xref: /linux/drivers/dma/pl330.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
7  *	Jaswinder Singh <jassi.brar@samsung.com>
8  */
9 
10 #include <linux/debugfs.h>
11 #include <linux/kernel.h>
12 #include <linux/io.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/amba/bus.h>
22 #include <linux/scatterlist.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/err.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/bug.h>
28 #include <linux/reset.h>
29 
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN		8
32 #define PL330_MAX_IRQS		32
33 #define PL330_MAX_PERI		32
34 #define PL330_MAX_BURST         16
35 
36 #define PL330_QUIRK_BROKEN_NO_FLUSHP	BIT(0)
37 #define PL330_QUIRK_PERIPH_BURST	BIT(1)
38 
39 enum pl330_cachectrl {
40 	CCTRL0,		/* Noncacheable and nonbufferable */
41 	CCTRL1,		/* Bufferable only */
42 	CCTRL2,		/* Cacheable, but do not allocate */
43 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
44 	INVALID1,	/* AWCACHE = 0x1000 */
45 	INVALID2,
46 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
47 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
48 };
49 
50 enum pl330_byteswap {
51 	SWAP_NO,
52 	SWAP_2,
53 	SWAP_4,
54 	SWAP_8,
55 	SWAP_16,
56 };
57 
58 /* Register and Bit field Definitions */
59 #define DS			0x0
60 #define DS_ST_STOP		0x0
61 #define DS_ST_EXEC		0x1
62 #define DS_ST_CMISS		0x2
63 #define DS_ST_UPDTPC		0x3
64 #define DS_ST_WFE		0x4
65 #define DS_ST_ATBRR		0x5
66 #define DS_ST_QBUSY		0x6
67 #define DS_ST_WFP		0x7
68 #define DS_ST_KILL		0x8
69 #define DS_ST_CMPLT		0x9
70 #define DS_ST_FLTCMP		0xe
71 #define DS_ST_FAULT		0xf
72 
73 #define DPC			0x4
74 #define INTEN			0x20
75 #define ES			0x24
76 #define INTSTATUS		0x28
77 #define INTCLR			0x2c
78 #define FSM			0x30
79 #define FSC			0x34
80 #define FTM			0x38
81 
82 #define _FTC			0x40
83 #define FTC(n)			(_FTC + (n)*0x4)
84 
85 #define _CS			0x100
86 #define CS(n)			(_CS + (n)*0x8)
87 #define CS_CNS			(1 << 21)
88 
89 #define _CPC			0x104
90 #define CPC(n)			(_CPC + (n)*0x8)
91 
92 #define _SA			0x400
93 #define SA(n)			(_SA + (n)*0x20)
94 
95 #define _DA			0x404
96 #define DA(n)			(_DA + (n)*0x20)
97 
98 #define _CC			0x408
99 #define CC(n)			(_CC + (n)*0x20)
100 
101 #define CC_SRCINC		(1 << 0)
102 #define CC_DSTINC		(1 << 14)
103 #define CC_SRCPRI		(1 << 8)
104 #define CC_DSTPRI		(1 << 22)
105 #define CC_SRCNS		(1 << 9)
106 #define CC_DSTNS		(1 << 23)
107 #define CC_SRCIA		(1 << 10)
108 #define CC_DSTIA		(1 << 24)
109 #define CC_SRCBRSTLEN_SHFT	4
110 #define CC_DSTBRSTLEN_SHFT	18
111 #define CC_SRCBRSTSIZE_SHFT	1
112 #define CC_DSTBRSTSIZE_SHFT	15
113 #define CC_SRCCCTRL_SHFT	11
114 #define CC_SRCCCTRL_MASK	0x7
115 #define CC_DSTCCTRL_SHFT	25
116 #define CC_DRCCCTRL_MASK	0x7
117 #define CC_SWAP_SHFT		28
118 
119 #define _LC0			0x40c
120 #define LC0(n)			(_LC0 + (n)*0x20)
121 
122 #define _LC1			0x410
123 #define LC1(n)			(_LC1 + (n)*0x20)
124 
125 #define DBGSTATUS		0xd00
126 #define DBG_BUSY		(1 << 0)
127 
128 #define DBGCMD			0xd04
129 #define DBGINST0		0xd08
130 #define DBGINST1		0xd0c
131 
132 #define CR0			0xe00
133 #define CR1			0xe04
134 #define CR2			0xe08
135 #define CR3			0xe0c
136 #define CR4			0xe10
137 #define CRD			0xe14
138 
139 #define PERIPH_ID		0xfe0
140 #define PERIPH_REV_SHIFT	20
141 #define PERIPH_REV_MASK		0xf
142 #define PERIPH_REV_R0P0		0
143 #define PERIPH_REV_R1P0		1
144 #define PERIPH_REV_R1P1		2
145 
146 #define CR0_PERIPH_REQ_SET	(1 << 0)
147 #define CR0_BOOT_EN_SET		(1 << 1)
148 #define CR0_BOOT_MAN_NS		(1 << 2)
149 #define CR0_NUM_CHANS_SHIFT	4
150 #define CR0_NUM_CHANS_MASK	0x7
151 #define CR0_NUM_PERIPH_SHIFT	12
152 #define CR0_NUM_PERIPH_MASK	0x1f
153 #define CR0_NUM_EVENTS_SHIFT	17
154 #define CR0_NUM_EVENTS_MASK	0x1f
155 
156 #define CR1_ICACHE_LEN_SHIFT	0
157 #define CR1_ICACHE_LEN_MASK	0x7
158 #define CR1_NUM_ICACHELINES_SHIFT	4
159 #define CR1_NUM_ICACHELINES_MASK	0xf
160 
161 #define CRD_DATA_WIDTH_SHIFT	0
162 #define CRD_DATA_WIDTH_MASK	0x7
163 #define CRD_WR_CAP_SHIFT	4
164 #define CRD_WR_CAP_MASK		0x7
165 #define CRD_WR_Q_DEP_SHIFT	8
166 #define CRD_WR_Q_DEP_MASK	0xf
167 #define CRD_RD_CAP_SHIFT	12
168 #define CRD_RD_CAP_MASK		0x7
169 #define CRD_RD_Q_DEP_SHIFT	16
170 #define CRD_RD_Q_DEP_MASK	0xf
171 #define CRD_DATA_BUFF_SHIFT	20
172 #define CRD_DATA_BUFF_MASK	0x3ff
173 
174 #define PART			0x330
175 #define DESIGNER		0x41
176 #define REVISION		0x0
177 #define INTEG_CFG		0x0
178 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
179 
180 #define PL330_STATE_STOPPED		(1 << 0)
181 #define PL330_STATE_EXECUTING		(1 << 1)
182 #define PL330_STATE_WFE			(1 << 2)
183 #define PL330_STATE_FAULTING		(1 << 3)
184 #define PL330_STATE_COMPLETING		(1 << 4)
185 #define PL330_STATE_WFP			(1 << 5)
186 #define PL330_STATE_KILLING		(1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
188 #define PL330_STATE_CACHEMISS		(1 << 8)
189 #define PL330_STATE_UPDTPC		(1 << 9)
190 #define PL330_STATE_ATBARRIER		(1 << 10)
191 #define PL330_STATE_QUEUEBUSY		(1 << 11)
192 #define PL330_STATE_INVALID		(1 << 15)
193 
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
196 
197 #define CMD_DMAADDH		0x54
198 #define CMD_DMAEND		0x00
199 #define CMD_DMAFLUSHP		0x35
200 #define CMD_DMAGO		0xa0
201 #define CMD_DMALD		0x04
202 #define CMD_DMALDP		0x25
203 #define CMD_DMALP		0x20
204 #define CMD_DMALPEND		0x28
205 #define CMD_DMAKILL		0x01
206 #define CMD_DMAMOV		0xbc
207 #define CMD_DMANOP		0x18
208 #define CMD_DMARMB		0x12
209 #define CMD_DMASEV		0x34
210 #define CMD_DMAST		0x08
211 #define CMD_DMASTP		0x29
212 #define CMD_DMASTZ		0x0c
213 #define CMD_DMAWFE		0x36
214 #define CMD_DMAWFP		0x30
215 #define CMD_DMAWMB		0x13
216 
217 #define SZ_DMAADDH		3
218 #define SZ_DMAEND		1
219 #define SZ_DMAFLUSHP		2
220 #define SZ_DMALD		1
221 #define SZ_DMALDP		2
222 #define SZ_DMALP		2
223 #define SZ_DMALPEND		2
224 #define SZ_DMAKILL		1
225 #define SZ_DMAMOV		6
226 #define SZ_DMANOP		1
227 #define SZ_DMARMB		1
228 #define SZ_DMASEV		2
229 #define SZ_DMAST		1
230 #define SZ_DMASTP		2
231 #define SZ_DMASTZ		1
232 #define SZ_DMAWFE		2
233 #define SZ_DMAWFP		2
234 #define SZ_DMAWMB		1
235 #define SZ_DMAGO		6
236 
237 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239 
240 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 
243 /*
244  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245  * at 1byte/burst for P<->M and M<->M respectively.
246  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247  * should be enough for P<->M and M<->M respectively.
248  */
249 #define MCODE_BUFF_PER_REQ	256
250 
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
253 
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...)	do { \
257 						printk("%x:", cmd_line); \
258 						printk(KERN_CONT x); \
259 						cmd_line += off; \
260 					} while (0)
261 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
264 #define PL330_DBGMC_START(addr)		do {} while (0)
265 #endif
266 
267 /* The number of default descriptors */
268 
269 #define NR_DEFAULT_DESC	16
270 
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273 
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 	u32	periph_id;
277 #define DMAC_MODE_NS	(1 << 0)
278 	unsigned int	mode;
279 	unsigned int	data_bus_width:10; /* In number of bits */
280 	unsigned int	data_buf_dep:11;
281 	unsigned int	num_chan:4;
282 	unsigned int	num_peri:6;
283 	u32		peri_ns;
284 	unsigned int	num_events:6;
285 	u32		irq_ns;
286 };
287 
288 /*
289  * Request Configuration.
290  * The PL330 core does not modify this and uses the last
291  * working configuration if the request doesn't provide any.
292  *
293  * The Client may want to provide this info only for the
294  * first request and a request with new settings.
295  */
296 struct pl330_reqcfg {
297 	/* Address Incrementing */
298 	unsigned dst_inc:1;
299 	unsigned src_inc:1;
300 
301 	/*
302 	 * For now, the SRC & DST protection levels
303 	 * and burst size/length are assumed same.
304 	 */
305 	bool nonsecure;
306 	bool privileged;
307 	bool insnaccess;
308 	unsigned brst_len:5;
309 	unsigned brst_size:3; /* in power of 2 */
310 
311 	enum pl330_cachectrl dcctl;
312 	enum pl330_cachectrl scctl;
313 	enum pl330_byteswap swap;
314 	struct pl330_config *pcfg;
315 };
316 
317 /*
318  * One cycle of DMAC operation.
319  * There may be more than one xfer in a request.
320  */
321 struct pl330_xfer {
322 	u32 src_addr;
323 	u32 dst_addr;
324 	/* Size to xfer */
325 	u32 bytes;
326 };
327 
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 	/* The all xfers in the request were success. */
331 	PL330_ERR_NONE,
332 	/* If req aborted due to global error. */
333 	PL330_ERR_ABORT,
334 	/* If req failed due to problem with Channel. */
335 	PL330_ERR_FAIL,
336 };
337 
338 enum dmamov_dst {
339 	SAR = 0,
340 	CCR,
341 	DAR,
342 };
343 
344 enum pl330_dst {
345 	SRC = 0,
346 	DST,
347 };
348 
349 enum pl330_cond {
350 	SINGLE,
351 	BURST,
352 	ALWAYS,
353 };
354 
355 struct dma_pl330_desc;
356 
357 struct _pl330_req {
358 	u32 mc_bus;
359 	void *mc_cpu;
360 	struct dma_pl330_desc *desc;
361 };
362 
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 	bool reset_dmac;
366 	bool reset_mngr;
367 	u8 reset_chan;
368 };
369 
370 /* A DMAC Thread */
371 struct pl330_thread {
372 	u8 id;
373 	int ev;
374 	/* If the channel is not yet acquired by any client */
375 	bool free;
376 	/* Parent DMAC */
377 	struct pl330_dmac *dmac;
378 	/* Only two at a time */
379 	struct _pl330_req req[2];
380 	/* Index of the last enqueued request */
381 	unsigned lstenq;
382 	/* Index of the last submitted request or -1 if the DMA is stopped */
383 	int req_running;
384 };
385 
386 enum pl330_dmac_state {
387 	UNINIT,
388 	INIT,
389 	DYING,
390 };
391 
392 enum desc_status {
393 	/* In the DMAC pool */
394 	FREE,
395 	/*
396 	 * Allocated to some channel during prep_xxx
397 	 * Also may be sitting on the work_list.
398 	 */
399 	PREP,
400 	/*
401 	 * Sitting on the work_list and already submitted
402 	 * to the PL330 core. Not more than two descriptors
403 	 * of a channel can be BUSY at any time.
404 	 */
405 	BUSY,
406 	/*
407 	 * Pause was called while descriptor was BUSY. Due to hardware
408 	 * limitations, only termination is possible for descriptors
409 	 * that have been paused.
410 	 */
411 	PAUSED,
412 	/*
413 	 * Sitting on the channel work_list but xfer done
414 	 * by PL330 core
415 	 */
416 	DONE,
417 };
418 
419 struct dma_pl330_chan {
420 	/* Schedule desc completion */
421 	struct tasklet_struct task;
422 
423 	/* DMA-Engine Channel */
424 	struct dma_chan chan;
425 
426 	/* List of submitted descriptors */
427 	struct list_head submitted_list;
428 	/* List of issued descriptors */
429 	struct list_head work_list;
430 	/* List of completed descriptors */
431 	struct list_head completed_list;
432 
433 	/* Pointer to the DMAC that manages this channel,
434 	 * NULL if the channel is available to be acquired.
435 	 * As the parent, this DMAC also provides descriptors
436 	 * to the channel.
437 	 */
438 	struct pl330_dmac *dmac;
439 
440 	/* To protect channel manipulation */
441 	spinlock_t lock;
442 
443 	/*
444 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
445 	 * available.
446 	 */
447 	struct pl330_thread *thread;
448 
449 	/* For D-to-M and M-to-D channels */
450 	int burst_sz; /* the peripheral fifo width */
451 	int burst_len; /* the number of burst */
452 	phys_addr_t fifo_addr;
453 	/* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
454 	dma_addr_t fifo_dma;
455 	enum dma_data_direction dir;
456 	struct dma_slave_config slave_config;
457 
458 	/* for cyclic capability */
459 	bool cyclic;
460 
461 	/* for runtime pm tracking */
462 	bool active;
463 };
464 
465 struct pl330_dmac {
466 	/* DMA-Engine Device */
467 	struct dma_device ddma;
468 
469 	/* Pool of descriptors available for the DMAC's channels */
470 	struct list_head desc_pool;
471 	/* To protect desc_pool manipulation */
472 	spinlock_t pool_lock;
473 
474 	/* Size of MicroCode buffers for each channel. */
475 	unsigned mcbufsz;
476 	/* ioremap'ed address of PL330 registers. */
477 	void __iomem	*base;
478 	/* Populated by the PL330 core driver during pl330_add */
479 	struct pl330_config	pcfg;
480 
481 	spinlock_t		lock;
482 	/* Maximum possible events/irqs */
483 	int			events[32];
484 	/* BUS address of MicroCode buffer */
485 	dma_addr_t		mcode_bus;
486 	/* CPU address of MicroCode buffer */
487 	void			*mcode_cpu;
488 	/* List of all Channel threads */
489 	struct pl330_thread	*channels;
490 	/* Pointer to the MANAGER thread */
491 	struct pl330_thread	*manager;
492 	/* To handle bad news in interrupt */
493 	struct tasklet_struct	tasks;
494 	struct _pl330_tbd	dmac_tbd;
495 	/* State of DMAC operation */
496 	enum pl330_dmac_state	state;
497 	/* Holds list of reqs with due callbacks */
498 	struct list_head        req_done;
499 
500 	/* Peripheral channels connected to this DMAC */
501 	unsigned int num_peripherals;
502 	struct dma_pl330_chan *peripherals; /* keep at end */
503 	int quirks;
504 
505 	struct reset_control	*rstc;
506 	struct reset_control	*rstc_ocp;
507 };
508 
509 static struct pl330_of_quirks {
510 	char *quirk;
511 	int id;
512 } of_quirks[] = {
513 	{
514 		.quirk = "arm,pl330-broken-no-flushp",
515 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
516 	},
517 	{
518 		.quirk = "arm,pl330-periph-burst",
519 		.id = PL330_QUIRK_PERIPH_BURST,
520 	}
521 };
522 
523 struct dma_pl330_desc {
524 	/* To attach to a queue as child */
525 	struct list_head node;
526 
527 	/* Descriptor for the DMA Engine API */
528 	struct dma_async_tx_descriptor txd;
529 
530 	/* Xfer for PL330 core */
531 	struct pl330_xfer px;
532 
533 	struct pl330_reqcfg rqcfg;
534 
535 	enum desc_status status;
536 
537 	int bytes_requested;
538 	bool last;
539 
540 	/* The channel which currently holds this desc */
541 	struct dma_pl330_chan *pchan;
542 
543 	enum dma_transfer_direction rqtype;
544 	/* Index of peripheral for the xfer. */
545 	unsigned peri:5;
546 	/* Hook to attach to DMAC's list of reqs with due callback */
547 	struct list_head rqd;
548 };
549 
550 struct _xfer_spec {
551 	u32 ccr;
552 	struct dma_pl330_desc *desc;
553 };
554 
555 static int pl330_config_write(struct dma_chan *chan,
556 			struct dma_slave_config *slave_config,
557 			enum dma_transfer_direction direction);
558 
559 static inline bool _queue_full(struct pl330_thread *thrd)
560 {
561 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
562 }
563 
564 static inline bool is_manager(struct pl330_thread *thrd)
565 {
566 	return thrd->dmac->manager == thrd;
567 }
568 
569 /* If manager of the thread is in Non-Secure mode */
570 static inline bool _manager_ns(struct pl330_thread *thrd)
571 {
572 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
573 }
574 
575 static inline u32 get_revision(u32 periph_id)
576 {
577 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
578 }
579 
580 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
581 {
582 	if (dry_run)
583 		return SZ_DMAEND;
584 
585 	buf[0] = CMD_DMAEND;
586 
587 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
588 
589 	return SZ_DMAEND;
590 }
591 
592 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
593 {
594 	if (dry_run)
595 		return SZ_DMAFLUSHP;
596 
597 	buf[0] = CMD_DMAFLUSHP;
598 
599 	peri &= 0x1f;
600 	peri <<= 3;
601 	buf[1] = peri;
602 
603 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
604 
605 	return SZ_DMAFLUSHP;
606 }
607 
608 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
609 {
610 	if (dry_run)
611 		return SZ_DMALD;
612 
613 	buf[0] = CMD_DMALD;
614 
615 	if (cond == SINGLE)
616 		buf[0] |= (0 << 1) | (1 << 0);
617 	else if (cond == BURST)
618 		buf[0] |= (1 << 1) | (1 << 0);
619 
620 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
621 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
622 
623 	return SZ_DMALD;
624 }
625 
626 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
627 		enum pl330_cond cond, u8 peri)
628 {
629 	if (dry_run)
630 		return SZ_DMALDP;
631 
632 	buf[0] = CMD_DMALDP;
633 
634 	if (cond == BURST)
635 		buf[0] |= (1 << 1);
636 
637 	peri &= 0x1f;
638 	peri <<= 3;
639 	buf[1] = peri;
640 
641 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
642 		cond == SINGLE ? 'S' : 'B', peri >> 3);
643 
644 	return SZ_DMALDP;
645 }
646 
647 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
648 		unsigned loop, u8 cnt)
649 {
650 	if (dry_run)
651 		return SZ_DMALP;
652 
653 	buf[0] = CMD_DMALP;
654 
655 	if (loop)
656 		buf[0] |= (1 << 1);
657 
658 	cnt--; /* DMAC increments by 1 internally */
659 	buf[1] = cnt;
660 
661 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
662 
663 	return SZ_DMALP;
664 }
665 
666 struct _arg_LPEND {
667 	enum pl330_cond cond;
668 	bool forever;
669 	unsigned loop;
670 	u8 bjump;
671 };
672 
673 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
674 		const struct _arg_LPEND *arg)
675 {
676 	enum pl330_cond cond = arg->cond;
677 	bool forever = arg->forever;
678 	unsigned loop = arg->loop;
679 	u8 bjump = arg->bjump;
680 
681 	if (dry_run)
682 		return SZ_DMALPEND;
683 
684 	buf[0] = CMD_DMALPEND;
685 
686 	if (loop)
687 		buf[0] |= (1 << 2);
688 
689 	if (!forever)
690 		buf[0] |= (1 << 4);
691 
692 	if (cond == SINGLE)
693 		buf[0] |= (0 << 1) | (1 << 0);
694 	else if (cond == BURST)
695 		buf[0] |= (1 << 1) | (1 << 0);
696 
697 	buf[1] = bjump;
698 
699 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
700 			forever ? "FE" : "END",
701 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
702 			loop ? '1' : '0',
703 			bjump);
704 
705 	return SZ_DMALPEND;
706 }
707 
708 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
709 {
710 	if (dry_run)
711 		return SZ_DMAKILL;
712 
713 	buf[0] = CMD_DMAKILL;
714 
715 	return SZ_DMAKILL;
716 }
717 
718 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
719 		enum dmamov_dst dst, u32 val)
720 {
721 	if (dry_run)
722 		return SZ_DMAMOV;
723 
724 	buf[0] = CMD_DMAMOV;
725 	buf[1] = dst;
726 	buf[2] = val;
727 	buf[3] = val >> 8;
728 	buf[4] = val >> 16;
729 	buf[5] = val >> 24;
730 
731 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
732 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
733 
734 	return SZ_DMAMOV;
735 }
736 
737 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
738 {
739 	if (dry_run)
740 		return SZ_DMARMB;
741 
742 	buf[0] = CMD_DMARMB;
743 
744 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
745 
746 	return SZ_DMARMB;
747 }
748 
749 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
750 {
751 	if (dry_run)
752 		return SZ_DMASEV;
753 
754 	buf[0] = CMD_DMASEV;
755 
756 	ev &= 0x1f;
757 	ev <<= 3;
758 	buf[1] = ev;
759 
760 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
761 
762 	return SZ_DMASEV;
763 }
764 
765 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
766 {
767 	if (dry_run)
768 		return SZ_DMAST;
769 
770 	buf[0] = CMD_DMAST;
771 
772 	if (cond == SINGLE)
773 		buf[0] |= (0 << 1) | (1 << 0);
774 	else if (cond == BURST)
775 		buf[0] |= (1 << 1) | (1 << 0);
776 
777 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
778 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
779 
780 	return SZ_DMAST;
781 }
782 
783 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
784 		enum pl330_cond cond, u8 peri)
785 {
786 	if (dry_run)
787 		return SZ_DMASTP;
788 
789 	buf[0] = CMD_DMASTP;
790 
791 	if (cond == BURST)
792 		buf[0] |= (1 << 1);
793 
794 	peri &= 0x1f;
795 	peri <<= 3;
796 	buf[1] = peri;
797 
798 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
799 		cond == SINGLE ? 'S' : 'B', peri >> 3);
800 
801 	return SZ_DMASTP;
802 }
803 
804 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
805 		enum pl330_cond cond, u8 peri)
806 {
807 	if (dry_run)
808 		return SZ_DMAWFP;
809 
810 	buf[0] = CMD_DMAWFP;
811 
812 	if (cond == SINGLE)
813 		buf[0] |= (0 << 1) | (0 << 0);
814 	else if (cond == BURST)
815 		buf[0] |= (1 << 1) | (0 << 0);
816 	else
817 		buf[0] |= (0 << 1) | (1 << 0);
818 
819 	peri &= 0x1f;
820 	peri <<= 3;
821 	buf[1] = peri;
822 
823 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
824 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
825 
826 	return SZ_DMAWFP;
827 }
828 
829 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
830 {
831 	if (dry_run)
832 		return SZ_DMAWMB;
833 
834 	buf[0] = CMD_DMAWMB;
835 
836 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
837 
838 	return SZ_DMAWMB;
839 }
840 
841 struct _arg_GO {
842 	u8 chan;
843 	u32 addr;
844 	unsigned ns;
845 };
846 
847 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
848 		const struct _arg_GO *arg)
849 {
850 	u8 chan = arg->chan;
851 	u32 addr = arg->addr;
852 	unsigned ns = arg->ns;
853 
854 	if (dry_run)
855 		return SZ_DMAGO;
856 
857 	buf[0] = CMD_DMAGO;
858 	buf[0] |= (ns << 1);
859 	buf[1] = chan & 0x7;
860 	buf[2] = addr;
861 	buf[3] = addr >> 8;
862 	buf[4] = addr >> 16;
863 	buf[5] = addr >> 24;
864 
865 	return SZ_DMAGO;
866 }
867 
868 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
869 
870 /* Returns Time-Out */
871 static bool _until_dmac_idle(struct pl330_thread *thrd)
872 {
873 	void __iomem *regs = thrd->dmac->base;
874 	unsigned long loops = msecs_to_loops(5);
875 
876 	do {
877 		/* Until Manager is Idle */
878 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
879 			break;
880 
881 		cpu_relax();
882 	} while (--loops);
883 
884 	if (!loops)
885 		return true;
886 
887 	return false;
888 }
889 
890 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
891 		u8 insn[], bool as_manager)
892 {
893 	void __iomem *regs = thrd->dmac->base;
894 	u32 val;
895 
896 	/* If timed out due to halted state-machine */
897 	if (_until_dmac_idle(thrd)) {
898 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
899 		return;
900 	}
901 
902 	val = (insn[0] << 16) | (insn[1] << 24);
903 	if (!as_manager) {
904 		val |= (1 << 0);
905 		val |= (thrd->id << 8); /* Channel Number */
906 	}
907 	writel(val, regs + DBGINST0);
908 
909 	val = le32_to_cpu(*((__le32 *)&insn[2]));
910 	writel(val, regs + DBGINST1);
911 
912 	/* Get going */
913 	writel(0, regs + DBGCMD);
914 }
915 
916 static inline u32 _state(struct pl330_thread *thrd)
917 {
918 	void __iomem *regs = thrd->dmac->base;
919 	u32 val;
920 
921 	if (is_manager(thrd))
922 		val = readl(regs + DS) & 0xf;
923 	else
924 		val = readl(regs + CS(thrd->id)) & 0xf;
925 
926 	switch (val) {
927 	case DS_ST_STOP:
928 		return PL330_STATE_STOPPED;
929 	case DS_ST_EXEC:
930 		return PL330_STATE_EXECUTING;
931 	case DS_ST_CMISS:
932 		return PL330_STATE_CACHEMISS;
933 	case DS_ST_UPDTPC:
934 		return PL330_STATE_UPDTPC;
935 	case DS_ST_WFE:
936 		return PL330_STATE_WFE;
937 	case DS_ST_FAULT:
938 		return PL330_STATE_FAULTING;
939 	case DS_ST_ATBRR:
940 		if (is_manager(thrd))
941 			return PL330_STATE_INVALID;
942 		else
943 			return PL330_STATE_ATBARRIER;
944 	case DS_ST_QBUSY:
945 		if (is_manager(thrd))
946 			return PL330_STATE_INVALID;
947 		else
948 			return PL330_STATE_QUEUEBUSY;
949 	case DS_ST_WFP:
950 		if (is_manager(thrd))
951 			return PL330_STATE_INVALID;
952 		else
953 			return PL330_STATE_WFP;
954 	case DS_ST_KILL:
955 		if (is_manager(thrd))
956 			return PL330_STATE_INVALID;
957 		else
958 			return PL330_STATE_KILLING;
959 	case DS_ST_CMPLT:
960 		if (is_manager(thrd))
961 			return PL330_STATE_INVALID;
962 		else
963 			return PL330_STATE_COMPLETING;
964 	case DS_ST_FLTCMP:
965 		if (is_manager(thrd))
966 			return PL330_STATE_INVALID;
967 		else
968 			return PL330_STATE_FAULT_COMPLETING;
969 	default:
970 		return PL330_STATE_INVALID;
971 	}
972 }
973 
974 static void _stop(struct pl330_thread *thrd)
975 {
976 	void __iomem *regs = thrd->dmac->base;
977 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
978 	u32 inten = readl(regs + INTEN);
979 
980 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
981 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
982 
983 	/* Return if nothing needs to be done */
984 	if (_state(thrd) == PL330_STATE_COMPLETING
985 		  || _state(thrd) == PL330_STATE_KILLING
986 		  || _state(thrd) == PL330_STATE_STOPPED)
987 		return;
988 
989 	_emit_KILL(0, insn);
990 
991 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
992 
993 	/* clear the event */
994 	if (inten & (1 << thrd->ev))
995 		writel(1 << thrd->ev, regs + INTCLR);
996 	/* Stop generating interrupts for SEV */
997 	writel(inten & ~(1 << thrd->ev), regs + INTEN);
998 }
999 
1000 /* Start doing req 'idx' of thread 'thrd' */
1001 static bool _trigger(struct pl330_thread *thrd)
1002 {
1003 	void __iomem *regs = thrd->dmac->base;
1004 	struct _pl330_req *req;
1005 	struct dma_pl330_desc *desc;
1006 	struct _arg_GO go;
1007 	unsigned ns;
1008 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1009 	int idx;
1010 
1011 	/* Return if already ACTIVE */
1012 	if (_state(thrd) != PL330_STATE_STOPPED)
1013 		return true;
1014 
1015 	idx = 1 - thrd->lstenq;
1016 	if (thrd->req[idx].desc != NULL) {
1017 		req = &thrd->req[idx];
1018 	} else {
1019 		idx = thrd->lstenq;
1020 		if (thrd->req[idx].desc != NULL)
1021 			req = &thrd->req[idx];
1022 		else
1023 			req = NULL;
1024 	}
1025 
1026 	/* Return if no request */
1027 	if (!req)
1028 		return true;
1029 
1030 	/* Return if req is running */
1031 	if (idx == thrd->req_running)
1032 		return true;
1033 
1034 	desc = req->desc;
1035 
1036 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1037 
1038 	/* See 'Abort Sources' point-4 at Page 2-25 */
1039 	if (_manager_ns(thrd) && !ns)
1040 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1041 			__func__, __LINE__);
1042 
1043 	go.chan = thrd->id;
1044 	go.addr = req->mc_bus;
1045 	go.ns = ns;
1046 	_emit_GO(0, insn, &go);
1047 
1048 	/* Set to generate interrupts for SEV */
1049 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1050 
1051 	/* Only manager can execute GO */
1052 	_execute_DBGINSN(thrd, insn, true);
1053 
1054 	thrd->req_running = idx;
1055 
1056 	if (desc->rqtype == DMA_MEM_TO_DEV || desc->rqtype == DMA_DEV_TO_MEM)
1057 		UNTIL(thrd, PL330_STATE_WFP);
1058 
1059 	return true;
1060 }
1061 
1062 static bool pl330_start_thread(struct pl330_thread *thrd)
1063 {
1064 	switch (_state(thrd)) {
1065 	case PL330_STATE_FAULT_COMPLETING:
1066 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1067 
1068 		if (_state(thrd) == PL330_STATE_KILLING)
1069 			UNTIL(thrd, PL330_STATE_STOPPED)
1070 		fallthrough;
1071 
1072 	case PL330_STATE_FAULTING:
1073 		_stop(thrd);
1074 		fallthrough;
1075 
1076 	case PL330_STATE_KILLING:
1077 	case PL330_STATE_COMPLETING:
1078 		UNTIL(thrd, PL330_STATE_STOPPED)
1079 		fallthrough;
1080 
1081 	case PL330_STATE_STOPPED:
1082 		return _trigger(thrd);
1083 
1084 	case PL330_STATE_WFP:
1085 	case PL330_STATE_QUEUEBUSY:
1086 	case PL330_STATE_ATBARRIER:
1087 	case PL330_STATE_UPDTPC:
1088 	case PL330_STATE_CACHEMISS:
1089 	case PL330_STATE_EXECUTING:
1090 		return true;
1091 
1092 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
1098 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1099 		const struct _xfer_spec *pxs, int cyc)
1100 {
1101 	int off = 0;
1102 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1103 
1104 	/* check lock-up free version */
1105 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1106 		while (cyc--) {
1107 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1108 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1109 		}
1110 	} else {
1111 		while (cyc--) {
1112 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1113 			off += _emit_RMB(dry_run, &buf[off]);
1114 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1115 			off += _emit_WMB(dry_run, &buf[off]);
1116 		}
1117 	}
1118 
1119 	return off;
1120 }
1121 
1122 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1123 	enum pl330_cond cond, enum dma_transfer_direction direction,
1124 	u8 peri)
1125 {
1126 	int off = 0;
1127 
1128 	switch (direction) {
1129 	case DMA_MEM_TO_MEM:
1130 	case DMA_MEM_TO_DEV:
1131 		off += _emit_LD(dry_run, &buf[off], cond);
1132 		break;
1133 
1134 	case DMA_DEV_TO_MEM:
1135 		if (cond == ALWAYS) {
1136 			off += _emit_LDP(dry_run, &buf[off], SINGLE,
1137 				peri);
1138 			off += _emit_LDP(dry_run, &buf[off], BURST,
1139 				peri);
1140 		} else {
1141 			off += _emit_LDP(dry_run, &buf[off], cond,
1142 				peri);
1143 		}
1144 		break;
1145 
1146 	default:
1147 		/* this code should be unreachable */
1148 		WARN_ON(1);
1149 		break;
1150 	}
1151 
1152 	return off;
1153 }
1154 
1155 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1156 	enum pl330_cond cond, enum dma_transfer_direction direction,
1157 	u8 peri)
1158 {
1159 	int off = 0;
1160 
1161 	switch (direction) {
1162 	case DMA_MEM_TO_MEM:
1163 	case DMA_DEV_TO_MEM:
1164 		off += _emit_ST(dry_run, &buf[off], cond);
1165 		break;
1166 
1167 	case DMA_MEM_TO_DEV:
1168 		if (cond == ALWAYS) {
1169 			off += _emit_STP(dry_run, &buf[off], SINGLE,
1170 				peri);
1171 			off += _emit_STP(dry_run, &buf[off], BURST,
1172 				peri);
1173 		} else {
1174 			off += _emit_STP(dry_run, &buf[off], cond,
1175 				peri);
1176 		}
1177 		break;
1178 
1179 	default:
1180 		/* this code should be unreachable */
1181 		WARN_ON(1);
1182 		break;
1183 	}
1184 
1185 	return off;
1186 }
1187 
1188 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1189 				 unsigned dry_run, u8 buf[],
1190 				 const struct _xfer_spec *pxs, int cyc,
1191 				 enum pl330_cond cond)
1192 {
1193 	int off = 0;
1194 
1195 	/*
1196 	 * do FLUSHP at beginning to clear any stale dma requests before the
1197 	 * first WFP.
1198 	 */
1199 	if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1200 		off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1201 	while (cyc--) {
1202 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1203 		off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1204 			pxs->desc->peri);
1205 		off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1206 			pxs->desc->peri);
1207 	}
1208 
1209 	return off;
1210 }
1211 
1212 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1213 		const struct _xfer_spec *pxs, int cyc)
1214 {
1215 	int off = 0;
1216 	enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1217 
1218 	if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1219 		cond = BURST;
1220 
1221 	switch (pxs->desc->rqtype) {
1222 	case DMA_MEM_TO_DEV:
1223 	case DMA_DEV_TO_MEM:
1224 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1225 			cond);
1226 		break;
1227 
1228 	case DMA_MEM_TO_MEM:
1229 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1230 		break;
1231 
1232 	default:
1233 		/* this code should be unreachable */
1234 		WARN_ON(1);
1235 		break;
1236 	}
1237 
1238 	return off;
1239 }
1240 
1241 /*
1242  * only the unaligned burst transfers have the dregs.
1243  * so, still transfer dregs with a reduced size burst
1244  * for mem-to-mem, mem-to-dev or dev-to-mem.
1245  */
1246 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1247 		const struct _xfer_spec *pxs, int transfer_length)
1248 {
1249 	int off = 0;
1250 	int dregs_ccr;
1251 
1252 	if (transfer_length == 0)
1253 		return off;
1254 
1255 	/*
1256 	 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1257 	 *             BRST_SIZE(ccr)
1258 	 * the dregs len must be smaller than burst len,
1259 	 * so, for higher efficiency, we can modify CCR
1260 	 * to use a reduced size burst len for the dregs.
1261 	 */
1262 	dregs_ccr = pxs->ccr;
1263 	dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1264 		(0xf << CC_DSTBRSTLEN_SHFT));
1265 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1266 		CC_SRCBRSTLEN_SHFT);
1267 	dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1268 		CC_DSTBRSTLEN_SHFT);
1269 
1270 	switch (pxs->desc->rqtype) {
1271 	case DMA_MEM_TO_DEV:
1272 	case DMA_DEV_TO_MEM:
1273 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1274 		off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1275 					BURST);
1276 		break;
1277 
1278 	case DMA_MEM_TO_MEM:
1279 		off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1280 		off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1281 		break;
1282 
1283 	default:
1284 		/* this code should be unreachable */
1285 		WARN_ON(1);
1286 		break;
1287 	}
1288 
1289 	return off;
1290 }
1291 
1292 /* Returns bytes consumed and updates bursts */
1293 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1294 		unsigned long *bursts, const struct _xfer_spec *pxs)
1295 {
1296 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1297 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1298 	struct _arg_LPEND lpend;
1299 
1300 	if (*bursts == 1)
1301 		return _bursts(pl330, dry_run, buf, pxs, 1);
1302 
1303 	/* Max iterations possible in DMALP is 256 */
1304 	if (*bursts >= 256*256) {
1305 		lcnt1 = 256;
1306 		lcnt0 = 256;
1307 		cyc = *bursts / lcnt1 / lcnt0;
1308 	} else if (*bursts > 256) {
1309 		lcnt1 = 256;
1310 		lcnt0 = *bursts / lcnt1;
1311 		cyc = 1;
1312 	} else {
1313 		lcnt1 = *bursts;
1314 		lcnt0 = 0;
1315 		cyc = 1;
1316 	}
1317 
1318 	szlp = _emit_LP(1, buf, 0, 0);
1319 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1320 
1321 	lpend.cond = ALWAYS;
1322 	lpend.forever = false;
1323 	lpend.loop = 0;
1324 	lpend.bjump = 0;
1325 	szlpend = _emit_LPEND(1, buf, &lpend);
1326 
1327 	if (lcnt0) {
1328 		szlp *= 2;
1329 		szlpend *= 2;
1330 	}
1331 
1332 	/*
1333 	 * Max bursts that we can unroll due to limit on the
1334 	 * size of backward jump that can be encoded in DMALPEND
1335 	 * which is 8-bits and hence 255
1336 	 */
1337 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1338 
1339 	cyc = (cycmax < cyc) ? cycmax : cyc;
1340 
1341 	off = 0;
1342 
1343 	if (lcnt0) {
1344 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1345 		ljmp0 = off;
1346 	}
1347 
1348 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1349 	ljmp1 = off;
1350 
1351 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1352 
1353 	lpend.cond = ALWAYS;
1354 	lpend.forever = false;
1355 	lpend.loop = 1;
1356 	lpend.bjump = off - ljmp1;
1357 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1358 
1359 	if (lcnt0) {
1360 		lpend.cond = ALWAYS;
1361 		lpend.forever = false;
1362 		lpend.loop = 0;
1363 		lpend.bjump = off - ljmp0;
1364 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1365 	}
1366 
1367 	*bursts = lcnt1 * cyc;
1368 	if (lcnt0)
1369 		*bursts *= lcnt0;
1370 
1371 	return off;
1372 }
1373 
1374 static inline int _setup_loops(struct pl330_dmac *pl330,
1375 			       unsigned dry_run, u8 buf[],
1376 			       const struct _xfer_spec *pxs)
1377 {
1378 	struct pl330_xfer *x = &pxs->desc->px;
1379 	u32 ccr = pxs->ccr;
1380 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1381 	int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1382 		BRST_SIZE(ccr);
1383 	int off = 0;
1384 
1385 	while (bursts) {
1386 		c = bursts;
1387 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1388 		bursts -= c;
1389 	}
1390 	off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1391 
1392 	return off;
1393 }
1394 
1395 static inline int _setup_xfer(struct pl330_dmac *pl330,
1396 			      unsigned dry_run, u8 buf[],
1397 			      const struct _xfer_spec *pxs)
1398 {
1399 	struct pl330_xfer *x = &pxs->desc->px;
1400 	int off = 0;
1401 
1402 	/* DMAMOV SAR, x->src_addr */
1403 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1404 	/* DMAMOV DAR, x->dst_addr */
1405 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1406 
1407 	/* Setup Loop(s) */
1408 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1409 
1410 	return off;
1411 }
1412 
1413 /*
1414  * A req is a sequence of one or more xfer units.
1415  * Returns the number of bytes taken to setup the MC for the req.
1416  */
1417 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1418 		      struct pl330_thread *thrd, unsigned index,
1419 		      struct _xfer_spec *pxs)
1420 {
1421 	struct _pl330_req *req = &thrd->req[index];
1422 	u8 *buf = req->mc_cpu;
1423 	int off = 0;
1424 
1425 	PL330_DBGMC_START(req->mc_bus);
1426 
1427 	/* DMAMOV CCR, ccr */
1428 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1429 
1430 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1431 
1432 	/* DMASEV peripheral/event */
1433 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1434 	/* DMAEND */
1435 	off += _emit_END(dry_run, &buf[off]);
1436 
1437 	return off;
1438 }
1439 
1440 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1441 {
1442 	u32 ccr = 0;
1443 
1444 	if (rqc->src_inc)
1445 		ccr |= CC_SRCINC;
1446 
1447 	if (rqc->dst_inc)
1448 		ccr |= CC_DSTINC;
1449 
1450 	/* We set same protection levels for Src and DST for now */
1451 	if (rqc->privileged)
1452 		ccr |= CC_SRCPRI | CC_DSTPRI;
1453 	if (rqc->nonsecure)
1454 		ccr |= CC_SRCNS | CC_DSTNS;
1455 	if (rqc->insnaccess)
1456 		ccr |= CC_SRCIA | CC_DSTIA;
1457 
1458 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1459 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1460 
1461 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1462 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1463 
1464 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1465 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1466 
1467 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1468 
1469 	return ccr;
1470 }
1471 
1472 /*
1473  * Submit a list of xfers after which the client wants notification.
1474  * Client is not notified after each xfer unit, just once after all
1475  * xfer units are done or some error occurs.
1476  */
1477 static int pl330_submit_req(struct pl330_thread *thrd,
1478 	struct dma_pl330_desc *desc)
1479 {
1480 	struct pl330_dmac *pl330 = thrd->dmac;
1481 	struct _xfer_spec xs;
1482 	unsigned long flags;
1483 	unsigned idx;
1484 	u32 ccr;
1485 	int ret = 0;
1486 
1487 	switch (desc->rqtype) {
1488 	case DMA_MEM_TO_DEV:
1489 		break;
1490 
1491 	case DMA_DEV_TO_MEM:
1492 		break;
1493 
1494 	case DMA_MEM_TO_MEM:
1495 		break;
1496 
1497 	default:
1498 		return -ENOTSUPP;
1499 	}
1500 
1501 	if (pl330->state == DYING
1502 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1503 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1504 			__func__, __LINE__);
1505 		return -EAGAIN;
1506 	}
1507 
1508 	/* If request for non-existing peripheral */
1509 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1510 	    desc->peri >= pl330->pcfg.num_peri) {
1511 		dev_info(thrd->dmac->ddma.dev,
1512 				"%s:%d Invalid peripheral(%u)!\n",
1513 				__func__, __LINE__, desc->peri);
1514 		return -EINVAL;
1515 	}
1516 
1517 	spin_lock_irqsave(&pl330->lock, flags);
1518 
1519 	if (_queue_full(thrd)) {
1520 		ret = -EAGAIN;
1521 		goto xfer_exit;
1522 	}
1523 
1524 	/* Prefer Secure Channel */
1525 	if (!_manager_ns(thrd))
1526 		desc->rqcfg.nonsecure = 0;
1527 	else
1528 		desc->rqcfg.nonsecure = 1;
1529 
1530 	ccr = _prepare_ccr(&desc->rqcfg);
1531 
1532 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1533 
1534 	xs.ccr = ccr;
1535 	xs.desc = desc;
1536 
1537 	/* First dry run to check if req is acceptable */
1538 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1539 
1540 	if (ret > pl330->mcbufsz / 2) {
1541 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1542 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1543 		ret = -ENOMEM;
1544 		goto xfer_exit;
1545 	}
1546 
1547 	/* Hook the request */
1548 	thrd->lstenq = idx;
1549 	thrd->req[idx].desc = desc;
1550 	_setup_req(pl330, 0, thrd, idx, &xs);
1551 
1552 	ret = 0;
1553 
1554 xfer_exit:
1555 	spin_unlock_irqrestore(&pl330->lock, flags);
1556 
1557 	return ret;
1558 }
1559 
1560 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1561 {
1562 	struct dma_pl330_chan *pch;
1563 	unsigned long flags;
1564 
1565 	if (!desc)
1566 		return;
1567 
1568 	pch = desc->pchan;
1569 
1570 	/* If desc aborted */
1571 	if (!pch)
1572 		return;
1573 
1574 	spin_lock_irqsave(&pch->lock, flags);
1575 
1576 	desc->status = DONE;
1577 
1578 	spin_unlock_irqrestore(&pch->lock, flags);
1579 
1580 	tasklet_schedule(&pch->task);
1581 }
1582 
1583 static void pl330_dotask(struct tasklet_struct *t)
1584 {
1585 	struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks);
1586 	unsigned long flags;
1587 	int i;
1588 
1589 	spin_lock_irqsave(&pl330->lock, flags);
1590 
1591 	/* The DMAC itself gone nuts */
1592 	if (pl330->dmac_tbd.reset_dmac) {
1593 		pl330->state = DYING;
1594 		/* Reset the manager too */
1595 		pl330->dmac_tbd.reset_mngr = true;
1596 		/* Clear the reset flag */
1597 		pl330->dmac_tbd.reset_dmac = false;
1598 	}
1599 
1600 	if (pl330->dmac_tbd.reset_mngr) {
1601 		_stop(pl330->manager);
1602 		/* Reset all channels */
1603 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1604 		/* Clear the reset flag */
1605 		pl330->dmac_tbd.reset_mngr = false;
1606 	}
1607 
1608 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1609 
1610 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1611 			struct pl330_thread *thrd = &pl330->channels[i];
1612 			void __iomem *regs = pl330->base;
1613 			enum pl330_op_err err;
1614 
1615 			_stop(thrd);
1616 
1617 			if (readl(regs + FSC) & (1 << thrd->id))
1618 				err = PL330_ERR_FAIL;
1619 			else
1620 				err = PL330_ERR_ABORT;
1621 
1622 			spin_unlock_irqrestore(&pl330->lock, flags);
1623 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1624 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1625 			spin_lock_irqsave(&pl330->lock, flags);
1626 
1627 			thrd->req[0].desc = NULL;
1628 			thrd->req[1].desc = NULL;
1629 			thrd->req_running = -1;
1630 
1631 			/* Clear the reset flag */
1632 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1633 		}
1634 	}
1635 
1636 	spin_unlock_irqrestore(&pl330->lock, flags);
1637 
1638 	return;
1639 }
1640 
1641 /* Returns 1 if state was updated, 0 otherwise */
1642 static int pl330_update(struct pl330_dmac *pl330)
1643 {
1644 	struct dma_pl330_desc *descdone;
1645 	unsigned long flags;
1646 	void __iomem *regs;
1647 	u32 val;
1648 	int id, ev, ret = 0;
1649 
1650 	regs = pl330->base;
1651 
1652 	spin_lock_irqsave(&pl330->lock, flags);
1653 
1654 	val = readl(regs + FSM) & 0x1;
1655 	if (val)
1656 		pl330->dmac_tbd.reset_mngr = true;
1657 	else
1658 		pl330->dmac_tbd.reset_mngr = false;
1659 
1660 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1661 	pl330->dmac_tbd.reset_chan |= val;
1662 	if (val) {
1663 		int i = 0;
1664 		while (i < pl330->pcfg.num_chan) {
1665 			if (val & (1 << i)) {
1666 				dev_info(pl330->ddma.dev,
1667 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1668 						i, readl(regs + CS(i)),
1669 						readl(regs + FTC(i)));
1670 				_stop(&pl330->channels[i]);
1671 			}
1672 			i++;
1673 		}
1674 	}
1675 
1676 	/* Check which event happened i.e, thread notified */
1677 	val = readl(regs + ES);
1678 	if (pl330->pcfg.num_events < 32
1679 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1680 		pl330->dmac_tbd.reset_dmac = true;
1681 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1682 			__LINE__);
1683 		ret = 1;
1684 		goto updt_exit;
1685 	}
1686 
1687 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1688 		if (val & (1 << ev)) { /* Event occurred */
1689 			struct pl330_thread *thrd;
1690 			u32 inten = readl(regs + INTEN);
1691 			int active;
1692 
1693 			/* Clear the event */
1694 			if (inten & (1 << ev))
1695 				writel(1 << ev, regs + INTCLR);
1696 
1697 			ret = 1;
1698 
1699 			id = pl330->events[ev];
1700 
1701 			thrd = &pl330->channels[id];
1702 
1703 			active = thrd->req_running;
1704 			if (active == -1) /* Aborted */
1705 				continue;
1706 
1707 			/* Detach the req */
1708 			descdone = thrd->req[active].desc;
1709 			thrd->req[active].desc = NULL;
1710 
1711 			thrd->req_running = -1;
1712 
1713 			/* Get going again ASAP */
1714 			pl330_start_thread(thrd);
1715 
1716 			/* For now, just make a list of callbacks to be done */
1717 			list_add_tail(&descdone->rqd, &pl330->req_done);
1718 		}
1719 	}
1720 
1721 	/* Now that we are in no hurry, do the callbacks */
1722 	while (!list_empty(&pl330->req_done)) {
1723 		descdone = list_first_entry(&pl330->req_done,
1724 					    struct dma_pl330_desc, rqd);
1725 		list_del(&descdone->rqd);
1726 		spin_unlock_irqrestore(&pl330->lock, flags);
1727 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1728 		spin_lock_irqsave(&pl330->lock, flags);
1729 	}
1730 
1731 updt_exit:
1732 	spin_unlock_irqrestore(&pl330->lock, flags);
1733 
1734 	if (pl330->dmac_tbd.reset_dmac
1735 			|| pl330->dmac_tbd.reset_mngr
1736 			|| pl330->dmac_tbd.reset_chan) {
1737 		ret = 1;
1738 		tasklet_schedule(&pl330->tasks);
1739 	}
1740 
1741 	return ret;
1742 }
1743 
1744 /* Reserve an event */
1745 static inline int _alloc_event(struct pl330_thread *thrd)
1746 {
1747 	struct pl330_dmac *pl330 = thrd->dmac;
1748 	int ev;
1749 
1750 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1751 		if (pl330->events[ev] == -1) {
1752 			pl330->events[ev] = thrd->id;
1753 			return ev;
1754 		}
1755 
1756 	return -1;
1757 }
1758 
1759 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1760 {
1761 	return pl330->pcfg.irq_ns & (1 << i);
1762 }
1763 
1764 /* Upon success, returns IdentityToken for the
1765  * allocated channel, NULL otherwise.
1766  */
1767 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1768 {
1769 	struct pl330_thread *thrd = NULL;
1770 	int chans, i;
1771 
1772 	if (pl330->state == DYING)
1773 		return NULL;
1774 
1775 	chans = pl330->pcfg.num_chan;
1776 
1777 	for (i = 0; i < chans; i++) {
1778 		thrd = &pl330->channels[i];
1779 		if ((thrd->free) && (!_manager_ns(thrd) ||
1780 					_chan_ns(pl330, i))) {
1781 			thrd->ev = _alloc_event(thrd);
1782 			if (thrd->ev >= 0) {
1783 				thrd->free = false;
1784 				thrd->lstenq = 1;
1785 				thrd->req[0].desc = NULL;
1786 				thrd->req[1].desc = NULL;
1787 				thrd->req_running = -1;
1788 				break;
1789 			}
1790 		}
1791 		thrd = NULL;
1792 	}
1793 
1794 	return thrd;
1795 }
1796 
1797 /* Release an event */
1798 static inline void _free_event(struct pl330_thread *thrd, int ev)
1799 {
1800 	struct pl330_dmac *pl330 = thrd->dmac;
1801 
1802 	/* If the event is valid and was held by the thread */
1803 	if (ev >= 0 && ev < pl330->pcfg.num_events
1804 			&& pl330->events[ev] == thrd->id)
1805 		pl330->events[ev] = -1;
1806 }
1807 
1808 static void pl330_release_channel(struct pl330_thread *thrd)
1809 {
1810 	if (!thrd || thrd->free)
1811 		return;
1812 
1813 	_stop(thrd);
1814 
1815 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1816 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1817 
1818 	_free_event(thrd, thrd->ev);
1819 	thrd->free = true;
1820 }
1821 
1822 /* Initialize the structure for PL330 configuration, that can be used
1823  * by the client driver the make best use of the DMAC
1824  */
1825 static void read_dmac_config(struct pl330_dmac *pl330)
1826 {
1827 	void __iomem *regs = pl330->base;
1828 	u32 val;
1829 
1830 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1831 	val &= CRD_DATA_WIDTH_MASK;
1832 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1833 
1834 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1835 	val &= CRD_DATA_BUFF_MASK;
1836 	pl330->pcfg.data_buf_dep = val + 1;
1837 
1838 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1839 	val &= CR0_NUM_CHANS_MASK;
1840 	val += 1;
1841 	pl330->pcfg.num_chan = val;
1842 
1843 	val = readl(regs + CR0);
1844 	if (val & CR0_PERIPH_REQ_SET) {
1845 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1846 		val += 1;
1847 		pl330->pcfg.num_peri = val;
1848 		pl330->pcfg.peri_ns = readl(regs + CR4);
1849 	} else {
1850 		pl330->pcfg.num_peri = 0;
1851 	}
1852 
1853 	val = readl(regs + CR0);
1854 	if (val & CR0_BOOT_MAN_NS)
1855 		pl330->pcfg.mode |= DMAC_MODE_NS;
1856 	else
1857 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1858 
1859 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1860 	val &= CR0_NUM_EVENTS_MASK;
1861 	val += 1;
1862 	pl330->pcfg.num_events = val;
1863 
1864 	pl330->pcfg.irq_ns = readl(regs + CR3);
1865 }
1866 
1867 static inline void _reset_thread(struct pl330_thread *thrd)
1868 {
1869 	struct pl330_dmac *pl330 = thrd->dmac;
1870 
1871 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1872 				+ (thrd->id * pl330->mcbufsz);
1873 	thrd->req[0].mc_bus = pl330->mcode_bus
1874 				+ (thrd->id * pl330->mcbufsz);
1875 	thrd->req[0].desc = NULL;
1876 
1877 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1878 				+ pl330->mcbufsz / 2;
1879 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1880 				+ pl330->mcbufsz / 2;
1881 	thrd->req[1].desc = NULL;
1882 
1883 	thrd->req_running = -1;
1884 }
1885 
1886 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1887 {
1888 	int chans = pl330->pcfg.num_chan;
1889 	struct pl330_thread *thrd;
1890 	int i;
1891 
1892 	/* Allocate 1 Manager and 'chans' Channel threads */
1893 	pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1894 					GFP_KERNEL);
1895 	if (!pl330->channels)
1896 		return -ENOMEM;
1897 
1898 	/* Init Channel threads */
1899 	for (i = 0; i < chans; i++) {
1900 		thrd = &pl330->channels[i];
1901 		thrd->id = i;
1902 		thrd->dmac = pl330;
1903 		_reset_thread(thrd);
1904 		thrd->free = true;
1905 	}
1906 
1907 	/* MANAGER is indexed at the end */
1908 	thrd = &pl330->channels[chans];
1909 	thrd->id = chans;
1910 	thrd->dmac = pl330;
1911 	thrd->free = false;
1912 	pl330->manager = thrd;
1913 
1914 	return 0;
1915 }
1916 
1917 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1918 {
1919 	int chans = pl330->pcfg.num_chan;
1920 	int ret;
1921 
1922 	/*
1923 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1924 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1925 	 */
1926 	pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1927 				chans * pl330->mcbufsz,
1928 				&pl330->mcode_bus, GFP_KERNEL,
1929 				DMA_ATTR_PRIVILEGED);
1930 	if (!pl330->mcode_cpu) {
1931 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1932 			__func__, __LINE__);
1933 		return -ENOMEM;
1934 	}
1935 
1936 	ret = dmac_alloc_threads(pl330);
1937 	if (ret) {
1938 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1939 			__func__, __LINE__);
1940 		dma_free_attrs(pl330->ddma.dev,
1941 				chans * pl330->mcbufsz,
1942 				pl330->mcode_cpu, pl330->mcode_bus,
1943 				DMA_ATTR_PRIVILEGED);
1944 		return ret;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static int pl330_add(struct pl330_dmac *pl330)
1951 {
1952 	int i, ret;
1953 
1954 	/* Check if we can handle this DMAC */
1955 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1956 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1957 			pl330->pcfg.periph_id);
1958 		return -EINVAL;
1959 	}
1960 
1961 	/* Read the configuration of the DMAC */
1962 	read_dmac_config(pl330);
1963 
1964 	if (pl330->pcfg.num_events == 0) {
1965 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1966 			__func__, __LINE__);
1967 		return -EINVAL;
1968 	}
1969 
1970 	spin_lock_init(&pl330->lock);
1971 
1972 	INIT_LIST_HEAD(&pl330->req_done);
1973 
1974 	/* Use default MC buffer size if not provided */
1975 	if (!pl330->mcbufsz)
1976 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1977 
1978 	/* Mark all events as free */
1979 	for (i = 0; i < pl330->pcfg.num_events; i++)
1980 		pl330->events[i] = -1;
1981 
1982 	/* Allocate resources needed by the DMAC */
1983 	ret = dmac_alloc_resources(pl330);
1984 	if (ret) {
1985 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1986 		return ret;
1987 	}
1988 
1989 	tasklet_setup(&pl330->tasks, pl330_dotask);
1990 
1991 	pl330->state = INIT;
1992 
1993 	return 0;
1994 }
1995 
1996 static int dmac_free_threads(struct pl330_dmac *pl330)
1997 {
1998 	struct pl330_thread *thrd;
1999 	int i;
2000 
2001 	/* Release Channel threads */
2002 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
2003 		thrd = &pl330->channels[i];
2004 		pl330_release_channel(thrd);
2005 	}
2006 
2007 	/* Free memory */
2008 	kfree(pl330->channels);
2009 
2010 	return 0;
2011 }
2012 
2013 static void pl330_del(struct pl330_dmac *pl330)
2014 {
2015 	pl330->state = UNINIT;
2016 
2017 	tasklet_kill(&pl330->tasks);
2018 
2019 	/* Free DMAC resources */
2020 	dmac_free_threads(pl330);
2021 
2022 	dma_free_attrs(pl330->ddma.dev,
2023 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2024 		pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2025 }
2026 
2027 /* forward declaration */
2028 static struct amba_driver pl330_driver;
2029 
2030 static inline struct dma_pl330_chan *
2031 to_pchan(struct dma_chan *ch)
2032 {
2033 	if (!ch)
2034 		return NULL;
2035 
2036 	return container_of(ch, struct dma_pl330_chan, chan);
2037 }
2038 
2039 static inline struct dma_pl330_desc *
2040 to_desc(struct dma_async_tx_descriptor *tx)
2041 {
2042 	return container_of(tx, struct dma_pl330_desc, txd);
2043 }
2044 
2045 static inline void fill_queue(struct dma_pl330_chan *pch)
2046 {
2047 	struct dma_pl330_desc *desc;
2048 	int ret;
2049 
2050 	list_for_each_entry(desc, &pch->work_list, node) {
2051 
2052 		/* If already submitted */
2053 		if (desc->status == BUSY || desc->status == PAUSED)
2054 			continue;
2055 
2056 		ret = pl330_submit_req(pch->thread, desc);
2057 		if (!ret) {
2058 			desc->status = BUSY;
2059 		} else if (ret == -EAGAIN) {
2060 			/* QFull or DMAC Dying */
2061 			break;
2062 		} else {
2063 			/* Unacceptable request */
2064 			desc->status = DONE;
2065 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2066 					__func__, __LINE__, desc->txd.cookie);
2067 			tasklet_schedule(&pch->task);
2068 		}
2069 	}
2070 }
2071 
2072 static void pl330_tasklet(struct tasklet_struct *t)
2073 {
2074 	struct dma_pl330_chan *pch = from_tasklet(pch, t, task);
2075 	struct dma_pl330_desc *desc, *_dt;
2076 	unsigned long flags;
2077 	bool power_down = false;
2078 
2079 	spin_lock_irqsave(&pch->lock, flags);
2080 
2081 	/* Pick up ripe tomatoes */
2082 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2083 		if (desc->status == DONE) {
2084 			if (!pch->cyclic)
2085 				dma_cookie_complete(&desc->txd);
2086 			list_move_tail(&desc->node, &pch->completed_list);
2087 		}
2088 
2089 	/* Try to submit a req imm. next to the last completed cookie */
2090 	fill_queue(pch);
2091 
2092 	if (list_empty(&pch->work_list)) {
2093 		spin_lock(&pch->thread->dmac->lock);
2094 		_stop(pch->thread);
2095 		spin_unlock(&pch->thread->dmac->lock);
2096 		power_down = true;
2097 		pch->active = false;
2098 	} else {
2099 		/* Make sure the PL330 Channel thread is active */
2100 		spin_lock(&pch->thread->dmac->lock);
2101 		pl330_start_thread(pch->thread);
2102 		spin_unlock(&pch->thread->dmac->lock);
2103 	}
2104 
2105 	while (!list_empty(&pch->completed_list)) {
2106 		struct dmaengine_desc_callback cb;
2107 
2108 		desc = list_first_entry(&pch->completed_list,
2109 					struct dma_pl330_desc, node);
2110 
2111 		dmaengine_desc_get_callback(&desc->txd, &cb);
2112 
2113 		if (pch->cyclic) {
2114 			desc->status = PREP;
2115 			list_move_tail(&desc->node, &pch->work_list);
2116 			if (power_down) {
2117 				pch->active = true;
2118 				spin_lock(&pch->thread->dmac->lock);
2119 				pl330_start_thread(pch->thread);
2120 				spin_unlock(&pch->thread->dmac->lock);
2121 				power_down = false;
2122 			}
2123 		} else {
2124 			desc->status = FREE;
2125 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2126 		}
2127 
2128 		dma_descriptor_unmap(&desc->txd);
2129 
2130 		if (dmaengine_desc_callback_valid(&cb)) {
2131 			spin_unlock_irqrestore(&pch->lock, flags);
2132 			dmaengine_desc_callback_invoke(&cb, NULL);
2133 			spin_lock_irqsave(&pch->lock, flags);
2134 		}
2135 	}
2136 	spin_unlock_irqrestore(&pch->lock, flags);
2137 
2138 	/* If work list empty, power down */
2139 	if (power_down) {
2140 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2141 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2142 	}
2143 }
2144 
2145 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2146 						struct of_dma *ofdma)
2147 {
2148 	int count = dma_spec->args_count;
2149 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2150 	unsigned int chan_id;
2151 
2152 	if (!pl330)
2153 		return NULL;
2154 
2155 	if (count != 1)
2156 		return NULL;
2157 
2158 	chan_id = dma_spec->args[0];
2159 	if (chan_id >= pl330->num_peripherals)
2160 		return NULL;
2161 
2162 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2163 }
2164 
2165 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2166 {
2167 	struct dma_pl330_chan *pch = to_pchan(chan);
2168 	struct pl330_dmac *pl330 = pch->dmac;
2169 	unsigned long flags;
2170 
2171 	spin_lock_irqsave(&pl330->lock, flags);
2172 
2173 	dma_cookie_init(chan);
2174 	pch->cyclic = false;
2175 
2176 	pch->thread = pl330_request_channel(pl330);
2177 	if (!pch->thread) {
2178 		spin_unlock_irqrestore(&pl330->lock, flags);
2179 		return -ENOMEM;
2180 	}
2181 
2182 	tasklet_setup(&pch->task, pl330_tasklet);
2183 
2184 	spin_unlock_irqrestore(&pl330->lock, flags);
2185 
2186 	return 1;
2187 }
2188 
2189 /*
2190  * We need the data direction between the DMAC (the dma-mapping "device") and
2191  * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2192  */
2193 static enum dma_data_direction
2194 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2195 {
2196 	switch (dir) {
2197 	case DMA_MEM_TO_DEV:
2198 		return DMA_FROM_DEVICE;
2199 	case DMA_DEV_TO_MEM:
2200 		return DMA_TO_DEVICE;
2201 	case DMA_DEV_TO_DEV:
2202 		return DMA_BIDIRECTIONAL;
2203 	default:
2204 		return DMA_NONE;
2205 	}
2206 }
2207 
2208 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2209 {
2210 	if (pch->dir != DMA_NONE)
2211 		dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2212 				   1 << pch->burst_sz, pch->dir, 0);
2213 	pch->dir = DMA_NONE;
2214 }
2215 
2216 
2217 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2218 				  enum dma_transfer_direction dir)
2219 {
2220 	struct device *dev = pch->chan.device->dev;
2221 	enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2222 
2223 	/* Already mapped for this config? */
2224 	if (pch->dir == dma_dir)
2225 		return true;
2226 
2227 	pl330_unprep_slave_fifo(pch);
2228 	pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2229 					 1 << pch->burst_sz, dma_dir, 0);
2230 	if (dma_mapping_error(dev, pch->fifo_dma))
2231 		return false;
2232 
2233 	pch->dir = dma_dir;
2234 	return true;
2235 }
2236 
2237 static int fixup_burst_len(int max_burst_len, int quirks)
2238 {
2239 	if (max_burst_len > PL330_MAX_BURST)
2240 		return PL330_MAX_BURST;
2241 	else if (max_burst_len < 1)
2242 		return 1;
2243 	else
2244 		return max_burst_len;
2245 }
2246 
2247 static int pl330_config_write(struct dma_chan *chan,
2248 			struct dma_slave_config *slave_config,
2249 			enum dma_transfer_direction direction)
2250 {
2251 	struct dma_pl330_chan *pch = to_pchan(chan);
2252 
2253 	pl330_unprep_slave_fifo(pch);
2254 	if (direction == DMA_MEM_TO_DEV) {
2255 		if (slave_config->dst_addr)
2256 			pch->fifo_addr = slave_config->dst_addr;
2257 		if (slave_config->dst_addr_width)
2258 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2259 		pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2260 			pch->dmac->quirks);
2261 	} else if (direction == DMA_DEV_TO_MEM) {
2262 		if (slave_config->src_addr)
2263 			pch->fifo_addr = slave_config->src_addr;
2264 		if (slave_config->src_addr_width)
2265 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2266 		pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2267 			pch->dmac->quirks);
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static int pl330_config(struct dma_chan *chan,
2274 			struct dma_slave_config *slave_config)
2275 {
2276 	struct dma_pl330_chan *pch = to_pchan(chan);
2277 
2278 	memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2279 
2280 	return 0;
2281 }
2282 
2283 static int pl330_terminate_all(struct dma_chan *chan)
2284 {
2285 	struct dma_pl330_chan *pch = to_pchan(chan);
2286 	struct dma_pl330_desc *desc;
2287 	unsigned long flags;
2288 	struct pl330_dmac *pl330 = pch->dmac;
2289 	bool power_down = false;
2290 
2291 	pm_runtime_get_sync(pl330->ddma.dev);
2292 	spin_lock_irqsave(&pch->lock, flags);
2293 
2294 	spin_lock(&pl330->lock);
2295 	_stop(pch->thread);
2296 	pch->thread->req[0].desc = NULL;
2297 	pch->thread->req[1].desc = NULL;
2298 	pch->thread->req_running = -1;
2299 	spin_unlock(&pl330->lock);
2300 
2301 	power_down = pch->active;
2302 	pch->active = false;
2303 
2304 	/* Mark all desc done */
2305 	list_for_each_entry(desc, &pch->submitted_list, node) {
2306 		desc->status = FREE;
2307 		dma_cookie_complete(&desc->txd);
2308 	}
2309 
2310 	list_for_each_entry(desc, &pch->work_list , node) {
2311 		desc->status = FREE;
2312 		dma_cookie_complete(&desc->txd);
2313 	}
2314 
2315 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2316 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2317 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2318 	spin_unlock_irqrestore(&pch->lock, flags);
2319 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2320 	if (power_down)
2321 		pm_runtime_put_autosuspend(pl330->ddma.dev);
2322 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2323 
2324 	return 0;
2325 }
2326 
2327 /*
2328  * We don't support DMA_RESUME command because of hardware
2329  * limitations, so after pausing the channel we cannot restore
2330  * it to active state. We have to terminate channel and setup
2331  * DMA transfer again. This pause feature was implemented to
2332  * allow safely read residue before channel termination.
2333  */
2334 static int pl330_pause(struct dma_chan *chan)
2335 {
2336 	struct dma_pl330_chan *pch = to_pchan(chan);
2337 	struct pl330_dmac *pl330 = pch->dmac;
2338 	struct dma_pl330_desc *desc;
2339 	unsigned long flags;
2340 
2341 	pm_runtime_get_sync(pl330->ddma.dev);
2342 	spin_lock_irqsave(&pch->lock, flags);
2343 
2344 	spin_lock(&pl330->lock);
2345 	_stop(pch->thread);
2346 	spin_unlock(&pl330->lock);
2347 
2348 	list_for_each_entry(desc, &pch->work_list, node) {
2349 		if (desc->status == BUSY)
2350 			desc->status = PAUSED;
2351 	}
2352 	spin_unlock_irqrestore(&pch->lock, flags);
2353 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2354 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2355 
2356 	return 0;
2357 }
2358 
2359 static void pl330_free_chan_resources(struct dma_chan *chan)
2360 {
2361 	struct dma_pl330_chan *pch = to_pchan(chan);
2362 	struct pl330_dmac *pl330 = pch->dmac;
2363 	unsigned long flags;
2364 
2365 	tasklet_kill(&pch->task);
2366 
2367 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2368 	spin_lock_irqsave(&pl330->lock, flags);
2369 
2370 	pl330_release_channel(pch->thread);
2371 	pch->thread = NULL;
2372 
2373 	if (pch->cyclic)
2374 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2375 
2376 	spin_unlock_irqrestore(&pl330->lock, flags);
2377 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2378 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2379 	pl330_unprep_slave_fifo(pch);
2380 }
2381 
2382 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2383 					   struct dma_pl330_desc *desc)
2384 {
2385 	struct pl330_thread *thrd = pch->thread;
2386 	struct pl330_dmac *pl330 = pch->dmac;
2387 	void __iomem *regs = thrd->dmac->base;
2388 	u32 val, addr;
2389 
2390 	pm_runtime_get_sync(pl330->ddma.dev);
2391 	val = addr = 0;
2392 	if (desc->rqcfg.src_inc) {
2393 		val = readl(regs + SA(thrd->id));
2394 		addr = desc->px.src_addr;
2395 	} else {
2396 		val = readl(regs + DA(thrd->id));
2397 		addr = desc->px.dst_addr;
2398 	}
2399 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2400 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2401 
2402 	/* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2403 	if (!val)
2404 		return 0;
2405 
2406 	return val - addr;
2407 }
2408 
2409 static enum dma_status
2410 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2411 		 struct dma_tx_state *txstate)
2412 {
2413 	enum dma_status ret;
2414 	unsigned long flags;
2415 	struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2416 	struct dma_pl330_chan *pch = to_pchan(chan);
2417 	unsigned int transferred, residual = 0;
2418 
2419 	ret = dma_cookie_status(chan, cookie, txstate);
2420 
2421 	if (!txstate)
2422 		return ret;
2423 
2424 	if (ret == DMA_COMPLETE)
2425 		goto out;
2426 
2427 	spin_lock_irqsave(&pch->lock, flags);
2428 	spin_lock(&pch->thread->dmac->lock);
2429 
2430 	if (pch->thread->req_running != -1)
2431 		running = pch->thread->req[pch->thread->req_running].desc;
2432 
2433 	last_enq = pch->thread->req[pch->thread->lstenq].desc;
2434 
2435 	/* Check in pending list */
2436 	list_for_each_entry(desc, &pch->work_list, node) {
2437 		if (desc->status == DONE)
2438 			transferred = desc->bytes_requested;
2439 		else if (running && desc == running)
2440 			transferred =
2441 				pl330_get_current_xferred_count(pch, desc);
2442 		else if (desc->status == BUSY || desc->status == PAUSED)
2443 			/*
2444 			 * Busy but not running means either just enqueued,
2445 			 * or finished and not yet marked done
2446 			 */
2447 			if (desc == last_enq)
2448 				transferred = 0;
2449 			else
2450 				transferred = desc->bytes_requested;
2451 		else
2452 			transferred = 0;
2453 		residual += desc->bytes_requested - transferred;
2454 		if (desc->txd.cookie == cookie) {
2455 			switch (desc->status) {
2456 			case DONE:
2457 				ret = DMA_COMPLETE;
2458 				break;
2459 			case PAUSED:
2460 				ret = DMA_PAUSED;
2461 				break;
2462 			case PREP:
2463 			case BUSY:
2464 				ret = DMA_IN_PROGRESS;
2465 				break;
2466 			default:
2467 				WARN_ON(1);
2468 			}
2469 			break;
2470 		}
2471 		if (desc->last)
2472 			residual = 0;
2473 	}
2474 	spin_unlock(&pch->thread->dmac->lock);
2475 	spin_unlock_irqrestore(&pch->lock, flags);
2476 
2477 out:
2478 	dma_set_residue(txstate, residual);
2479 
2480 	return ret;
2481 }
2482 
2483 static void pl330_issue_pending(struct dma_chan *chan)
2484 {
2485 	struct dma_pl330_chan *pch = to_pchan(chan);
2486 	unsigned long flags;
2487 
2488 	spin_lock_irqsave(&pch->lock, flags);
2489 	if (list_empty(&pch->work_list)) {
2490 		/*
2491 		 * Warn on nothing pending. Empty submitted_list may
2492 		 * break our pm_runtime usage counter as it is
2493 		 * updated on work_list emptiness status.
2494 		 */
2495 		WARN_ON(list_empty(&pch->submitted_list));
2496 		pch->active = true;
2497 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2498 	}
2499 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2500 	spin_unlock_irqrestore(&pch->lock, flags);
2501 
2502 	pl330_tasklet(&pch->task);
2503 }
2504 
2505 /*
2506  * We returned the last one of the circular list of descriptor(s)
2507  * from prep_xxx, so the argument to submit corresponds to the last
2508  * descriptor of the list.
2509  */
2510 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2511 {
2512 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2513 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2514 	dma_cookie_t cookie;
2515 	unsigned long flags;
2516 
2517 	spin_lock_irqsave(&pch->lock, flags);
2518 
2519 	/* Assign cookies to all nodes */
2520 	while (!list_empty(&last->node)) {
2521 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2522 		if (pch->cyclic) {
2523 			desc->txd.callback = last->txd.callback;
2524 			desc->txd.callback_param = last->txd.callback_param;
2525 		}
2526 		desc->last = false;
2527 
2528 		dma_cookie_assign(&desc->txd);
2529 
2530 		list_move_tail(&desc->node, &pch->submitted_list);
2531 	}
2532 
2533 	last->last = true;
2534 	cookie = dma_cookie_assign(&last->txd);
2535 	list_add_tail(&last->node, &pch->submitted_list);
2536 	spin_unlock_irqrestore(&pch->lock, flags);
2537 
2538 	return cookie;
2539 }
2540 
2541 static inline void _init_desc(struct dma_pl330_desc *desc)
2542 {
2543 	desc->rqcfg.swap = SWAP_NO;
2544 	desc->rqcfg.scctl = CCTRL0;
2545 	desc->rqcfg.dcctl = CCTRL0;
2546 	desc->txd.tx_submit = pl330_tx_submit;
2547 
2548 	INIT_LIST_HEAD(&desc->node);
2549 }
2550 
2551 /* Returns the number of descriptors added to the DMAC pool */
2552 static int add_desc(struct list_head *pool, spinlock_t *lock,
2553 		    gfp_t flg, int count)
2554 {
2555 	struct dma_pl330_desc *desc;
2556 	unsigned long flags;
2557 	int i;
2558 
2559 	desc = kcalloc(count, sizeof(*desc), flg);
2560 	if (!desc)
2561 		return 0;
2562 
2563 	spin_lock_irqsave(lock, flags);
2564 
2565 	for (i = 0; i < count; i++) {
2566 		_init_desc(&desc[i]);
2567 		list_add_tail(&desc[i].node, pool);
2568 	}
2569 
2570 	spin_unlock_irqrestore(lock, flags);
2571 
2572 	return count;
2573 }
2574 
2575 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2576 					 spinlock_t *lock)
2577 {
2578 	struct dma_pl330_desc *desc = NULL;
2579 	unsigned long flags;
2580 
2581 	spin_lock_irqsave(lock, flags);
2582 
2583 	if (!list_empty(pool)) {
2584 		desc = list_entry(pool->next,
2585 				struct dma_pl330_desc, node);
2586 
2587 		list_del_init(&desc->node);
2588 
2589 		desc->status = PREP;
2590 		desc->txd.callback = NULL;
2591 	}
2592 
2593 	spin_unlock_irqrestore(lock, flags);
2594 
2595 	return desc;
2596 }
2597 
2598 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2599 {
2600 	struct pl330_dmac *pl330 = pch->dmac;
2601 	u8 *peri_id = pch->chan.private;
2602 	struct dma_pl330_desc *desc;
2603 
2604 	/* Pluck one desc from the pool of DMAC */
2605 	desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2606 
2607 	/* If the DMAC pool is empty, alloc new */
2608 	if (!desc) {
2609 		static DEFINE_SPINLOCK(lock);
2610 		LIST_HEAD(pool);
2611 
2612 		if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2613 			return NULL;
2614 
2615 		desc = pluck_desc(&pool, &lock);
2616 		WARN_ON(!desc || !list_empty(&pool));
2617 	}
2618 
2619 	/* Initialize the descriptor */
2620 	desc->pchan = pch;
2621 	desc->txd.cookie = 0;
2622 	async_tx_ack(&desc->txd);
2623 
2624 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2625 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2626 
2627 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2628 
2629 	return desc;
2630 }
2631 
2632 static inline void fill_px(struct pl330_xfer *px,
2633 		dma_addr_t dst, dma_addr_t src, size_t len)
2634 {
2635 	px->bytes = len;
2636 	px->dst_addr = dst;
2637 	px->src_addr = src;
2638 }
2639 
2640 static struct dma_pl330_desc *
2641 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2642 		dma_addr_t src, size_t len)
2643 {
2644 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2645 
2646 	if (!desc) {
2647 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2648 			__func__, __LINE__);
2649 		return NULL;
2650 	}
2651 
2652 	/*
2653 	 * Ideally we should lookout for reqs bigger than
2654 	 * those that can be programmed with 256 bytes of
2655 	 * MC buffer, but considering a req size is seldom
2656 	 * going to be word-unaligned and more than 200MB,
2657 	 * we take it easy.
2658 	 * Also, should the limit is reached we'd rather
2659 	 * have the platform increase MC buffer size than
2660 	 * complicating this API driver.
2661 	 */
2662 	fill_px(&desc->px, dst, src, len);
2663 
2664 	return desc;
2665 }
2666 
2667 /* Call after fixing burst size */
2668 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2669 {
2670 	struct dma_pl330_chan *pch = desc->pchan;
2671 	struct pl330_dmac *pl330 = pch->dmac;
2672 	int burst_len;
2673 
2674 	burst_len = pl330->pcfg.data_bus_width / 8;
2675 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2676 	burst_len >>= desc->rqcfg.brst_size;
2677 
2678 	/* src/dst_burst_len can't be more than 16 */
2679 	if (burst_len > PL330_MAX_BURST)
2680 		burst_len = PL330_MAX_BURST;
2681 
2682 	return burst_len;
2683 }
2684 
2685 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2686 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2687 		size_t period_len, enum dma_transfer_direction direction,
2688 		unsigned long flags)
2689 {
2690 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2691 	struct dma_pl330_chan *pch = to_pchan(chan);
2692 	struct pl330_dmac *pl330 = pch->dmac;
2693 	unsigned int i;
2694 	dma_addr_t dst;
2695 	dma_addr_t src;
2696 
2697 	if (len % period_len != 0)
2698 		return NULL;
2699 
2700 	if (!is_slave_direction(direction)) {
2701 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2702 		__func__, __LINE__);
2703 		return NULL;
2704 	}
2705 
2706 	pl330_config_write(chan, &pch->slave_config, direction);
2707 
2708 	if (!pl330_prep_slave_fifo(pch, direction))
2709 		return NULL;
2710 
2711 	for (i = 0; i < len / period_len; i++) {
2712 		desc = pl330_get_desc(pch);
2713 		if (!desc) {
2714 			unsigned long iflags;
2715 
2716 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2717 				__func__, __LINE__);
2718 
2719 			if (!first)
2720 				return NULL;
2721 
2722 			spin_lock_irqsave(&pl330->pool_lock, iflags);
2723 
2724 			while (!list_empty(&first->node)) {
2725 				desc = list_entry(first->node.next,
2726 						struct dma_pl330_desc, node);
2727 				list_move_tail(&desc->node, &pl330->desc_pool);
2728 			}
2729 
2730 			list_move_tail(&first->node, &pl330->desc_pool);
2731 
2732 			spin_unlock_irqrestore(&pl330->pool_lock, iflags);
2733 
2734 			return NULL;
2735 		}
2736 
2737 		switch (direction) {
2738 		case DMA_MEM_TO_DEV:
2739 			desc->rqcfg.src_inc = 1;
2740 			desc->rqcfg.dst_inc = 0;
2741 			src = dma_addr;
2742 			dst = pch->fifo_dma;
2743 			break;
2744 		case DMA_DEV_TO_MEM:
2745 			desc->rqcfg.src_inc = 0;
2746 			desc->rqcfg.dst_inc = 1;
2747 			src = pch->fifo_dma;
2748 			dst = dma_addr;
2749 			break;
2750 		default:
2751 			break;
2752 		}
2753 
2754 		desc->rqtype = direction;
2755 		desc->rqcfg.brst_size = pch->burst_sz;
2756 		desc->rqcfg.brst_len = pch->burst_len;
2757 		desc->bytes_requested = period_len;
2758 		fill_px(&desc->px, dst, src, period_len);
2759 
2760 		if (!first)
2761 			first = desc;
2762 		else
2763 			list_add_tail(&desc->node, &first->node);
2764 
2765 		dma_addr += period_len;
2766 	}
2767 
2768 	if (!desc)
2769 		return NULL;
2770 
2771 	pch->cyclic = true;
2772 
2773 	return &desc->txd;
2774 }
2775 
2776 static struct dma_async_tx_descriptor *
2777 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2778 		dma_addr_t src, size_t len, unsigned long flags)
2779 {
2780 	struct dma_pl330_desc *desc;
2781 	struct dma_pl330_chan *pch = to_pchan(chan);
2782 	struct pl330_dmac *pl330;
2783 	int burst;
2784 
2785 	if (unlikely(!pch || !len))
2786 		return NULL;
2787 
2788 	pl330 = pch->dmac;
2789 
2790 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2791 	if (!desc)
2792 		return NULL;
2793 
2794 	desc->rqcfg.src_inc = 1;
2795 	desc->rqcfg.dst_inc = 1;
2796 	desc->rqtype = DMA_MEM_TO_MEM;
2797 
2798 	/* Select max possible burst size */
2799 	burst = pl330->pcfg.data_bus_width / 8;
2800 
2801 	/*
2802 	 * Make sure we use a burst size that aligns with all the memcpy
2803 	 * parameters because our DMA programming algorithm doesn't cope with
2804 	 * transfers which straddle an entry in the DMA device's MFIFO.
2805 	 */
2806 	while ((src | dst | len) & (burst - 1))
2807 		burst /= 2;
2808 
2809 	desc->rqcfg.brst_size = 0;
2810 	while (burst != (1 << desc->rqcfg.brst_size))
2811 		desc->rqcfg.brst_size++;
2812 
2813 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2814 	/*
2815 	 * If burst size is smaller than bus width then make sure we only
2816 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2817 	 */
2818 	if (burst * 8 < pl330->pcfg.data_bus_width)
2819 		desc->rqcfg.brst_len = 1;
2820 
2821 	desc->bytes_requested = len;
2822 
2823 	return &desc->txd;
2824 }
2825 
2826 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2827 				  struct dma_pl330_desc *first)
2828 {
2829 	unsigned long flags;
2830 	struct dma_pl330_desc *desc;
2831 
2832 	if (!first)
2833 		return;
2834 
2835 	spin_lock_irqsave(&pl330->pool_lock, flags);
2836 
2837 	while (!list_empty(&first->node)) {
2838 		desc = list_entry(first->node.next,
2839 				struct dma_pl330_desc, node);
2840 		list_move_tail(&desc->node, &pl330->desc_pool);
2841 	}
2842 
2843 	list_move_tail(&first->node, &pl330->desc_pool);
2844 
2845 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2846 }
2847 
2848 static struct dma_async_tx_descriptor *
2849 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2850 		unsigned int sg_len, enum dma_transfer_direction direction,
2851 		unsigned long flg, void *context)
2852 {
2853 	struct dma_pl330_desc *first, *desc = NULL;
2854 	struct dma_pl330_chan *pch = to_pchan(chan);
2855 	struct scatterlist *sg;
2856 	int i;
2857 
2858 	if (unlikely(!pch || !sgl || !sg_len))
2859 		return NULL;
2860 
2861 	pl330_config_write(chan, &pch->slave_config, direction);
2862 
2863 	if (!pl330_prep_slave_fifo(pch, direction))
2864 		return NULL;
2865 
2866 	first = NULL;
2867 
2868 	for_each_sg(sgl, sg, sg_len, i) {
2869 
2870 		desc = pl330_get_desc(pch);
2871 		if (!desc) {
2872 			struct pl330_dmac *pl330 = pch->dmac;
2873 
2874 			dev_err(pch->dmac->ddma.dev,
2875 				"%s:%d Unable to fetch desc\n",
2876 				__func__, __LINE__);
2877 			__pl330_giveback_desc(pl330, first);
2878 
2879 			return NULL;
2880 		}
2881 
2882 		if (!first)
2883 			first = desc;
2884 		else
2885 			list_add_tail(&desc->node, &first->node);
2886 
2887 		if (direction == DMA_MEM_TO_DEV) {
2888 			desc->rqcfg.src_inc = 1;
2889 			desc->rqcfg.dst_inc = 0;
2890 			fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2891 				sg_dma_len(sg));
2892 		} else {
2893 			desc->rqcfg.src_inc = 0;
2894 			desc->rqcfg.dst_inc = 1;
2895 			fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2896 				sg_dma_len(sg));
2897 		}
2898 
2899 		desc->rqcfg.brst_size = pch->burst_sz;
2900 		desc->rqcfg.brst_len = pch->burst_len;
2901 		desc->rqtype = direction;
2902 		desc->bytes_requested = sg_dma_len(sg);
2903 	}
2904 
2905 	/* Return the last desc in the chain */
2906 	return &desc->txd;
2907 }
2908 
2909 static irqreturn_t pl330_irq_handler(int irq, void *data)
2910 {
2911 	if (pl330_update(data))
2912 		return IRQ_HANDLED;
2913 	else
2914 		return IRQ_NONE;
2915 }
2916 
2917 #define PL330_DMA_BUSWIDTHS \
2918 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2919 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2920 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2921 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2922 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2923 
2924 #ifdef CONFIG_DEBUG_FS
2925 static int pl330_debugfs_show(struct seq_file *s, void *data)
2926 {
2927 	struct pl330_dmac *pl330 = s->private;
2928 	int chans, pchs, ch, pr;
2929 
2930 	chans = pl330->pcfg.num_chan;
2931 	pchs = pl330->num_peripherals;
2932 
2933 	seq_puts(s, "PL330 physical channels:\n");
2934 	seq_puts(s, "THREAD:\t\tCHANNEL:\n");
2935 	seq_puts(s, "--------\t-----\n");
2936 	for (ch = 0; ch < chans; ch++) {
2937 		struct pl330_thread *thrd = &pl330->channels[ch];
2938 		int found = -1;
2939 
2940 		for (pr = 0; pr < pchs; pr++) {
2941 			struct dma_pl330_chan *pch = &pl330->peripherals[pr];
2942 
2943 			if (!pch->thread || thrd->id != pch->thread->id)
2944 				continue;
2945 
2946 			found = pr;
2947 		}
2948 
2949 		seq_printf(s, "%d\t\t", thrd->id);
2950 		if (found == -1)
2951 			seq_puts(s, "--\n");
2952 		else
2953 			seq_printf(s, "%d\n", found);
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
2960 
2961 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2962 {
2963 	debugfs_create_file(dev_name(pl330->ddma.dev),
2964 			    S_IFREG | 0444, NULL, pl330,
2965 			    &pl330_debugfs_fops);
2966 }
2967 #else
2968 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
2969 {
2970 }
2971 #endif
2972 
2973 /*
2974  * Runtime PM callbacks are provided by amba/bus.c driver.
2975  *
2976  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2977  * bus driver will only disable/enable the clock in runtime PM callbacks.
2978  */
2979 static int __maybe_unused pl330_suspend(struct device *dev)
2980 {
2981 	struct amba_device *pcdev = to_amba_device(dev);
2982 
2983 	pm_runtime_force_suspend(dev);
2984 	clk_unprepare(pcdev->pclk);
2985 
2986 	return 0;
2987 }
2988 
2989 static int __maybe_unused pl330_resume(struct device *dev)
2990 {
2991 	struct amba_device *pcdev = to_amba_device(dev);
2992 	int ret;
2993 
2994 	ret = clk_prepare(pcdev->pclk);
2995 	if (ret)
2996 		return ret;
2997 
2998 	pm_runtime_force_resume(dev);
2999 
3000 	return ret;
3001 }
3002 
3003 static const struct dev_pm_ops pl330_pm = {
3004 	SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
3005 };
3006 
3007 static int
3008 pl330_probe(struct amba_device *adev, const struct amba_id *id)
3009 {
3010 	struct pl330_config *pcfg;
3011 	struct pl330_dmac *pl330;
3012 	struct dma_pl330_chan *pch, *_p;
3013 	struct dma_device *pd;
3014 	struct resource *res;
3015 	int i, ret, irq;
3016 	int num_chan;
3017 	struct device_node *np = adev->dev.of_node;
3018 
3019 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3020 	if (ret)
3021 		return ret;
3022 
3023 	/* Allocate a new DMAC and its Channels */
3024 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3025 	if (!pl330)
3026 		return -ENOMEM;
3027 
3028 	pd = &pl330->ddma;
3029 	pd->dev = &adev->dev;
3030 
3031 	pl330->mcbufsz = 0;
3032 
3033 	/* get quirk */
3034 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3035 		if (of_property_read_bool(np, of_quirks[i].quirk))
3036 			pl330->quirks |= of_quirks[i].id;
3037 
3038 	res = &adev->res;
3039 	pl330->base = devm_ioremap_resource(&adev->dev, res);
3040 	if (IS_ERR(pl330->base))
3041 		return PTR_ERR(pl330->base);
3042 
3043 	amba_set_drvdata(adev, pl330);
3044 
3045 	pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3046 	if (IS_ERR(pl330->rstc)) {
3047 		return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n");
3048 	} else {
3049 		ret = reset_control_deassert(pl330->rstc);
3050 		if (ret) {
3051 			dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3057 	if (IS_ERR(pl330->rstc_ocp)) {
3058 		return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp),
3059 				     "Failed to get OCP reset!\n");
3060 	} else {
3061 		ret = reset_control_deassert(pl330->rstc_ocp);
3062 		if (ret) {
3063 			dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3064 			return ret;
3065 		}
3066 	}
3067 
3068 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3069 		irq = adev->irq[i];
3070 		if (irq) {
3071 			ret = devm_request_irq(&adev->dev, irq,
3072 					       pl330_irq_handler, 0,
3073 					       dev_name(&adev->dev), pl330);
3074 			if (ret)
3075 				return ret;
3076 		} else {
3077 			break;
3078 		}
3079 	}
3080 
3081 	pcfg = &pl330->pcfg;
3082 
3083 	pcfg->periph_id = adev->periphid;
3084 	ret = pl330_add(pl330);
3085 	if (ret)
3086 		return ret;
3087 
3088 	INIT_LIST_HEAD(&pl330->desc_pool);
3089 	spin_lock_init(&pl330->pool_lock);
3090 
3091 	/* Create a descriptor pool of default size */
3092 	if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3093 		      GFP_KERNEL, NR_DEFAULT_DESC))
3094 		dev_warn(&adev->dev, "unable to allocate desc\n");
3095 
3096 	INIT_LIST_HEAD(&pd->channels);
3097 
3098 	/* Initialize channel parameters */
3099 	num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3100 
3101 	pl330->num_peripherals = num_chan;
3102 
3103 	pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3104 	if (!pl330->peripherals) {
3105 		ret = -ENOMEM;
3106 		goto probe_err2;
3107 	}
3108 
3109 	for (i = 0; i < num_chan; i++) {
3110 		pch = &pl330->peripherals[i];
3111 
3112 		pch->chan.private = adev->dev.of_node;
3113 		INIT_LIST_HEAD(&pch->submitted_list);
3114 		INIT_LIST_HEAD(&pch->work_list);
3115 		INIT_LIST_HEAD(&pch->completed_list);
3116 		spin_lock_init(&pch->lock);
3117 		pch->thread = NULL;
3118 		pch->chan.device = pd;
3119 		pch->dmac = pl330;
3120 		pch->dir = DMA_NONE;
3121 
3122 		/* Add the channel to the DMAC list */
3123 		list_add_tail(&pch->chan.device_node, &pd->channels);
3124 	}
3125 
3126 	dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3127 	if (pcfg->num_peri) {
3128 		dma_cap_set(DMA_SLAVE, pd->cap_mask);
3129 		dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3130 		dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3131 	}
3132 
3133 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3134 	pd->device_free_chan_resources = pl330_free_chan_resources;
3135 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3136 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3137 	pd->device_tx_status = pl330_tx_status;
3138 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
3139 	pd->device_config = pl330_config;
3140 	pd->device_pause = pl330_pause;
3141 	pd->device_terminate_all = pl330_terminate_all;
3142 	pd->device_issue_pending = pl330_issue_pending;
3143 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3144 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3145 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3146 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3147 	pd->max_burst = PL330_MAX_BURST;
3148 
3149 	ret = dma_async_device_register(pd);
3150 	if (ret) {
3151 		dev_err(&adev->dev, "unable to register DMAC\n");
3152 		goto probe_err3;
3153 	}
3154 
3155 	if (adev->dev.of_node) {
3156 		ret = of_dma_controller_register(adev->dev.of_node,
3157 					 of_dma_pl330_xlate, pl330);
3158 		if (ret) {
3159 			dev_err(&adev->dev,
3160 			"unable to register DMA to the generic DT DMA helpers\n");
3161 		}
3162 	}
3163 
3164 	/*
3165 	 * This is the limit for transfers with a buswidth of 1, larger
3166 	 * buswidths will have larger limits.
3167 	 */
3168 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
3169 	if (ret)
3170 		dev_err(&adev->dev, "unable to set the seg size\n");
3171 
3172 
3173 	init_pl330_debugfs(pl330);
3174 	dev_info(&adev->dev,
3175 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3176 	dev_info(&adev->dev,
3177 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3178 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3179 		pcfg->num_peri, pcfg->num_events);
3180 
3181 	pm_runtime_irq_safe(&adev->dev);
3182 	pm_runtime_use_autosuspend(&adev->dev);
3183 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3184 	pm_runtime_mark_last_busy(&adev->dev);
3185 	pm_runtime_put_autosuspend(&adev->dev);
3186 
3187 	return 0;
3188 probe_err3:
3189 	/* Idle the DMAC */
3190 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3191 			chan.device_node) {
3192 
3193 		/* Remove the channel */
3194 		list_del(&pch->chan.device_node);
3195 
3196 		/* Flush the channel */
3197 		if (pch->thread) {
3198 			pl330_terminate_all(&pch->chan);
3199 			pl330_free_chan_resources(&pch->chan);
3200 		}
3201 	}
3202 probe_err2:
3203 	pl330_del(pl330);
3204 
3205 	if (pl330->rstc_ocp)
3206 		reset_control_assert(pl330->rstc_ocp);
3207 
3208 	if (pl330->rstc)
3209 		reset_control_assert(pl330->rstc);
3210 	return ret;
3211 }
3212 
3213 static void pl330_remove(struct amba_device *adev)
3214 {
3215 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3216 	struct dma_pl330_chan *pch, *_p;
3217 	int i, irq;
3218 
3219 	pm_runtime_get_noresume(pl330->ddma.dev);
3220 
3221 	if (adev->dev.of_node)
3222 		of_dma_controller_free(adev->dev.of_node);
3223 
3224 	for (i = 0; i < AMBA_NR_IRQS; i++) {
3225 		irq = adev->irq[i];
3226 		if (irq)
3227 			devm_free_irq(&adev->dev, irq, pl330);
3228 	}
3229 
3230 	dma_async_device_unregister(&pl330->ddma);
3231 
3232 	/* Idle the DMAC */
3233 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3234 			chan.device_node) {
3235 
3236 		/* Remove the channel */
3237 		list_del(&pch->chan.device_node);
3238 
3239 		/* Flush the channel */
3240 		if (pch->thread) {
3241 			pl330_terminate_all(&pch->chan);
3242 			pl330_free_chan_resources(&pch->chan);
3243 		}
3244 	}
3245 
3246 	pl330_del(pl330);
3247 
3248 	if (pl330->rstc_ocp)
3249 		reset_control_assert(pl330->rstc_ocp);
3250 
3251 	if (pl330->rstc)
3252 		reset_control_assert(pl330->rstc);
3253 }
3254 
3255 static const struct amba_id pl330_ids[] = {
3256 	{
3257 		.id	= 0x00041330,
3258 		.mask	= 0x000fffff,
3259 	},
3260 	{ 0, 0 },
3261 };
3262 
3263 MODULE_DEVICE_TABLE(amba, pl330_ids);
3264 
3265 static struct amba_driver pl330_driver = {
3266 	.drv = {
3267 		.owner = THIS_MODULE,
3268 		.name = "dma-pl330",
3269 		.pm = &pl330_pm,
3270 	},
3271 	.id_table = pl330_ids,
3272 	.probe = pl330_probe,
3273 	.remove = pl330_remove,
3274 };
3275 
3276 module_amba_driver(pl330_driver);
3277 
3278 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3279 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3280 MODULE_LICENSE("GPL");
3281