1 /* 2 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 3 * http://www.samsung.com 4 * 5 * Copyright (C) 2010 Samsung Electronics Co. Ltd. 6 * Jaswinder Singh <jassi.brar@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/io.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/string.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/amba/bus.h> 25 #include <linux/amba/pl330.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/scatterlist.h> 28 #include <linux/of.h> 29 30 #include "dmaengine.h" 31 #define PL330_MAX_CHAN 8 32 #define PL330_MAX_IRQS 32 33 #define PL330_MAX_PERI 32 34 35 enum pl330_srccachectrl { 36 SCCTRL0, /* Noncacheable and nonbufferable */ 37 SCCTRL1, /* Bufferable only */ 38 SCCTRL2, /* Cacheable, but do not allocate */ 39 SCCTRL3, /* Cacheable and bufferable, but do not allocate */ 40 SINVALID1, 41 SINVALID2, 42 SCCTRL6, /* Cacheable write-through, allocate on reads only */ 43 SCCTRL7, /* Cacheable write-back, allocate on reads only */ 44 }; 45 46 enum pl330_dstcachectrl { 47 DCCTRL0, /* Noncacheable and nonbufferable */ 48 DCCTRL1, /* Bufferable only */ 49 DCCTRL2, /* Cacheable, but do not allocate */ 50 DCCTRL3, /* Cacheable and bufferable, but do not allocate */ 51 DINVALID1, /* AWCACHE = 0x1000 */ 52 DINVALID2, 53 DCCTRL6, /* Cacheable write-through, allocate on writes only */ 54 DCCTRL7, /* Cacheable write-back, allocate on writes only */ 55 }; 56 57 enum pl330_byteswap { 58 SWAP_NO, 59 SWAP_2, 60 SWAP_4, 61 SWAP_8, 62 SWAP_16, 63 }; 64 65 enum pl330_reqtype { 66 MEMTOMEM, 67 MEMTODEV, 68 DEVTOMEM, 69 DEVTODEV, 70 }; 71 72 /* Register and Bit field Definitions */ 73 #define DS 0x0 74 #define DS_ST_STOP 0x0 75 #define DS_ST_EXEC 0x1 76 #define DS_ST_CMISS 0x2 77 #define DS_ST_UPDTPC 0x3 78 #define DS_ST_WFE 0x4 79 #define DS_ST_ATBRR 0x5 80 #define DS_ST_QBUSY 0x6 81 #define DS_ST_WFP 0x7 82 #define DS_ST_KILL 0x8 83 #define DS_ST_CMPLT 0x9 84 #define DS_ST_FLTCMP 0xe 85 #define DS_ST_FAULT 0xf 86 87 #define DPC 0x4 88 #define INTEN 0x20 89 #define ES 0x24 90 #define INTSTATUS 0x28 91 #define INTCLR 0x2c 92 #define FSM 0x30 93 #define FSC 0x34 94 #define FTM 0x38 95 96 #define _FTC 0x40 97 #define FTC(n) (_FTC + (n)*0x4) 98 99 #define _CS 0x100 100 #define CS(n) (_CS + (n)*0x8) 101 #define CS_CNS (1 << 21) 102 103 #define _CPC 0x104 104 #define CPC(n) (_CPC + (n)*0x8) 105 106 #define _SA 0x400 107 #define SA(n) (_SA + (n)*0x20) 108 109 #define _DA 0x404 110 #define DA(n) (_DA + (n)*0x20) 111 112 #define _CC 0x408 113 #define CC(n) (_CC + (n)*0x20) 114 115 #define CC_SRCINC (1 << 0) 116 #define CC_DSTINC (1 << 14) 117 #define CC_SRCPRI (1 << 8) 118 #define CC_DSTPRI (1 << 22) 119 #define CC_SRCNS (1 << 9) 120 #define CC_DSTNS (1 << 23) 121 #define CC_SRCIA (1 << 10) 122 #define CC_DSTIA (1 << 24) 123 #define CC_SRCBRSTLEN_SHFT 4 124 #define CC_DSTBRSTLEN_SHFT 18 125 #define CC_SRCBRSTSIZE_SHFT 1 126 #define CC_DSTBRSTSIZE_SHFT 15 127 #define CC_SRCCCTRL_SHFT 11 128 #define CC_SRCCCTRL_MASK 0x7 129 #define CC_DSTCCTRL_SHFT 25 130 #define CC_DRCCCTRL_MASK 0x7 131 #define CC_SWAP_SHFT 28 132 133 #define _LC0 0x40c 134 #define LC0(n) (_LC0 + (n)*0x20) 135 136 #define _LC1 0x410 137 #define LC1(n) (_LC1 + (n)*0x20) 138 139 #define DBGSTATUS 0xd00 140 #define DBG_BUSY (1 << 0) 141 142 #define DBGCMD 0xd04 143 #define DBGINST0 0xd08 144 #define DBGINST1 0xd0c 145 146 #define CR0 0xe00 147 #define CR1 0xe04 148 #define CR2 0xe08 149 #define CR3 0xe0c 150 #define CR4 0xe10 151 #define CRD 0xe14 152 153 #define PERIPH_ID 0xfe0 154 #define PERIPH_REV_SHIFT 20 155 #define PERIPH_REV_MASK 0xf 156 #define PERIPH_REV_R0P0 0 157 #define PERIPH_REV_R1P0 1 158 #define PERIPH_REV_R1P1 2 159 #define PCELL_ID 0xff0 160 161 #define CR0_PERIPH_REQ_SET (1 << 0) 162 #define CR0_BOOT_EN_SET (1 << 1) 163 #define CR0_BOOT_MAN_NS (1 << 2) 164 #define CR0_NUM_CHANS_SHIFT 4 165 #define CR0_NUM_CHANS_MASK 0x7 166 #define CR0_NUM_PERIPH_SHIFT 12 167 #define CR0_NUM_PERIPH_MASK 0x1f 168 #define CR0_NUM_EVENTS_SHIFT 17 169 #define CR0_NUM_EVENTS_MASK 0x1f 170 171 #define CR1_ICACHE_LEN_SHIFT 0 172 #define CR1_ICACHE_LEN_MASK 0x7 173 #define CR1_NUM_ICACHELINES_SHIFT 4 174 #define CR1_NUM_ICACHELINES_MASK 0xf 175 176 #define CRD_DATA_WIDTH_SHIFT 0 177 #define CRD_DATA_WIDTH_MASK 0x7 178 #define CRD_WR_CAP_SHIFT 4 179 #define CRD_WR_CAP_MASK 0x7 180 #define CRD_WR_Q_DEP_SHIFT 8 181 #define CRD_WR_Q_DEP_MASK 0xf 182 #define CRD_RD_CAP_SHIFT 12 183 #define CRD_RD_CAP_MASK 0x7 184 #define CRD_RD_Q_DEP_SHIFT 16 185 #define CRD_RD_Q_DEP_MASK 0xf 186 #define CRD_DATA_BUFF_SHIFT 20 187 #define CRD_DATA_BUFF_MASK 0x3ff 188 189 #define PART 0x330 190 #define DESIGNER 0x41 191 #define REVISION 0x0 192 #define INTEG_CFG 0x0 193 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12)) 194 195 #define PCELL_ID_VAL 0xb105f00d 196 197 #define PL330_STATE_STOPPED (1 << 0) 198 #define PL330_STATE_EXECUTING (1 << 1) 199 #define PL330_STATE_WFE (1 << 2) 200 #define PL330_STATE_FAULTING (1 << 3) 201 #define PL330_STATE_COMPLETING (1 << 4) 202 #define PL330_STATE_WFP (1 << 5) 203 #define PL330_STATE_KILLING (1 << 6) 204 #define PL330_STATE_FAULT_COMPLETING (1 << 7) 205 #define PL330_STATE_CACHEMISS (1 << 8) 206 #define PL330_STATE_UPDTPC (1 << 9) 207 #define PL330_STATE_ATBARRIER (1 << 10) 208 #define PL330_STATE_QUEUEBUSY (1 << 11) 209 #define PL330_STATE_INVALID (1 << 15) 210 211 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \ 212 | PL330_STATE_WFE | PL330_STATE_FAULTING) 213 214 #define CMD_DMAADDH 0x54 215 #define CMD_DMAEND 0x00 216 #define CMD_DMAFLUSHP 0x35 217 #define CMD_DMAGO 0xa0 218 #define CMD_DMALD 0x04 219 #define CMD_DMALDP 0x25 220 #define CMD_DMALP 0x20 221 #define CMD_DMALPEND 0x28 222 #define CMD_DMAKILL 0x01 223 #define CMD_DMAMOV 0xbc 224 #define CMD_DMANOP 0x18 225 #define CMD_DMARMB 0x12 226 #define CMD_DMASEV 0x34 227 #define CMD_DMAST 0x08 228 #define CMD_DMASTP 0x29 229 #define CMD_DMASTZ 0x0c 230 #define CMD_DMAWFE 0x36 231 #define CMD_DMAWFP 0x30 232 #define CMD_DMAWMB 0x13 233 234 #define SZ_DMAADDH 3 235 #define SZ_DMAEND 1 236 #define SZ_DMAFLUSHP 2 237 #define SZ_DMALD 1 238 #define SZ_DMALDP 2 239 #define SZ_DMALP 2 240 #define SZ_DMALPEND 2 241 #define SZ_DMAKILL 1 242 #define SZ_DMAMOV 6 243 #define SZ_DMANOP 1 244 #define SZ_DMARMB 1 245 #define SZ_DMASEV 2 246 #define SZ_DMAST 1 247 #define SZ_DMASTP 2 248 #define SZ_DMASTZ 1 249 #define SZ_DMAWFE 2 250 #define SZ_DMAWFP 2 251 #define SZ_DMAWMB 1 252 #define SZ_DMAGO 6 253 254 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1) 255 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7)) 256 257 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr)) 258 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr)) 259 260 /* 261 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req 262 * at 1byte/burst for P<->M and M<->M respectively. 263 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req 264 * should be enough for P<->M and M<->M respectively. 265 */ 266 #define MCODE_BUFF_PER_REQ 256 267 268 /* If the _pl330_req is available to the client */ 269 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND) 270 271 /* Use this _only_ to wait on transient states */ 272 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax(); 273 274 #ifdef PL330_DEBUG_MCGEN 275 static unsigned cmd_line; 276 #define PL330_DBGCMD_DUMP(off, x...) do { \ 277 printk("%x:", cmd_line); \ 278 printk(x); \ 279 cmd_line += off; \ 280 } while (0) 281 #define PL330_DBGMC_START(addr) (cmd_line = addr) 282 #else 283 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0) 284 #define PL330_DBGMC_START(addr) do {} while (0) 285 #endif 286 287 /* The number of default descriptors */ 288 289 #define NR_DEFAULT_DESC 16 290 291 /* Populated by the PL330 core driver for DMA API driver's info */ 292 struct pl330_config { 293 u32 periph_id; 294 u32 pcell_id; 295 #define DMAC_MODE_NS (1 << 0) 296 unsigned int mode; 297 unsigned int data_bus_width:10; /* In number of bits */ 298 unsigned int data_buf_dep:10; 299 unsigned int num_chan:4; 300 unsigned int num_peri:6; 301 u32 peri_ns; 302 unsigned int num_events:6; 303 u32 irq_ns; 304 }; 305 306 /* Handle to the DMAC provided to the PL330 core */ 307 struct pl330_info { 308 /* Owning device */ 309 struct device *dev; 310 /* Size of MicroCode buffers for each channel. */ 311 unsigned mcbufsz; 312 /* ioremap'ed address of PL330 registers. */ 313 void __iomem *base; 314 /* Client can freely use it. */ 315 void *client_data; 316 /* PL330 core data, Client must not touch it. */ 317 void *pl330_data; 318 /* Populated by the PL330 core driver during pl330_add */ 319 struct pl330_config pcfg; 320 /* 321 * If the DMAC has some reset mechanism, then the 322 * client may want to provide pointer to the method. 323 */ 324 void (*dmac_reset)(struct pl330_info *pi); 325 }; 326 327 /** 328 * Request Configuration. 329 * The PL330 core does not modify this and uses the last 330 * working configuration if the request doesn't provide any. 331 * 332 * The Client may want to provide this info only for the 333 * first request and a request with new settings. 334 */ 335 struct pl330_reqcfg { 336 /* Address Incrementing */ 337 unsigned dst_inc:1; 338 unsigned src_inc:1; 339 340 /* 341 * For now, the SRC & DST protection levels 342 * and burst size/length are assumed same. 343 */ 344 bool nonsecure; 345 bool privileged; 346 bool insnaccess; 347 unsigned brst_len:5; 348 unsigned brst_size:3; /* in power of 2 */ 349 350 enum pl330_dstcachectrl dcctl; 351 enum pl330_srccachectrl scctl; 352 enum pl330_byteswap swap; 353 struct pl330_config *pcfg; 354 }; 355 356 /* 357 * One cycle of DMAC operation. 358 * There may be more than one xfer in a request. 359 */ 360 struct pl330_xfer { 361 u32 src_addr; 362 u32 dst_addr; 363 /* Size to xfer */ 364 u32 bytes; 365 /* 366 * Pointer to next xfer in the list. 367 * The last xfer in the req must point to NULL. 368 */ 369 struct pl330_xfer *next; 370 }; 371 372 /* The xfer callbacks are made with one of these arguments. */ 373 enum pl330_op_err { 374 /* The all xfers in the request were success. */ 375 PL330_ERR_NONE, 376 /* If req aborted due to global error. */ 377 PL330_ERR_ABORT, 378 /* If req failed due to problem with Channel. */ 379 PL330_ERR_FAIL, 380 }; 381 382 /* A request defining Scatter-Gather List ending with NULL xfer. */ 383 struct pl330_req { 384 enum pl330_reqtype rqtype; 385 /* Index of peripheral for the xfer. */ 386 unsigned peri:5; 387 /* Unique token for this xfer, set by the client. */ 388 void *token; 389 /* Callback to be called after xfer. */ 390 void (*xfer_cb)(void *token, enum pl330_op_err err); 391 /* If NULL, req will be done at last set parameters. */ 392 struct pl330_reqcfg *cfg; 393 /* Pointer to first xfer in the request. */ 394 struct pl330_xfer *x; 395 /* Hook to attach to DMAC's list of reqs with due callback */ 396 struct list_head rqd; 397 }; 398 399 /* 400 * To know the status of the channel and DMAC, the client 401 * provides a pointer to this structure. The PL330 core 402 * fills it with current information. 403 */ 404 struct pl330_chanstatus { 405 /* 406 * If the DMAC engine halted due to some error, 407 * the client should remove-add DMAC. 408 */ 409 bool dmac_halted; 410 /* 411 * If channel is halted due to some error, 412 * the client should ABORT/FLUSH and START the channel. 413 */ 414 bool faulting; 415 /* Location of last load */ 416 u32 src_addr; 417 /* Location of last store */ 418 u32 dst_addr; 419 /* 420 * Pointer to the currently active req, NULL if channel is 421 * inactive, even though the requests may be present. 422 */ 423 struct pl330_req *top_req; 424 /* Pointer to req waiting second in the queue if any. */ 425 struct pl330_req *wait_req; 426 }; 427 428 enum pl330_chan_op { 429 /* Start the channel */ 430 PL330_OP_START, 431 /* Abort the active xfer */ 432 PL330_OP_ABORT, 433 /* Stop xfer and flush queue */ 434 PL330_OP_FLUSH, 435 }; 436 437 struct _xfer_spec { 438 u32 ccr; 439 struct pl330_req *r; 440 struct pl330_xfer *x; 441 }; 442 443 enum dmamov_dst { 444 SAR = 0, 445 CCR, 446 DAR, 447 }; 448 449 enum pl330_dst { 450 SRC = 0, 451 DST, 452 }; 453 454 enum pl330_cond { 455 SINGLE, 456 BURST, 457 ALWAYS, 458 }; 459 460 struct _pl330_req { 461 u32 mc_bus; 462 void *mc_cpu; 463 /* Number of bytes taken to setup MC for the req */ 464 u32 mc_len; 465 struct pl330_req *r; 466 }; 467 468 /* ToBeDone for tasklet */ 469 struct _pl330_tbd { 470 bool reset_dmac; 471 bool reset_mngr; 472 u8 reset_chan; 473 }; 474 475 /* A DMAC Thread */ 476 struct pl330_thread { 477 u8 id; 478 int ev; 479 /* If the channel is not yet acquired by any client */ 480 bool free; 481 /* Parent DMAC */ 482 struct pl330_dmac *dmac; 483 /* Only two at a time */ 484 struct _pl330_req req[2]; 485 /* Index of the last enqueued request */ 486 unsigned lstenq; 487 /* Index of the last submitted request or -1 if the DMA is stopped */ 488 int req_running; 489 }; 490 491 enum pl330_dmac_state { 492 UNINIT, 493 INIT, 494 DYING, 495 }; 496 497 /* A DMAC */ 498 struct pl330_dmac { 499 spinlock_t lock; 500 /* Holds list of reqs with due callbacks */ 501 struct list_head req_done; 502 /* Pointer to platform specific stuff */ 503 struct pl330_info *pinfo; 504 /* Maximum possible events/irqs */ 505 int events[32]; 506 /* BUS address of MicroCode buffer */ 507 u32 mcode_bus; 508 /* CPU address of MicroCode buffer */ 509 void *mcode_cpu; 510 /* List of all Channel threads */ 511 struct pl330_thread *channels; 512 /* Pointer to the MANAGER thread */ 513 struct pl330_thread *manager; 514 /* To handle bad news in interrupt */ 515 struct tasklet_struct tasks; 516 struct _pl330_tbd dmac_tbd; 517 /* State of DMAC operation */ 518 enum pl330_dmac_state state; 519 }; 520 521 enum desc_status { 522 /* In the DMAC pool */ 523 FREE, 524 /* 525 * Allocted to some channel during prep_xxx 526 * Also may be sitting on the work_list. 527 */ 528 PREP, 529 /* 530 * Sitting on the work_list and already submitted 531 * to the PL330 core. Not more than two descriptors 532 * of a channel can be BUSY at any time. 533 */ 534 BUSY, 535 /* 536 * Sitting on the channel work_list but xfer done 537 * by PL330 core 538 */ 539 DONE, 540 }; 541 542 struct dma_pl330_chan { 543 /* Schedule desc completion */ 544 struct tasklet_struct task; 545 546 /* DMA-Engine Channel */ 547 struct dma_chan chan; 548 549 /* List of to be xfered descriptors */ 550 struct list_head work_list; 551 552 /* Pointer to the DMAC that manages this channel, 553 * NULL if the channel is available to be acquired. 554 * As the parent, this DMAC also provides descriptors 555 * to the channel. 556 */ 557 struct dma_pl330_dmac *dmac; 558 559 /* To protect channel manipulation */ 560 spinlock_t lock; 561 562 /* Token of a hardware channel thread of PL330 DMAC 563 * NULL if the channel is available to be acquired. 564 */ 565 void *pl330_chid; 566 567 /* For D-to-M and M-to-D channels */ 568 int burst_sz; /* the peripheral fifo width */ 569 int burst_len; /* the number of burst */ 570 dma_addr_t fifo_addr; 571 572 /* for cyclic capability */ 573 bool cyclic; 574 }; 575 576 struct dma_pl330_dmac { 577 struct pl330_info pif; 578 579 /* DMA-Engine Device */ 580 struct dma_device ddma; 581 582 /* Pool of descriptors available for the DMAC's channels */ 583 struct list_head desc_pool; 584 /* To protect desc_pool manipulation */ 585 spinlock_t pool_lock; 586 587 /* Peripheral channels connected to this DMAC */ 588 struct dma_pl330_chan *peripherals; /* keep at end */ 589 590 struct clk *clk; 591 }; 592 593 struct dma_pl330_desc { 594 /* To attach to a queue as child */ 595 struct list_head node; 596 597 /* Descriptor for the DMA Engine API */ 598 struct dma_async_tx_descriptor txd; 599 600 /* Xfer for PL330 core */ 601 struct pl330_xfer px; 602 603 struct pl330_reqcfg rqcfg; 604 struct pl330_req req; 605 606 enum desc_status status; 607 608 /* The channel which currently holds this desc */ 609 struct dma_pl330_chan *pchan; 610 }; 611 612 static inline void _callback(struct pl330_req *r, enum pl330_op_err err) 613 { 614 if (r && r->xfer_cb) 615 r->xfer_cb(r->token, err); 616 } 617 618 static inline bool _queue_empty(struct pl330_thread *thrd) 619 { 620 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1])) 621 ? true : false; 622 } 623 624 static inline bool _queue_full(struct pl330_thread *thrd) 625 { 626 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1])) 627 ? false : true; 628 } 629 630 static inline bool is_manager(struct pl330_thread *thrd) 631 { 632 struct pl330_dmac *pl330 = thrd->dmac; 633 634 /* MANAGER is indexed at the end */ 635 if (thrd->id == pl330->pinfo->pcfg.num_chan) 636 return true; 637 else 638 return false; 639 } 640 641 /* If manager of the thread is in Non-Secure mode */ 642 static inline bool _manager_ns(struct pl330_thread *thrd) 643 { 644 struct pl330_dmac *pl330 = thrd->dmac; 645 646 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false; 647 } 648 649 static inline u32 get_id(struct pl330_info *pi, u32 off) 650 { 651 void __iomem *regs = pi->base; 652 u32 id = 0; 653 654 id |= (readb(regs + off + 0x0) << 0); 655 id |= (readb(regs + off + 0x4) << 8); 656 id |= (readb(regs + off + 0x8) << 16); 657 id |= (readb(regs + off + 0xc) << 24); 658 659 return id; 660 } 661 662 static inline u32 get_revision(u32 periph_id) 663 { 664 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK; 665 } 666 667 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[], 668 enum pl330_dst da, u16 val) 669 { 670 if (dry_run) 671 return SZ_DMAADDH; 672 673 buf[0] = CMD_DMAADDH; 674 buf[0] |= (da << 1); 675 *((u16 *)&buf[1]) = val; 676 677 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n", 678 da == 1 ? "DA" : "SA", val); 679 680 return SZ_DMAADDH; 681 } 682 683 static inline u32 _emit_END(unsigned dry_run, u8 buf[]) 684 { 685 if (dry_run) 686 return SZ_DMAEND; 687 688 buf[0] = CMD_DMAEND; 689 690 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n"); 691 692 return SZ_DMAEND; 693 } 694 695 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri) 696 { 697 if (dry_run) 698 return SZ_DMAFLUSHP; 699 700 buf[0] = CMD_DMAFLUSHP; 701 702 peri &= 0x1f; 703 peri <<= 3; 704 buf[1] = peri; 705 706 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3); 707 708 return SZ_DMAFLUSHP; 709 } 710 711 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond) 712 { 713 if (dry_run) 714 return SZ_DMALD; 715 716 buf[0] = CMD_DMALD; 717 718 if (cond == SINGLE) 719 buf[0] |= (0 << 1) | (1 << 0); 720 else if (cond == BURST) 721 buf[0] |= (1 << 1) | (1 << 0); 722 723 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n", 724 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 725 726 return SZ_DMALD; 727 } 728 729 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[], 730 enum pl330_cond cond, u8 peri) 731 { 732 if (dry_run) 733 return SZ_DMALDP; 734 735 buf[0] = CMD_DMALDP; 736 737 if (cond == BURST) 738 buf[0] |= (1 << 1); 739 740 peri &= 0x1f; 741 peri <<= 3; 742 buf[1] = peri; 743 744 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n", 745 cond == SINGLE ? 'S' : 'B', peri >> 3); 746 747 return SZ_DMALDP; 748 } 749 750 static inline u32 _emit_LP(unsigned dry_run, u8 buf[], 751 unsigned loop, u8 cnt) 752 { 753 if (dry_run) 754 return SZ_DMALP; 755 756 buf[0] = CMD_DMALP; 757 758 if (loop) 759 buf[0] |= (1 << 1); 760 761 cnt--; /* DMAC increments by 1 internally */ 762 buf[1] = cnt; 763 764 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt); 765 766 return SZ_DMALP; 767 } 768 769 struct _arg_LPEND { 770 enum pl330_cond cond; 771 bool forever; 772 unsigned loop; 773 u8 bjump; 774 }; 775 776 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[], 777 const struct _arg_LPEND *arg) 778 { 779 enum pl330_cond cond = arg->cond; 780 bool forever = arg->forever; 781 unsigned loop = arg->loop; 782 u8 bjump = arg->bjump; 783 784 if (dry_run) 785 return SZ_DMALPEND; 786 787 buf[0] = CMD_DMALPEND; 788 789 if (loop) 790 buf[0] |= (1 << 2); 791 792 if (!forever) 793 buf[0] |= (1 << 4); 794 795 if (cond == SINGLE) 796 buf[0] |= (0 << 1) | (1 << 0); 797 else if (cond == BURST) 798 buf[0] |= (1 << 1) | (1 << 0); 799 800 buf[1] = bjump; 801 802 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n", 803 forever ? "FE" : "END", 804 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'), 805 loop ? '1' : '0', 806 bjump); 807 808 return SZ_DMALPEND; 809 } 810 811 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[]) 812 { 813 if (dry_run) 814 return SZ_DMAKILL; 815 816 buf[0] = CMD_DMAKILL; 817 818 return SZ_DMAKILL; 819 } 820 821 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[], 822 enum dmamov_dst dst, u32 val) 823 { 824 if (dry_run) 825 return SZ_DMAMOV; 826 827 buf[0] = CMD_DMAMOV; 828 buf[1] = dst; 829 *((u32 *)&buf[2]) = val; 830 831 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n", 832 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val); 833 834 return SZ_DMAMOV; 835 } 836 837 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[]) 838 { 839 if (dry_run) 840 return SZ_DMANOP; 841 842 buf[0] = CMD_DMANOP; 843 844 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n"); 845 846 return SZ_DMANOP; 847 } 848 849 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[]) 850 { 851 if (dry_run) 852 return SZ_DMARMB; 853 854 buf[0] = CMD_DMARMB; 855 856 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n"); 857 858 return SZ_DMARMB; 859 } 860 861 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev) 862 { 863 if (dry_run) 864 return SZ_DMASEV; 865 866 buf[0] = CMD_DMASEV; 867 868 ev &= 0x1f; 869 ev <<= 3; 870 buf[1] = ev; 871 872 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3); 873 874 return SZ_DMASEV; 875 } 876 877 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond) 878 { 879 if (dry_run) 880 return SZ_DMAST; 881 882 buf[0] = CMD_DMAST; 883 884 if (cond == SINGLE) 885 buf[0] |= (0 << 1) | (1 << 0); 886 else if (cond == BURST) 887 buf[0] |= (1 << 1) | (1 << 0); 888 889 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n", 890 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A')); 891 892 return SZ_DMAST; 893 } 894 895 static inline u32 _emit_STP(unsigned dry_run, u8 buf[], 896 enum pl330_cond cond, u8 peri) 897 { 898 if (dry_run) 899 return SZ_DMASTP; 900 901 buf[0] = CMD_DMASTP; 902 903 if (cond == BURST) 904 buf[0] |= (1 << 1); 905 906 peri &= 0x1f; 907 peri <<= 3; 908 buf[1] = peri; 909 910 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n", 911 cond == SINGLE ? 'S' : 'B', peri >> 3); 912 913 return SZ_DMASTP; 914 } 915 916 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[]) 917 { 918 if (dry_run) 919 return SZ_DMASTZ; 920 921 buf[0] = CMD_DMASTZ; 922 923 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n"); 924 925 return SZ_DMASTZ; 926 } 927 928 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev, 929 unsigned invalidate) 930 { 931 if (dry_run) 932 return SZ_DMAWFE; 933 934 buf[0] = CMD_DMAWFE; 935 936 ev &= 0x1f; 937 ev <<= 3; 938 buf[1] = ev; 939 940 if (invalidate) 941 buf[1] |= (1 << 1); 942 943 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n", 944 ev >> 3, invalidate ? ", I" : ""); 945 946 return SZ_DMAWFE; 947 } 948 949 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[], 950 enum pl330_cond cond, u8 peri) 951 { 952 if (dry_run) 953 return SZ_DMAWFP; 954 955 buf[0] = CMD_DMAWFP; 956 957 if (cond == SINGLE) 958 buf[0] |= (0 << 1) | (0 << 0); 959 else if (cond == BURST) 960 buf[0] |= (1 << 1) | (0 << 0); 961 else 962 buf[0] |= (0 << 1) | (1 << 0); 963 964 peri &= 0x1f; 965 peri <<= 3; 966 buf[1] = peri; 967 968 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n", 969 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3); 970 971 return SZ_DMAWFP; 972 } 973 974 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[]) 975 { 976 if (dry_run) 977 return SZ_DMAWMB; 978 979 buf[0] = CMD_DMAWMB; 980 981 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n"); 982 983 return SZ_DMAWMB; 984 } 985 986 struct _arg_GO { 987 u8 chan; 988 u32 addr; 989 unsigned ns; 990 }; 991 992 static inline u32 _emit_GO(unsigned dry_run, u8 buf[], 993 const struct _arg_GO *arg) 994 { 995 u8 chan = arg->chan; 996 u32 addr = arg->addr; 997 unsigned ns = arg->ns; 998 999 if (dry_run) 1000 return SZ_DMAGO; 1001 1002 buf[0] = CMD_DMAGO; 1003 buf[0] |= (ns << 1); 1004 1005 buf[1] = chan & 0x7; 1006 1007 *((u32 *)&buf[2]) = addr; 1008 1009 return SZ_DMAGO; 1010 } 1011 1012 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) 1013 1014 /* Returns Time-Out */ 1015 static bool _until_dmac_idle(struct pl330_thread *thrd) 1016 { 1017 void __iomem *regs = thrd->dmac->pinfo->base; 1018 unsigned long loops = msecs_to_loops(5); 1019 1020 do { 1021 /* Until Manager is Idle */ 1022 if (!(readl(regs + DBGSTATUS) & DBG_BUSY)) 1023 break; 1024 1025 cpu_relax(); 1026 } while (--loops); 1027 1028 if (!loops) 1029 return true; 1030 1031 return false; 1032 } 1033 1034 static inline void _execute_DBGINSN(struct pl330_thread *thrd, 1035 u8 insn[], bool as_manager) 1036 { 1037 void __iomem *regs = thrd->dmac->pinfo->base; 1038 u32 val; 1039 1040 val = (insn[0] << 16) | (insn[1] << 24); 1041 if (!as_manager) { 1042 val |= (1 << 0); 1043 val |= (thrd->id << 8); /* Channel Number */ 1044 } 1045 writel(val, regs + DBGINST0); 1046 1047 val = *((u32 *)&insn[2]); 1048 writel(val, regs + DBGINST1); 1049 1050 /* If timed out due to halted state-machine */ 1051 if (_until_dmac_idle(thrd)) { 1052 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n"); 1053 return; 1054 } 1055 1056 /* Get going */ 1057 writel(0, regs + DBGCMD); 1058 } 1059 1060 /* 1061 * Mark a _pl330_req as free. 1062 * We do it by writing DMAEND as the first instruction 1063 * because no valid request is going to have DMAEND as 1064 * its first instruction to execute. 1065 */ 1066 static void mark_free(struct pl330_thread *thrd, int idx) 1067 { 1068 struct _pl330_req *req = &thrd->req[idx]; 1069 1070 _emit_END(0, req->mc_cpu); 1071 req->mc_len = 0; 1072 1073 thrd->req_running = -1; 1074 } 1075 1076 static inline u32 _state(struct pl330_thread *thrd) 1077 { 1078 void __iomem *regs = thrd->dmac->pinfo->base; 1079 u32 val; 1080 1081 if (is_manager(thrd)) 1082 val = readl(regs + DS) & 0xf; 1083 else 1084 val = readl(regs + CS(thrd->id)) & 0xf; 1085 1086 switch (val) { 1087 case DS_ST_STOP: 1088 return PL330_STATE_STOPPED; 1089 case DS_ST_EXEC: 1090 return PL330_STATE_EXECUTING; 1091 case DS_ST_CMISS: 1092 return PL330_STATE_CACHEMISS; 1093 case DS_ST_UPDTPC: 1094 return PL330_STATE_UPDTPC; 1095 case DS_ST_WFE: 1096 return PL330_STATE_WFE; 1097 case DS_ST_FAULT: 1098 return PL330_STATE_FAULTING; 1099 case DS_ST_ATBRR: 1100 if (is_manager(thrd)) 1101 return PL330_STATE_INVALID; 1102 else 1103 return PL330_STATE_ATBARRIER; 1104 case DS_ST_QBUSY: 1105 if (is_manager(thrd)) 1106 return PL330_STATE_INVALID; 1107 else 1108 return PL330_STATE_QUEUEBUSY; 1109 case DS_ST_WFP: 1110 if (is_manager(thrd)) 1111 return PL330_STATE_INVALID; 1112 else 1113 return PL330_STATE_WFP; 1114 case DS_ST_KILL: 1115 if (is_manager(thrd)) 1116 return PL330_STATE_INVALID; 1117 else 1118 return PL330_STATE_KILLING; 1119 case DS_ST_CMPLT: 1120 if (is_manager(thrd)) 1121 return PL330_STATE_INVALID; 1122 else 1123 return PL330_STATE_COMPLETING; 1124 case DS_ST_FLTCMP: 1125 if (is_manager(thrd)) 1126 return PL330_STATE_INVALID; 1127 else 1128 return PL330_STATE_FAULT_COMPLETING; 1129 default: 1130 return PL330_STATE_INVALID; 1131 } 1132 } 1133 1134 static void _stop(struct pl330_thread *thrd) 1135 { 1136 void __iomem *regs = thrd->dmac->pinfo->base; 1137 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1138 1139 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING) 1140 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1141 1142 /* Return if nothing needs to be done */ 1143 if (_state(thrd) == PL330_STATE_COMPLETING 1144 || _state(thrd) == PL330_STATE_KILLING 1145 || _state(thrd) == PL330_STATE_STOPPED) 1146 return; 1147 1148 _emit_KILL(0, insn); 1149 1150 /* Stop generating interrupts for SEV */ 1151 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN); 1152 1153 _execute_DBGINSN(thrd, insn, is_manager(thrd)); 1154 } 1155 1156 /* Start doing req 'idx' of thread 'thrd' */ 1157 static bool _trigger(struct pl330_thread *thrd) 1158 { 1159 void __iomem *regs = thrd->dmac->pinfo->base; 1160 struct _pl330_req *req; 1161 struct pl330_req *r; 1162 struct _arg_GO go; 1163 unsigned ns; 1164 u8 insn[6] = {0, 0, 0, 0, 0, 0}; 1165 int idx; 1166 1167 /* Return if already ACTIVE */ 1168 if (_state(thrd) != PL330_STATE_STOPPED) 1169 return true; 1170 1171 idx = 1 - thrd->lstenq; 1172 if (!IS_FREE(&thrd->req[idx])) 1173 req = &thrd->req[idx]; 1174 else { 1175 idx = thrd->lstenq; 1176 if (!IS_FREE(&thrd->req[idx])) 1177 req = &thrd->req[idx]; 1178 else 1179 req = NULL; 1180 } 1181 1182 /* Return if no request */ 1183 if (!req || !req->r) 1184 return true; 1185 1186 r = req->r; 1187 1188 if (r->cfg) 1189 ns = r->cfg->nonsecure ? 1 : 0; 1190 else if (readl(regs + CS(thrd->id)) & CS_CNS) 1191 ns = 1; 1192 else 1193 ns = 0; 1194 1195 /* See 'Abort Sources' point-4 at Page 2-25 */ 1196 if (_manager_ns(thrd) && !ns) 1197 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n", 1198 __func__, __LINE__); 1199 1200 go.chan = thrd->id; 1201 go.addr = req->mc_bus; 1202 go.ns = ns; 1203 _emit_GO(0, insn, &go); 1204 1205 /* Set to generate interrupts for SEV */ 1206 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN); 1207 1208 /* Only manager can execute GO */ 1209 _execute_DBGINSN(thrd, insn, true); 1210 1211 thrd->req_running = idx; 1212 1213 return true; 1214 } 1215 1216 static bool _start(struct pl330_thread *thrd) 1217 { 1218 switch (_state(thrd)) { 1219 case PL330_STATE_FAULT_COMPLETING: 1220 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING); 1221 1222 if (_state(thrd) == PL330_STATE_KILLING) 1223 UNTIL(thrd, PL330_STATE_STOPPED) 1224 1225 case PL330_STATE_FAULTING: 1226 _stop(thrd); 1227 1228 case PL330_STATE_KILLING: 1229 case PL330_STATE_COMPLETING: 1230 UNTIL(thrd, PL330_STATE_STOPPED) 1231 1232 case PL330_STATE_STOPPED: 1233 return _trigger(thrd); 1234 1235 case PL330_STATE_WFP: 1236 case PL330_STATE_QUEUEBUSY: 1237 case PL330_STATE_ATBARRIER: 1238 case PL330_STATE_UPDTPC: 1239 case PL330_STATE_CACHEMISS: 1240 case PL330_STATE_EXECUTING: 1241 return true; 1242 1243 case PL330_STATE_WFE: /* For RESUME, nothing yet */ 1244 default: 1245 return false; 1246 } 1247 } 1248 1249 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[], 1250 const struct _xfer_spec *pxs, int cyc) 1251 { 1252 int off = 0; 1253 struct pl330_config *pcfg = pxs->r->cfg->pcfg; 1254 1255 /* check lock-up free version */ 1256 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) { 1257 while (cyc--) { 1258 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1259 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1260 } 1261 } else { 1262 while (cyc--) { 1263 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1264 off += _emit_RMB(dry_run, &buf[off]); 1265 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1266 off += _emit_WMB(dry_run, &buf[off]); 1267 } 1268 } 1269 1270 return off; 1271 } 1272 1273 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[], 1274 const struct _xfer_spec *pxs, int cyc) 1275 { 1276 int off = 0; 1277 1278 while (cyc--) { 1279 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1280 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1281 off += _emit_ST(dry_run, &buf[off], ALWAYS); 1282 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1283 } 1284 1285 return off; 1286 } 1287 1288 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[], 1289 const struct _xfer_spec *pxs, int cyc) 1290 { 1291 int off = 0; 1292 1293 while (cyc--) { 1294 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1295 off += _emit_LD(dry_run, &buf[off], ALWAYS); 1296 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri); 1297 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri); 1298 } 1299 1300 return off; 1301 } 1302 1303 static int _bursts(unsigned dry_run, u8 buf[], 1304 const struct _xfer_spec *pxs, int cyc) 1305 { 1306 int off = 0; 1307 1308 switch (pxs->r->rqtype) { 1309 case MEMTODEV: 1310 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc); 1311 break; 1312 case DEVTOMEM: 1313 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc); 1314 break; 1315 case MEMTOMEM: 1316 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc); 1317 break; 1318 default: 1319 off += 0x40000000; /* Scare off the Client */ 1320 break; 1321 } 1322 1323 return off; 1324 } 1325 1326 /* Returns bytes consumed and updates bursts */ 1327 static inline int _loop(unsigned dry_run, u8 buf[], 1328 unsigned long *bursts, const struct _xfer_spec *pxs) 1329 { 1330 int cyc, cycmax, szlp, szlpend, szbrst, off; 1331 unsigned lcnt0, lcnt1, ljmp0, ljmp1; 1332 struct _arg_LPEND lpend; 1333 1334 /* Max iterations possible in DMALP is 256 */ 1335 if (*bursts >= 256*256) { 1336 lcnt1 = 256; 1337 lcnt0 = 256; 1338 cyc = *bursts / lcnt1 / lcnt0; 1339 } else if (*bursts > 256) { 1340 lcnt1 = 256; 1341 lcnt0 = *bursts / lcnt1; 1342 cyc = 1; 1343 } else { 1344 lcnt1 = *bursts; 1345 lcnt0 = 0; 1346 cyc = 1; 1347 } 1348 1349 szlp = _emit_LP(1, buf, 0, 0); 1350 szbrst = _bursts(1, buf, pxs, 1); 1351 1352 lpend.cond = ALWAYS; 1353 lpend.forever = false; 1354 lpend.loop = 0; 1355 lpend.bjump = 0; 1356 szlpend = _emit_LPEND(1, buf, &lpend); 1357 1358 if (lcnt0) { 1359 szlp *= 2; 1360 szlpend *= 2; 1361 } 1362 1363 /* 1364 * Max bursts that we can unroll due to limit on the 1365 * size of backward jump that can be encoded in DMALPEND 1366 * which is 8-bits and hence 255 1367 */ 1368 cycmax = (255 - (szlp + szlpend)) / szbrst; 1369 1370 cyc = (cycmax < cyc) ? cycmax : cyc; 1371 1372 off = 0; 1373 1374 if (lcnt0) { 1375 off += _emit_LP(dry_run, &buf[off], 0, lcnt0); 1376 ljmp0 = off; 1377 } 1378 1379 off += _emit_LP(dry_run, &buf[off], 1, lcnt1); 1380 ljmp1 = off; 1381 1382 off += _bursts(dry_run, &buf[off], pxs, cyc); 1383 1384 lpend.cond = ALWAYS; 1385 lpend.forever = false; 1386 lpend.loop = 1; 1387 lpend.bjump = off - ljmp1; 1388 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1389 1390 if (lcnt0) { 1391 lpend.cond = ALWAYS; 1392 lpend.forever = false; 1393 lpend.loop = 0; 1394 lpend.bjump = off - ljmp0; 1395 off += _emit_LPEND(dry_run, &buf[off], &lpend); 1396 } 1397 1398 *bursts = lcnt1 * cyc; 1399 if (lcnt0) 1400 *bursts *= lcnt0; 1401 1402 return off; 1403 } 1404 1405 static inline int _setup_loops(unsigned dry_run, u8 buf[], 1406 const struct _xfer_spec *pxs) 1407 { 1408 struct pl330_xfer *x = pxs->x; 1409 u32 ccr = pxs->ccr; 1410 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr); 1411 int off = 0; 1412 1413 while (bursts) { 1414 c = bursts; 1415 off += _loop(dry_run, &buf[off], &c, pxs); 1416 bursts -= c; 1417 } 1418 1419 return off; 1420 } 1421 1422 static inline int _setup_xfer(unsigned dry_run, u8 buf[], 1423 const struct _xfer_spec *pxs) 1424 { 1425 struct pl330_xfer *x = pxs->x; 1426 int off = 0; 1427 1428 /* DMAMOV SAR, x->src_addr */ 1429 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr); 1430 /* DMAMOV DAR, x->dst_addr */ 1431 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr); 1432 1433 /* Setup Loop(s) */ 1434 off += _setup_loops(dry_run, &buf[off], pxs); 1435 1436 return off; 1437 } 1438 1439 /* 1440 * A req is a sequence of one or more xfer units. 1441 * Returns the number of bytes taken to setup the MC for the req. 1442 */ 1443 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd, 1444 unsigned index, struct _xfer_spec *pxs) 1445 { 1446 struct _pl330_req *req = &thrd->req[index]; 1447 struct pl330_xfer *x; 1448 u8 *buf = req->mc_cpu; 1449 int off = 0; 1450 1451 PL330_DBGMC_START(req->mc_bus); 1452 1453 /* DMAMOV CCR, ccr */ 1454 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr); 1455 1456 x = pxs->r->x; 1457 do { 1458 /* Error if xfer length is not aligned at burst size */ 1459 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr))) 1460 return -EINVAL; 1461 1462 pxs->x = x; 1463 off += _setup_xfer(dry_run, &buf[off], pxs); 1464 1465 x = x->next; 1466 } while (x); 1467 1468 /* DMASEV peripheral/event */ 1469 off += _emit_SEV(dry_run, &buf[off], thrd->ev); 1470 /* DMAEND */ 1471 off += _emit_END(dry_run, &buf[off]); 1472 1473 return off; 1474 } 1475 1476 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc) 1477 { 1478 u32 ccr = 0; 1479 1480 if (rqc->src_inc) 1481 ccr |= CC_SRCINC; 1482 1483 if (rqc->dst_inc) 1484 ccr |= CC_DSTINC; 1485 1486 /* We set same protection levels for Src and DST for now */ 1487 if (rqc->privileged) 1488 ccr |= CC_SRCPRI | CC_DSTPRI; 1489 if (rqc->nonsecure) 1490 ccr |= CC_SRCNS | CC_DSTNS; 1491 if (rqc->insnaccess) 1492 ccr |= CC_SRCIA | CC_DSTIA; 1493 1494 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT); 1495 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT); 1496 1497 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT); 1498 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT); 1499 1500 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT); 1501 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT); 1502 1503 ccr |= (rqc->swap << CC_SWAP_SHFT); 1504 1505 return ccr; 1506 } 1507 1508 static inline bool _is_valid(u32 ccr) 1509 { 1510 enum pl330_dstcachectrl dcctl; 1511 enum pl330_srccachectrl scctl; 1512 1513 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK; 1514 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK; 1515 1516 if (dcctl == DINVALID1 || dcctl == DINVALID2 1517 || scctl == SINVALID1 || scctl == SINVALID2) 1518 return false; 1519 else 1520 return true; 1521 } 1522 1523 /* 1524 * Submit a list of xfers after which the client wants notification. 1525 * Client is not notified after each xfer unit, just once after all 1526 * xfer units are done or some error occurs. 1527 */ 1528 static int pl330_submit_req(void *ch_id, struct pl330_req *r) 1529 { 1530 struct pl330_thread *thrd = ch_id; 1531 struct pl330_dmac *pl330; 1532 struct pl330_info *pi; 1533 struct _xfer_spec xs; 1534 unsigned long flags; 1535 void __iomem *regs; 1536 unsigned idx; 1537 u32 ccr; 1538 int ret = 0; 1539 1540 /* No Req or Unacquired Channel or DMAC */ 1541 if (!r || !thrd || thrd->free) 1542 return -EINVAL; 1543 1544 pl330 = thrd->dmac; 1545 pi = pl330->pinfo; 1546 regs = pi->base; 1547 1548 if (pl330->state == DYING 1549 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) { 1550 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n", 1551 __func__, __LINE__); 1552 return -EAGAIN; 1553 } 1554 1555 /* If request for non-existing peripheral */ 1556 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) { 1557 dev_info(thrd->dmac->pinfo->dev, 1558 "%s:%d Invalid peripheral(%u)!\n", 1559 __func__, __LINE__, r->peri); 1560 return -EINVAL; 1561 } 1562 1563 spin_lock_irqsave(&pl330->lock, flags); 1564 1565 if (_queue_full(thrd)) { 1566 ret = -EAGAIN; 1567 goto xfer_exit; 1568 } 1569 1570 /* Prefer Secure Channel */ 1571 if (!_manager_ns(thrd)) 1572 r->cfg->nonsecure = 0; 1573 else 1574 r->cfg->nonsecure = 1; 1575 1576 /* Use last settings, if not provided */ 1577 if (r->cfg) 1578 ccr = _prepare_ccr(r->cfg); 1579 else 1580 ccr = readl(regs + CC(thrd->id)); 1581 1582 /* If this req doesn't have valid xfer settings */ 1583 if (!_is_valid(ccr)) { 1584 ret = -EINVAL; 1585 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n", 1586 __func__, __LINE__, ccr); 1587 goto xfer_exit; 1588 } 1589 1590 idx = IS_FREE(&thrd->req[0]) ? 0 : 1; 1591 1592 xs.ccr = ccr; 1593 xs.r = r; 1594 1595 /* First dry run to check if req is acceptable */ 1596 ret = _setup_req(1, thrd, idx, &xs); 1597 if (ret < 0) 1598 goto xfer_exit; 1599 1600 if (ret > pi->mcbufsz / 2) { 1601 dev_info(thrd->dmac->pinfo->dev, 1602 "%s:%d Trying increasing mcbufsz\n", 1603 __func__, __LINE__); 1604 ret = -ENOMEM; 1605 goto xfer_exit; 1606 } 1607 1608 /* Hook the request */ 1609 thrd->lstenq = idx; 1610 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs); 1611 thrd->req[idx].r = r; 1612 1613 ret = 0; 1614 1615 xfer_exit: 1616 spin_unlock_irqrestore(&pl330->lock, flags); 1617 1618 return ret; 1619 } 1620 1621 static void pl330_dotask(unsigned long data) 1622 { 1623 struct pl330_dmac *pl330 = (struct pl330_dmac *) data; 1624 struct pl330_info *pi = pl330->pinfo; 1625 unsigned long flags; 1626 int i; 1627 1628 spin_lock_irqsave(&pl330->lock, flags); 1629 1630 /* The DMAC itself gone nuts */ 1631 if (pl330->dmac_tbd.reset_dmac) { 1632 pl330->state = DYING; 1633 /* Reset the manager too */ 1634 pl330->dmac_tbd.reset_mngr = true; 1635 /* Clear the reset flag */ 1636 pl330->dmac_tbd.reset_dmac = false; 1637 } 1638 1639 if (pl330->dmac_tbd.reset_mngr) { 1640 _stop(pl330->manager); 1641 /* Reset all channels */ 1642 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1; 1643 /* Clear the reset flag */ 1644 pl330->dmac_tbd.reset_mngr = false; 1645 } 1646 1647 for (i = 0; i < pi->pcfg.num_chan; i++) { 1648 1649 if (pl330->dmac_tbd.reset_chan & (1 << i)) { 1650 struct pl330_thread *thrd = &pl330->channels[i]; 1651 void __iomem *regs = pi->base; 1652 enum pl330_op_err err; 1653 1654 _stop(thrd); 1655 1656 if (readl(regs + FSC) & (1 << thrd->id)) 1657 err = PL330_ERR_FAIL; 1658 else 1659 err = PL330_ERR_ABORT; 1660 1661 spin_unlock_irqrestore(&pl330->lock, flags); 1662 1663 _callback(thrd->req[1 - thrd->lstenq].r, err); 1664 _callback(thrd->req[thrd->lstenq].r, err); 1665 1666 spin_lock_irqsave(&pl330->lock, flags); 1667 1668 thrd->req[0].r = NULL; 1669 thrd->req[1].r = NULL; 1670 mark_free(thrd, 0); 1671 mark_free(thrd, 1); 1672 1673 /* Clear the reset flag */ 1674 pl330->dmac_tbd.reset_chan &= ~(1 << i); 1675 } 1676 } 1677 1678 spin_unlock_irqrestore(&pl330->lock, flags); 1679 1680 return; 1681 } 1682 1683 /* Returns 1 if state was updated, 0 otherwise */ 1684 static int pl330_update(const struct pl330_info *pi) 1685 { 1686 struct pl330_req *rqdone, *tmp; 1687 struct pl330_dmac *pl330; 1688 unsigned long flags; 1689 void __iomem *regs; 1690 u32 val; 1691 int id, ev, ret = 0; 1692 1693 if (!pi || !pi->pl330_data) 1694 return 0; 1695 1696 regs = pi->base; 1697 pl330 = pi->pl330_data; 1698 1699 spin_lock_irqsave(&pl330->lock, flags); 1700 1701 val = readl(regs + FSM) & 0x1; 1702 if (val) 1703 pl330->dmac_tbd.reset_mngr = true; 1704 else 1705 pl330->dmac_tbd.reset_mngr = false; 1706 1707 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1); 1708 pl330->dmac_tbd.reset_chan |= val; 1709 if (val) { 1710 int i = 0; 1711 while (i < pi->pcfg.num_chan) { 1712 if (val & (1 << i)) { 1713 dev_info(pi->dev, 1714 "Reset Channel-%d\t CS-%x FTC-%x\n", 1715 i, readl(regs + CS(i)), 1716 readl(regs + FTC(i))); 1717 _stop(&pl330->channels[i]); 1718 } 1719 i++; 1720 } 1721 } 1722 1723 /* Check which event happened i.e, thread notified */ 1724 val = readl(regs + ES); 1725 if (pi->pcfg.num_events < 32 1726 && val & ~((1 << pi->pcfg.num_events) - 1)) { 1727 pl330->dmac_tbd.reset_dmac = true; 1728 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__); 1729 ret = 1; 1730 goto updt_exit; 1731 } 1732 1733 for (ev = 0; ev < pi->pcfg.num_events; ev++) { 1734 if (val & (1 << ev)) { /* Event occurred */ 1735 struct pl330_thread *thrd; 1736 u32 inten = readl(regs + INTEN); 1737 int active; 1738 1739 /* Clear the event */ 1740 if (inten & (1 << ev)) 1741 writel(1 << ev, regs + INTCLR); 1742 1743 ret = 1; 1744 1745 id = pl330->events[ev]; 1746 1747 thrd = &pl330->channels[id]; 1748 1749 active = thrd->req_running; 1750 if (active == -1) /* Aborted */ 1751 continue; 1752 1753 /* Detach the req */ 1754 rqdone = thrd->req[active].r; 1755 thrd->req[active].r = NULL; 1756 1757 mark_free(thrd, active); 1758 1759 /* Get going again ASAP */ 1760 _start(thrd); 1761 1762 /* For now, just make a list of callbacks to be done */ 1763 list_add_tail(&rqdone->rqd, &pl330->req_done); 1764 } 1765 } 1766 1767 /* Now that we are in no hurry, do the callbacks */ 1768 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) { 1769 list_del(&rqdone->rqd); 1770 1771 spin_unlock_irqrestore(&pl330->lock, flags); 1772 _callback(rqdone, PL330_ERR_NONE); 1773 spin_lock_irqsave(&pl330->lock, flags); 1774 } 1775 1776 updt_exit: 1777 spin_unlock_irqrestore(&pl330->lock, flags); 1778 1779 if (pl330->dmac_tbd.reset_dmac 1780 || pl330->dmac_tbd.reset_mngr 1781 || pl330->dmac_tbd.reset_chan) { 1782 ret = 1; 1783 tasklet_schedule(&pl330->tasks); 1784 } 1785 1786 return ret; 1787 } 1788 1789 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op) 1790 { 1791 struct pl330_thread *thrd = ch_id; 1792 struct pl330_dmac *pl330; 1793 unsigned long flags; 1794 int ret = 0, active; 1795 1796 if (!thrd || thrd->free || thrd->dmac->state == DYING) 1797 return -EINVAL; 1798 1799 pl330 = thrd->dmac; 1800 active = thrd->req_running; 1801 1802 spin_lock_irqsave(&pl330->lock, flags); 1803 1804 switch (op) { 1805 case PL330_OP_FLUSH: 1806 /* Make sure the channel is stopped */ 1807 _stop(thrd); 1808 1809 thrd->req[0].r = NULL; 1810 thrd->req[1].r = NULL; 1811 mark_free(thrd, 0); 1812 mark_free(thrd, 1); 1813 break; 1814 1815 case PL330_OP_ABORT: 1816 /* Make sure the channel is stopped */ 1817 _stop(thrd); 1818 1819 /* ABORT is only for the active req */ 1820 if (active == -1) 1821 break; 1822 1823 thrd->req[active].r = NULL; 1824 mark_free(thrd, active); 1825 1826 /* Start the next */ 1827 case PL330_OP_START: 1828 if ((active == -1) && !_start(thrd)) 1829 ret = -EIO; 1830 break; 1831 1832 default: 1833 ret = -EINVAL; 1834 } 1835 1836 spin_unlock_irqrestore(&pl330->lock, flags); 1837 return ret; 1838 } 1839 1840 /* Reserve an event */ 1841 static inline int _alloc_event(struct pl330_thread *thrd) 1842 { 1843 struct pl330_dmac *pl330 = thrd->dmac; 1844 struct pl330_info *pi = pl330->pinfo; 1845 int ev; 1846 1847 for (ev = 0; ev < pi->pcfg.num_events; ev++) 1848 if (pl330->events[ev] == -1) { 1849 pl330->events[ev] = thrd->id; 1850 return ev; 1851 } 1852 1853 return -1; 1854 } 1855 1856 static bool _chan_ns(const struct pl330_info *pi, int i) 1857 { 1858 return pi->pcfg.irq_ns & (1 << i); 1859 } 1860 1861 /* Upon success, returns IdentityToken for the 1862 * allocated channel, NULL otherwise. 1863 */ 1864 static void *pl330_request_channel(const struct pl330_info *pi) 1865 { 1866 struct pl330_thread *thrd = NULL; 1867 struct pl330_dmac *pl330; 1868 unsigned long flags; 1869 int chans, i; 1870 1871 if (!pi || !pi->pl330_data) 1872 return NULL; 1873 1874 pl330 = pi->pl330_data; 1875 1876 if (pl330->state == DYING) 1877 return NULL; 1878 1879 chans = pi->pcfg.num_chan; 1880 1881 spin_lock_irqsave(&pl330->lock, flags); 1882 1883 for (i = 0; i < chans; i++) { 1884 thrd = &pl330->channels[i]; 1885 if ((thrd->free) && (!_manager_ns(thrd) || 1886 _chan_ns(pi, i))) { 1887 thrd->ev = _alloc_event(thrd); 1888 if (thrd->ev >= 0) { 1889 thrd->free = false; 1890 thrd->lstenq = 1; 1891 thrd->req[0].r = NULL; 1892 mark_free(thrd, 0); 1893 thrd->req[1].r = NULL; 1894 mark_free(thrd, 1); 1895 break; 1896 } 1897 } 1898 thrd = NULL; 1899 } 1900 1901 spin_unlock_irqrestore(&pl330->lock, flags); 1902 1903 return thrd; 1904 } 1905 1906 /* Release an event */ 1907 static inline void _free_event(struct pl330_thread *thrd, int ev) 1908 { 1909 struct pl330_dmac *pl330 = thrd->dmac; 1910 struct pl330_info *pi = pl330->pinfo; 1911 1912 /* If the event is valid and was held by the thread */ 1913 if (ev >= 0 && ev < pi->pcfg.num_events 1914 && pl330->events[ev] == thrd->id) 1915 pl330->events[ev] = -1; 1916 } 1917 1918 static void pl330_release_channel(void *ch_id) 1919 { 1920 struct pl330_thread *thrd = ch_id; 1921 struct pl330_dmac *pl330; 1922 unsigned long flags; 1923 1924 if (!thrd || thrd->free) 1925 return; 1926 1927 _stop(thrd); 1928 1929 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT); 1930 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT); 1931 1932 pl330 = thrd->dmac; 1933 1934 spin_lock_irqsave(&pl330->lock, flags); 1935 _free_event(thrd, thrd->ev); 1936 thrd->free = true; 1937 spin_unlock_irqrestore(&pl330->lock, flags); 1938 } 1939 1940 /* Initialize the structure for PL330 configuration, that can be used 1941 * by the client driver the make best use of the DMAC 1942 */ 1943 static void read_dmac_config(struct pl330_info *pi) 1944 { 1945 void __iomem *regs = pi->base; 1946 u32 val; 1947 1948 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT; 1949 val &= CRD_DATA_WIDTH_MASK; 1950 pi->pcfg.data_bus_width = 8 * (1 << val); 1951 1952 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT; 1953 val &= CRD_DATA_BUFF_MASK; 1954 pi->pcfg.data_buf_dep = val + 1; 1955 1956 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT; 1957 val &= CR0_NUM_CHANS_MASK; 1958 val += 1; 1959 pi->pcfg.num_chan = val; 1960 1961 val = readl(regs + CR0); 1962 if (val & CR0_PERIPH_REQ_SET) { 1963 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK; 1964 val += 1; 1965 pi->pcfg.num_peri = val; 1966 pi->pcfg.peri_ns = readl(regs + CR4); 1967 } else { 1968 pi->pcfg.num_peri = 0; 1969 } 1970 1971 val = readl(regs + CR0); 1972 if (val & CR0_BOOT_MAN_NS) 1973 pi->pcfg.mode |= DMAC_MODE_NS; 1974 else 1975 pi->pcfg.mode &= ~DMAC_MODE_NS; 1976 1977 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT; 1978 val &= CR0_NUM_EVENTS_MASK; 1979 val += 1; 1980 pi->pcfg.num_events = val; 1981 1982 pi->pcfg.irq_ns = readl(regs + CR3); 1983 1984 pi->pcfg.periph_id = get_id(pi, PERIPH_ID); 1985 pi->pcfg.pcell_id = get_id(pi, PCELL_ID); 1986 } 1987 1988 static inline void _reset_thread(struct pl330_thread *thrd) 1989 { 1990 struct pl330_dmac *pl330 = thrd->dmac; 1991 struct pl330_info *pi = pl330->pinfo; 1992 1993 thrd->req[0].mc_cpu = pl330->mcode_cpu 1994 + (thrd->id * pi->mcbufsz); 1995 thrd->req[0].mc_bus = pl330->mcode_bus 1996 + (thrd->id * pi->mcbufsz); 1997 thrd->req[0].r = NULL; 1998 mark_free(thrd, 0); 1999 2000 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu 2001 + pi->mcbufsz / 2; 2002 thrd->req[1].mc_bus = thrd->req[0].mc_bus 2003 + pi->mcbufsz / 2; 2004 thrd->req[1].r = NULL; 2005 mark_free(thrd, 1); 2006 } 2007 2008 static int dmac_alloc_threads(struct pl330_dmac *pl330) 2009 { 2010 struct pl330_info *pi = pl330->pinfo; 2011 int chans = pi->pcfg.num_chan; 2012 struct pl330_thread *thrd; 2013 int i; 2014 2015 /* Allocate 1 Manager and 'chans' Channel threads */ 2016 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd), 2017 GFP_KERNEL); 2018 if (!pl330->channels) 2019 return -ENOMEM; 2020 2021 /* Init Channel threads */ 2022 for (i = 0; i < chans; i++) { 2023 thrd = &pl330->channels[i]; 2024 thrd->id = i; 2025 thrd->dmac = pl330; 2026 _reset_thread(thrd); 2027 thrd->free = true; 2028 } 2029 2030 /* MANAGER is indexed at the end */ 2031 thrd = &pl330->channels[chans]; 2032 thrd->id = chans; 2033 thrd->dmac = pl330; 2034 thrd->free = false; 2035 pl330->manager = thrd; 2036 2037 return 0; 2038 } 2039 2040 static int dmac_alloc_resources(struct pl330_dmac *pl330) 2041 { 2042 struct pl330_info *pi = pl330->pinfo; 2043 int chans = pi->pcfg.num_chan; 2044 int ret; 2045 2046 /* 2047 * Alloc MicroCode buffer for 'chans' Channel threads. 2048 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN) 2049 */ 2050 pl330->mcode_cpu = dma_alloc_coherent(pi->dev, 2051 chans * pi->mcbufsz, 2052 &pl330->mcode_bus, GFP_KERNEL); 2053 if (!pl330->mcode_cpu) { 2054 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2055 __func__, __LINE__); 2056 return -ENOMEM; 2057 } 2058 2059 ret = dmac_alloc_threads(pl330); 2060 if (ret) { 2061 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n", 2062 __func__, __LINE__); 2063 dma_free_coherent(pi->dev, 2064 chans * pi->mcbufsz, 2065 pl330->mcode_cpu, pl330->mcode_bus); 2066 return ret; 2067 } 2068 2069 return 0; 2070 } 2071 2072 static int pl330_add(struct pl330_info *pi) 2073 { 2074 struct pl330_dmac *pl330; 2075 void __iomem *regs; 2076 int i, ret; 2077 2078 if (!pi || !pi->dev) 2079 return -EINVAL; 2080 2081 /* If already added */ 2082 if (pi->pl330_data) 2083 return -EINVAL; 2084 2085 /* 2086 * If the SoC can perform reset on the DMAC, then do it 2087 * before reading its configuration. 2088 */ 2089 if (pi->dmac_reset) 2090 pi->dmac_reset(pi); 2091 2092 regs = pi->base; 2093 2094 /* Check if we can handle this DMAC */ 2095 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL 2096 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) { 2097 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n", 2098 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID)); 2099 return -EINVAL; 2100 } 2101 2102 /* Read the configuration of the DMAC */ 2103 read_dmac_config(pi); 2104 2105 if (pi->pcfg.num_events == 0) { 2106 dev_err(pi->dev, "%s:%d Can't work without events!\n", 2107 __func__, __LINE__); 2108 return -EINVAL; 2109 } 2110 2111 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL); 2112 if (!pl330) { 2113 dev_err(pi->dev, "%s:%d Can't allocate memory!\n", 2114 __func__, __LINE__); 2115 return -ENOMEM; 2116 } 2117 2118 /* Assign the info structure and private data */ 2119 pl330->pinfo = pi; 2120 pi->pl330_data = pl330; 2121 2122 spin_lock_init(&pl330->lock); 2123 2124 INIT_LIST_HEAD(&pl330->req_done); 2125 2126 /* Use default MC buffer size if not provided */ 2127 if (!pi->mcbufsz) 2128 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2; 2129 2130 /* Mark all events as free */ 2131 for (i = 0; i < pi->pcfg.num_events; i++) 2132 pl330->events[i] = -1; 2133 2134 /* Allocate resources needed by the DMAC */ 2135 ret = dmac_alloc_resources(pl330); 2136 if (ret) { 2137 dev_err(pi->dev, "Unable to create channels for DMAC\n"); 2138 kfree(pl330); 2139 return ret; 2140 } 2141 2142 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330); 2143 2144 pl330->state = INIT; 2145 2146 return 0; 2147 } 2148 2149 static int dmac_free_threads(struct pl330_dmac *pl330) 2150 { 2151 struct pl330_info *pi = pl330->pinfo; 2152 int chans = pi->pcfg.num_chan; 2153 struct pl330_thread *thrd; 2154 int i; 2155 2156 /* Release Channel threads */ 2157 for (i = 0; i < chans; i++) { 2158 thrd = &pl330->channels[i]; 2159 pl330_release_channel((void *)thrd); 2160 } 2161 2162 /* Free memory */ 2163 kfree(pl330->channels); 2164 2165 return 0; 2166 } 2167 2168 static void dmac_free_resources(struct pl330_dmac *pl330) 2169 { 2170 struct pl330_info *pi = pl330->pinfo; 2171 int chans = pi->pcfg.num_chan; 2172 2173 dmac_free_threads(pl330); 2174 2175 dma_free_coherent(pi->dev, chans * pi->mcbufsz, 2176 pl330->mcode_cpu, pl330->mcode_bus); 2177 } 2178 2179 static void pl330_del(struct pl330_info *pi) 2180 { 2181 struct pl330_dmac *pl330; 2182 2183 if (!pi || !pi->pl330_data) 2184 return; 2185 2186 pl330 = pi->pl330_data; 2187 2188 pl330->state = UNINIT; 2189 2190 tasklet_kill(&pl330->tasks); 2191 2192 /* Free DMAC resources */ 2193 dmac_free_resources(pl330); 2194 2195 kfree(pl330); 2196 pi->pl330_data = NULL; 2197 } 2198 2199 /* forward declaration */ 2200 static struct amba_driver pl330_driver; 2201 2202 static inline struct dma_pl330_chan * 2203 to_pchan(struct dma_chan *ch) 2204 { 2205 if (!ch) 2206 return NULL; 2207 2208 return container_of(ch, struct dma_pl330_chan, chan); 2209 } 2210 2211 static inline struct dma_pl330_desc * 2212 to_desc(struct dma_async_tx_descriptor *tx) 2213 { 2214 return container_of(tx, struct dma_pl330_desc, txd); 2215 } 2216 2217 static inline void free_desc_list(struct list_head *list) 2218 { 2219 struct dma_pl330_dmac *pdmac; 2220 struct dma_pl330_desc *desc; 2221 struct dma_pl330_chan *pch = NULL; 2222 unsigned long flags; 2223 2224 /* Finish off the work list */ 2225 list_for_each_entry(desc, list, node) { 2226 dma_async_tx_callback callback; 2227 void *param; 2228 2229 /* All desc in a list belong to same channel */ 2230 pch = desc->pchan; 2231 callback = desc->txd.callback; 2232 param = desc->txd.callback_param; 2233 2234 if (callback) 2235 callback(param); 2236 2237 desc->pchan = NULL; 2238 } 2239 2240 /* pch will be unset if list was empty */ 2241 if (!pch) 2242 return; 2243 2244 pdmac = pch->dmac; 2245 2246 spin_lock_irqsave(&pdmac->pool_lock, flags); 2247 list_splice_tail_init(list, &pdmac->desc_pool); 2248 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2249 } 2250 2251 static inline void handle_cyclic_desc_list(struct list_head *list) 2252 { 2253 struct dma_pl330_desc *desc; 2254 struct dma_pl330_chan *pch = NULL; 2255 unsigned long flags; 2256 2257 list_for_each_entry(desc, list, node) { 2258 dma_async_tx_callback callback; 2259 2260 /* Change status to reload it */ 2261 desc->status = PREP; 2262 pch = desc->pchan; 2263 callback = desc->txd.callback; 2264 if (callback) 2265 callback(desc->txd.callback_param); 2266 } 2267 2268 /* pch will be unset if list was empty */ 2269 if (!pch) 2270 return; 2271 2272 spin_lock_irqsave(&pch->lock, flags); 2273 list_splice_tail_init(list, &pch->work_list); 2274 spin_unlock_irqrestore(&pch->lock, flags); 2275 } 2276 2277 static inline void fill_queue(struct dma_pl330_chan *pch) 2278 { 2279 struct dma_pl330_desc *desc; 2280 int ret; 2281 2282 list_for_each_entry(desc, &pch->work_list, node) { 2283 2284 /* If already submitted */ 2285 if (desc->status == BUSY) 2286 break; 2287 2288 ret = pl330_submit_req(pch->pl330_chid, 2289 &desc->req); 2290 if (!ret) { 2291 desc->status = BUSY; 2292 break; 2293 } else if (ret == -EAGAIN) { 2294 /* QFull or DMAC Dying */ 2295 break; 2296 } else { 2297 /* Unacceptable request */ 2298 desc->status = DONE; 2299 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n", 2300 __func__, __LINE__, desc->txd.cookie); 2301 tasklet_schedule(&pch->task); 2302 } 2303 } 2304 } 2305 2306 static void pl330_tasklet(unsigned long data) 2307 { 2308 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data; 2309 struct dma_pl330_desc *desc, *_dt; 2310 unsigned long flags; 2311 LIST_HEAD(list); 2312 2313 spin_lock_irqsave(&pch->lock, flags); 2314 2315 /* Pick up ripe tomatoes */ 2316 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) 2317 if (desc->status == DONE) { 2318 if (!pch->cyclic) 2319 dma_cookie_complete(&desc->txd); 2320 list_move_tail(&desc->node, &list); 2321 } 2322 2323 /* Try to submit a req imm. next to the last completed cookie */ 2324 fill_queue(pch); 2325 2326 /* Make sure the PL330 Channel thread is active */ 2327 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START); 2328 2329 spin_unlock_irqrestore(&pch->lock, flags); 2330 2331 if (pch->cyclic) 2332 handle_cyclic_desc_list(&list); 2333 else 2334 free_desc_list(&list); 2335 } 2336 2337 static void dma_pl330_rqcb(void *token, enum pl330_op_err err) 2338 { 2339 struct dma_pl330_desc *desc = token; 2340 struct dma_pl330_chan *pch = desc->pchan; 2341 unsigned long flags; 2342 2343 /* If desc aborted */ 2344 if (!pch) 2345 return; 2346 2347 spin_lock_irqsave(&pch->lock, flags); 2348 2349 desc->status = DONE; 2350 2351 spin_unlock_irqrestore(&pch->lock, flags); 2352 2353 tasklet_schedule(&pch->task); 2354 } 2355 2356 bool pl330_filter(struct dma_chan *chan, void *param) 2357 { 2358 u8 *peri_id; 2359 2360 if (chan->device->dev->driver != &pl330_driver.drv) 2361 return false; 2362 2363 #ifdef CONFIG_OF 2364 if (chan->device->dev->of_node) { 2365 const __be32 *prop_value; 2366 phandle phandle; 2367 struct device_node *node; 2368 2369 prop_value = ((struct property *)param)->value; 2370 phandle = be32_to_cpup(prop_value++); 2371 node = of_find_node_by_phandle(phandle); 2372 return ((chan->private == node) && 2373 (chan->chan_id == be32_to_cpup(prop_value))); 2374 } 2375 #endif 2376 2377 peri_id = chan->private; 2378 return *peri_id == (unsigned)param; 2379 } 2380 EXPORT_SYMBOL(pl330_filter); 2381 2382 static int pl330_alloc_chan_resources(struct dma_chan *chan) 2383 { 2384 struct dma_pl330_chan *pch = to_pchan(chan); 2385 struct dma_pl330_dmac *pdmac = pch->dmac; 2386 unsigned long flags; 2387 2388 spin_lock_irqsave(&pch->lock, flags); 2389 2390 dma_cookie_init(chan); 2391 pch->cyclic = false; 2392 2393 pch->pl330_chid = pl330_request_channel(&pdmac->pif); 2394 if (!pch->pl330_chid) { 2395 spin_unlock_irqrestore(&pch->lock, flags); 2396 return 0; 2397 } 2398 2399 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch); 2400 2401 spin_unlock_irqrestore(&pch->lock, flags); 2402 2403 return 1; 2404 } 2405 2406 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) 2407 { 2408 struct dma_pl330_chan *pch = to_pchan(chan); 2409 struct dma_pl330_desc *desc, *_dt; 2410 unsigned long flags; 2411 struct dma_pl330_dmac *pdmac = pch->dmac; 2412 struct dma_slave_config *slave_config; 2413 LIST_HEAD(list); 2414 2415 switch (cmd) { 2416 case DMA_TERMINATE_ALL: 2417 spin_lock_irqsave(&pch->lock, flags); 2418 2419 /* FLUSH the PL330 Channel thread */ 2420 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH); 2421 2422 /* Mark all desc done */ 2423 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) { 2424 desc->status = DONE; 2425 list_move_tail(&desc->node, &list); 2426 } 2427 2428 list_splice_tail_init(&list, &pdmac->desc_pool); 2429 spin_unlock_irqrestore(&pch->lock, flags); 2430 break; 2431 case DMA_SLAVE_CONFIG: 2432 slave_config = (struct dma_slave_config *)arg; 2433 2434 if (slave_config->direction == DMA_MEM_TO_DEV) { 2435 if (slave_config->dst_addr) 2436 pch->fifo_addr = slave_config->dst_addr; 2437 if (slave_config->dst_addr_width) 2438 pch->burst_sz = __ffs(slave_config->dst_addr_width); 2439 if (slave_config->dst_maxburst) 2440 pch->burst_len = slave_config->dst_maxburst; 2441 } else if (slave_config->direction == DMA_DEV_TO_MEM) { 2442 if (slave_config->src_addr) 2443 pch->fifo_addr = slave_config->src_addr; 2444 if (slave_config->src_addr_width) 2445 pch->burst_sz = __ffs(slave_config->src_addr_width); 2446 if (slave_config->src_maxburst) 2447 pch->burst_len = slave_config->src_maxburst; 2448 } 2449 break; 2450 default: 2451 dev_err(pch->dmac->pif.dev, "Not supported command.\n"); 2452 return -ENXIO; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static void pl330_free_chan_resources(struct dma_chan *chan) 2459 { 2460 struct dma_pl330_chan *pch = to_pchan(chan); 2461 unsigned long flags; 2462 2463 spin_lock_irqsave(&pch->lock, flags); 2464 2465 tasklet_kill(&pch->task); 2466 2467 pl330_release_channel(pch->pl330_chid); 2468 pch->pl330_chid = NULL; 2469 2470 if (pch->cyclic) 2471 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool); 2472 2473 spin_unlock_irqrestore(&pch->lock, flags); 2474 } 2475 2476 static enum dma_status 2477 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 2478 struct dma_tx_state *txstate) 2479 { 2480 return dma_cookie_status(chan, cookie, txstate); 2481 } 2482 2483 static void pl330_issue_pending(struct dma_chan *chan) 2484 { 2485 pl330_tasklet((unsigned long) to_pchan(chan)); 2486 } 2487 2488 /* 2489 * We returned the last one of the circular list of descriptor(s) 2490 * from prep_xxx, so the argument to submit corresponds to the last 2491 * descriptor of the list. 2492 */ 2493 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx) 2494 { 2495 struct dma_pl330_desc *desc, *last = to_desc(tx); 2496 struct dma_pl330_chan *pch = to_pchan(tx->chan); 2497 dma_cookie_t cookie; 2498 unsigned long flags; 2499 2500 spin_lock_irqsave(&pch->lock, flags); 2501 2502 /* Assign cookies to all nodes */ 2503 while (!list_empty(&last->node)) { 2504 desc = list_entry(last->node.next, struct dma_pl330_desc, node); 2505 2506 dma_cookie_assign(&desc->txd); 2507 2508 list_move_tail(&desc->node, &pch->work_list); 2509 } 2510 2511 cookie = dma_cookie_assign(&last->txd); 2512 list_add_tail(&last->node, &pch->work_list); 2513 spin_unlock_irqrestore(&pch->lock, flags); 2514 2515 return cookie; 2516 } 2517 2518 static inline void _init_desc(struct dma_pl330_desc *desc) 2519 { 2520 desc->pchan = NULL; 2521 desc->req.x = &desc->px; 2522 desc->req.token = desc; 2523 desc->rqcfg.swap = SWAP_NO; 2524 desc->rqcfg.privileged = 0; 2525 desc->rqcfg.insnaccess = 0; 2526 desc->rqcfg.scctl = SCCTRL0; 2527 desc->rqcfg.dcctl = DCCTRL0; 2528 desc->req.cfg = &desc->rqcfg; 2529 desc->req.xfer_cb = dma_pl330_rqcb; 2530 desc->txd.tx_submit = pl330_tx_submit; 2531 2532 INIT_LIST_HEAD(&desc->node); 2533 } 2534 2535 /* Returns the number of descriptors added to the DMAC pool */ 2536 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count) 2537 { 2538 struct dma_pl330_desc *desc; 2539 unsigned long flags; 2540 int i; 2541 2542 if (!pdmac) 2543 return 0; 2544 2545 desc = kmalloc(count * sizeof(*desc), flg); 2546 if (!desc) 2547 return 0; 2548 2549 spin_lock_irqsave(&pdmac->pool_lock, flags); 2550 2551 for (i = 0; i < count; i++) { 2552 _init_desc(&desc[i]); 2553 list_add_tail(&desc[i].node, &pdmac->desc_pool); 2554 } 2555 2556 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2557 2558 return count; 2559 } 2560 2561 static struct dma_pl330_desc * 2562 pluck_desc(struct dma_pl330_dmac *pdmac) 2563 { 2564 struct dma_pl330_desc *desc = NULL; 2565 unsigned long flags; 2566 2567 if (!pdmac) 2568 return NULL; 2569 2570 spin_lock_irqsave(&pdmac->pool_lock, flags); 2571 2572 if (!list_empty(&pdmac->desc_pool)) { 2573 desc = list_entry(pdmac->desc_pool.next, 2574 struct dma_pl330_desc, node); 2575 2576 list_del_init(&desc->node); 2577 2578 desc->status = PREP; 2579 desc->txd.callback = NULL; 2580 } 2581 2582 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2583 2584 return desc; 2585 } 2586 2587 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch) 2588 { 2589 struct dma_pl330_dmac *pdmac = pch->dmac; 2590 u8 *peri_id = pch->chan.private; 2591 struct dma_pl330_desc *desc; 2592 2593 /* Pluck one desc from the pool of DMAC */ 2594 desc = pluck_desc(pdmac); 2595 2596 /* If the DMAC pool is empty, alloc new */ 2597 if (!desc) { 2598 if (!add_desc(pdmac, GFP_ATOMIC, 1)) 2599 return NULL; 2600 2601 /* Try again */ 2602 desc = pluck_desc(pdmac); 2603 if (!desc) { 2604 dev_err(pch->dmac->pif.dev, 2605 "%s:%d ALERT!\n", __func__, __LINE__); 2606 return NULL; 2607 } 2608 } 2609 2610 /* Initialize the descriptor */ 2611 desc->pchan = pch; 2612 desc->txd.cookie = 0; 2613 async_tx_ack(&desc->txd); 2614 2615 desc->req.peri = peri_id ? pch->chan.chan_id : 0; 2616 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg; 2617 2618 dma_async_tx_descriptor_init(&desc->txd, &pch->chan); 2619 2620 return desc; 2621 } 2622 2623 static inline void fill_px(struct pl330_xfer *px, 2624 dma_addr_t dst, dma_addr_t src, size_t len) 2625 { 2626 px->next = NULL; 2627 px->bytes = len; 2628 px->dst_addr = dst; 2629 px->src_addr = src; 2630 } 2631 2632 static struct dma_pl330_desc * 2633 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst, 2634 dma_addr_t src, size_t len) 2635 { 2636 struct dma_pl330_desc *desc = pl330_get_desc(pch); 2637 2638 if (!desc) { 2639 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2640 __func__, __LINE__); 2641 return NULL; 2642 } 2643 2644 /* 2645 * Ideally we should lookout for reqs bigger than 2646 * those that can be programmed with 256 bytes of 2647 * MC buffer, but considering a req size is seldom 2648 * going to be word-unaligned and more than 200MB, 2649 * we take it easy. 2650 * Also, should the limit is reached we'd rather 2651 * have the platform increase MC buffer size than 2652 * complicating this API driver. 2653 */ 2654 fill_px(&desc->px, dst, src, len); 2655 2656 return desc; 2657 } 2658 2659 /* Call after fixing burst size */ 2660 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len) 2661 { 2662 struct dma_pl330_chan *pch = desc->pchan; 2663 struct pl330_info *pi = &pch->dmac->pif; 2664 int burst_len; 2665 2666 burst_len = pi->pcfg.data_bus_width / 8; 2667 burst_len *= pi->pcfg.data_buf_dep; 2668 burst_len >>= desc->rqcfg.brst_size; 2669 2670 /* src/dst_burst_len can't be more than 16 */ 2671 if (burst_len > 16) 2672 burst_len = 16; 2673 2674 while (burst_len > 1) { 2675 if (!(len % (burst_len << desc->rqcfg.brst_size))) 2676 break; 2677 burst_len--; 2678 } 2679 2680 return burst_len; 2681 } 2682 2683 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic( 2684 struct dma_chan *chan, dma_addr_t dma_addr, size_t len, 2685 size_t period_len, enum dma_transfer_direction direction, 2686 void *context) 2687 { 2688 struct dma_pl330_desc *desc; 2689 struct dma_pl330_chan *pch = to_pchan(chan); 2690 dma_addr_t dst; 2691 dma_addr_t src; 2692 2693 desc = pl330_get_desc(pch); 2694 if (!desc) { 2695 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n", 2696 __func__, __LINE__); 2697 return NULL; 2698 } 2699 2700 switch (direction) { 2701 case DMA_MEM_TO_DEV: 2702 desc->rqcfg.src_inc = 1; 2703 desc->rqcfg.dst_inc = 0; 2704 desc->req.rqtype = MEMTODEV; 2705 src = dma_addr; 2706 dst = pch->fifo_addr; 2707 break; 2708 case DMA_DEV_TO_MEM: 2709 desc->rqcfg.src_inc = 0; 2710 desc->rqcfg.dst_inc = 1; 2711 desc->req.rqtype = DEVTOMEM; 2712 src = pch->fifo_addr; 2713 dst = dma_addr; 2714 break; 2715 default: 2716 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n", 2717 __func__, __LINE__); 2718 return NULL; 2719 } 2720 2721 desc->rqcfg.brst_size = pch->burst_sz; 2722 desc->rqcfg.brst_len = 1; 2723 2724 pch->cyclic = true; 2725 2726 fill_px(&desc->px, dst, src, period_len); 2727 2728 return &desc->txd; 2729 } 2730 2731 static struct dma_async_tx_descriptor * 2732 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, 2733 dma_addr_t src, size_t len, unsigned long flags) 2734 { 2735 struct dma_pl330_desc *desc; 2736 struct dma_pl330_chan *pch = to_pchan(chan); 2737 struct pl330_info *pi; 2738 int burst; 2739 2740 if (unlikely(!pch || !len)) 2741 return NULL; 2742 2743 pi = &pch->dmac->pif; 2744 2745 desc = __pl330_prep_dma_memcpy(pch, dst, src, len); 2746 if (!desc) 2747 return NULL; 2748 2749 desc->rqcfg.src_inc = 1; 2750 desc->rqcfg.dst_inc = 1; 2751 desc->req.rqtype = MEMTOMEM; 2752 2753 /* Select max possible burst size */ 2754 burst = pi->pcfg.data_bus_width / 8; 2755 2756 while (burst > 1) { 2757 if (!(len % burst)) 2758 break; 2759 burst /= 2; 2760 } 2761 2762 desc->rqcfg.brst_size = 0; 2763 while (burst != (1 << desc->rqcfg.brst_size)) 2764 desc->rqcfg.brst_size++; 2765 2766 desc->rqcfg.brst_len = get_burst_len(desc, len); 2767 2768 desc->txd.flags = flags; 2769 2770 return &desc->txd; 2771 } 2772 2773 static struct dma_async_tx_descriptor * 2774 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2775 unsigned int sg_len, enum dma_transfer_direction direction, 2776 unsigned long flg, void *context) 2777 { 2778 struct dma_pl330_desc *first, *desc = NULL; 2779 struct dma_pl330_chan *pch = to_pchan(chan); 2780 struct scatterlist *sg; 2781 unsigned long flags; 2782 int i; 2783 dma_addr_t addr; 2784 2785 if (unlikely(!pch || !sgl || !sg_len)) 2786 return NULL; 2787 2788 addr = pch->fifo_addr; 2789 2790 first = NULL; 2791 2792 for_each_sg(sgl, sg, sg_len, i) { 2793 2794 desc = pl330_get_desc(pch); 2795 if (!desc) { 2796 struct dma_pl330_dmac *pdmac = pch->dmac; 2797 2798 dev_err(pch->dmac->pif.dev, 2799 "%s:%d Unable to fetch desc\n", 2800 __func__, __LINE__); 2801 if (!first) 2802 return NULL; 2803 2804 spin_lock_irqsave(&pdmac->pool_lock, flags); 2805 2806 while (!list_empty(&first->node)) { 2807 desc = list_entry(first->node.next, 2808 struct dma_pl330_desc, node); 2809 list_move_tail(&desc->node, &pdmac->desc_pool); 2810 } 2811 2812 list_move_tail(&first->node, &pdmac->desc_pool); 2813 2814 spin_unlock_irqrestore(&pdmac->pool_lock, flags); 2815 2816 return NULL; 2817 } 2818 2819 if (!first) 2820 first = desc; 2821 else 2822 list_add_tail(&desc->node, &first->node); 2823 2824 if (direction == DMA_MEM_TO_DEV) { 2825 desc->rqcfg.src_inc = 1; 2826 desc->rqcfg.dst_inc = 0; 2827 desc->req.rqtype = MEMTODEV; 2828 fill_px(&desc->px, 2829 addr, sg_dma_address(sg), sg_dma_len(sg)); 2830 } else { 2831 desc->rqcfg.src_inc = 0; 2832 desc->rqcfg.dst_inc = 1; 2833 desc->req.rqtype = DEVTOMEM; 2834 fill_px(&desc->px, 2835 sg_dma_address(sg), addr, sg_dma_len(sg)); 2836 } 2837 2838 desc->rqcfg.brst_size = pch->burst_sz; 2839 desc->rqcfg.brst_len = 1; 2840 } 2841 2842 /* Return the last desc in the chain */ 2843 desc->txd.flags = flg; 2844 return &desc->txd; 2845 } 2846 2847 static irqreturn_t pl330_irq_handler(int irq, void *data) 2848 { 2849 if (pl330_update(data)) 2850 return IRQ_HANDLED; 2851 else 2852 return IRQ_NONE; 2853 } 2854 2855 static int __devinit 2856 pl330_probe(struct amba_device *adev, const struct amba_id *id) 2857 { 2858 struct dma_pl330_platdata *pdat; 2859 struct dma_pl330_dmac *pdmac; 2860 struct dma_pl330_chan *pch; 2861 struct pl330_info *pi; 2862 struct dma_device *pd; 2863 struct resource *res; 2864 int i, ret, irq; 2865 int num_chan; 2866 2867 pdat = adev->dev.platform_data; 2868 2869 /* Allocate a new DMAC and its Channels */ 2870 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL); 2871 if (!pdmac) { 2872 dev_err(&adev->dev, "unable to allocate mem\n"); 2873 return -ENOMEM; 2874 } 2875 2876 pi = &pdmac->pif; 2877 pi->dev = &adev->dev; 2878 pi->pl330_data = NULL; 2879 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0; 2880 2881 res = &adev->res; 2882 request_mem_region(res->start, resource_size(res), "dma-pl330"); 2883 2884 pi->base = ioremap(res->start, resource_size(res)); 2885 if (!pi->base) { 2886 ret = -ENXIO; 2887 goto probe_err1; 2888 } 2889 2890 pdmac->clk = clk_get(&adev->dev, "dma"); 2891 if (IS_ERR(pdmac->clk)) { 2892 dev_err(&adev->dev, "Cannot get operation clock.\n"); 2893 ret = -EINVAL; 2894 goto probe_err2; 2895 } 2896 2897 amba_set_drvdata(adev, pdmac); 2898 2899 #ifndef CONFIG_PM_RUNTIME 2900 /* enable dma clk */ 2901 clk_enable(pdmac->clk); 2902 #endif 2903 2904 irq = adev->irq[0]; 2905 ret = request_irq(irq, pl330_irq_handler, 0, 2906 dev_name(&adev->dev), pi); 2907 if (ret) 2908 goto probe_err3; 2909 2910 ret = pl330_add(pi); 2911 if (ret) 2912 goto probe_err4; 2913 2914 INIT_LIST_HEAD(&pdmac->desc_pool); 2915 spin_lock_init(&pdmac->pool_lock); 2916 2917 /* Create a descriptor pool of default size */ 2918 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC)) 2919 dev_warn(&adev->dev, "unable to allocate desc\n"); 2920 2921 pd = &pdmac->ddma; 2922 INIT_LIST_HEAD(&pd->channels); 2923 2924 /* Initialize channel parameters */ 2925 if (pdat) 2926 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan); 2927 else 2928 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan); 2929 2930 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL); 2931 2932 for (i = 0; i < num_chan; i++) { 2933 pch = &pdmac->peripherals[i]; 2934 if (!adev->dev.of_node) 2935 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL; 2936 else 2937 pch->chan.private = adev->dev.of_node; 2938 2939 INIT_LIST_HEAD(&pch->work_list); 2940 spin_lock_init(&pch->lock); 2941 pch->pl330_chid = NULL; 2942 pch->chan.device = pd; 2943 pch->dmac = pdmac; 2944 2945 /* Add the channel to the DMAC list */ 2946 list_add_tail(&pch->chan.device_node, &pd->channels); 2947 } 2948 2949 pd->dev = &adev->dev; 2950 if (pdat) { 2951 pd->cap_mask = pdat->cap_mask; 2952 } else { 2953 dma_cap_set(DMA_MEMCPY, pd->cap_mask); 2954 if (pi->pcfg.num_peri) { 2955 dma_cap_set(DMA_SLAVE, pd->cap_mask); 2956 dma_cap_set(DMA_CYCLIC, pd->cap_mask); 2957 } 2958 } 2959 2960 pd->device_alloc_chan_resources = pl330_alloc_chan_resources; 2961 pd->device_free_chan_resources = pl330_free_chan_resources; 2962 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy; 2963 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic; 2964 pd->device_tx_status = pl330_tx_status; 2965 pd->device_prep_slave_sg = pl330_prep_slave_sg; 2966 pd->device_control = pl330_control; 2967 pd->device_issue_pending = pl330_issue_pending; 2968 2969 ret = dma_async_device_register(pd); 2970 if (ret) { 2971 dev_err(&adev->dev, "unable to register DMAC\n"); 2972 goto probe_err5; 2973 } 2974 2975 dev_info(&adev->dev, 2976 "Loaded driver for PL330 DMAC-%d\n", adev->periphid); 2977 dev_info(&adev->dev, 2978 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n", 2979 pi->pcfg.data_buf_dep, 2980 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan, 2981 pi->pcfg.num_peri, pi->pcfg.num_events); 2982 2983 return 0; 2984 2985 probe_err5: 2986 pl330_del(pi); 2987 probe_err4: 2988 free_irq(irq, pi); 2989 probe_err3: 2990 #ifndef CONFIG_PM_RUNTIME 2991 clk_disable(pdmac->clk); 2992 #endif 2993 clk_put(pdmac->clk); 2994 probe_err2: 2995 iounmap(pi->base); 2996 probe_err1: 2997 release_mem_region(res->start, resource_size(res)); 2998 kfree(pdmac); 2999 3000 return ret; 3001 } 3002 3003 static int __devexit pl330_remove(struct amba_device *adev) 3004 { 3005 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev); 3006 struct dma_pl330_chan *pch, *_p; 3007 struct pl330_info *pi; 3008 struct resource *res; 3009 int irq; 3010 3011 if (!pdmac) 3012 return 0; 3013 3014 amba_set_drvdata(adev, NULL); 3015 3016 /* Idle the DMAC */ 3017 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels, 3018 chan.device_node) { 3019 3020 /* Remove the channel */ 3021 list_del(&pch->chan.device_node); 3022 3023 /* Flush the channel */ 3024 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0); 3025 pl330_free_chan_resources(&pch->chan); 3026 } 3027 3028 pi = &pdmac->pif; 3029 3030 pl330_del(pi); 3031 3032 irq = adev->irq[0]; 3033 free_irq(irq, pi); 3034 3035 iounmap(pi->base); 3036 3037 res = &adev->res; 3038 release_mem_region(res->start, resource_size(res)); 3039 3040 #ifndef CONFIG_PM_RUNTIME 3041 clk_disable(pdmac->clk); 3042 #endif 3043 3044 kfree(pdmac); 3045 3046 return 0; 3047 } 3048 3049 static struct amba_id pl330_ids[] = { 3050 { 3051 .id = 0x00041330, 3052 .mask = 0x000fffff, 3053 }, 3054 { 0, 0 }, 3055 }; 3056 3057 MODULE_DEVICE_TABLE(amba, pl330_ids); 3058 3059 #ifdef CONFIG_PM_RUNTIME 3060 static int pl330_runtime_suspend(struct device *dev) 3061 { 3062 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3063 3064 if (!pdmac) { 3065 dev_err(dev, "failed to get dmac\n"); 3066 return -ENODEV; 3067 } 3068 3069 clk_disable(pdmac->clk); 3070 3071 return 0; 3072 } 3073 3074 static int pl330_runtime_resume(struct device *dev) 3075 { 3076 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev); 3077 3078 if (!pdmac) { 3079 dev_err(dev, "failed to get dmac\n"); 3080 return -ENODEV; 3081 } 3082 3083 clk_enable(pdmac->clk); 3084 3085 return 0; 3086 } 3087 #else 3088 #define pl330_runtime_suspend NULL 3089 #define pl330_runtime_resume NULL 3090 #endif /* CONFIG_PM_RUNTIME */ 3091 3092 static const struct dev_pm_ops pl330_pm_ops = { 3093 .runtime_suspend = pl330_runtime_suspend, 3094 .runtime_resume = pl330_runtime_resume, 3095 }; 3096 3097 static struct amba_driver pl330_driver = { 3098 .drv = { 3099 .owner = THIS_MODULE, 3100 .name = "dma-pl330", 3101 .pm = &pl330_pm_ops, 3102 }, 3103 .id_table = pl330_ids, 3104 .probe = pl330_probe, 3105 .remove = pl330_remove, 3106 }; 3107 3108 module_amba_driver(pl330_driver); 3109 3110 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); 3111 MODULE_DESCRIPTION("API Driver for PL330 DMAC"); 3112 MODULE_LICENSE("GPL"); 3113