {
836 	if (dry_run)
837 		return SZ_DMAWFE;
838 
839 	buf[0] = CMD_DMAWFE;
840 
841 	ev &= 0x1f;
842 	ev <<= 3;
843 	buf[1] = ev;
844 
845 	if (invalidate)
846 		buf[1] |= (1 << 1);
847 
848 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
849 		ev >> 3, invalidate ? ", I" : "");
850 
851 	return SZ_DMAWFE;
852 }
853 
854 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
855 		enum pl330_cond cond, u8 peri)
856 {
857 	if (dry_run)
858 		return SZ_DMAWFP;
859 
860 	buf[0] = CMD_DMAWFP;
861 
862 	if (cond == SINGLE)
863 		buf[0] |= (0 << 1) | (0 << 0);
864 	else if (cond == BURST)
865 		buf[0] |= (1 << 1) | (0 << 0);
866 	else
867 		buf[0] |= (0 << 1) | (1 << 0);
868 
869 	peri &= 0x1f;
870 	peri <<= 3;
871 	buf[1] = peri;
872 
873 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
874 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
875 
876 	return SZ_DMAWFP;
877 }
878 
879 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
880 {
881 	if (dry_run)
882 		return SZ_DMAWMB;
883 
884 	buf[0] = CMD_DMAWMB;
885 
886 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
887 
888 	return SZ_DMAWMB;
889 }
890 
891 struct _arg_GO {
892 	u8 chan;
893 	u32 addr;
894 	unsigned ns;
895 };
896 
897 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
898 		const struct _arg_GO *arg)
899 {
900 	u8 chan = arg->chan;
901 	u32 addr = arg->addr;
902 	unsigned ns = arg->ns;
903 
904 	if (dry_run)
905 		return SZ_DMAGO;
906 
907 	buf[0] = CMD_DMAGO;
908 	buf[0] |= (ns << 1);
909 	buf[1] = chan & 0x7;
910 	buf[2] = addr;
911 	buf[3] = addr >> 8;
912 	buf[4] = addr >> 16;
913 	buf[5] = addr >> 24;
914 
915 	return SZ_DMAGO;
916 }
917 
918 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
919 
920 /* Returns Time-Out */
921 static bool _until_dmac_idle(struct pl330_thread *thrd)
922 {
923 	void __iomem *regs = thrd->dmac->base;
924 	unsigned long loops = msecs_to_loops(5);
925 
926 	do {
927 		/* Until Manager is Idle */
928 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
929 			break;
930 
931 		cpu_relax();
932 	} while (--loops);
933 
934 	if (!loops)
935 		return true;
936 
937 	return false;
938 }
939 
940 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
941 		u8 insn[], bool as_manager)
942 {
943 	void __iomem *regs = thrd->dmac->base;
944 	u32 val;
945 
946 	val = (insn[0] << 16) | (insn[1] << 24);
947 	if (!as_manager) {
948 		val |= (1 << 0);
949 		val |= (thrd->id << 8); /* Channel Number */
950 	}
951 	writel(val, regs + DBGINST0);
952 
953 	val = le32_to_cpu(*((__le32 *)&insn[2]));
954 	writel(val, regs + DBGINST1);
955 
956 	/* If timed out due to halted state-machine */
957 	if (_until_dmac_idle(thrd)) {
958 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
959 		return;
960 	}
961 
962 	/* Get going */
963 	writel(0, regs + DBGCMD);
964 }
965 
966 static inline u32 _state(struct pl330_thread *thrd)
967 {
968 	void __iomem *regs = thrd->dmac->base;
969 	u32 val;
970 
971 	if (is_manager(thrd))
972 		val = readl(regs + DS) & 0xf;
973 	else
974 		val = readl(regs + CS(thrd->id)) & 0xf;
975 
976 	switch (val) {
977 	case DS_ST_STOP:
978 		return PL330_STATE_STOPPED;
979 	case DS_ST_EXEC:
980 		return PL330_STATE_EXECUTING;
981 	case DS_ST_CMISS:
982 		return PL330_STATE_CACHEMISS;
983 	case DS_ST_UPDTPC:
984 		return PL330_STATE_UPDTPC;
985 	case DS_ST_WFE:
986 		return PL330_STATE_WFE;
987 	case DS_ST_FAULT:
988 		return PL330_STATE_FAULTING;
989 	case DS_ST_ATBRR:
990 		if (is_manager(thrd))
991 			return PL330_STATE_INVALID;
992 		else
993 			return PL330_STATE_ATBARRIER;
994 	case DS_ST_QBUSY:
995 		if (is_manager(thrd))
996 			return PL330_STATE_INVALID;
997 		else
998 			return PL330_STATE_QUEUEBUSY;
999 	case DS_ST_WFP:
1000 		if (is_manager(thrd))
1001 			return PL330_STATE_INVALID;
1002 		else
1003 			return PL330_STATE_WFP;
1004 	case DS_ST_KILL:
1005 		if (is_manager(thrd))
1006 			return PL330_STATE_INVALID;
1007 		else
1008 			return PL330_STATE_KILLING;
1009 	case DS_ST_CMPLT:
1010 		if (is_manager(thrd))
1011 			return PL330_STATE_INVALID;
1012 		else
1013 			return PL330_STATE_COMPLETING;
1014 	case DS_ST_FLTCMP:
1015 		if (is_manager(thrd))
1016 			return PL330_STATE_INVALID;
1017 		else
1018 			return PL330_STATE_FAULT_COMPLETING;
1019 	default:
1020 		return PL330_STATE_INVALID;
1021 	}
1022 }
1023 
1024 static void _stop(struct pl330_thread *thrd)
1025 {
1026 	void __iomem *regs = thrd->dmac->base;
1027 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1028 
1029 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1030 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1031 
1032 	/* Return if nothing needs to be done */
1033 	if (_state(thrd) == PL330_STATE_COMPLETING
1034 		  || _state(thrd) == PL330_STATE_KILLING
1035 		  || _state(thrd) == PL330_STATE_STOPPED)
1036 		return;
1037 
1038 	_emit_KILL(0, insn);
1039 
1040 	/* Stop generating interrupts for SEV */
1041 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1042 
1043 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1044 }
1045 
1046 /* Start doing req 'idx' of thread 'thrd' */
1047 static bool _trigger(struct pl330_thread *thrd)
1048 {
1049 	void __iomem *regs = thrd->dmac->base;
1050 	struct _pl330_req *req;
1051 	struct dma_pl330_desc *desc;
1052 	struct _arg_GO go;
1053 	unsigned ns;
1054 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1055 	int idx;
1056 
1057 	/* Return if already ACTIVE */
1058 	if (_state(thrd) != PL330_STATE_STOPPED)
1059 		return true;
1060 
1061 	idx = 1 - thrd->lstenq;
1062 	if (thrd->req[idx].desc != NULL) {
1063 		req = &thrd->req[idx];
1064 	} else {
1065 		idx = thrd->lstenq;
1066 		if (thrd->req[idx].desc != NULL)
1067 			req = &thrd->req[idx];
1068 		else
1069 			req = NULL;
1070 	}
1071 
1072 	/* Return if no request */
1073 	if (!req)
1074 		return true;
1075 
1076 	/* Return if req is running */
1077 	if (idx == thrd->req_running)
1078 		return true;
1079 
1080 	desc = req->desc;
1081 
1082 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1083 
1084 	/* See 'Abort Sources' point-4 at Page 2-25 */
1085 	if (_manager_ns(thrd) && !ns)
1086 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1087 			__func__, __LINE__);
1088 
1089 	go.chan = thrd->id;
1090 	go.addr = req->mc_bus;
1091 	go.ns = ns;
1092 	_emit_GO(0, insn, &go);
1093 
1094 	/* Set to generate interrupts for SEV */
1095 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1096 
1097 	/* Only manager can execute GO */
1098 	_execute_DBGINSN(thrd, insn, true);
1099 
1100 	thrd->req_running = idx;
1101 
1102 	return true;
1103 }
1104 
1105 static bool _start(struct pl330_thread *thrd)
1106 {
1107 	switch (_state(thrd)) {
1108 	case PL330_STATE_FAULT_COMPLETING:
1109 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1110 
1111 		if (_state(thrd) == PL330_STATE_KILLING)
1112 			UNTIL(thrd, PL330_STATE_STOPPED)
1113 
1114 	case PL330_STATE_FAULTING:
1115 		_stop(thrd);
1116 
1117 	case PL330_STATE_KILLING:
1118 	case PL330_STATE_COMPLETING:
1119 		UNTIL(thrd, PL330_STATE_STOPPED)
1120 
1121 	case PL330_STATE_STOPPED:
1122 		return _trigger(thrd);
1123 
1124 	case PL330_STATE_WFP:
1125 	case PL330_STATE_QUEUEBUSY:
1126 	case PL330_STATE_ATBARRIER:
1127 	case PL330_STATE_UPDTPC:
1128 	case PL330_STATE_CACHEMISS:
1129 	case PL330_STATE_EXECUTING:
1130 		return true;
1131 
1132 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1133 	default:
1134 		return false;
1135 	}
1136 }
1137 
1138 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1139 		const struct _xfer_spec *pxs, int cyc)
1140 {
1141 	int off = 0;
1142 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1143 
1144 	/* check lock-up free version */
1145 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1146 		while (cyc--) {
1147 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1148 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1149 		}
1150 	} else {
1151 		while (cyc--) {
1152 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1153 			off += _emit_RMB(dry_run, &buf[off]);
1154 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1155 			off += _emit_WMB(dry_run, &buf[off]);
1156 		}
1157 	}
1158 
1159 	return off;
1160 }
1161 
1162 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1163 				 u8 buf[], const struct _xfer_spec *pxs,
1164 				 int cyc)
1165 {
1166 	int off = 0;
1167 	enum pl330_cond cond;
1168 
1169 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1170 		cond = BURST;
1171 	else
1172 		cond = SINGLE;
1173 
1174 	while (cyc--) {
1175 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1176 		off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1177 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1178 
1179 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1180 			off += _emit_FLUSHP(dry_run, &buf[off],
1181 					    pxs->desc->peri);
1182 	}
1183 
1184 	return off;
1185 }
1186 
1187 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1188 				 unsigned dry_run, u8 buf[],
1189 				 const struct _xfer_spec *pxs, int cyc)
1190 {
1191 	int off = 0;
1192 	enum pl330_cond cond;
1193 
1194 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1195 		cond = BURST;
1196 	else
1197 		cond = SINGLE;
1198 
1199 	while (cyc--) {
1200 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1201 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1202 		off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1203 
1204 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1205 			off += _emit_FLUSHP(dry_run, &buf[off],
1206 					    pxs->desc->peri);
1207 	}
1208 
1209 	return off;
1210 }
1211 
1212 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1213 		const struct _xfer_spec *pxs, int cyc)
1214 {
1215 	int off = 0;
1216 
1217 	switch (pxs->desc->rqtype) {
1218 	case DMA_MEM_TO_DEV:
1219 		off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1220 		break;
1221 	case DMA_DEV_TO_MEM:
1222 		off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1223 		break;
1224 	case DMA_MEM_TO_MEM:
1225 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1226 		break;
1227 	default:
1228 		off += 0x40000000; /* Scare off the Client */
1229 		break;
1230 	}
1231 
1232 	return off;
1233 }
1234 
1235 /* Returns bytes consumed and updates bursts */
1236 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1237 		unsigned long *bursts, const struct _xfer_spec *pxs)
1238 {
1239 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1240 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1241 	struct _arg_LPEND lpend;
1242 
1243 	if (*bursts == 1)
1244 		return _bursts(pl330, dry_run, buf, pxs, 1);
1245 
1246 	/* Max iterations possible in DMALP is 256 */
1247 	if (*bursts >= 256*256) {
1248 		lcnt1 = 256;
1249 		lcnt0 = 256;
1250 		cyc = *bursts / lcnt1 / lcnt0;
1251 	} else if (*bursts > 256) {
1252 		lcnt1 = 256;
1253 		lcnt0 = *bursts / lcnt1;
1254 		cyc = 1;
1255 	} else {
1256 		lcnt1 = *bursts;
1257 		lcnt0 = 0;
1258 		cyc = 1;
1259 	}
1260 
1261 	szlp = _emit_LP(1, buf, 0, 0);
1262 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1263 
1264 	lpend.cond = ALWAYS;
1265 	lpend.forever = false;
1266 	lpend.loop = 0;
1267 	lpend.bjump = 0;
1268 	szlpend = _emit_LPEND(1, buf, &lpend);
1269 
1270 	if (lcnt0) {
1271 		szlp *= 2;
1272 		szlpend *= 2;
1273 	}
1274 
1275 	/*
1276 	 * Max bursts that we can unroll due to limit on the
1277 	 * size of backward jump that can be encoded in DMALPEND
1278 	 * which is 8-bits and hence 255
1279 	 */
1280 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1281 
1282 	cyc = (cycmax < cyc) ? cycmax : cyc;
1283 
1284 	off = 0;
1285 
1286 	if (lcnt0) {
1287 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1288 		ljmp0 = off;
1289 	}
1290 
1291 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1292 	ljmp1 = off;
1293 
1294 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1295 
1296 	lpend.cond = ALWAYS;
1297 	lpend.forever = false;
1298 	lpend.loop = 1;
1299 	lpend.bjump = off - ljmp1;
1300 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1301 
1302 	if (lcnt0) {
1303 		lpend.cond = ALWAYS;
1304 		lpend.forever = false;
1305 		lpend.loop = 0;
1306 		lpend.bjump = off - ljmp0;
1307 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1308 	}
1309 
1310 	*bursts = lcnt1 * cyc;
1311 	if (lcnt0)
1312 		*bursts *= lcnt0;
1313 
1314 	return off;
1315 }
1316 
1317 static inline int _setup_loops(struct pl330_dmac *pl330,
1318 			       unsigned dry_run, u8 buf[],
1319 			       const struct _xfer_spec *pxs)
1320 {
1321 	struct pl330_xfer *x = &pxs->desc->px;
1322 	u32 ccr = pxs->ccr;
1323 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1324 	int off = 0;
1325 
1326 	while (bursts) {
1327 		c = bursts;
1328 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1329 		bursts -= c;
1330 	}
1331 
1332 	return off;
1333 }
1334 
1335 static inline int _setup_xfer(struct pl330_dmac *pl330,
1336 			      unsigned dry_run, u8 buf[],
1337 			      const struct _xfer_spec *pxs)
1338 {
1339 	struct pl330_xfer *x = &pxs->desc->px;
1340 	int off = 0;
1341 
1342 	/* DMAMOV SAR, x->src_addr */
1343 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1344 	/* DMAMOV DAR, x->dst_addr */
1345 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1346 
1347 	/* Setup Loop(s) */
1348 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1349 
1350 	return off;
1351 }
1352 
1353 /*
1354  * A req is a sequence of one or more xfer units.
1355  * Returns the number of bytes taken to setup the MC for the req.
1356  */
1357 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1358 		      struct pl330_thread *thrd, unsigned index,
1359 		      struct _xfer_spec *pxs)
1360 {
1361 	struct _pl330_req *req = &thrd->req[index];
1362 	struct pl330_xfer *x;
1363 	u8 *buf = req->mc_cpu;
1364 	int off = 0;
1365 
1366 	PL330_DBGMC_START(req->mc_bus);
1367 
1368 	/* DMAMOV CCR, ccr */
1369 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1370 
1371 	x = &pxs->desc->px;
1372 	/* Error if xfer length is not aligned at burst size */
1373 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1374 		return -EINVAL;
1375 
1376 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1377 
1378 	/* DMASEV peripheral/event */
1379 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1380 	/* DMAEND */
1381 	off += _emit_END(dry_run, &buf[off]);
1382 
1383 	return off;
1384 }
1385 
1386 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1387 {
1388 	u32 ccr = 0;
1389 
1390 	if (rqc->src_inc)
1391 		ccr |= CC_SRCINC;
1392 
1393 	if (rqc->dst_inc)
1394 		ccr |= CC_DSTINC;
1395 
1396 	/* We set same protection levels for Src and DST for now */
1397 	if (rqc->privileged)
1398 		ccr |= CC_SRCPRI | CC_DSTPRI;
1399 	if (rqc->nonsecure)
1400 		ccr |= CC_SRCNS | CC_DSTNS;
1401 	if (rqc->insnaccess)
1402 		ccr |= CC_SRCIA | CC_DSTIA;
1403 
1404 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1405 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1406 
1407 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1408 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1409 
1410 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1411 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1412 
1413 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1414 
1415 	return ccr;
1416 }
1417 
1418 /*
1419  * Submit a list of xfers after which the client wants notification.
1420  * Client is not notified after each xfer unit, just once after all
1421  * xfer units are done or some error occurs.
1422  */
1423 static int pl330_submit_req(struct pl330_thread *thrd,
1424 	struct dma_pl330_desc *desc)
1425 {
1426 	struct pl330_dmac *pl330 = thrd->dmac;
1427 	struct _xfer_spec xs;
1428 	unsigned long flags;
1429 	unsigned idx;
1430 	u32 ccr;
1431 	int ret = 0;
1432 
1433 	if (pl330->state == DYING
1434 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1435 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1436 			__func__, __LINE__);
1437 		return -EAGAIN;
1438 	}
1439 
1440 	/* If request for non-existing peripheral */
1441 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1442 	    desc->peri >= pl330->pcfg.num_peri) {
1443 		dev_info(thrd->dmac->ddma.dev,
1444 				"%s:%d Invalid peripheral(%u)!\n",
1445 				__func__, __LINE__, desc->peri);
1446 		return -EINVAL;
1447 	}
1448 
1449 	spin_lock_irqsave(&pl330->lock, flags);
1450 
1451 	if (_queue_full(thrd)) {
1452 		ret = -EAGAIN;
1453 		goto xfer_exit;
1454 	}
1455 
1456 	/* Prefer Secure Channel */
1457 	if (!_manager_ns(thrd))
1458 		desc->rqcfg.nonsecure = 0;
1459 	else
1460 		desc->rqcfg.nonsecure = 1;
1461 
1462 	ccr = _prepare_ccr(&desc->rqcfg);
1463 
1464 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1465 
1466 	xs.ccr = ccr;
1467 	xs.desc = desc;
1468 
1469 	/* First dry run to check if req is acceptable */
1470 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1471 	if (ret < 0)
1472 		goto xfer_exit;
1473 
1474 	if (ret > pl330->mcbufsz / 2) {
1475 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1476 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1477 		ret = -ENOMEM;
1478 		goto xfer_exit;
1479 	}
1480 
1481 	/* Hook the request */
1482 	thrd->lstenq = idx;
1483 	thrd->req[idx].desc = desc;
1484 	_setup_req(pl330, 0, thrd, idx, &xs);
1485 
1486 	ret = 0;
1487 
1488 xfer_exit:
1489 	spin_unlock_irqrestore(&pl330->lock, flags);
1490 
1491 	return ret;
1492 }
1493 
1494 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1495 {
1496 	struct dma_pl330_chan *pch;
1497 	unsigned long flags;
1498 
1499 	if (!desc)
1500 		return;
1501 
1502 	pch = desc->pchan;
1503 
1504 	/* If desc aborted */
1505 	if (!pch)
1506 		return;
1507 
1508 	spin_lock_irqsave(&pch->lock, flags);
1509 
1510 	desc->status = DONE;
1511 
1512 	spin_unlock_irqrestore(&pch->lock, flags);
1513 
1514 	tasklet_schedule(&pch->task);
1515 }
1516 
1517 static void pl330_dotask(unsigned long data)
1518 {
1519 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1520 	unsigned long flags;
1521 	int i;
1522 
1523 	spin_lock_irqsave(&pl330->lock, flags);
1524 
1525 	/* The DMAC itself gone nuts */
1526 	if (pl330->dmac_tbd.reset_dmac) {
1527 		pl330->state = DYING;
1528 		/* Reset the manager too */
1529 		pl330->dmac_tbd.reset_mngr = true;
1530 		/* Clear the reset flag */
1531 		pl330->dmac_tbd.reset_dmac = false;
1532 	}
1533 
1534 	if (pl330->dmac_tbd.reset_mngr) {
1535 		_stop(pl330->manager);
1536 		/* Reset all channels */
1537 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1538 		/* Clear the reset flag */
1539 		pl330->dmac_tbd.reset_mngr = false;
1540 	}
1541 
1542 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1543 
1544 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1545 			struct pl330_thread *thrd = &pl330->channels[i];
1546 			void __iomem *regs = pl330->base;
1547 			enum pl330_op_err err;
1548 
1549 			_stop(thrd);
1550 
1551 			if (readl(regs + FSC) & (1 << thrd->id))
1552 				err = PL330_ERR_FAIL;
1553 			else
1554 				err = PL330_ERR_ABORT;
1555 
1556 			spin_unlock_irqrestore(&pl330->lock, flags);
1557 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1558 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1559 			spin_lock_irqsave(&pl330->lock, flags);
1560 
1561 			thrd->req[0].desc = NULL;
1562 			thrd->req[1].desc = NULL;
1563 			thrd->req_running = -1;
1564 
1565 			/* Clear the reset flag */
1566 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1567 		}
1568 	}
1569 
1570 	spin_unlock_irqrestore(&pl330->lock, flags);
1571 
1572 	return;
1573 }
1574 
1575 /* Returns 1 if state was updated, 0 otherwise */
1576 static int pl330_update(struct pl330_dmac *pl330)
1577 {
1578 	struct dma_pl330_desc *descdone, *tmp;
1579 	unsigned long flags;
1580 	void __iomem *regs;
1581 	u32 val;
1582 	int id, ev, ret = 0;
1583 
1584 	regs = pl330->base;
1585 
1586 	spin_lock_irqsave(&pl330->lock, flags);
1587 
1588 	val = readl(regs + FSM) & 0x1;
1589 	if (val)
1590 		pl330->dmac_tbd.reset_mngr = true;
1591 	else
1592 		pl330->dmac_tbd.reset_mngr = false;
1593 
1594 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1595 	pl330->dmac_tbd.reset_chan |= val;
1596 	if (val) {
1597 		int i = 0;
1598 		while (i < pl330->pcfg.num_chan) {
1599 			if (val & (1 << i)) {
1600 				dev_info(pl330->ddma.dev,
1601 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1602 						i, readl(regs + CS(i)),
1603 						readl(regs + FTC(i)));
1604 				_stop(&pl330->channels[i]);
1605 			}
1606 			i++;
1607 		}
1608 	}
1609 
1610 	/* Check which event happened i.e, thread notified */
1611 	val = readl(regs + ES);
1612 	if (pl330->pcfg.num_events < 32
1613 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1614 		pl330->dmac_tbd.reset_dmac = true;
1615 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1616 			__LINE__);
1617 		ret = 1;
1618 		goto updt_exit;
1619 	}
1620 
1621 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1622 		if (val & (1 << ev)) { /* Event occurred */
1623 			struct pl330_thread *thrd;
1624 			u32 inten = readl(regs + INTEN);
1625 			int active;
1626 
1627 			/* Clear the event */
1628 			if (inten & (1 << ev))
1629 				writel(1 << ev, regs + INTCLR);
1630 
1631 			ret = 1;
1632 
1633 			id = pl330->events[ev];
1634 
1635 			thrd = &pl330->channels[id];
1636 
1637 			active = thrd->req_running;
1638 			if (active == -1) /* Aborted */
1639 				continue;
1640 
1641 			/* Detach the req */
1642 			descdone = thrd->req[active].desc;
1643 			thrd->req[active].desc = NULL;
1644 
1645 			thrd->req_running = -1;
1646 
1647 			/* Get going again ASAP */
1648 			_start(thrd);
1649 
1650 			/* For now, just make a list of callbacks to be done */
1651 			list_add_tail(&descdone->rqd, &pl330->req_done);
1652 		}
1653 	}
1654 
1655 	/* Now that we are in no hurry, do the callbacks */
1656 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1657 		list_del(&descdone->rqd);
1658 		spin_unlock_irqrestore(&pl330->lock, flags);
1659 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1660 		spin_lock_irqsave(&pl330->lock, flags);
1661 	}
1662 
1663 updt_exit:
1664 	spin_unlock_irqrestore(&pl330->lock, flags);
1665 
1666 	if (pl330->dmac_tbd.reset_dmac
1667 			|| pl330->dmac_tbd.reset_mngr
1668 			|| pl330->dmac_tbd.reset_chan) {
1669 		ret = 1;
1670 		tasklet_schedule(&pl330->tasks);
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 /* Reserve an event */
1677 static inline int _alloc_event(struct pl330_thread *thrd)
1678 {
1679 	struct pl330_dmac *pl330 = thrd->dmac;
1680 	int ev;
1681 
1682 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1683 		if (pl330->events[ev] == -1) {
1684 			pl330->events[ev] = thrd->id;
1685 			return ev;
1686 		}
1687 
1688 	return -1;
1689 }
1690 
1691 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1692 {
1693 	return pl330->pcfg.irq_ns & (1 << i);
1694 }
1695 
1696 /* Upon success, returns IdentityToken for the
1697  * allocated channel, NULL otherwise.
1698  */
1699 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1700 {
1701 	struct pl330_thread *thrd = NULL;
1702 	int chans, i;
1703 
1704 	if (pl330->state == DYING)
1705 		return NULL;
1706 
1707 	chans = pl330->pcfg.num_chan;
1708 
1709 	for (i = 0; i < chans; i++) {
1710 		thrd = &pl330->channels[i];
1711 		if ((thrd->free) && (!_manager_ns(thrd) ||
1712 					_chan_ns(pl330, i))) {
1713 			thrd->ev = _alloc_event(thrd);
1714 			if (thrd->ev >= 0) {
1715 				thrd->free = false;
1716 				thrd->lstenq = 1;
1717 				thrd->req[0].desc = NULL;
1718 				thrd->req[1].desc = NULL;
1719 				thrd->req_running = -1;
1720 				break;
1721 			}
1722 		}
1723 		thrd = NULL;
1724 	}
1725 
1726 	return thrd;
1727 }
1728 
1729 /* Release an event */
1730 static inline void _free_event(struct pl330_thread *thrd, int ev)
1731 {
1732 	struct pl330_dmac *pl330 = thrd->dmac;
1733 
1734 	/* If the event is valid and was held by the thread */
1735 	if (ev >= 0 && ev < pl330->pcfg.num_events
1736 			&& pl330->events[ev] == thrd->id)
1737 		pl330->events[ev] = -1;
1738 }
1739 
1740 static void pl330_release_channel(struct pl330_thread *thrd)
1741 {
1742 	struct pl330_dmac *pl330;
1743 
1744 	if (!thrd || thrd->free)
1745 		return;
1746 
1747 	_stop(thrd);
1748 
1749 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1750 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1751 
1752 	pl330 = thrd->dmac;
1753 
1754 	_free_event(thrd, thrd->ev);
1755 	thrd->free = true;
1756 }
1757 
1758 /* Initialize the structure for PL330 configuration, that can be used
1759  * by the client driver the make best use of the DMAC
1760  */
1761 static void read_dmac_config(struct pl330_dmac *pl330)
1762 {
1763 	void __iomem *regs = pl330->base;
1764 	u32 val;
1765 
1766 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1767 	val &= CRD_DATA_WIDTH_MASK;
1768 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1769 
1770 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1771 	val &= CRD_DATA_BUFF_MASK;
1772 	pl330->pcfg.data_buf_dep = val + 1;
1773 
1774 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1775 	val &= CR0_NUM_CHANS_MASK;
1776 	val += 1;
1777 	pl330->pcfg.num_chan = val;
1778 
1779 	val = readl(regs + CR0);
1780 	if (val & CR0_PERIPH_REQ_SET) {
1781 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1782 		val += 1;
1783 		pl330->pcfg.num_peri = val;
1784 		pl330->pcfg.peri_ns = readl(regs + CR4);
1785 	} else {
1786 		pl330->pcfg.num_peri = 0;
1787 	}
1788 
1789 	val = readl(regs + CR0);
1790 	if (val & CR0_BOOT_MAN_NS)
1791 		pl330->pcfg.mode |= DMAC_MODE_NS;
1792 	else
1793 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1794 
1795 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1796 	val &= CR0_NUM_EVENTS_MASK;
1797 	val += 1;
1798 	pl330->pcfg.num_events = val;
1799 
1800 	pl330->pcfg.irq_ns = readl(regs + CR3);
1801 }
1802 
1803 static inline void _reset_thread(struct pl330_thread *thrd)
1804 {
1805 	struct pl330_dmac *pl330 = thrd->dmac;
1806 
1807 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1808 				+ (thrd->id * pl330->mcbufsz);
1809 	thrd->req[0].mc_bus = pl330->mcode_bus
1810 				+ (thrd->id * pl330->mcbufsz);
1811 	thrd->req[0].desc = NULL;
1812 
1813 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1814 				+ pl330->mcbufsz / 2;
1815 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1816 				+ pl330->mcbufsz / 2;
1817 	thrd->req[1].desc = NULL;
1818 
1819 	thrd->req_running = -1;
1820 }
1821 
1822 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1823 {
1824 	int chans = pl330->pcfg.num_chan;
1825 	struct pl330_thread *thrd;
1826 	int i;
1827 
1828 	/* Allocate 1 Manager and 'chans' Channel threads */
1829 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1830 					GFP_KERNEL);
1831 	if (!pl330->channels)
1832 		return -ENOMEM;
1833 
1834 	/* Init Channel threads */
1835 	for (i = 0; i < chans; i++) {
1836 		thrd = &pl330->channels[i];
1837 		thrd->id = i;
1838 		thrd->dmac = pl330;
1839 		_reset_thread(thrd);
1840 		thrd->free = true;
1841 	}
1842 
1843 	/* MANAGER is indexed at the end */
1844 	thrd = &pl330->channels[chans];
1845 	thrd->id = chans;
1846 	thrd->dmac = pl330;
1847 	thrd->free = false;
1848 	pl330->manager = thrd;
1849 
1850 	return 0;
1851 }
1852 
1853 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1854 {
1855 	int chans = pl330->pcfg.num_chan;
1856 	int ret;
1857 
1858 	/*
1859 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1860 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1861 	 */
1862 	pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1863 				chans * pl330->mcbufsz,
1864 				&pl330->mcode_bus, GFP_KERNEL);
1865 	if (!pl330->mcode_cpu) {
1866 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1867 			__func__, __LINE__);
1868 		return -ENOMEM;
1869 	}
1870 
1871 	ret = dmac_alloc_threads(pl330);
1872 	if (ret) {
1873 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1874 			__func__, __LINE__);
1875 		dma_free_coherent(pl330->ddma.dev,
1876 				chans * pl330->mcbufsz,
1877 				pl330->mcode_cpu, pl330->mcode_bus);
1878 		return ret;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 static int pl330_add(struct pl330_dmac *pl330)
1885 {
1886 	int i, ret;
1887 
1888 	/* Check if we can handle this DMAC */
1889 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1890 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1891 			pl330->pcfg.periph_id);
1892 		return -EINVAL;
1893 	}
1894 
1895 	/* Read the configuration of the DMAC */
1896 	read_dmac_config(pl330);
1897 
1898 	if (pl330->pcfg.num_events == 0) {
1899 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1900 			__func__, __LINE__);
1901 		return -EINVAL;
1902 	}
1903 
1904 	spin_lock_init(&pl330->lock);
1905 
1906 	INIT_LIST_HEAD(&pl330->req_done);
1907 
1908 	/* Use default MC buffer size if not provided */
1909 	if (!pl330->mcbufsz)
1910 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1911 
1912 	/* Mark all events as free */
1913 	for (i = 0; i < pl330->pcfg.num_events; i++)
1914 		pl330->events[i] = -1;
1915 
1916 	/* Allocate resources needed by the DMAC */
1917 	ret = dmac_alloc_resources(pl330);
1918 	if (ret) {
1919 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1920 		return ret;
1921 	}
1922 
1923 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1924 
1925 	pl330->state = INIT;
1926 
1927 	return 0;
1928 }
1929 
1930 static int dmac_free_threads(struct pl330_dmac *pl330)
1931 {
1932 	struct pl330_thread *thrd;
1933 	int i;
1934 
1935 	/* Release Channel threads */
1936 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1937 		thrd = &pl330->channels[i];
1938 		pl330_release_channel(thrd);
1939 	}
1940 
1941 	/* Free memory */
1942 	kfree(pl330->channels);
1943 
1944 	return 0;
1945 }
1946 
1947 static void pl330_del(struct pl330_dmac *pl330)
1948 {
1949 	pl330->state = UNINIT;
1950 
1951 	tasklet_kill(&pl330->tasks);
1952 
1953 	/* Free DMAC resources */
1954 	dmac_free_threads(pl330);
1955 
1956 	dma_free_coherent(pl330->ddma.dev,
1957 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1958 		pl330->mcode_bus);
1959 }
1960 
1961 /* forward declaration */
1962 static struct amba_driver pl330_driver;
1963 
1964 static inline struct dma_pl330_chan *
1965 to_pchan(struct dma_chan *ch)
1966 {
1967 	if (!ch)
1968 		return NULL;
1969 
1970 	return container_of(ch, struct dma_pl330_chan, chan);
1971 }
1972 
1973 static inline struct dma_pl330_desc *
1974 to_desc(struct dma_async_tx_descriptor *tx)
1975 {
1976 	return container_of(tx, struct dma_pl330_desc, txd);
1977 }
1978 
1979 static inline void fill_queue(struct dma_pl330_chan *pch)
1980 {
1981 	struct dma_pl330_desc *desc;
1982 	int ret;
1983 
1984 	list_for_each_entry(desc, &pch->work_list, node) {
1985 
1986 		/* If already submitted */
1987 		if (desc->status == BUSY)
1988 			continue;
1989 
1990 		ret = pl330_submit_req(pch->thread, desc);
1991 		if (!ret) {
1992 			desc->status = BUSY;
1993 		} else if (ret == -EAGAIN) {
1994 			/* QFull or DMAC Dying */
1995 			break;
1996 		} else {
1997 			/* Unacceptable request */
1998 			desc->status = DONE;
1999 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2000 					__func__, __LINE__, desc->txd.cookie);
2001 			tasklet_schedule(&pch->task);
2002 		}
2003 	}
2004 }
2005 
2006 static void pl330_tasklet(unsigned long data)
2007 {
2008 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2009 	struct dma_pl330_desc *desc, *_dt;
2010 	unsigned long flags;
2011 	bool power_down = false;
2012 
2013 	spin_lock_irqsave(&pch->lock, flags);
2014 
2015 	/* Pick up ripe tomatoes */
2016 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2017 		if (desc->status == DONE) {
2018 			if (!pch->cyclic)
2019 				dma_cookie_complete(&desc->txd);
2020 			list_move_tail(&desc->node, &pch->completed_list);
2021 		}
2022 
2023 	/* Try to submit a req imm. next to the last completed cookie */
2024 	fill_queue(pch);
2025 
2026 	if (list_empty(&pch->work_list)) {
2027 		spin_lock(&pch->thread->dmac->lock);
2028 		_stop(pch->thread);
2029 		spin_unlock(&pch->thread->dmac->lock);
2030 		power_down = true;
2031 		pch->active = false;
2032 	} else {
2033 		/* Make sure the PL330 Channel thread is active */
2034 		spin_lock(&pch->thread->dmac->lock);
2035 		_start(pch->thread);
2036 		spin_unlock(&pch->thread->dmac->lock);
2037 	}
2038 
2039 	while (!list_empty(&pch->completed_list)) {
2040 		struct dmaengine_desc_callback cb;
2041 
2042 		desc = list_first_entry(&pch->completed_list,
2043 					struct dma_pl330_desc, node);
2044 
2045 		dmaengine_desc_get_callback(&desc->txd, &cb);
2046 
2047 		if (pch->cyclic) {
2048 			desc->status = PREP;
2049 			list_move_tail(&desc->node, &pch->work_list);
2050 			if (power_down) {
2051 				pch->active = true;
2052 				spin_lock(&pch->thread->dmac->lock);
2053 				_start(pch->thread);
2054 				spin_unlock(&pch->thread->dmac->lock);
2055 				power_down = false;
2056 			}
2057 		} else {
2058 			desc->status = FREE;
2059 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2060 		}
2061 
2062 		dma_descriptor_unmap(&desc->txd);
2063 
2064 		if (dmaengine_desc_callback_valid(&cb)) {
2065 			spin_unlock_irqrestore(&pch->lock, flags);
2066 			dmaengine_desc_callback_invoke(&cb, NULL);
2067 			spin_lock_irqsave(&pch->lock, flags);
2068 		}
2069 	}
2070 	spin_unlock_irqrestore(&pch->lock, flags);
2071 
2072 	/* If work list empty, power down */
2073 	if (power_down) {
2074 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2075 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2076 	}
2077 }
2078 
2079 bool pl330_filter(struct dma_chan *chan, void *param)
2080 {
2081 	u8 *peri_id;
2082 
2083 	if (chan->device->dev->driver != &pl330_driver.drv)
2084 		return false;
2085 
2086 	peri_id = chan->private;
2087 	return *peri_id == (unsigned long)param;
2088 }
2089 EXPORT_SYMBOL(pl330_filter);
2090 
2091 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2092 						struct of_dma *ofdma)
2093 {
2094 	int count = dma_spec->args_count;
2095 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2096 	unsigned int chan_id;
2097 
2098 	if (!pl330)
2099 		return NULL;
2100 
2101 	if (count != 1)
2102 		return NULL;
2103 
2104 	chan_id = dma_spec->args[0];
2105 	if (chan_id >= pl330->num_peripherals)
2106 		return NULL;
2107 
2108 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2109 }
2110 
2111 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2112 {
2113 	struct dma_pl330_chan *pch = to_pchan(chan);
2114 	struct pl330_dmac *pl330 = pch->dmac;
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&pl330->lock, flags);
2118 
2119 	dma_cookie_init(chan);
2120 	pch->cyclic = false;
2121 
2122 	pch->thread = pl330_request_channel(pl330);
2123 	if (!pch->thread) {
2124 		spin_unlock_irqrestore(&pl330->lock, flags);
2125 		return -ENOMEM;
2126 	}
2127 
2128 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2129 
2130 	spin_unlock_irqrestore(&pl330->lock, flags);
2131 
2132 	return 1;
2133 }
2134 
2135 static int pl330_config(struct dma_chan *chan,
2136 			struct dma_slave_config *slave_config)
2137 {
2138 	struct dma_pl330_chan *pch = to_pchan(chan);
2139 
2140 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2141 		if (slave_config->dst_addr)
2142 			pch->fifo_addr = slave_config->dst_addr;
2143 		if (slave_config->dst_addr_width)
2144 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2145 		if (slave_config->dst_maxburst)
2146 			pch->burst_len = slave_config->dst_maxburst;
2147 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2148 		if (slave_config->src_addr)
2149 			pch->fifo_addr = slave_config->src_addr;
2150 		if (slave_config->src_addr_width)
2151 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2152 		if (slave_config->src_maxburst)
2153 			pch->burst_len = slave_config->src_maxburst;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 static int pl330_terminate_all(struct dma_chan *chan)
2160 {
2161 	struct dma_pl330_chan *pch = to_pchan(chan);
2162 	struct dma_pl330_desc *desc;
2163 	unsigned long flags;
2164 	struct pl330_dmac *pl330 = pch->dmac;
2165 	LIST_HEAD(list);
2166 	bool power_down = false;
2167 
2168 	pm_runtime_get_sync(pl330->ddma.dev);
2169 	spin_lock_irqsave(&pch->lock, flags);
2170 	spin_lock(&pl330->lock);
2171 	_stop(pch->thread);
2172 	spin_unlock(&pl330->lock);
2173 
2174 	pch->thread->req[0].desc = NULL;
2175 	pch->thread->req[1].desc = NULL;
2176 	pch->thread->req_running = -1;
2177 	power_down = pch->active;
2178 	pch->active = false;
2179 
2180 	/* Mark all desc done */
2181 	list_for_each_entry(desc, &pch->submitted_list, node) {
2182 		desc->status = FREE;
2183 		dma_cookie_complete(&desc->txd);
2184 	}
2185 
2186 	list_for_each_entry(desc, &pch->work_list , node) {
2187 		desc->status = FREE;
2188 		dma_cookie_complete(&desc->txd);
2189 	}
2190 
2191 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2192 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2193 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2194 	spin_unlock_irqrestore(&pch->lock, flags);
2195 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2196 	if (power_down)
2197 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2198 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * We don't support DMA_RESUME command because of hardware
2205  * limitations, so after pausing the channel we cannot restore
2206  * it to active state. We have to terminate channel and setup
2207  * DMA transfer again. This pause feature was implemented to
2208  * allow safely read residue before channel termination.
2209  */
2210 static int pl330_pause(struct dma_chan *chan)
2211 {
2212 	struct dma_pl330_chan *pch = to_pchan(chan);
2213 	struct pl330_dmac *pl330 = pch->dmac;
2214 	unsigned long flags;
2215 
2216 	pm_runtime_get_sync(pl330->ddma.dev);
2217 	spin_lock_irqsave(&pch->lock, flags);
2218 
2219 	spin_lock(&pl330->lock);
2220 	_stop(pch->thread);
2221 	spin_unlock(&pl330->lock);
2222 
2223 	spin_unlock_irqrestore(&pch->lock, flags);
2224 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2225 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2226 
2227 	return 0;
2228 }
2229 
2230 static void pl330_free_chan_resources(struct dma_chan *chan)
2231 {
2232 	struct dma_pl330_chan *pch = to_pchan(chan);
2233 	struct pl330_dmac *pl330 = pch->dmac;
2234 	unsigned long flags;
2235 
2236 	tasklet_kill(&pch->task);
2237 
2238 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2239 	spin_lock_irqsave(&pl330->lock, flags);
2240 
2241 	pl330_release_channel(pch->thread);
2242 	pch->thread = NULL;
2243 
2244 	if (pch->cyclic)
2245 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2246 
2247 	spin_unlock_irqrestore(&pl330->lock, flags);
2248 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2249 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2250 }
2251 
2252 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2253 					   struct dma_pl330_desc *desc)
2254 {
2255 	struct pl330_thread *thrd = pch->thread;
2256 	struct pl330_dmac *pl330 = pch->dmac;
2257 	void __iomem *regs = thrd->dmac->base;
2258 	u32 val, addr;
2259 
2260 	pm_runtime_get_sync(pl330->ddma.dev);
2261 	val = addr = 0;
2262 	if (desc->rqcfg.src_inc) {
2263 		val = readl(regs + SA(thrd->id));
2264 		addr = desc->px.src_addr;
2265 	} else {
2266 		val = readl(regs + DA(thrd->id));
2267 		addr = desc->px.dst_addr;
2268 	}
2269 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2270 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2271 
2272 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2273 	if (!val)
2274 		return 0;
2275 
2276 	return val - addr;
2277 }
2278 
2279 static enum dma_status
2280 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2281 		 struct dma_tx_state *txstate)
2282 {
2283 	enum dma_status ret;
2284 	unsigned long flags;
2285 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2286 	struct dma_pl330_chan *pch = to_pchan(chan);
2287 	unsigned int transferred, residual = 0;
2288 
2289 	ret = dma_cookie_status(chan, cookie, txstate);
2290 
2291 	if (!txstate)
2292 		return ret;
2293 
2294 	if (ret == DMA_COMPLETE)
2295 		goto out;
2296 
2297 	spin_lock_irqsave(&pch->lock, flags);
2298 	spin_lock(&pch->thread->dmac->lock);
2299 
2300 	if (pch->thread->req_running != -1)
2301 		running = pch->thread->req[pch->thread->req_running].desc;
2302 
2303 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2304 
2305 	/* Check in pending list */
2306 	list_for_each_entry(desc, &pch->work_list, node) {
2307 		if (desc->status == DONE)
2308 			transferred = desc->bytes_requested;
2309 		else if (running && desc == running)
2310 			transferred =
2311 				pl330_get_current_xferred_count(pch, desc);
2312 		else if (desc->status == BUSY)
2313 			/*
2314 			 * Busy but not running means either just enqueued,
2315 			 * or finished and not yet marked done
2316 			 */
2317 			if (desc == last_enq)
2318 				transferred = 0;
2319 			else
2320 				transferred = desc->bytes_requested;
2321 		else
2322 			transferred = 0;
2323 		residual += desc->bytes_requested - transferred;
2324 		if (desc->txd.cookie == cookie) {
2325 			switch (desc->status) {
2326 			case DONE:
2327 				ret = DMA_COMPLETE;
2328 				break;
2329 			case PREP:
2330 			case BUSY:
2331 				ret = DMA_IN_PROGRESS;
2332 				break;
2333 			default:
2334 				WARN_ON(1);
2335 			}
2336 			break;
2337 		}
2338 		if (desc->last)
2339 			residual = 0;
2340 	}
2341 	spin_unlock(&pch->thread->dmac->lock);
2342 	spin_unlock_irqrestore(&pch->lock, flags);
2343 
2344 out:
2345 	dma_set_residue(txstate, residual);
2346 
2347 	return ret;
2348 }
2349 
2350 static void pl330_issue_pending(struct dma_chan *chan)
2351 {
2352 	struct dma_pl330_chan *pch = to_pchan(chan);
2353 	unsigned long flags;
2354 
2355 	spin_lock_irqsave(&pch->lock, flags);
2356 	if (list_empty(&pch->work_list)) {
2357 		/*
2358 		 * Warn on nothing pending. Empty submitted_list may
2359 		 * break our pm_runtime usage counter as it is
2360 		 * updated on work_list emptiness status.
2361 		 */
2362 		WARN_ON(list_empty(&pch->submitted_list));
2363 		pch->active = true;
2364 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2365 	}
2366 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2367 	spin_unlock_irqrestore(&pch->lock, flags);
2368 
2369 	pl330_tasklet((unsigned long)pch);
2370 }
2371 
2372 /*
2373  * We returned the last one of the circular list of descriptor(s)
2374  * from prep_xxx, so the argument to submit corresponds to the last
2375  * descriptor of the list.
2376  */
2377 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2378 {
2379 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2380 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2381 	dma_cookie_t cookie;
2382 	unsigned long flags;
2383 
2384 	spin_lock_irqsave(&pch->lock, flags);
2385 
2386 	/* Assign cookies to all nodes */
2387 	while (!list_empty(&last->node)) {
2388 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2389 		if (pch->cyclic) {
2390 			desc->txd.callback = last->txd.callback;
2391 			desc->txd.callback_param = last->txd.callback_param;
2392 		}
2393 		desc->last = false;
2394 
2395 		dma_cookie_assign(&desc->txd);
2396 
2397 		list_move_tail(&desc->node, &pch->submitted_list);
2398 	}
2399 
2400 	last->last = true;
2401 	cookie = dma_cookie_assign(&last->txd);
2402 	list_add_tail(&last->node, &pch->submitted_list);
2403 	spin_unlock_irqrestore(&pch->lock, flags);
2404 
2405 	return cookie;
2406 }
2407 
2408 static inline void _init_desc(struct dma_pl330_desc *desc)
2409 {
2410 	desc->rqcfg.swap = SWAP_NO;
2411 	desc->rqcfg.scctl = CCTRL0;
2412 	desc->rqcfg.dcctl = CCTRL0;
2413 	desc->txd.tx_submit = pl330_tx_submit;
2414 
2415 	INIT_LIST_HEAD(&desc->node);
2416 }
2417 
2418 /* Returns the number of descriptors added to the DMAC pool */
2419 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2420 {
2421 	struct dma_pl330_desc *desc;
2422 	unsigned long flags;
2423 	int i;
2424 
2425 	desc = kcalloc(count, sizeof(*desc), flg);
2426 	if (!desc)
2427 		return 0;
2428 
2429 	spin_lock_irqsave(&pl330->pool_lock, flags);
2430 
2431 	for (i = 0; i < count; i++) {
2432 		_init_desc(&desc[i]);
2433 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2434 	}
2435 
2436 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2437 
2438 	return count;
2439 }
2440 
2441 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2442 {
2443 	struct dma_pl330_desc *desc = NULL;
2444 	unsigned long flags;
2445 
2446 	spin_lock_irqsave(&pl330->pool_lock, flags);
2447 
2448 	if (!list_empty(&pl330->desc_pool)) {
2449 		desc = list_entry(pl330->desc_pool.next,
2450 				struct dma_pl330_desc, node);
2451 
2452 		list_del_init(&desc->node);
2453 
2454 		desc->status = PREP;
2455 		desc->txd.callback = NULL;
2456 	}
2457 
2458 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2459 
2460 	return desc;
2461 }
2462 
2463 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2464 {
2465 	struct pl330_dmac *pl330 = pch->dmac;
2466 	u8 *peri_id = pch->chan.private;
2467 	struct dma_pl330_desc *desc;
2468 
2469 	/* Pluck one desc from the pool of DMAC */
2470 	desc = pluck_desc(pl330);
2471 
2472 	/* If the DMAC pool is empty, alloc new */
2473 	if (!desc) {
2474 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2475 			return NULL;
2476 
2477 		/* Try again */
2478 		desc = pluck_desc(pl330);
2479 		if (!desc) {
2480 			dev_err(pch->dmac->ddma.dev,
2481 				"%s:%d ALERT!\n", __func__, __LINE__);
2482 			return NULL;
2483 		}
2484 	}
2485 
2486 	/* Initialize the descriptor */
2487 	desc->pchan = pch;
2488 	desc->txd.cookie = 0;
2489 	async_tx_ack(&desc->txd);
2490 
2491 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2492 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2493 
2494 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2495 
2496 	return desc;
2497 }
2498 
2499 static inline void fill_px(struct pl330_xfer *px,
2500 		dma_addr_t dst, dma_addr_t src, size_t len)
2501 {
2502 	px->bytes = len;
2503 	px->dst_addr = dst;
2504 	px->src_addr = src;
2505 }
2506 
2507 static struct dma_pl330_desc *
2508 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2509 		dma_addr_t src, size_t len)
2510 {
2511 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2512 
2513 	if (!desc) {
2514 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2515 			__func__, __LINE__);
2516 		return NULL;
2517 	}
2518 
2519 	/*
2520 	 * Ideally we should lookout for reqs bigger than
2521 	 * those that can be programmed with 256 bytes of
2522 	 * MC buffer, but considering a req size is seldom
2523 	 * going to be word-unaligned and more than 200MB,
2524 	 * we take it easy.
2525 	 * Also, should the limit is reached we'd rather
2526 	 * have the platform increase MC buffer size than
2527 	 * complicating this API driver.
2528 	 */
2529 	fill_px(&desc->px, dst, src, len);
2530 
2531 	return desc;
2532 }
2533 
2534 /* Call after fixing burst size */
2535 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2536 {
2537 	struct dma_pl330_chan *pch = desc->pchan;
2538 	struct pl330_dmac *pl330 = pch->dmac;
2539 	int burst_len;
2540 
2541 	burst_len = pl330->pcfg.data_bus_width / 8;
2542 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2543 	burst_len >>= desc->rqcfg.brst_size;
2544 
2545 	/* src/dst_burst_len can't be more than 16 */
2546 	if (burst_len > 16)
2547 		burst_len = 16;
2548 
2549 	while (burst_len > 1) {
2550 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2551 			break;
2552 		burst_len--;
2553 	}
2554 
2555 	return burst_len;
2556 }
2557 
2558 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2559 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2560 		size_t period_len, enum dma_transfer_direction direction,
2561 		unsigned long flags)
2562 {
2563 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2564 	struct dma_pl330_chan *pch = to_pchan(chan);
2565 	struct pl330_dmac *pl330 = pch->dmac;
2566 	unsigned int i;
2567 	dma_addr_t dst;
2568 	dma_addr_t src;
2569 
2570 	if (len % period_len != 0)
2571 		return NULL;
2572 
2573 	if (!is_slave_direction(direction)) {
2574 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2575 		__func__, __LINE__);
2576 		return NULL;
2577 	}
2578 
2579 	for (i = 0; i < len / period_len; i++) {
2580 		desc = pl330_get_desc(pch);
2581 		if (!desc) {
2582 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2583 				__func__, __LINE__);
2584 
2585 			if (!first)
2586 				return NULL;
2587 
2588 			spin_lock_irqsave(&pl330->pool_lock, flags);
2589 
2590 			while (!list_empty(&first->node)) {
2591 				desc = list_entry(first->node.next,
2592 						struct dma_pl330_desc, node);
2593 				list_move_tail(&desc->node, &pl330->desc_pool);
2594 			}
2595 
2596 			list_move_tail(&first->node, &pl330->desc_pool);
2597 
2598 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2599 
2600 			return NULL;
2601 		}
2602 
2603 		switch (direction) {
2604 		case DMA_MEM_TO_DEV:
2605 			desc->rqcfg.src_inc = 1;
2606 			desc->rqcfg.dst_inc = 0;
2607 			src = dma_addr;
2608 			dst = pch->fifo_addr;
2609 			break;
2610 		case DMA_DEV_TO_MEM:
2611 			desc->rqcfg.src_inc = 0;
2612 			desc->rqcfg.dst_inc = 1;
2613 			src = pch->fifo_addr;
2614 			dst = dma_addr;
2615 			break;
2616 		default:
2617 			break;
2618 		}
2619 
2620 		desc->rqtype = direction;
2621 		desc->rqcfg.brst_size = pch->burst_sz;
2622 		desc->rqcfg.brst_len = 1;
2623 		desc->bytes_requested = period_len;
2624 		fill_px(&desc->px, dst, src, period_len);
2625 
2626 		if (!first)
2627 			first = desc;
2628 		else
2629 			list_add_tail(&desc->node, &first->node);
2630 
2631 		dma_addr += period_len;
2632 	}
2633 
2634 	if (!desc)
2635 		return NULL;
2636 
2637 	pch->cyclic = true;
2638 	desc->txd.flags = flags;
2639 
2640 	return &desc->txd;
2641 }
2642 
2643 static struct dma_async_tx_descriptor *
2644 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2645 		dma_addr_t src, size_t len, unsigned long flags)
2646 {
2647 	struct dma_pl330_desc *desc;
2648 	struct dma_pl330_chan *pch = to_pchan(chan);
2649 	struct pl330_dmac *pl330;
2650 	int burst;
2651 
2652 	if (unlikely(!pch || !len))
2653 		return NULL;
2654 
2655 	pl330 = pch->dmac;
2656 
2657 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2658 	if (!desc)
2659 		return NULL;
2660 
2661 	desc->rqcfg.src_inc = 1;
2662 	desc->rqcfg.dst_inc = 1;
2663 	desc->rqtype = DMA_MEM_TO_MEM;
2664 
2665 	/* Select max possible burst size */
2666 	burst = pl330->pcfg.data_bus_width / 8;
2667 
2668 	/*
2669 	 * Make sure we use a burst size that aligns with all the memcpy
2670 	 * parameters because our DMA programming algorithm doesn't cope with
2671 	 * transfers which straddle an entry in the DMA device's MFIFO.
2672 	 */
2673 	while ((src | dst | len) & (burst - 1))
2674 		burst /= 2;
2675 
2676 	desc->rqcfg.brst_size = 0;
2677 	while (burst != (1 << desc->rqcfg.brst_size))
2678 		desc->rqcfg.brst_size++;
2679 
2680 	/*
2681 	 * If burst size is smaller than bus width then make sure we only
2682 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2683 	 */
2684 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2685 		desc->rqcfg.brst_len = 1;
2686 
2687 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2688 	desc->bytes_requested = len;
2689 
2690 	desc->txd.flags = flags;
2691 
2692 	return &desc->txd;
2693 }
2694 
2695 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2696 				  struct dma_pl330_desc *first)
2697 {
2698 	unsigned long flags;
2699 	struct dma_pl330_desc *desc;
2700 
2701 	if (!first)
2702 		return;
2703 
2704 	spin_lock_irqsave(&pl330->pool_lock, flags);
2705 
2706 	while (!list_empty(&first->node)) {
2707 		desc = list_entry(first->node.next,
2708 				struct dma_pl330_desc, node);
2709 		list_move_tail(&desc->node, &pl330->desc_pool);
2710 	}
2711 
2712 	list_move_tail(&first->node, &pl330->desc_pool);
2713 
2714 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2715 }
2716 
2717 static struct dma_async_tx_descriptor *
2718 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2719 		unsigned int sg_len, enum dma_transfer_direction direction,
2720 		unsigned long flg, void *context)
2721 {
2722 	struct dma_pl330_desc *first, *desc = NULL;
2723 	struct dma_pl330_chan *pch = to_pchan(chan);
2724 	struct scatterlist *sg;
2725 	int i;
2726 	dma_addr_t addr;
2727 
2728 	if (unlikely(!pch || !sgl || !sg_len))
2729 		return NULL;
2730 
2731 	addr = pch->fifo_addr;
2732 
2733 	first = NULL;
2734 
2735 	for_each_sg(sgl, sg, sg_len, i) {
2736 
2737 		desc = pl330_get_desc(pch);
2738 		if (!desc) {
2739 			struct pl330_dmac *pl330 = pch->dmac;
2740 
2741 			dev_err(pch->dmac->ddma.dev,
2742 				"%s:%d Unable to fetch desc\n",
2743 				__func__, __LINE__);
2744 			__pl330_giveback_desc(pl330, first);
2745 
2746 			return NULL;
2747 		}
2748 
2749 		if (!first)
2750 			first = desc;
2751 		else
2752 			list_add_tail(&desc->node, &first->node);
2753 
2754 		if (direction == DMA_MEM_TO_DEV) {
2755 			desc->rqcfg.src_inc = 1;
2756 			desc->rqcfg.dst_inc = 0;
2757 			fill_px(&desc->px,
2758 				addr, sg_dma_address(sg), sg_dma_len(sg));
2759 		} else {
2760 			desc->rqcfg.src_inc = 0;
2761 			desc->rqcfg.dst_inc = 1;
2762 			fill_px(&desc->px,
2763 				sg_dma_address(sg), addr, sg_dma_len(sg));
2764 		}
2765 
2766 		desc->rqcfg.brst_size = pch->burst_sz;
2767 		desc->rqcfg.brst_len = 1;
2768 		desc->rqtype = direction;
2769 		desc->bytes_requested = sg_dma_len(sg);
2770 	}
2771 
2772 	/* Return the last desc in the chain */
2773 	desc->txd.flags = flg;
2774 	return &desc->txd;
2775 }
2776 
2777 static irqreturn_t pl330_irq_handler(int irq, void *data)
2778 {
2779 	if (pl330_update(data))
2780 		return IRQ_HANDLED;
2781 	else
2782 		return IRQ_NONE;
2783 }
2784 
2785 #define PL330_DMA_BUSWIDTHS \
2786 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2787 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2788 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2789 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2790 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2791 
2792 /*
2793  * Runtime PM callbacks are provided by amba/bus.c driver.
2794  *
2795  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2796  * bus driver will only disable/enable the clock in runtime PM callbacks.
2797  */
2798 static int __maybe_unused pl330_suspend(struct device *dev)
2799 {
2800 	struct amba_device *pcdev = to_amba_device(dev);
2801 
2802 	pm_runtime_disable(dev);
2803 
2804 	if (!pm_runtime_status_suspended(dev)) {
2805 		/* amba did not disable the clock */
2806 		amba_pclk_disable(pcdev);
2807 	}
2808 	amba_pclk_unprepare(pcdev);
2809 
2810 	return 0;
2811 }
2812 
2813 static int __maybe_unused pl330_resume(struct device *dev)
2814 {
2815 	struct amba_device *pcdev = to_amba_device(dev);
2816 	int ret;
2817 
2818 	ret = amba_pclk_prepare(pcdev);
2819 	if (ret)
2820 		return ret;
2821 
2822 	if (!pm_runtime_status_suspended(dev))
2823 		ret = amba_pclk_enable(pcdev);
2824 
2825 	pm_runtime_enable(dev);
2826 
2827 	return ret;
2828 }
2829 
2830 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2831 
2832 static int
2833 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2834 {
2835 	struct dma_pl330_platdata *pdat;
2836 	struct pl330_config *pcfg;
2837 	struct pl330_dmac *pl330;
2838 	struct dma_pl330_chan *pch, *_p;
2839 	struct dma_device *pd;
2840 	struct resource *res;
2841 	int i, ret, irq;
2842 	int num_chan;
2843 	struct device_node *np = adev->dev.of_node;
2844 
2845 	pdat = dev_get_platdata(&adev->dev);
2846 
2847 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2848 	if (ret)
2849 		return ret;
2850 
2851 	/* Allocate a new DMAC and its Channels */
2852 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2853 	if (!pl330)
2854 		return -ENOMEM;
2855 
2856 	pd = &pl330->ddma;
2857 	pd->dev = &adev->dev;
2858 
2859 	pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2860 
2861 	/* get quirk */
2862 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2863 		if (of_property_read_bool(np, of_quirks[i].quirk))
2864 			pl330->quirks |= of_quirks[i].id;
2865 
2866 	res = &adev->res;
2867 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2868 	if (IS_ERR(pl330->base))
2869 		return PTR_ERR(pl330->base);
2870 
2871 	amba_set_drvdata(adev, pl330);
2872 
2873 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2874 		irq = adev->irq[i];
2875 		if (irq) {
2876 			ret = devm_request_irq(&adev->dev, irq,
2877 					       pl330_irq_handler, 0,
2878 					       dev_name(&adev->dev), pl330);
2879 			if (ret)
2880 				return ret;
2881 		} else {
2882 			break;
2883 		}
2884 	}
2885 
2886 	pcfg = &pl330->pcfg;
2887 
2888 	pcfg->periph_id = adev->periphid;
2889 	ret = pl330_add(pl330);
2890 	if (ret)
2891 		return ret;
2892 
2893 	INIT_LIST_HEAD(&pl330->desc_pool);
2894 	spin_lock_init(&pl330->pool_lock);
2895 
2896 	/* Create a descriptor pool of default size */
2897 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2898 		dev_warn(&adev->dev, "unable to allocate desc\n");
2899 
2900 	INIT_LIST_HEAD(&pd->channels);
2901 
2902 	/* Initialize channel parameters */
2903 	if (pdat)
2904 		num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2905 	else
2906 		num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2907 
2908 	pl330->num_peripherals = num_chan;
2909 
2910 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2911 	if (!pl330->peripherals) {
2912 		ret = -ENOMEM;
2913 		goto probe_err2;
2914 	}
2915 
2916 	for (i = 0; i < num_chan; i++) {
2917 		pch = &pl330->peripherals[i];
2918 		if (!adev->dev.of_node)
2919 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2920 		else
2921 			pch->chan.private = adev->dev.of_node;
2922 
2923 		INIT_LIST_HEAD(&pch->submitted_list);
2924 		INIT_LIST_HEAD(&pch->work_list);
2925 		INIT_LIST_HEAD(&pch->completed_list);
2926 		spin_lock_init(&pch->lock);
2927 		pch->thread = NULL;
2928 		pch->chan.device = pd;
2929 		pch->dmac = pl330;
2930 
2931 		/* Add the channel to the DMAC list */
2932 		list_add_tail(&pch->chan.device_node, &pd->channels);
2933 	}
2934 
2935 	if (pdat) {
2936 		pd->cap_mask = pdat->cap_mask;
2937 	} else {
2938 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2939 		if (pcfg->num_peri) {
2940 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2941 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2942 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2943 		}
2944 	}
2945 
2946 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2947 	pd->device_free_chan_resources = pl330_free_chan_resources;
2948 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2949 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2950 	pd->device_tx_status = pl330_tx_status;
2951 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2952 	pd->device_config = pl330_config;
2953 	pd->device_pause = pl330_pause;
2954 	pd->device_terminate_all = pl330_terminate_all;
2955 	pd->device_issue_pending = pl330_issue_pending;
2956 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2957 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2958 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2959 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2960 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2961 			 1 : PL330_MAX_BURST);
2962 
2963 	ret = dma_async_device_register(pd);
2964 	if (ret) {
2965 		dev_err(&adev->dev, "unable to register DMAC\n");
2966 		goto probe_err3;
2967 	}
2968 
2969 	if (adev->dev.of_node) {
2970 		ret = of_dma_controller_register(adev->dev.of_node,
2971 					 of_dma_pl330_xlate, pl330);
2972 		if (ret) {
2973 			dev_err(&adev->dev,
2974 			"unable to register DMA to the generic DT DMA helpers\n");
2975 		}
2976 	}
2977 
2978 	adev->dev.dma_parms = &pl330->dma_parms;
2979 
2980 	/*
2981 	 * This is the limit for transfers with a buswidth of 1, larger
2982 	 * buswidths will have larger limits.
2983 	 */
2984 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2985 	if (ret)
2986 		dev_err(&adev->dev, "unable to set the seg size\n");
2987 
2988 
2989 	dev_info(&adev->dev,
2990 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2991 	dev_info(&adev->dev,
2992 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2993 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2994 		pcfg->num_peri, pcfg->num_events);
2995 
2996 	pm_runtime_irq_safe(&adev->dev);
2997 	pm_runtime_use_autosuspend(&adev->dev);
2998 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2999 	pm_runtime_mark_last_busy(&adev->dev);
3000 	pm_runtime_put_autosuspend(&adev->dev);
3001 
3002 	return 0;
3003 probe_err3:
3004 	/* Idle the DMAC */
3005 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3006 			chan.device_node) {
3007 
3008 		/* Remove the channel */
3009 		list_del(&pch->chan.device_node);
3010 
3011 		/* Flush the channel */
3012 		if (pch->thread) {
3013 			pl330_terminate_all(&pch->chan);
3014 			pl330_free_chan_resources(&pch->chan);
3015 		}
3016 	}
3017 probe_err2:
3018 	pl330_del(pl330);
3019 
3020 	return ret;
3021 }
3022 
3023 static int pl330_remove(struct amba_device *adev)
3024 {
3025 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3026 	struct dma_pl330_chan *pch, *_p;
3027 	int i, irq;
3028 
3029 	pm_runtime_get_noresume(pl330->ddma.dev);
3030 
3031 	if (adev->dev.of_node)
3032 		of_dma_controller_free(adev->dev.of_node);
3033 
3034 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3035 		irq = adev->irq[i];
3036 		devm_free_irq(&adev->dev, irq, pl330);
3037 	}
3038 
3039 	dma_async_device_unregister(&pl330->ddma);
3040 
3041 	/* Idle the DMAC */
3042 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3043 			chan.device_node) {
3044 
3045 		/* Remove the channel */
3046 		list_del(&pch->chan.device_node);
3047 
3048 		/* Flush the channel */
3049 		if (pch->thread) {
3050 			pl330_terminate_all(&pch->chan);
3051 			pl330_free_chan_resources(&pch->chan);
3052 		}
3053 	}
3054 
3055 	pl330_del(pl330);
3056 
3057 	return 0;
3058 }
3059 
3060 static struct amba_id pl330_ids[] = {
3061 	{
3062 		.id	= 0x00041330,
3063 		.mask	= 0x000fffff,
3064 	},
3065 	{ 0, 0 },
3066 };
3067 
3068 MODULE_DEVICE_TABLE(amba, pl330_ids);
3069 
3070 static struct amba_driver pl330_driver = {
3071 	.drv = {
3072 		.owner = THIS_MODULE,
3073 		.name = "dma-pl330",
3074 		.pm = &pl330_pm,
3075 	},
3076 	.id_table = pl330_ids,
3077 	.probe = pl330_probe,
3078 	.remove = pl330_remove,
3079 };
3080 
3081 module_amba_driver(pl330_driver);
3082 
3083 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3084 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3085 MODULE_LICENSE("GPL");
3086