1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/scatterlist.h> 26 #include <linux/of.h> 27 #include <linux/of_dma.h> 28 #include <linux/err.h> 29 #include <linux/pm_runtime.h> 30 31 #include "dmaengine.h" 32 #define PL330_MAX_CHAN 8 33 #define PL330_MAX_IRQS 32 34 #define PL330_MAX_PERI 32 35 #define PL330_MAX_BURST 16 36 37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0) 38 39 enum pl330_cachectrl { 40 CCTRL0, /* Noncacheable and nonbufferable */ 41 CCTRL1, /* Bufferable only */ 42 CCTRL2, /* Cacheable, but do not allocate */ 43 CCTRL3, /* Cacheable and bufferable, but do not allocate */ 44 INVALID1, /* AWCACHE = 0x1000 */ 45 INVALID2, 46 CCTRL6, /* Cacheable write-through, allocate on writes only */ 47 CCTRL7, /* Cacheable write-back, allocate on writes only */ 48 }; 49 50 enum pl330_byteswap { 51 SWAP_NO, 52 SWAP_2, 53 SWAP_4, 54 SWAP_8, 55 SWAP_16, 56 }; 57 58 /* Register and Bit field Definitions */ 59 #define DS 0x0 60 #define DS_ST_STOP 0x0 61 #define DS_ST_EXEC 0x1 62 #define DS_ST_CMISS 0x2 63 #define DS_ST_UPDTPC 0x3 64 #define DS_ST_WFE 0x4 65 #define DS_ST_ATBRR 0x5 66 #define DS_ST_QBUSY 0x6 67 #define DS_ST_WFP 0x7 68 #define DS_ST_KILL 0x8 69 #define DS_ST_CMPLT 0x9 70 #define DS_ST_FLTCMP 0xe 71 #define DS_ST_FAULT 0xf 72 73 #define DPC 0x4 74 #define INTEN 0x20 75 #define ES 0x24 76 #define INTSTATUS 0x28 77 #define INTCLR 0x2c 78 #define FSM 0x30 79 #define FSC 0x34 80 #define FTM 0x38 81 82 #define _FTC 0x40 83 #define FTC(n) (_FTC + (n)*0x4) 84 85 #define _CS 0x100 86 #define CS(n) (_CS + (n)*0x8) 87 #define CS_CNS (1 << 21) 88 89 #define _CPC 0x104 90 #define CPC(n) (_CPC + (n)*0x8) 91 92 #define _SA 0x400 93 #define SA(n) (_SA + (n)*0x20) 94 95 #define _DA 0x404 96 #define DA(n) (_DA + (n)*0x20) 97 98 #define _CC 0x408 99 #define CC(n) (_CC + (n)*0x20) 100 101 #define CC_SRCINC (1 << 0) 102 #define CC_DSTINC (1 << 14) 103 #define CC_SRCPRI (1 << 8) 104 #define CC_DSTPRI (1 << 22) 105 #define CC_SRCNS (1 << 9) 106 #define CC_DSTNS (1 << 23) 107 #define CC_SRCIA (1 << 10) 108 #define CC_DSTIA (1 << 24) 109 #define CC_SRCBRSTLEN_SHFT 4 110 #define CC_DSTBRSTLEN_SHFT 18 111 #define CC_SRCBRSTSIZE_SHFT 1 112 #define CC_DSTBRSTSIZE_SHFT 15 113 #define CC_SRCCCTRL_SHFT 11 114 #define CC_SRCCCTRL_MASK 0x7 115 #define CC_DSTCCTRL_SHFT 25 116 #define CC_DRCCCTRL_MASK 0x7 117 #define CC_SWAP_SHFT 28 118 119 #define _LC0 0x40c 120 #define LC0(n) (_LC0 + (n)*0x20) 121 122 #define _LC1 0x410 123 #define LC1(n) (_LC1 + (n)*0x20) 124 125 #define DBGSTATUS 0xd00 126 #define DBG_BUSY (1 << 0) 127 128 #define DBGCMD 0xd04 129 #define DBGINST0 0xd08 130 #define DBGINST1 0xd0c 131 132 #define CR0 0xe00 133 #define CR1 0xe04 134 #define CR2 0xe08 135 #define CR3 0xe0c 136 #define CR4 0xe10 137 #define CRD 0xe14 138 139 #define PERIPH_ID 0xfe0 140 #define PERIPH_REV_SHIFT 20 141 #define PERIPH_REV_MASK 0xf 142 #define PERIPH_REV_R0P0 0 143 #define PERIPH_REV_R1P0 1 144 #define PERIPH_REV_R1P1 2 145 146 #define CR0_PERIPH_REQ_SET (1 << 0) 147 #define CR0_BOOT_EN_SET (1 << 1) 148 #define CR0_BOOT_MAN_NS (1 << 2) 149 #define CR0_NUM_CHANS_SHIFT 4 150 #define CR0_NUM_CHANS_MASK 0x7 151 #define CR0_NUM_PERIPH_SHIFT 12 152 #define CR0_NUM_PERIPH_MASK 0x1f 153 #define CR0_NUM_EVENTS_SHIFT 17 154 #define CR0_NUM_EVENTS_MASK 0x1f 155 156 #define CR1_ICACHE_LEN_SHIFT 0 157 #define CR1_ICACHE_LEN_MASK 0x7 158 #define CR1_NUM_ICACHELINES_SHIFT 4 159 #define CR1_NUM_ICACHELINES_MASK 0xf 160 161 #define CRD_DATA_WIDTH_SHIFT 0 162 #define CRD_DATA_WIDTH_MASK 0x7 163 #define CRD_WR_CAP_SHIFT 4 164 #define CRD_WR_CAP_MASK 0x7 165 #define CRD_WR_Q_DEP_SHIFT 8 166 #define CRD_WR_Q_DEP_MASK 0xf 167 #define CRD_RD_CAP_SHIFT 12 168 #define CRD_RD_CAP_MASK 0x7 169 #define CRD_RD_Q_DEP_SHIFT 16 170 #define CRD_RD_Q_DEP_MASK 0xf 171 #define CRD_DATA_BUFF_SHIFT 20 172 #define CRD_DATA_BUFF_MASK 0x3ff 173 174 #define PART 0x330 175 #define DESIGNER 0x41 176 #define REVISION 0x0 177 #define INTEG_CFG 0x0 178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 179 180 #define PL330_STATE_STOPPED (1 << 0) 181 #define PL330_STATE_EXECUTING (1 << 1) 182 #define PL330_STATE_WFE (1 << 2) 183 #define PL330_STATE_FAULTING (1 << 3) 184 #define PL330_STATE_COMPLETING (1 << 4) 185 #define PL330_STATE_WFP (1 << 5) 186 #define PL330_STATE_KILLING (1 << 6) 187 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 188 #define PL330_STATE_CACHEMISS (1 << 8) 189 #define PL330_STATE_UPDTPC (1 << 9) 190 #define PL330_STATE_ATBARRIER (1 << 10) 191 #define PL330_STATE_QUEUEBUSY (1 << 11) 192 #define PL330_STATE_INVALID (1 << 15) 193 194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 195 | PL330_STATE_WFE | PL330_STATE_FAULTING) 196 197 #define CMD_DMAADDH 0x54 198 #define CMD_DMAEND 0x00 199 #define CMD_DMAFLUSHP 0x35 200 #define CMD_DMAGO 0xa0 201 #define CMD_DMALD 0x04 202 #define CMD_DMALDP 0x25 203 #define CMD_DMALP 0x20 204 #define CMD_DMALPEND 0x28 205 #define CMD_DMAKILL 0x01 206 #define CMD_DMAMOV 0xbc 207 #define CMD_DMANOP 0x18 208 #define CMD_DMARMB 0x12 209 #define CMD_DMASEV 0x34 210 #define CMD_DMAST 0x08 211 #define CMD_DMASTP 0x29 212 #define CMD_DMASTZ 0x0c 213 #define CMD_DMAWFE 0x36 214 #define CMD_DMAWFP 0x30 215 #define CMD_DMAWMB 0x13 216 217 #define SZ_DMAADDH 3 218 #define SZ_DMAEND 1 219 #define SZ_DMAFLUSHP 2 220 #define SZ_DMALD 1 221 #define SZ_DMALDP 2 222 #define SZ_DMALP 2 223 #define SZ_DMALPEND 2 224 #define SZ_DMAKILL 1 225 #define SZ_DMAMOV 6 226 #define SZ_DMANOP 1 227 #define SZ_DMARMB 1 228 #define SZ_DMASEV 2 229 #define SZ_DMAST 1 230 #define SZ_DMASTP 2 231 #define SZ_DMASTZ 1 232 #define SZ_DMAWFE 2 233 #define SZ_DMAWFP 2 234 #define SZ_DMAWMB 1 235 #define SZ_DMAGO 6 236 237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 239 240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 242 243 /* 244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 245 * at 1byte/burst for P<->M and M<->M respectively. 246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 247 * should be enough for P<->M and M<->M respectively. 248 */ 249 #define MCODE_BUFF_PER_REQ 256 250 251 /* Use this _only_ to wait on transient states */ 252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 253 254 #ifdef PL330_DEBUG_MCGEN 255 static unsigned cmd_line; 256 #define PL330_DBGCMD_DUMP(off, x...) do { \ 257 printk("%x:", cmd_line); \ 258 printk(x); \ 259 cmd_line += off; \ 260 } while (0) 261 #define PL330_DBGMC_START(addr) (cmd_line = addr) 262 #else 263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 264 #define PL330_DBGMC_START(addr) do {} while (0) 265 #endif 266 267 /* The number of default descriptors */ 268 269 #define NR_DEFAULT_DESC 16 270 271 /* Delay for runtime PM autosuspend, ms */ 272 #define PL330_AUTOSUSPEND_DELAY 20 273 274 /* Populated by the PL330 core driver for DMA API driver's info */ 275 struct pl330_config { 276 u32 periph_id; 277 #define DMAC_MODE_NS (1 << 0) 278 unsigned int mode; 279 unsigned int data_bus_width:10; /* In number of bits */ 280 unsigned int data_buf_dep:11; 281 unsigned int num_chan:4; 282 unsigned int num_peri:6; 283 u32 peri_ns; 284 unsigned int num_events:6; 285 u32 irq_ns; 286 }; 287 288 /** 289 * Request Configuration. 290 * The PL330 core does not modify this and uses the last 291 * working configuration if the request doesn't provide any. 292 * 293 * The Client may want to provide this info only for the 294 * first request and a request with new settings. 295 */ 296 struct pl330_reqcfg { 297 /* Address Incrementing */ 298 unsigned dst_inc:1; 299 unsigned src_inc:1; 300 301 /* 302 * For now, the SRC & DST protection levels 303 * and burst size/length are assumed same. 304 */ 305 bool nonsecure; 306 bool privileged; 307 bool insnaccess; 308 unsigned brst_len:5; 309 unsigned brst_size:3; /* in power of 2 */ 310 311 enum pl330_cachectrl dcctl; 312 enum pl330_cachectrl scctl; 313 enum pl330_byteswap swap; 314 struct pl330_config *pcfg; 315 }; 316 317 /* 318 * One cycle of DMAC operation. 319 * There may be more than one xfer in a request. 320 */ 321 struct pl330_xfer { 322 u32 src_addr; 323 u32 dst_addr; 324 /* Size to xfer */ 325 u32 bytes; 326 }; 327 328 /* The xfer callbacks are made with one of these arguments. */ 329 enum pl330_op_err { 330 /* The all xfers in the request were success. */ 331 PL330_ERR_NONE, 332 /* If req aborted due to global error. */ 333 PL330_ERR_ABORT, 334 /* If req failed due to problem with Channel. */ 335 PL330_ERR_FAIL, 336 }; 337 338 enum dmamov_dst { 339 SAR = 0, 340 CCR, 341 DAR, 342 }; 343 344 enum pl330_dst { 345 SRC = 0, 346 DST, 347 }; 348 349 enum pl330_cond { 350 SINGLE, 351 BURST, 352 ALWAYS, 353 }; 354 355 struct dma_pl330_desc; 356 357 struct _pl330_req { 358 u32 mc_bus; 359 void *mc_cpu; 360 struct dma_pl330_desc *desc; 361 }; 362 363 /* ToBeDone for tasklet */ 364 struct _pl330_tbd { 365 bool reset_dmac; 366 bool reset_mngr; 367 u8 reset_chan; 368 }; 369 370 /* A DMAC Thread */ 371 struct pl330_thread { 372 u8 id; 373 int ev; 374 /* If the channel is not yet acquired by any client */ 375 bool free; 376 /* Parent DMAC */ 377 struct pl330_dmac *dmac; 378 /* Only two at a time */ 379 struct _pl330_req req[2]; 380 /* Index of the last enqueued request */ 381 unsigned lstenq; 382 /* Index of the last submitted request or -1 if the DMA is stopped */ 383 int req_running; 384 }; 385 386 enum pl330_dmac_state { 387 UNINIT, 388 INIT, 389 DYING, 390 }; 391 392 enum desc_status { 393 /* In the DMAC pool */ 394 FREE, 395 /* 396 * Allocated to some channel during prep_xxx 397 * Also may be sitting on the work_list. 398 */ 399 PREP, 400 /* 401 * Sitting on the work_list and already submitted 402 * to the PL330 core. Not more than two descriptors 403 * of a channel can be BUSY at any time. 404 */ 405 BUSY, 406 /* 407 * Sitting on the channel work_list but xfer done 408 * by PL330 core 409 */ 410 DONE, 411 }; 412 413 struct dma_pl330_chan { 414 /* Schedule desc completion */ 415 struct tasklet_struct task; 416 417 /* DMA-Engine Channel */ 418 struct dma_chan chan; 419 420 /* List of submitted descriptors */ 421 struct list_head submitted_list; 422 /* List of issued descriptors */ 423 struct list_head work_list; 424 /* List of completed descriptors */ 425 struct list_head completed_list; 426 427 /* Pointer to the DMAC that manages this channel, 428 * NULL if the channel is available to be acquired. 429 * As the parent, this DMAC also provides descriptors 430 * to the channel. 431 */ 432 struct pl330_dmac *dmac; 433 434 /* To protect channel manipulation */ 435 spinlock_t lock; 436 437 /* 438 * Hardware channel thread of PL330 DMAC. NULL if the channel is 439 * available. 440 */ 441 struct pl330_thread *thread; 442 443 /* For D-to-M and M-to-D channels */ 444 int burst_sz; /* the peripheral fifo width */ 445 int burst_len; /* the number of burst */ 446 phys_addr_t fifo_addr; 447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */ 448 dma_addr_t fifo_dma; 449 enum dma_data_direction dir; 450 451 /* for cyclic capability */ 452 bool cyclic; 453 454 /* for runtime pm tracking */ 455 bool active; 456 }; 457 458 struct pl330_dmac { 459 /* DMA-Engine Device */ 460 struct dma_device ddma; 461 462 /* Holds info about sg limitations */ 463 struct device_dma_parameters dma_parms; 464 465 /* Pool of descriptors available for the DMAC's channels */ 466 struct list_head desc_pool; 467 /* To protect desc_pool manipulation */ 468 spinlock_t pool_lock; 469 470 /* Size of MicroCode buffers for each channel. */ 471 unsigned mcbufsz; 472 /* ioremap'ed address of PL330 registers. */ 473 void __iomem *base; 474 /* Populated by the PL330 core driver during pl330_add */ 475 struct pl330_config pcfg; 476 477 spinlock_t lock; 478 /* Maximum possible events/irqs */ 479 int events[32]; 480 /* BUS address of MicroCode buffer */ 481 dma_addr_t mcode_bus; 482 /* CPU address of MicroCode buffer */ 483 void *mcode_cpu; 484 /* List of all Channel threads */ 485 struct pl330_thread *channels; 486 /* Pointer to the MANAGER thread */ 487 struct pl330_thread *manager; 488 /* To handle bad news in interrupt */ 489 struct tasklet_struct tasks; 490 struct _pl330_tbd dmac_tbd; 491 /* State of DMAC operation */ 492 enum pl330_dmac_state state; 493 /* Holds list of reqs with due callbacks */ 494 struct list_head req_done; 495 496 /* Peripheral channels connected to this DMAC */ 497 unsigned int num_peripherals; 498 struct dma_pl330_chan *peripherals; /* keep at end */ 499 int quirks; 500 }; 501 502 static struct pl330_of_quirks { 503 char *quirk; 504 int id; 505 } of_quirks[] = { 506 { 507 .quirk = "arm,pl330-broken-no-flushp", 508 .id = PL330_QUIRK_BROKEN_NO_FLUSHP, 509 } 510 }; 511 512 struct dma_pl330_desc { 513 /* To attach to a queue as child */ 514 struct list_head node; 515 516 /* Descriptor for the DMA Engine API */ 517 struct dma_async_tx_descriptor txd; 518 519 /* Xfer for PL330 core */ 520 struct pl330_xfer px; 521 522 struct pl330_reqcfg rqcfg; 523 524 enum desc_status status; 525 526 int bytes_requested; 527 bool last; 528 529 /* The channel which currently holds this desc */ 530 struct dma_pl330_chan *pchan; 531 532 enum dma_transfer_direction rqtype; 533 /* Index of peripheral for the xfer. */ 534 unsigned peri:5; 535 /* Hook to attach to DMAC's list of reqs with due callback */ 536 struct list_head rqd; 537 }; 538 539 struct _xfer_spec { 540 u32 ccr; 541 struct dma_pl330_desc *desc; 542 }; 543 544 static inline bool _queue_full(struct pl330_thread *thrd) 545 { 546 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL; 547 } 548 549 static inline bool is_manager(struct pl330_thread *thrd) 550 { 551 return thrd->dmac->manager == thrd; 552 } 553 554 /* If manager of the thread is in Non-Secure mode */ 555 static inline bool _manager_ns(struct pl330_thread *thrd) 556 { 557 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false; 558 } 559 560 static inline u32 get_revision(u32 periph_id) 561 { 562 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 563 } 564 565 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 566 { 567 if (dry_run) 568 return SZ_DMAEND; 569 570 buf[0] = CMD_DMAEND; 571 572 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 573 574 return SZ_DMAEND; 575 } 576 577 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 578 { 579 if (dry_run) 580 return SZ_DMAFLUSHP; 581 582 buf[0] = CMD_DMAFLUSHP; 583 584 peri &= 0x1f; 585 peri <<= 3; 586 buf[1] = peri; 587 588 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 589 590 return SZ_DMAFLUSHP; 591 } 592 593 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 594 { 595 if (dry_run) 596 return SZ_DMALD; 597 598 buf[0] = CMD_DMALD; 599 600 if (cond == SINGLE) 601 buf[0] |= (0 << 1) | (1 << 0); 602 else if (cond == BURST) 603 buf[0] |= (1 << 1) | (1 << 0); 604 605 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 606 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 607 608 return SZ_DMALD; 609 } 610 611 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 612 enum pl330_cond cond, u8 peri) 613 { 614 if (dry_run) 615 return SZ_DMALDP; 616 617 buf[0] = CMD_DMALDP; 618 619 if (cond == BURST) 620 buf[0] |= (1 << 1); 621 622 peri &= 0x1f; 623 peri <<= 3; 624 buf[1] = peri; 625 626 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 627 cond == SINGLE ? 'S' : 'B', peri >> 3); 628 629 return SZ_DMALDP; 630 } 631 632 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 633 unsigned loop, u8 cnt) 634 { 635 if (dry_run) 636 return SZ_DMALP; 637 638 buf[0] = CMD_DMALP; 639 640 if (loop) 641 buf[0] |= (1 << 1); 642 643 cnt--; /* DMAC increments by 1 internally */ 644 buf[1] = cnt; 645 646 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 647 648 return SZ_DMALP; 649 } 650 651 struct _arg_LPEND { 652 enum pl330_cond cond; 653 bool forever; 654 unsigned loop; 655 u8 bjump; 656 }; 657 658 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 659 const struct _arg_LPEND *arg) 660 { 661 enum pl330_cond cond = arg->cond; 662 bool forever = arg->forever; 663 unsigned loop = arg->loop; 664 u8 bjump = arg->bjump; 665 666 if (dry_run) 667 return SZ_DMALPEND; 668 669 buf[0] = CMD_DMALPEND; 670 671 if (loop) 672 buf[0] |= (1 << 2); 673 674 if (!forever) 675 buf[0] |= (1 << 4); 676 677 if (cond == SINGLE) 678 buf[0] |= (0 << 1) | (1 << 0); 679 else if (cond == BURST) 680 buf[0] |= (1 << 1) | (1 << 0); 681 682 buf[1] = bjump; 683 684 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 685 forever ? "FE" : "END", 686 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 687 loop ? '1' : '0', 688 bjump); 689 690 return SZ_DMALPEND; 691 } 692 693 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 694 { 695 if (dry_run) 696 return SZ_DMAKILL; 697 698 buf[0] = CMD_DMAKILL; 699 700 return SZ_DMAKILL; 701 } 702 703 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 704 enum dmamov_dst dst, u32 val) 705 { 706 if (dry_run) 707 return SZ_DMAMOV; 708 709 buf[0] = CMD_DMAMOV; 710 buf[1] = dst; 711 buf[2] = val; 712 buf[3] = val >> 8; 713 buf[4] = val >> 16; 714 buf[5] = val >> 24; 715 716 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 717 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 718 719 return SZ_DMAMOV; 720 } 721 722 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 723 { 724 if (dry_run) 725 return SZ_DMARMB; 726 727 buf[0] = CMD_DMARMB; 728 729 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 730 731 return SZ_DMARMB; 732 } 733 734 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 735 { 736 if (dry_run) 737 return SZ_DMASEV; 738 739 buf[0] = CMD_DMASEV; 740 741 ev &= 0x1f; 742 ev <<= 3; 743 buf[1] = ev; 744 745 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 746 747 return SZ_DMASEV; 748 } 749 750 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 751 { 752 if (dry_run) 753 return SZ_DMAST; 754 755 buf[0] = CMD_DMAST; 756 757 if (cond == SINGLE) 758 buf[0] |= (0 << 1) | (1 << 0); 759 else if (cond == BURST) 760 buf[0] |= (1 << 1) | (1 << 0); 761 762 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 763 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 764 765 return SZ_DMAST; 766 } 767 768 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 769 enum pl330_cond cond, u8 peri) 770 { 771 if (dry_run) 772 return SZ_DMASTP; 773 774 buf[0] = CMD_DMASTP; 775 776 if (cond == BURST) 777 buf[0] |= (1 << 1); 778 779 peri &= 0x1f; 780 peri <<= 3; 781 buf[1] = peri; 782 783 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 784 cond == SINGLE ? 'S' : 'B', peri >> 3); 785 786 return SZ_DMASTP; 787 } 788 789 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 790 enum pl330_cond cond, u8 peri) 791 { 792 if (dry_run) 793 return SZ_DMAWFP; 794 795 buf[0] = CMD_DMAWFP; 796 797 if (cond == SINGLE) 798 buf[0] |= (0 << 1) | (0 << 0); 799 else if (cond == BURST) 800 buf[0] |= (1 << 1) | (0 << 0); 801 else 802 buf[0] |= (0 << 1) | (1 << 0); 803 804 peri &= 0x1f; 805 peri <<= 3; 806 buf[1] = peri; 807 808 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 809 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 810 811 return SZ_DMAWFP; 812 } 813 814 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 815 { 816 if (dry_run) 817 return SZ_DMAWMB; 818 819 buf[0] = CMD_DMAWMB; 820 821 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 822 823 return SZ_DMAWMB; 824 } 825 826 struct _arg_GO { 827 u8 chan; 828 u32 addr; 829 unsigned ns; 830 }; 831 832 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 833 const struct _arg_GO *arg) 834 { 835 u8 chan = arg->chan; 836 u32 addr = arg->addr; 837 unsigned ns = arg->ns; 838 839 if (dry_run) 840 return SZ_DMAGO; 841 842 buf[0] = CMD_DMAGO; 843 buf[0] |= (ns << 1); 844 buf[1] = chan & 0x7; 845 buf[2] = addr; 846 buf[3] = addr >> 8; 847 buf[4] = addr >> 16; 848 buf[5] = addr >> 24; 849 850 return SZ_DMAGO; 851 } 852 853 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 854 855 /* Returns Time-Out */ 856 static bool _until_dmac_idle(struct pl330_thread *thrd) 857 { 858 void __iomem *regs = thrd->dmac->base; 859 unsigned long loops = msecs_to_loops(5); 860 861 do { 862 /* Until Manager is Idle */ 863 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 864 break; 865 866 cpu_relax(); 867 } while (--loops); 868 869 if (!loops) 870 return true; 871 872 return false; 873 } 874 875 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 876 u8 insn[], bool as_manager) 877 { 878 void __iomem *regs = thrd->dmac->base; 879 u32 val; 880 881 val = (insn[0] << 16) | (insn[1] << 24); 882 if (!as_manager) { 883 val |= (1 << 0); 884 val |= (thrd->id << 8); /* Channel Number */ 885 } 886 writel(val, regs + DBGINST0); 887 888 val = le32_to_cpu(*((__le32 *)&insn[2])); 889 writel(val, regs + DBGINST1); 890 891 /* If timed out due to halted state-machine */ 892 if (_until_dmac_idle(thrd)) { 893 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n"); 894 return; 895 } 896 897 /* Get going */ 898 writel(0, regs + DBGCMD); 899 } 900 901 static inline u32 _state(struct pl330_thread *thrd) 902 { 903 void __iomem *regs = thrd->dmac->base; 904 u32 val; 905 906 if (is_manager(thrd)) 907 val = readl(regs + DS) & 0xf; 908 else 909 val = readl(regs + CS(thrd->id)) & 0xf; 910 911 switch (val) { 912 case DS_ST_STOP: 913 return PL330_STATE_STOPPED; 914 case DS_ST_EXEC: 915 return PL330_STATE_EXECUTING; 916 case DS_ST_CMISS: 917 return PL330_STATE_CACHEMISS; 918 case DS_ST_UPDTPC: 919 return PL330_STATE_UPDTPC; 920 case DS_ST_WFE: 921 return PL330_STATE_WFE; 922 case DS_ST_FAULT: 923 return PL330_STATE_FAULTING; 924 case DS_ST_ATBRR: 925 if (is_manager(thrd)) 926 return PL330_STATE_INVALID; 927 else 928 return PL330_STATE_ATBARRIER; 929 case DS_ST_QBUSY: 930 if (is_manager(thrd)) 931 return PL330_STATE_INVALID; 932 else 933 return PL330_STATE_QUEUEBUSY; 934 case DS_ST_WFP: 935 if (is_manager(thrd)) 936 return PL330_STATE_INVALID; 937 else 938 return PL330_STATE_WFP; 939 case DS_ST_KILL: 940 if (is_manager(thrd)) 941 return PL330_STATE_INVALID; 942 else 943 return PL330_STATE_KILLING; 944 case DS_ST_CMPLT: 945 if (is_manager(thrd)) 946 return PL330_STATE_INVALID; 947 else 948 return PL330_STATE_COMPLETING; 949 case DS_ST_FLTCMP: 950 if (is_manager(thrd)) 951 return PL330_STATE_INVALID; 952 else 953 return PL330_STATE_FAULT_COMPLETING; 954 default: 955 return PL330_STATE_INVALID; 956 } 957 } 958 959 static void _stop(struct pl330_thread *thrd) 960 { 961 void __iomem *regs = thrd->dmac->base; 962 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 963 964 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 965 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 966 967 /* Return if nothing needs to be done */ 968 if (_state(thrd) == PL330_STATE_COMPLETING 969 || _state(thrd) == PL330_STATE_KILLING 970 || _state(thrd) == PL330_STATE_STOPPED) 971 return; 972 973 _emit_KILL(0, insn); 974 975 /* Stop generating interrupts for SEV */ 976 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 977 978 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 979 } 980 981 /* Start doing req 'idx' of thread 'thrd' */ 982 static bool _trigger(struct pl330_thread *thrd) 983 { 984 void __iomem *regs = thrd->dmac->base; 985 struct _pl330_req *req; 986 struct dma_pl330_desc *desc; 987 struct _arg_GO go; 988 unsigned ns; 989 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 990 int idx; 991 992 /* Return if already ACTIVE */ 993 if (_state(thrd) != PL330_STATE_STOPPED) 994 return true; 995 996 idx = 1 - thrd->lstenq; 997 if (thrd->req[idx].desc != NULL) { 998 req = &thrd->req[idx]; 999 } else { 1000 idx = thrd->lstenq; 1001 if (thrd->req[idx].desc != NULL) 1002 req = &thrd->req[idx]; 1003 else 1004 req = NULL; 1005 } 1006 1007 /* Return if no request */ 1008 if (!req) 1009 return true; 1010 1011 /* Return if req is running */ 1012 if (idx == thrd->req_running) 1013 return true; 1014 1015 desc = req->desc; 1016 1017 ns = desc->rqcfg.nonsecure ? 1 : 0; 1018 1019 /* See 'Abort Sources' point-4 at Page 2-25 */ 1020 if (_manager_ns(thrd) && !ns) 1021 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n", 1022 __func__, __LINE__); 1023 1024 go.chan = thrd->id; 1025 go.addr = req->mc_bus; 1026 go.ns = ns; 1027 _emit_GO(0, insn, &go); 1028 1029 /* Set to generate interrupts for SEV */ 1030 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1031 1032 /* Only manager can execute GO */ 1033 _execute_DBGINSN(thrd, insn, true); 1034 1035 thrd->req_running = idx; 1036 1037 return true; 1038 } 1039 1040 static bool _start(struct pl330_thread *thrd) 1041 { 1042 switch (_state(thrd)) { 1043 case PL330_STATE_FAULT_COMPLETING: 1044 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1045 1046 if (_state(thrd) == PL330_STATE_KILLING) 1047 UNTIL(thrd, PL330_STATE_STOPPED) 1048 1049 case PL330_STATE_FAULTING: 1050 _stop(thrd); 1051 1052 case PL330_STATE_KILLING: 1053 case PL330_STATE_COMPLETING: 1054 UNTIL(thrd, PL330_STATE_STOPPED) 1055 1056 case PL330_STATE_STOPPED: 1057 return _trigger(thrd); 1058 1059 case PL330_STATE_WFP: 1060 case PL330_STATE_QUEUEBUSY: 1061 case PL330_STATE_ATBARRIER: 1062 case PL330_STATE_UPDTPC: 1063 case PL330_STATE_CACHEMISS: 1064 case PL330_STATE_EXECUTING: 1065 return true; 1066 1067 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1068 default: 1069 return false; 1070 } 1071 } 1072 1073 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1074 const struct _xfer_spec *pxs, int cyc) 1075 { 1076 int off = 0; 1077 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg; 1078 1079 /* check lock-up free version */ 1080 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1081 while (cyc--) { 1082 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1083 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1084 } 1085 } else { 1086 while (cyc--) { 1087 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1088 off += _emit_RMB(dry_run, &buf[off]); 1089 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1090 off += _emit_WMB(dry_run, &buf[off]); 1091 } 1092 } 1093 1094 return off; 1095 } 1096 1097 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run, 1098 u8 buf[], const struct _xfer_spec *pxs, 1099 int cyc) 1100 { 1101 int off = 0; 1102 enum pl330_cond cond; 1103 1104 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1105 cond = BURST; 1106 else 1107 cond = SINGLE; 1108 1109 while (cyc--) { 1110 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1111 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri); 1112 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1113 1114 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1115 off += _emit_FLUSHP(dry_run, &buf[off], 1116 pxs->desc->peri); 1117 } 1118 1119 return off; 1120 } 1121 1122 static inline int _ldst_memtodev(struct pl330_dmac *pl330, 1123 unsigned dry_run, u8 buf[], 1124 const struct _xfer_spec *pxs, int cyc) 1125 { 1126 int off = 0; 1127 enum pl330_cond cond; 1128 1129 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) 1130 cond = BURST; 1131 else 1132 cond = SINGLE; 1133 1134 while (cyc--) { 1135 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri); 1136 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1137 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri); 1138 1139 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)) 1140 off += _emit_FLUSHP(dry_run, &buf[off], 1141 pxs->desc->peri); 1142 } 1143 1144 return off; 1145 } 1146 1147 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1148 const struct _xfer_spec *pxs, int cyc) 1149 { 1150 int off = 0; 1151 1152 switch (pxs->desc->rqtype) { 1153 case DMA_MEM_TO_DEV: 1154 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc); 1155 break; 1156 case DMA_DEV_TO_MEM: 1157 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc); 1158 break; 1159 case DMA_MEM_TO_MEM: 1160 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1161 break; 1162 default: 1163 off += 0x40000000; /* Scare off the Client */ 1164 break; 1165 } 1166 1167 return off; 1168 } 1169 1170 /* Returns bytes consumed and updates bursts */ 1171 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[], 1172 unsigned long *bursts, const struct _xfer_spec *pxs) 1173 { 1174 int cyc, cycmax, szlp, szlpend, szbrst, off; 1175 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1176 struct _arg_LPEND lpend; 1177 1178 if (*bursts == 1) 1179 return _bursts(pl330, dry_run, buf, pxs, 1); 1180 1181 /* Max iterations possible in DMALP is 256 */ 1182 if (*bursts >= 256*256) { 1183 lcnt1 = 256; 1184 lcnt0 = 256; 1185 cyc = *bursts / lcnt1 / lcnt0; 1186 } else if (*bursts > 256) { 1187 lcnt1 = 256; 1188 lcnt0 = *bursts / lcnt1; 1189 cyc = 1; 1190 } else { 1191 lcnt1 = *bursts; 1192 lcnt0 = 0; 1193 cyc = 1; 1194 } 1195 1196 szlp = _emit_LP(1, buf, 0, 0); 1197 szbrst = _bursts(pl330, 1, buf, pxs, 1); 1198 1199 lpend.cond = ALWAYS; 1200 lpend.forever = false; 1201 lpend.loop = 0; 1202 lpend.bjump = 0; 1203 szlpend = _emit_LPEND(1, buf, &lpend); 1204 1205 if (lcnt0) { 1206 szlp *= 2; 1207 szlpend *= 2; 1208 } 1209 1210 /* 1211 * Max bursts that we can unroll due to limit on the 1212 * size of backward jump that can be encoded in DMALPEND 1213 * which is 8-bits and hence 255 1214 */ 1215 cycmax = (255 - (szlp + szlpend)) / szbrst; 1216 1217 cyc = (cycmax < cyc) ? cycmax : cyc; 1218 1219 off = 0; 1220 1221 if (lcnt0) { 1222 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1223 ljmp0 = off; 1224 } 1225 1226 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1227 ljmp1 = off; 1228 1229 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc); 1230 1231 lpend.cond = ALWAYS; 1232 lpend.forever = false; 1233 lpend.loop = 1; 1234 lpend.bjump = off - ljmp1; 1235 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1236 1237 if (lcnt0) { 1238 lpend.cond = ALWAYS; 1239 lpend.forever = false; 1240 lpend.loop = 0; 1241 lpend.bjump = off - ljmp0; 1242 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1243 } 1244 1245 *bursts = lcnt1 * cyc; 1246 if (lcnt0) 1247 *bursts *= lcnt0; 1248 1249 return off; 1250 } 1251 1252 static inline int _setup_loops(struct pl330_dmac *pl330, 1253 unsigned dry_run, u8 buf[], 1254 const struct _xfer_spec *pxs) 1255 { 1256 struct pl330_xfer *x = &pxs->desc->px; 1257 u32 ccr = pxs->ccr; 1258 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1259 int off = 0; 1260 1261 while (bursts) { 1262 c = bursts; 1263 off += _loop(pl330, dry_run, &buf[off], &c, pxs); 1264 bursts -= c; 1265 } 1266 1267 return off; 1268 } 1269 1270 static inline int _setup_xfer(struct pl330_dmac *pl330, 1271 unsigned dry_run, u8 buf[], 1272 const struct _xfer_spec *pxs) 1273 { 1274 struct pl330_xfer *x = &pxs->desc->px; 1275 int off = 0; 1276 1277 /* DMAMOV SAR, x->src_addr */ 1278 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1279 /* DMAMOV DAR, x->dst_addr */ 1280 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1281 1282 /* Setup Loop(s) */ 1283 off += _setup_loops(pl330, dry_run, &buf[off], pxs); 1284 1285 return off; 1286 } 1287 1288 /* 1289 * A req is a sequence of one or more xfer units. 1290 * Returns the number of bytes taken to setup the MC for the req. 1291 */ 1292 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run, 1293 struct pl330_thread *thrd, unsigned index, 1294 struct _xfer_spec *pxs) 1295 { 1296 struct _pl330_req *req = &thrd->req[index]; 1297 struct pl330_xfer *x; 1298 u8 *buf = req->mc_cpu; 1299 int off = 0; 1300 1301 PL330_DBGMC_START(req->mc_bus); 1302 1303 /* DMAMOV CCR, ccr */ 1304 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1305 1306 x = &pxs->desc->px; 1307 /* Error if xfer length is not aligned at burst size */ 1308 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1309 return -EINVAL; 1310 1311 off += _setup_xfer(pl330, dry_run, &buf[off], pxs); 1312 1313 /* DMASEV peripheral/event */ 1314 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1315 /* DMAEND */ 1316 off += _emit_END(dry_run, &buf[off]); 1317 1318 return off; 1319 } 1320 1321 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1322 { 1323 u32 ccr = 0; 1324 1325 if (rqc->src_inc) 1326 ccr |= CC_SRCINC; 1327 1328 if (rqc->dst_inc) 1329 ccr |= CC_DSTINC; 1330 1331 /* We set same protection levels for Src and DST for now */ 1332 if (rqc->privileged) 1333 ccr |= CC_SRCPRI | CC_DSTPRI; 1334 if (rqc->nonsecure) 1335 ccr |= CC_SRCNS | CC_DSTNS; 1336 if (rqc->insnaccess) 1337 ccr |= CC_SRCIA | CC_DSTIA; 1338 1339 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1340 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1341 1342 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1343 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1344 1345 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1346 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1347 1348 ccr |= (rqc->swap << CC_SWAP_SHFT); 1349 1350 return ccr; 1351 } 1352 1353 /* 1354 * Submit a list of xfers after which the client wants notification. 1355 * Client is not notified after each xfer unit, just once after all 1356 * xfer units are done or some error occurs. 1357 */ 1358 static int pl330_submit_req(struct pl330_thread *thrd, 1359 struct dma_pl330_desc *desc) 1360 { 1361 struct pl330_dmac *pl330 = thrd->dmac; 1362 struct _xfer_spec xs; 1363 unsigned long flags; 1364 unsigned idx; 1365 u32 ccr; 1366 int ret = 0; 1367 1368 if (pl330->state == DYING 1369 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1370 dev_info(thrd->dmac->ddma.dev, "%s:%d\n", 1371 __func__, __LINE__); 1372 return -EAGAIN; 1373 } 1374 1375 /* If request for non-existing peripheral */ 1376 if (desc->rqtype != DMA_MEM_TO_MEM && 1377 desc->peri >= pl330->pcfg.num_peri) { 1378 dev_info(thrd->dmac->ddma.dev, 1379 "%s:%d Invalid peripheral(%u)!\n", 1380 __func__, __LINE__, desc->peri); 1381 return -EINVAL; 1382 } 1383 1384 spin_lock_irqsave(&pl330->lock, flags); 1385 1386 if (_queue_full(thrd)) { 1387 ret = -EAGAIN; 1388 goto xfer_exit; 1389 } 1390 1391 /* Prefer Secure Channel */ 1392 if (!_manager_ns(thrd)) 1393 desc->rqcfg.nonsecure = 0; 1394 else 1395 desc->rqcfg.nonsecure = 1; 1396 1397 ccr = _prepare_ccr(&desc->rqcfg); 1398 1399 idx = thrd->req[0].desc == NULL ? 0 : 1; 1400 1401 xs.ccr = ccr; 1402 xs.desc = desc; 1403 1404 /* First dry run to check if req is acceptable */ 1405 ret = _setup_req(pl330, 1, thrd, idx, &xs); 1406 if (ret < 0) 1407 goto xfer_exit; 1408 1409 if (ret > pl330->mcbufsz / 2) { 1410 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n", 1411 __func__, __LINE__, ret, pl330->mcbufsz / 2); 1412 ret = -ENOMEM; 1413 goto xfer_exit; 1414 } 1415 1416 /* Hook the request */ 1417 thrd->lstenq = idx; 1418 thrd->req[idx].desc = desc; 1419 _setup_req(pl330, 0, thrd, idx, &xs); 1420 1421 ret = 0; 1422 1423 xfer_exit: 1424 spin_unlock_irqrestore(&pl330->lock, flags); 1425 1426 return ret; 1427 } 1428 1429 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err) 1430 { 1431 struct dma_pl330_chan *pch; 1432 unsigned long flags; 1433 1434 if (!desc) 1435 return; 1436 1437 pch = desc->pchan; 1438 1439 /* If desc aborted */ 1440 if (!pch) 1441 return; 1442 1443 spin_lock_irqsave(&pch->lock, flags); 1444 1445 desc->status = DONE; 1446 1447 spin_unlock_irqrestore(&pch->lock, flags); 1448 1449 tasklet_schedule(&pch->task); 1450 } 1451 1452 static void pl330_dotask(unsigned long data) 1453 { 1454 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1455 unsigned long flags; 1456 int i; 1457 1458 spin_lock_irqsave(&pl330->lock, flags); 1459 1460 /* The DMAC itself gone nuts */ 1461 if (pl330->dmac_tbd.reset_dmac) { 1462 pl330->state = DYING; 1463 /* Reset the manager too */ 1464 pl330->dmac_tbd.reset_mngr = true; 1465 /* Clear the reset flag */ 1466 pl330->dmac_tbd.reset_dmac = false; 1467 } 1468 1469 if (pl330->dmac_tbd.reset_mngr) { 1470 _stop(pl330->manager); 1471 /* Reset all channels */ 1472 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1; 1473 /* Clear the reset flag */ 1474 pl330->dmac_tbd.reset_mngr = false; 1475 } 1476 1477 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1478 1479 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1480 struct pl330_thread *thrd = &pl330->channels[i]; 1481 void __iomem *regs = pl330->base; 1482 enum pl330_op_err err; 1483 1484 _stop(thrd); 1485 1486 if (readl(regs + FSC) & (1 << thrd->id)) 1487 err = PL330_ERR_FAIL; 1488 else 1489 err = PL330_ERR_ABORT; 1490 1491 spin_unlock_irqrestore(&pl330->lock, flags); 1492 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err); 1493 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err); 1494 spin_lock_irqsave(&pl330->lock, flags); 1495 1496 thrd->req[0].desc = NULL; 1497 thrd->req[1].desc = NULL; 1498 thrd->req_running = -1; 1499 1500 /* Clear the reset flag */ 1501 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1502 } 1503 } 1504 1505 spin_unlock_irqrestore(&pl330->lock, flags); 1506 1507 return; 1508 } 1509 1510 /* Returns 1 if state was updated, 0 otherwise */ 1511 static int pl330_update(struct pl330_dmac *pl330) 1512 { 1513 struct dma_pl330_desc *descdone, *tmp; 1514 unsigned long flags; 1515 void __iomem *regs; 1516 u32 val; 1517 int id, ev, ret = 0; 1518 1519 regs = pl330->base; 1520 1521 spin_lock_irqsave(&pl330->lock, flags); 1522 1523 val = readl(regs + FSM) & 0x1; 1524 if (val) 1525 pl330->dmac_tbd.reset_mngr = true; 1526 else 1527 pl330->dmac_tbd.reset_mngr = false; 1528 1529 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1); 1530 pl330->dmac_tbd.reset_chan |= val; 1531 if (val) { 1532 int i = 0; 1533 while (i < pl330->pcfg.num_chan) { 1534 if (val & (1 << i)) { 1535 dev_info(pl330->ddma.dev, 1536 "Reset Channel-%d\t CS-%x FTC-%x\n", 1537 i, readl(regs + CS(i)), 1538 readl(regs + FTC(i))); 1539 _stop(&pl330->channels[i]); 1540 } 1541 i++; 1542 } 1543 } 1544 1545 /* Check which event happened i.e, thread notified */ 1546 val = readl(regs + ES); 1547 if (pl330->pcfg.num_events < 32 1548 && val & ~((1 << pl330->pcfg.num_events) - 1)) { 1549 pl330->dmac_tbd.reset_dmac = true; 1550 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__, 1551 __LINE__); 1552 ret = 1; 1553 goto updt_exit; 1554 } 1555 1556 for (ev = 0; ev < pl330->pcfg.num_events; ev++) { 1557 if (val & (1 << ev)) { /* Event occurred */ 1558 struct pl330_thread *thrd; 1559 u32 inten = readl(regs + INTEN); 1560 int active; 1561 1562 /* Clear the event */ 1563 if (inten & (1 << ev)) 1564 writel(1 << ev, regs + INTCLR); 1565 1566 ret = 1; 1567 1568 id = pl330->events[ev]; 1569 1570 thrd = &pl330->channels[id]; 1571 1572 active = thrd->req_running; 1573 if (active == -1) /* Aborted */ 1574 continue; 1575 1576 /* Detach the req */ 1577 descdone = thrd->req[active].desc; 1578 thrd->req[active].desc = NULL; 1579 1580 thrd->req_running = -1; 1581 1582 /* Get going again ASAP */ 1583 _start(thrd); 1584 1585 /* For now, just make a list of callbacks to be done */ 1586 list_add_tail(&descdone->rqd, &pl330->req_done); 1587 } 1588 } 1589 1590 /* Now that we are in no hurry, do the callbacks */ 1591 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) { 1592 list_del(&descdone->rqd); 1593 spin_unlock_irqrestore(&pl330->lock, flags); 1594 dma_pl330_rqcb(descdone, PL330_ERR_NONE); 1595 spin_lock_irqsave(&pl330->lock, flags); 1596 } 1597 1598 updt_exit: 1599 spin_unlock_irqrestore(&pl330->lock, flags); 1600 1601 if (pl330->dmac_tbd.reset_dmac 1602 || pl330->dmac_tbd.reset_mngr 1603 || pl330->dmac_tbd.reset_chan) { 1604 ret = 1; 1605 tasklet_schedule(&pl330->tasks); 1606 } 1607 1608 return ret; 1609 } 1610 1611 /* Reserve an event */ 1612 static inline int _alloc_event(struct pl330_thread *thrd) 1613 { 1614 struct pl330_dmac *pl330 = thrd->dmac; 1615 int ev; 1616 1617 for (ev = 0; ev < pl330->pcfg.num_events; ev++) 1618 if (pl330->events[ev] == -1) { 1619 pl330->events[ev] = thrd->id; 1620 return ev; 1621 } 1622 1623 return -1; 1624 } 1625 1626 static bool _chan_ns(const struct pl330_dmac *pl330, int i) 1627 { 1628 return pl330->pcfg.irq_ns & (1 << i); 1629 } 1630 1631 /* Upon success, returns IdentityToken for the 1632 * allocated channel, NULL otherwise. 1633 */ 1634 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330) 1635 { 1636 struct pl330_thread *thrd = NULL; 1637 int chans, i; 1638 1639 if (pl330->state == DYING) 1640 return NULL; 1641 1642 chans = pl330->pcfg.num_chan; 1643 1644 for (i = 0; i < chans; i++) { 1645 thrd = &pl330->channels[i]; 1646 if ((thrd->free) && (!_manager_ns(thrd) || 1647 _chan_ns(pl330, i))) { 1648 thrd->ev = _alloc_event(thrd); 1649 if (thrd->ev >= 0) { 1650 thrd->free = false; 1651 thrd->lstenq = 1; 1652 thrd->req[0].desc = NULL; 1653 thrd->req[1].desc = NULL; 1654 thrd->req_running = -1; 1655 break; 1656 } 1657 } 1658 thrd = NULL; 1659 } 1660 1661 return thrd; 1662 } 1663 1664 /* Release an event */ 1665 static inline void _free_event(struct pl330_thread *thrd, int ev) 1666 { 1667 struct pl330_dmac *pl330 = thrd->dmac; 1668 1669 /* If the event is valid and was held by the thread */ 1670 if (ev >= 0 && ev < pl330->pcfg.num_events 1671 && pl330->events[ev] == thrd->id) 1672 pl330->events[ev] = -1; 1673 } 1674 1675 static void pl330_release_channel(struct pl330_thread *thrd) 1676 { 1677 struct pl330_dmac *pl330; 1678 1679 if (!thrd || thrd->free) 1680 return; 1681 1682 _stop(thrd); 1683 1684 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT); 1685 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT); 1686 1687 pl330 = thrd->dmac; 1688 1689 _free_event(thrd, thrd->ev); 1690 thrd->free = true; 1691 } 1692 1693 /* Initialize the structure for PL330 configuration, that can be used 1694 * by the client driver the make best use of the DMAC 1695 */ 1696 static void read_dmac_config(struct pl330_dmac *pl330) 1697 { 1698 void __iomem *regs = pl330->base; 1699 u32 val; 1700 1701 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1702 val &= CRD_DATA_WIDTH_MASK; 1703 pl330->pcfg.data_bus_width = 8 * (1 << val); 1704 1705 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1706 val &= CRD_DATA_BUFF_MASK; 1707 pl330->pcfg.data_buf_dep = val + 1; 1708 1709 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1710 val &= CR0_NUM_CHANS_MASK; 1711 val += 1; 1712 pl330->pcfg.num_chan = val; 1713 1714 val = readl(regs + CR0); 1715 if (val & CR0_PERIPH_REQ_SET) { 1716 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1717 val += 1; 1718 pl330->pcfg.num_peri = val; 1719 pl330->pcfg.peri_ns = readl(regs + CR4); 1720 } else { 1721 pl330->pcfg.num_peri = 0; 1722 } 1723 1724 val = readl(regs + CR0); 1725 if (val & CR0_BOOT_MAN_NS) 1726 pl330->pcfg.mode |= DMAC_MODE_NS; 1727 else 1728 pl330->pcfg.mode &= ~DMAC_MODE_NS; 1729 1730 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1731 val &= CR0_NUM_EVENTS_MASK; 1732 val += 1; 1733 pl330->pcfg.num_events = val; 1734 1735 pl330->pcfg.irq_ns = readl(regs + CR3); 1736 } 1737 1738 static inline void _reset_thread(struct pl330_thread *thrd) 1739 { 1740 struct pl330_dmac *pl330 = thrd->dmac; 1741 1742 thrd->req[0].mc_cpu = pl330->mcode_cpu 1743 + (thrd->id * pl330->mcbufsz); 1744 thrd->req[0].mc_bus = pl330->mcode_bus 1745 + (thrd->id * pl330->mcbufsz); 1746 thrd->req[0].desc = NULL; 1747 1748 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 1749 + pl330->mcbufsz / 2; 1750 thrd->req[1].mc_bus = thrd->req[0].mc_bus 1751 + pl330->mcbufsz / 2; 1752 thrd->req[1].desc = NULL; 1753 1754 thrd->req_running = -1; 1755 } 1756 1757 static int dmac_alloc_threads(struct pl330_dmac *pl330) 1758 { 1759 int chans = pl330->pcfg.num_chan; 1760 struct pl330_thread *thrd; 1761 int i; 1762 1763 /* Allocate 1 Manager and 'chans' Channel threads */ 1764 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 1765 GFP_KERNEL); 1766 if (!pl330->channels) 1767 return -ENOMEM; 1768 1769 /* Init Channel threads */ 1770 for (i = 0; i < chans; i++) { 1771 thrd = &pl330->channels[i]; 1772 thrd->id = i; 1773 thrd->dmac = pl330; 1774 _reset_thread(thrd); 1775 thrd->free = true; 1776 } 1777 1778 /* MANAGER is indexed at the end */ 1779 thrd = &pl330->channels[chans]; 1780 thrd->id = chans; 1781 thrd->dmac = pl330; 1782 thrd->free = false; 1783 pl330->manager = thrd; 1784 1785 return 0; 1786 } 1787 1788 static int dmac_alloc_resources(struct pl330_dmac *pl330) 1789 { 1790 int chans = pl330->pcfg.num_chan; 1791 int ret; 1792 1793 /* 1794 * Alloc MicroCode buffer for 'chans' Channel threads. 1795 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 1796 */ 1797 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev, 1798 chans * pl330->mcbufsz, 1799 &pl330->mcode_bus, GFP_KERNEL, 1800 DMA_ATTR_PRIVILEGED); 1801 if (!pl330->mcode_cpu) { 1802 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n", 1803 __func__, __LINE__); 1804 return -ENOMEM; 1805 } 1806 1807 ret = dmac_alloc_threads(pl330); 1808 if (ret) { 1809 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n", 1810 __func__, __LINE__); 1811 dma_free_coherent(pl330->ddma.dev, 1812 chans * pl330->mcbufsz, 1813 pl330->mcode_cpu, pl330->mcode_bus); 1814 return ret; 1815 } 1816 1817 return 0; 1818 } 1819 1820 static int pl330_add(struct pl330_dmac *pl330) 1821 { 1822 int i, ret; 1823 1824 /* Check if we can handle this DMAC */ 1825 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) { 1826 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n", 1827 pl330->pcfg.periph_id); 1828 return -EINVAL; 1829 } 1830 1831 /* Read the configuration of the DMAC */ 1832 read_dmac_config(pl330); 1833 1834 if (pl330->pcfg.num_events == 0) { 1835 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n", 1836 __func__, __LINE__); 1837 return -EINVAL; 1838 } 1839 1840 spin_lock_init(&pl330->lock); 1841 1842 INIT_LIST_HEAD(&pl330->req_done); 1843 1844 /* Use default MC buffer size if not provided */ 1845 if (!pl330->mcbufsz) 1846 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2; 1847 1848 /* Mark all events as free */ 1849 for (i = 0; i < pl330->pcfg.num_events; i++) 1850 pl330->events[i] = -1; 1851 1852 /* Allocate resources needed by the DMAC */ 1853 ret = dmac_alloc_resources(pl330); 1854 if (ret) { 1855 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n"); 1856 return ret; 1857 } 1858 1859 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 1860 1861 pl330->state = INIT; 1862 1863 return 0; 1864 } 1865 1866 static int dmac_free_threads(struct pl330_dmac *pl330) 1867 { 1868 struct pl330_thread *thrd; 1869 int i; 1870 1871 /* Release Channel threads */ 1872 for (i = 0; i < pl330->pcfg.num_chan; i++) { 1873 thrd = &pl330->channels[i]; 1874 pl330_release_channel(thrd); 1875 } 1876 1877 /* Free memory */ 1878 kfree(pl330->channels); 1879 1880 return 0; 1881 } 1882 1883 static void pl330_del(struct pl330_dmac *pl330) 1884 { 1885 pl330->state = UNINIT; 1886 1887 tasklet_kill(&pl330->tasks); 1888 1889 /* Free DMAC resources */ 1890 dmac_free_threads(pl330); 1891 1892 dma_free_coherent(pl330->ddma.dev, 1893 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu, 1894 pl330->mcode_bus); 1895 } 1896 1897 /* forward declaration */ 1898 static struct amba_driver pl330_driver; 1899 1900 static inline struct dma_pl330_chan * 1901 to_pchan(struct dma_chan *ch) 1902 { 1903 if (!ch) 1904 return NULL; 1905 1906 return container_of(ch, struct dma_pl330_chan, chan); 1907 } 1908 1909 static inline struct dma_pl330_desc * 1910 to_desc(struct dma_async_tx_descriptor *tx) 1911 { 1912 return container_of(tx, struct dma_pl330_desc, txd); 1913 } 1914 1915 static inline void fill_queue(struct dma_pl330_chan *pch) 1916 { 1917 struct dma_pl330_desc *desc; 1918 int ret; 1919 1920 list_for_each_entry(desc, &pch->work_list, node) { 1921 1922 /* If already submitted */ 1923 if (desc->status == BUSY) 1924 continue; 1925 1926 ret = pl330_submit_req(pch->thread, desc); 1927 if (!ret) { 1928 desc->status = BUSY; 1929 } else if (ret == -EAGAIN) { 1930 /* QFull or DMAC Dying */ 1931 break; 1932 } else { 1933 /* Unacceptable request */ 1934 desc->status = DONE; 1935 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n", 1936 __func__, __LINE__, desc->txd.cookie); 1937 tasklet_schedule(&pch->task); 1938 } 1939 } 1940 } 1941 1942 static void pl330_tasklet(unsigned long data) 1943 { 1944 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 1945 struct dma_pl330_desc *desc, *_dt; 1946 unsigned long flags; 1947 bool power_down = false; 1948 1949 spin_lock_irqsave(&pch->lock, flags); 1950 1951 /* Pick up ripe tomatoes */ 1952 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 1953 if (desc->status == DONE) { 1954 if (!pch->cyclic) 1955 dma_cookie_complete(&desc->txd); 1956 list_move_tail(&desc->node, &pch->completed_list); 1957 } 1958 1959 /* Try to submit a req imm. next to the last completed cookie */ 1960 fill_queue(pch); 1961 1962 if (list_empty(&pch->work_list)) { 1963 spin_lock(&pch->thread->dmac->lock); 1964 _stop(pch->thread); 1965 spin_unlock(&pch->thread->dmac->lock); 1966 power_down = true; 1967 pch->active = false; 1968 } else { 1969 /* Make sure the PL330 Channel thread is active */ 1970 spin_lock(&pch->thread->dmac->lock); 1971 _start(pch->thread); 1972 spin_unlock(&pch->thread->dmac->lock); 1973 } 1974 1975 while (!list_empty(&pch->completed_list)) { 1976 struct dmaengine_desc_callback cb; 1977 1978 desc = list_first_entry(&pch->completed_list, 1979 struct dma_pl330_desc, node); 1980 1981 dmaengine_desc_get_callback(&desc->txd, &cb); 1982 1983 if (pch->cyclic) { 1984 desc->status = PREP; 1985 list_move_tail(&desc->node, &pch->work_list); 1986 if (power_down) { 1987 pch->active = true; 1988 spin_lock(&pch->thread->dmac->lock); 1989 _start(pch->thread); 1990 spin_unlock(&pch->thread->dmac->lock); 1991 power_down = false; 1992 } 1993 } else { 1994 desc->status = FREE; 1995 list_move_tail(&desc->node, &pch->dmac->desc_pool); 1996 } 1997 1998 dma_descriptor_unmap(&desc->txd); 1999 2000 if (dmaengine_desc_callback_valid(&cb)) { 2001 spin_unlock_irqrestore(&pch->lock, flags); 2002 dmaengine_desc_callback_invoke(&cb, NULL); 2003 spin_lock_irqsave(&pch->lock, flags); 2004 } 2005 } 2006 spin_unlock_irqrestore(&pch->lock, flags); 2007 2008 /* If work list empty, power down */ 2009 if (power_down) { 2010 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2011 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2012 } 2013 } 2014 2015 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec, 2016 struct of_dma *ofdma) 2017 { 2018 int count = dma_spec->args_count; 2019 struct pl330_dmac *pl330 = ofdma->of_dma_data; 2020 unsigned int chan_id; 2021 2022 if (!pl330) 2023 return NULL; 2024 2025 if (count != 1) 2026 return NULL; 2027 2028 chan_id = dma_spec->args[0]; 2029 if (chan_id >= pl330->num_peripherals) 2030 return NULL; 2031 2032 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan); 2033 } 2034 2035 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2036 { 2037 struct dma_pl330_chan *pch = to_pchan(chan); 2038 struct pl330_dmac *pl330 = pch->dmac; 2039 unsigned long flags; 2040 2041 spin_lock_irqsave(&pl330->lock, flags); 2042 2043 dma_cookie_init(chan); 2044 pch->cyclic = false; 2045 2046 pch->thread = pl330_request_channel(pl330); 2047 if (!pch->thread) { 2048 spin_unlock_irqrestore(&pl330->lock, flags); 2049 return -ENOMEM; 2050 } 2051 2052 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2053 2054 spin_unlock_irqrestore(&pl330->lock, flags); 2055 2056 return 1; 2057 } 2058 2059 /* 2060 * We need the data direction between the DMAC (the dma-mapping "device") and 2061 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing! 2062 */ 2063 static enum dma_data_direction 2064 pl330_dma_slave_map_dir(enum dma_transfer_direction dir) 2065 { 2066 switch (dir) { 2067 case DMA_MEM_TO_DEV: 2068 return DMA_FROM_DEVICE; 2069 case DMA_DEV_TO_MEM: 2070 return DMA_TO_DEVICE; 2071 case DMA_DEV_TO_DEV: 2072 return DMA_BIDIRECTIONAL; 2073 default: 2074 return DMA_NONE; 2075 } 2076 } 2077 2078 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch) 2079 { 2080 if (pch->dir != DMA_NONE) 2081 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma, 2082 1 << pch->burst_sz, pch->dir, 0); 2083 pch->dir = DMA_NONE; 2084 } 2085 2086 2087 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch, 2088 enum dma_transfer_direction dir) 2089 { 2090 struct device *dev = pch->chan.device->dev; 2091 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir); 2092 2093 /* Already mapped for this config? */ 2094 if (pch->dir == dma_dir) 2095 return true; 2096 2097 pl330_unprep_slave_fifo(pch); 2098 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr, 2099 1 << pch->burst_sz, dma_dir, 0); 2100 if (dma_mapping_error(dev, pch->fifo_dma)) 2101 return false; 2102 2103 pch->dir = dma_dir; 2104 return true; 2105 } 2106 2107 static int pl330_config(struct dma_chan *chan, 2108 struct dma_slave_config *slave_config) 2109 { 2110 struct dma_pl330_chan *pch = to_pchan(chan); 2111 2112 pl330_unprep_slave_fifo(pch); 2113 if (slave_config->direction == DMA_MEM_TO_DEV) { 2114 if (slave_config->dst_addr) 2115 pch->fifo_addr = slave_config->dst_addr; 2116 if (slave_config->dst_addr_width) 2117 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2118 if (slave_config->dst_maxburst) 2119 pch->burst_len = slave_config->dst_maxburst; 2120 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2121 if (slave_config->src_addr) 2122 pch->fifo_addr = slave_config->src_addr; 2123 if (slave_config->src_addr_width) 2124 pch->burst_sz = __ffs(slave_config->src_addr_width); 2125 if (slave_config->src_maxburst) 2126 pch->burst_len = slave_config->src_maxburst; 2127 } 2128 2129 return 0; 2130 } 2131 2132 static int pl330_terminate_all(struct dma_chan *chan) 2133 { 2134 struct dma_pl330_chan *pch = to_pchan(chan); 2135 struct dma_pl330_desc *desc; 2136 unsigned long flags; 2137 struct pl330_dmac *pl330 = pch->dmac; 2138 LIST_HEAD(list); 2139 bool power_down = false; 2140 2141 pm_runtime_get_sync(pl330->ddma.dev); 2142 spin_lock_irqsave(&pch->lock, flags); 2143 spin_lock(&pl330->lock); 2144 _stop(pch->thread); 2145 spin_unlock(&pl330->lock); 2146 2147 pch->thread->req[0].desc = NULL; 2148 pch->thread->req[1].desc = NULL; 2149 pch->thread->req_running = -1; 2150 power_down = pch->active; 2151 pch->active = false; 2152 2153 /* Mark all desc done */ 2154 list_for_each_entry(desc, &pch->submitted_list, node) { 2155 desc->status = FREE; 2156 dma_cookie_complete(&desc->txd); 2157 } 2158 2159 list_for_each_entry(desc, &pch->work_list , node) { 2160 desc->status = FREE; 2161 dma_cookie_complete(&desc->txd); 2162 } 2163 2164 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool); 2165 list_splice_tail_init(&pch->work_list, &pl330->desc_pool); 2166 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool); 2167 spin_unlock_irqrestore(&pch->lock, flags); 2168 pm_runtime_mark_last_busy(pl330->ddma.dev); 2169 if (power_down) 2170 pm_runtime_put_autosuspend(pl330->ddma.dev); 2171 pm_runtime_put_autosuspend(pl330->ddma.dev); 2172 2173 return 0; 2174 } 2175 2176 /* 2177 * We don't support DMA_RESUME command because of hardware 2178 * limitations, so after pausing the channel we cannot restore 2179 * it to active state. We have to terminate channel and setup 2180 * DMA transfer again. This pause feature was implemented to 2181 * allow safely read residue before channel termination. 2182 */ 2183 static int pl330_pause(struct dma_chan *chan) 2184 { 2185 struct dma_pl330_chan *pch = to_pchan(chan); 2186 struct pl330_dmac *pl330 = pch->dmac; 2187 unsigned long flags; 2188 2189 pm_runtime_get_sync(pl330->ddma.dev); 2190 spin_lock_irqsave(&pch->lock, flags); 2191 2192 spin_lock(&pl330->lock); 2193 _stop(pch->thread); 2194 spin_unlock(&pl330->lock); 2195 2196 spin_unlock_irqrestore(&pch->lock, flags); 2197 pm_runtime_mark_last_busy(pl330->ddma.dev); 2198 pm_runtime_put_autosuspend(pl330->ddma.dev); 2199 2200 return 0; 2201 } 2202 2203 static void pl330_free_chan_resources(struct dma_chan *chan) 2204 { 2205 struct dma_pl330_chan *pch = to_pchan(chan); 2206 struct pl330_dmac *pl330 = pch->dmac; 2207 unsigned long flags; 2208 2209 tasklet_kill(&pch->task); 2210 2211 pm_runtime_get_sync(pch->dmac->ddma.dev); 2212 spin_lock_irqsave(&pl330->lock, flags); 2213 2214 pl330_release_channel(pch->thread); 2215 pch->thread = NULL; 2216 2217 if (pch->cyclic) 2218 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2219 2220 spin_unlock_irqrestore(&pl330->lock, flags); 2221 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2222 pm_runtime_put_autosuspend(pch->dmac->ddma.dev); 2223 pl330_unprep_slave_fifo(pch); 2224 } 2225 2226 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch, 2227 struct dma_pl330_desc *desc) 2228 { 2229 struct pl330_thread *thrd = pch->thread; 2230 struct pl330_dmac *pl330 = pch->dmac; 2231 void __iomem *regs = thrd->dmac->base; 2232 u32 val, addr; 2233 2234 pm_runtime_get_sync(pl330->ddma.dev); 2235 val = addr = 0; 2236 if (desc->rqcfg.src_inc) { 2237 val = readl(regs + SA(thrd->id)); 2238 addr = desc->px.src_addr; 2239 } else { 2240 val = readl(regs + DA(thrd->id)); 2241 addr = desc->px.dst_addr; 2242 } 2243 pm_runtime_mark_last_busy(pch->dmac->ddma.dev); 2244 pm_runtime_put_autosuspend(pl330->ddma.dev); 2245 2246 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */ 2247 if (!val) 2248 return 0; 2249 2250 return val - addr; 2251 } 2252 2253 static enum dma_status 2254 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2255 struct dma_tx_state *txstate) 2256 { 2257 enum dma_status ret; 2258 unsigned long flags; 2259 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL; 2260 struct dma_pl330_chan *pch = to_pchan(chan); 2261 unsigned int transferred, residual = 0; 2262 2263 ret = dma_cookie_status(chan, cookie, txstate); 2264 2265 if (!txstate) 2266 return ret; 2267 2268 if (ret == DMA_COMPLETE) 2269 goto out; 2270 2271 spin_lock_irqsave(&pch->lock, flags); 2272 spin_lock(&pch->thread->dmac->lock); 2273 2274 if (pch->thread->req_running != -1) 2275 running = pch->thread->req[pch->thread->req_running].desc; 2276 2277 last_enq = pch->thread->req[pch->thread->lstenq].desc; 2278 2279 /* Check in pending list */ 2280 list_for_each_entry(desc, &pch->work_list, node) { 2281 if (desc->status == DONE) 2282 transferred = desc->bytes_requested; 2283 else if (running && desc == running) 2284 transferred = 2285 pl330_get_current_xferred_count(pch, desc); 2286 else if (desc->status == BUSY) 2287 /* 2288 * Busy but not running means either just enqueued, 2289 * or finished and not yet marked done 2290 */ 2291 if (desc == last_enq) 2292 transferred = 0; 2293 else 2294 transferred = desc->bytes_requested; 2295 else 2296 transferred = 0; 2297 residual += desc->bytes_requested - transferred; 2298 if (desc->txd.cookie == cookie) { 2299 switch (desc->status) { 2300 case DONE: 2301 ret = DMA_COMPLETE; 2302 break; 2303 case PREP: 2304 case BUSY: 2305 ret = DMA_IN_PROGRESS; 2306 break; 2307 default: 2308 WARN_ON(1); 2309 } 2310 break; 2311 } 2312 if (desc->last) 2313 residual = 0; 2314 } 2315 spin_unlock(&pch->thread->dmac->lock); 2316 spin_unlock_irqrestore(&pch->lock, flags); 2317 2318 out: 2319 dma_set_residue(txstate, residual); 2320 2321 return ret; 2322 } 2323 2324 static void pl330_issue_pending(struct dma_chan *chan) 2325 { 2326 struct dma_pl330_chan *pch = to_pchan(chan); 2327 unsigned long flags; 2328 2329 spin_lock_irqsave(&pch->lock, flags); 2330 if (list_empty(&pch->work_list)) { 2331 /* 2332 * Warn on nothing pending. Empty submitted_list may 2333 * break our pm_runtime usage counter as it is 2334 * updated on work_list emptiness status. 2335 */ 2336 WARN_ON(list_empty(&pch->submitted_list)); 2337 pch->active = true; 2338 pm_runtime_get_sync(pch->dmac->ddma.dev); 2339 } 2340 list_splice_tail_init(&pch->submitted_list, &pch->work_list); 2341 spin_unlock_irqrestore(&pch->lock, flags); 2342 2343 pl330_tasklet((unsigned long)pch); 2344 } 2345 2346 /* 2347 * We returned the last one of the circular list of descriptor(s) 2348 * from prep_xxx, so the argument to submit corresponds to the last 2349 * descriptor of the list. 2350 */ 2351 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2352 { 2353 struct dma_pl330_desc *desc, *last = to_desc(tx); 2354 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2355 dma_cookie_t cookie; 2356 unsigned long flags; 2357 2358 spin_lock_irqsave(&pch->lock, flags); 2359 2360 /* Assign cookies to all nodes */ 2361 while (!list_empty(&last->node)) { 2362 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2363 if (pch->cyclic) { 2364 desc->txd.callback = last->txd.callback; 2365 desc->txd.callback_param = last->txd.callback_param; 2366 } 2367 desc->last = false; 2368 2369 dma_cookie_assign(&desc->txd); 2370 2371 list_move_tail(&desc->node, &pch->submitted_list); 2372 } 2373 2374 last->last = true; 2375 cookie = dma_cookie_assign(&last->txd); 2376 list_add_tail(&last->node, &pch->submitted_list); 2377 spin_unlock_irqrestore(&pch->lock, flags); 2378 2379 return cookie; 2380 } 2381 2382 static inline void _init_desc(struct dma_pl330_desc *desc) 2383 { 2384 desc->rqcfg.swap = SWAP_NO; 2385 desc->rqcfg.scctl = CCTRL0; 2386 desc->rqcfg.dcctl = CCTRL0; 2387 desc->txd.tx_submit = pl330_tx_submit; 2388 2389 INIT_LIST_HEAD(&desc->node); 2390 } 2391 2392 /* Returns the number of descriptors added to the DMAC pool */ 2393 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count) 2394 { 2395 struct dma_pl330_desc *desc; 2396 unsigned long flags; 2397 int i; 2398 2399 desc = kcalloc(count, sizeof(*desc), flg); 2400 if (!desc) 2401 return 0; 2402 2403 spin_lock_irqsave(&pl330->pool_lock, flags); 2404 2405 for (i = 0; i < count; i++) { 2406 _init_desc(&desc[i]); 2407 list_add_tail(&desc[i].node, &pl330->desc_pool); 2408 } 2409 2410 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2411 2412 return count; 2413 } 2414 2415 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330) 2416 { 2417 struct dma_pl330_desc *desc = NULL; 2418 unsigned long flags; 2419 2420 spin_lock_irqsave(&pl330->pool_lock, flags); 2421 2422 if (!list_empty(&pl330->desc_pool)) { 2423 desc = list_entry(pl330->desc_pool.next, 2424 struct dma_pl330_desc, node); 2425 2426 list_del_init(&desc->node); 2427 2428 desc->status = PREP; 2429 desc->txd.callback = NULL; 2430 } 2431 2432 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2433 2434 return desc; 2435 } 2436 2437 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2438 { 2439 struct pl330_dmac *pl330 = pch->dmac; 2440 u8 *peri_id = pch->chan.private; 2441 struct dma_pl330_desc *desc; 2442 2443 /* Pluck one desc from the pool of DMAC */ 2444 desc = pluck_desc(pl330); 2445 2446 /* If the DMAC pool is empty, alloc new */ 2447 if (!desc) { 2448 if (!add_desc(pl330, GFP_ATOMIC, 1)) 2449 return NULL; 2450 2451 /* Try again */ 2452 desc = pluck_desc(pl330); 2453 if (!desc) { 2454 dev_err(pch->dmac->ddma.dev, 2455 "%s:%d ALERT!\n", __func__, __LINE__); 2456 return NULL; 2457 } 2458 } 2459 2460 /* Initialize the descriptor */ 2461 desc->pchan = pch; 2462 desc->txd.cookie = 0; 2463 async_tx_ack(&desc->txd); 2464 2465 desc->peri = peri_id ? pch->chan.chan_id : 0; 2466 desc->rqcfg.pcfg = &pch->dmac->pcfg; 2467 2468 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2469 2470 return desc; 2471 } 2472 2473 static inline void fill_px(struct pl330_xfer *px, 2474 dma_addr_t dst, dma_addr_t src, size_t len) 2475 { 2476 px->bytes = len; 2477 px->dst_addr = dst; 2478 px->src_addr = src; 2479 } 2480 2481 static struct dma_pl330_desc * 2482 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2483 dma_addr_t src, size_t len) 2484 { 2485 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2486 2487 if (!desc) { 2488 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2489 __func__, __LINE__); 2490 return NULL; 2491 } 2492 2493 /* 2494 * Ideally we should lookout for reqs bigger than 2495 * those that can be programmed with 256 bytes of 2496 * MC buffer, but considering a req size is seldom 2497 * going to be word-unaligned and more than 200MB, 2498 * we take it easy. 2499 * Also, should the limit is reached we'd rather 2500 * have the platform increase MC buffer size than 2501 * complicating this API driver. 2502 */ 2503 fill_px(&desc->px, dst, src, len); 2504 2505 return desc; 2506 } 2507 2508 /* Call after fixing burst size */ 2509 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2510 { 2511 struct dma_pl330_chan *pch = desc->pchan; 2512 struct pl330_dmac *pl330 = pch->dmac; 2513 int burst_len; 2514 2515 burst_len = pl330->pcfg.data_bus_width / 8; 2516 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan; 2517 burst_len >>= desc->rqcfg.brst_size; 2518 2519 /* src/dst_burst_len can't be more than 16 */ 2520 if (burst_len > 16) 2521 burst_len = 16; 2522 2523 while (burst_len > 1) { 2524 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2525 break; 2526 burst_len--; 2527 } 2528 2529 return burst_len; 2530 } 2531 2532 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2533 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2534 size_t period_len, enum dma_transfer_direction direction, 2535 unsigned long flags) 2536 { 2537 struct dma_pl330_desc *desc = NULL, *first = NULL; 2538 struct dma_pl330_chan *pch = to_pchan(chan); 2539 struct pl330_dmac *pl330 = pch->dmac; 2540 unsigned int i; 2541 dma_addr_t dst; 2542 dma_addr_t src; 2543 2544 if (len % period_len != 0) 2545 return NULL; 2546 2547 if (!is_slave_direction(direction)) { 2548 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n", 2549 __func__, __LINE__); 2550 return NULL; 2551 } 2552 2553 if (!pl330_prep_slave_fifo(pch, direction)) 2554 return NULL; 2555 2556 for (i = 0; i < len / period_len; i++) { 2557 desc = pl330_get_desc(pch); 2558 if (!desc) { 2559 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n", 2560 __func__, __LINE__); 2561 2562 if (!first) 2563 return NULL; 2564 2565 spin_lock_irqsave(&pl330->pool_lock, flags); 2566 2567 while (!list_empty(&first->node)) { 2568 desc = list_entry(first->node.next, 2569 struct dma_pl330_desc, node); 2570 list_move_tail(&desc->node, &pl330->desc_pool); 2571 } 2572 2573 list_move_tail(&first->node, &pl330->desc_pool); 2574 2575 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2576 2577 return NULL; 2578 } 2579 2580 switch (direction) { 2581 case DMA_MEM_TO_DEV: 2582 desc->rqcfg.src_inc = 1; 2583 desc->rqcfg.dst_inc = 0; 2584 src = dma_addr; 2585 dst = pch->fifo_dma; 2586 break; 2587 case DMA_DEV_TO_MEM: 2588 desc->rqcfg.src_inc = 0; 2589 desc->rqcfg.dst_inc = 1; 2590 src = pch->fifo_dma; 2591 dst = dma_addr; 2592 break; 2593 default: 2594 break; 2595 } 2596 2597 desc->rqtype = direction; 2598 desc->rqcfg.brst_size = pch->burst_sz; 2599 desc->rqcfg.brst_len = 1; 2600 desc->bytes_requested = period_len; 2601 fill_px(&desc->px, dst, src, period_len); 2602 2603 if (!first) 2604 first = desc; 2605 else 2606 list_add_tail(&desc->node, &first->node); 2607 2608 dma_addr += period_len; 2609 } 2610 2611 if (!desc) 2612 return NULL; 2613 2614 pch->cyclic = true; 2615 desc->txd.flags = flags; 2616 2617 return &desc->txd; 2618 } 2619 2620 static struct dma_async_tx_descriptor * 2621 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2622 dma_addr_t src, size_t len, unsigned long flags) 2623 { 2624 struct dma_pl330_desc *desc; 2625 struct dma_pl330_chan *pch = to_pchan(chan); 2626 struct pl330_dmac *pl330; 2627 int burst; 2628 2629 if (unlikely(!pch || !len)) 2630 return NULL; 2631 2632 pl330 = pch->dmac; 2633 2634 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2635 if (!desc) 2636 return NULL; 2637 2638 desc->rqcfg.src_inc = 1; 2639 desc->rqcfg.dst_inc = 1; 2640 desc->rqtype = DMA_MEM_TO_MEM; 2641 2642 /* Select max possible burst size */ 2643 burst = pl330->pcfg.data_bus_width / 8; 2644 2645 /* 2646 * Make sure we use a burst size that aligns with all the memcpy 2647 * parameters because our DMA programming algorithm doesn't cope with 2648 * transfers which straddle an entry in the DMA device's MFIFO. 2649 */ 2650 while ((src | dst | len) & (burst - 1)) 2651 burst /= 2; 2652 2653 desc->rqcfg.brst_size = 0; 2654 while (burst != (1 << desc->rqcfg.brst_size)) 2655 desc->rqcfg.brst_size++; 2656 2657 /* 2658 * If burst size is smaller than bus width then make sure we only 2659 * transfer one at a time to avoid a burst stradling an MFIFO entry. 2660 */ 2661 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width) 2662 desc->rqcfg.brst_len = 1; 2663 2664 desc->rqcfg.brst_len = get_burst_len(desc, len); 2665 desc->bytes_requested = len; 2666 2667 desc->txd.flags = flags; 2668 2669 return &desc->txd; 2670 } 2671 2672 static void __pl330_giveback_desc(struct pl330_dmac *pl330, 2673 struct dma_pl330_desc *first) 2674 { 2675 unsigned long flags; 2676 struct dma_pl330_desc *desc; 2677 2678 if (!first) 2679 return; 2680 2681 spin_lock_irqsave(&pl330->pool_lock, flags); 2682 2683 while (!list_empty(&first->node)) { 2684 desc = list_entry(first->node.next, 2685 struct dma_pl330_desc, node); 2686 list_move_tail(&desc->node, &pl330->desc_pool); 2687 } 2688 2689 list_move_tail(&first->node, &pl330->desc_pool); 2690 2691 spin_unlock_irqrestore(&pl330->pool_lock, flags); 2692 } 2693 2694 static struct dma_async_tx_descriptor * 2695 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2696 unsigned int sg_len, enum dma_transfer_direction direction, 2697 unsigned long flg, void *context) 2698 { 2699 struct dma_pl330_desc *first, *desc = NULL; 2700 struct dma_pl330_chan *pch = to_pchan(chan); 2701 struct scatterlist *sg; 2702 int i; 2703 2704 if (unlikely(!pch || !sgl || !sg_len)) 2705 return NULL; 2706 2707 if (!pl330_prep_slave_fifo(pch, direction)) 2708 return NULL; 2709 2710 first = NULL; 2711 2712 for_each_sg(sgl, sg, sg_len, i) { 2713 2714 desc = pl330_get_desc(pch); 2715 if (!desc) { 2716 struct pl330_dmac *pl330 = pch->dmac; 2717 2718 dev_err(pch->dmac->ddma.dev, 2719 "%s:%d Unable to fetch desc\n", 2720 __func__, __LINE__); 2721 __pl330_giveback_desc(pl330, first); 2722 2723 return NULL; 2724 } 2725 2726 if (!first) 2727 first = desc; 2728 else 2729 list_add_tail(&desc->node, &first->node); 2730 2731 if (direction == DMA_MEM_TO_DEV) { 2732 desc->rqcfg.src_inc = 1; 2733 desc->rqcfg.dst_inc = 0; 2734 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg), 2735 sg_dma_len(sg)); 2736 } else { 2737 desc->rqcfg.src_inc = 0; 2738 desc->rqcfg.dst_inc = 1; 2739 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma, 2740 sg_dma_len(sg)); 2741 } 2742 2743 desc->rqcfg.brst_size = pch->burst_sz; 2744 desc->rqcfg.brst_len = 1; 2745 desc->rqtype = direction; 2746 desc->bytes_requested = sg_dma_len(sg); 2747 } 2748 2749 /* Return the last desc in the chain */ 2750 desc->txd.flags = flg; 2751 return &desc->txd; 2752 } 2753 2754 static irqreturn_t pl330_irq_handler(int irq, void *data) 2755 { 2756 if (pl330_update(data)) 2757 return IRQ_HANDLED; 2758 else 2759 return IRQ_NONE; 2760 } 2761 2762 #define PL330_DMA_BUSWIDTHS \ 2763 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 2764 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 2765 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 2766 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 2767 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) 2768 2769 /* 2770 * Runtime PM callbacks are provided by amba/bus.c driver. 2771 * 2772 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba 2773 * bus driver will only disable/enable the clock in runtime PM callbacks. 2774 */ 2775 static int __maybe_unused pl330_suspend(struct device *dev) 2776 { 2777 struct amba_device *pcdev = to_amba_device(dev); 2778 2779 pm_runtime_disable(dev); 2780 2781 if (!pm_runtime_status_suspended(dev)) { 2782 /* amba did not disable the clock */ 2783 amba_pclk_disable(pcdev); 2784 } 2785 amba_pclk_unprepare(pcdev); 2786 2787 return 0; 2788 } 2789 2790 static int __maybe_unused pl330_resume(struct device *dev) 2791 { 2792 struct amba_device *pcdev = to_amba_device(dev); 2793 int ret; 2794 2795 ret = amba_pclk_prepare(pcdev); 2796 if (ret) 2797 return ret; 2798 2799 if (!pm_runtime_status_suspended(dev)) 2800 ret = amba_pclk_enable(pcdev); 2801 2802 pm_runtime_enable(dev); 2803 2804 return ret; 2805 } 2806 2807 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume); 2808 2809 static int 2810 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2811 { 2812 struct pl330_config *pcfg; 2813 struct pl330_dmac *pl330; 2814 struct dma_pl330_chan *pch, *_p; 2815 struct dma_device *pd; 2816 struct resource *res; 2817 int i, ret, irq; 2818 int num_chan; 2819 struct device_node *np = adev->dev.of_node; 2820 2821 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); 2822 if (ret) 2823 return ret; 2824 2825 /* Allocate a new DMAC and its Channels */ 2826 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL); 2827 if (!pl330) 2828 return -ENOMEM; 2829 2830 pd = &pl330->ddma; 2831 pd->dev = &adev->dev; 2832 2833 pl330->mcbufsz = 0; 2834 2835 /* get quirk */ 2836 for (i = 0; i < ARRAY_SIZE(of_quirks); i++) 2837 if (of_property_read_bool(np, of_quirks[i].quirk)) 2838 pl330->quirks |= of_quirks[i].id; 2839 2840 res = &adev->res; 2841 pl330->base = devm_ioremap_resource(&adev->dev, res); 2842 if (IS_ERR(pl330->base)) 2843 return PTR_ERR(pl330->base); 2844 2845 amba_set_drvdata(adev, pl330); 2846 2847 for (i = 0; i < AMBA_NR_IRQS; i++) { 2848 irq = adev->irq[i]; 2849 if (irq) { 2850 ret = devm_request_irq(&adev->dev, irq, 2851 pl330_irq_handler, 0, 2852 dev_name(&adev->dev), pl330); 2853 if (ret) 2854 return ret; 2855 } else { 2856 break; 2857 } 2858 } 2859 2860 pcfg = &pl330->pcfg; 2861 2862 pcfg->periph_id = adev->periphid; 2863 ret = pl330_add(pl330); 2864 if (ret) 2865 return ret; 2866 2867 INIT_LIST_HEAD(&pl330->desc_pool); 2868 spin_lock_init(&pl330->pool_lock); 2869 2870 /* Create a descriptor pool of default size */ 2871 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC)) 2872 dev_warn(&adev->dev, "unable to allocate desc\n"); 2873 2874 INIT_LIST_HEAD(&pd->channels); 2875 2876 /* Initialize channel parameters */ 2877 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan); 2878 2879 pl330->num_peripherals = num_chan; 2880 2881 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2882 if (!pl330->peripherals) { 2883 ret = -ENOMEM; 2884 goto probe_err2; 2885 } 2886 2887 for (i = 0; i < num_chan; i++) { 2888 pch = &pl330->peripherals[i]; 2889 2890 pch->chan.private = adev->dev.of_node; 2891 INIT_LIST_HEAD(&pch->submitted_list); 2892 INIT_LIST_HEAD(&pch->work_list); 2893 INIT_LIST_HEAD(&pch->completed_list); 2894 spin_lock_init(&pch->lock); 2895 pch->thread = NULL; 2896 pch->chan.device = pd; 2897 pch->dmac = pl330; 2898 pch->dir = DMA_NONE; 2899 2900 /* Add the channel to the DMAC list */ 2901 list_add_tail(&pch->chan.device_node, &pd->channels); 2902 } 2903 2904 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2905 if (pcfg->num_peri) { 2906 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2907 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2908 dma_cap_set(DMA_PRIVATE, pd->cap_mask); 2909 } 2910 2911 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2912 pd->device_free_chan_resources = pl330_free_chan_resources; 2913 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2914 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2915 pd->device_tx_status = pl330_tx_status; 2916 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2917 pd->device_config = pl330_config; 2918 pd->device_pause = pl330_pause; 2919 pd->device_terminate_all = pl330_terminate_all; 2920 pd->device_issue_pending = pl330_issue_pending; 2921 pd->src_addr_widths = PL330_DMA_BUSWIDTHS; 2922 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS; 2923 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2924 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2925 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ? 2926 1 : PL330_MAX_BURST); 2927 2928 ret = dma_async_device_register(pd); 2929 if (ret) { 2930 dev_err(&adev->dev, "unable to register DMAC\n"); 2931 goto probe_err3; 2932 } 2933 2934 if (adev->dev.of_node) { 2935 ret = of_dma_controller_register(adev->dev.of_node, 2936 of_dma_pl330_xlate, pl330); 2937 if (ret) { 2938 dev_err(&adev->dev, 2939 "unable to register DMA to the generic DT DMA helpers\n"); 2940 } 2941 } 2942 2943 adev->dev.dma_parms = &pl330->dma_parms; 2944 2945 /* 2946 * This is the limit for transfers with a buswidth of 1, larger 2947 * buswidths will have larger limits. 2948 */ 2949 ret = dma_set_max_seg_size(&adev->dev, 1900800); 2950 if (ret) 2951 dev_err(&adev->dev, "unable to set the seg size\n"); 2952 2953 2954 dev_info(&adev->dev, 2955 "Loaded driver for PL330 DMAC-%x\n", adev->periphid); 2956 dev_info(&adev->dev, 2957 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2958 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan, 2959 pcfg->num_peri, pcfg->num_events); 2960 2961 pm_runtime_irq_safe(&adev->dev); 2962 pm_runtime_use_autosuspend(&adev->dev); 2963 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY); 2964 pm_runtime_mark_last_busy(&adev->dev); 2965 pm_runtime_put_autosuspend(&adev->dev); 2966 2967 return 0; 2968 probe_err3: 2969 /* Idle the DMAC */ 2970 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 2971 chan.device_node) { 2972 2973 /* Remove the channel */ 2974 list_del(&pch->chan.device_node); 2975 2976 /* Flush the channel */ 2977 if (pch->thread) { 2978 pl330_terminate_all(&pch->chan); 2979 pl330_free_chan_resources(&pch->chan); 2980 } 2981 } 2982 probe_err2: 2983 pl330_del(pl330); 2984 2985 return ret; 2986 } 2987 2988 static int pl330_remove(struct amba_device *adev) 2989 { 2990 struct pl330_dmac *pl330 = amba_get_drvdata(adev); 2991 struct dma_pl330_chan *pch, *_p; 2992 int i, irq; 2993 2994 pm_runtime_get_noresume(pl330->ddma.dev); 2995 2996 if (adev->dev.of_node) 2997 of_dma_controller_free(adev->dev.of_node); 2998 2999 for (i = 0; i < AMBA_NR_IRQS; i++) { 3000 irq = adev->irq[i]; 3001 if (irq) 3002 devm_free_irq(&adev->dev, irq, pl330); 3003 } 3004 3005 dma_async_device_unregister(&pl330->ddma); 3006 3007 /* Idle the DMAC */ 3008 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels, 3009 chan.device_node) { 3010 3011 /* Remove the channel */ 3012 list_del(&pch->chan.device_node); 3013 3014 /* Flush the channel */ 3015 if (pch->thread) { 3016 pl330_terminate_all(&pch->chan); 3017 pl330_free_chan_resources(&pch->chan); 3018 } 3019 } 3020 3021 pl330_del(pl330); 3022 3023 return 0; 3024 } 3025 3026 static struct amba_id pl330_ids[] = { 3027 { 3028 .id = 0x00041330, 3029 .mask = 0x000fffff, 3030 }, 3031 { 0, 0 }, 3032 }; 3033 3034 MODULE_DEVICE_TABLE(amba, pl330_ids); 3035 3036 static struct amba_driver pl330_driver = { 3037 .drv = { 3038 .owner = THIS_MODULE, 3039 .name = "dma-pl330", 3040 .pm = &pl330_pm, 3041 }, 3042 .id_table = pl330_ids, 3043 .probe = pl330_probe, 3044 .remove = pl330_remove, 3045 }; 3046 3047 module_amba_driver(pl330_driver); 3048 3049 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>"); 3050 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3051 MODULE_LICENSE("GPL"); 3052