xref: /linux/drivers/dma/pl330.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3  *		http://www.samsung.com
4  *
5  * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6  *	Jaswinder Singh <jassi.brar@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31 
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN		8
34 #define PL330_MAX_IRQS		32
35 #define PL330_MAX_PERI		32
36 #define PL330_MAX_BURST         16
37 
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39 
40 enum pl330_cachectrl {
41 	CCTRL0,		/* Noncacheable and nonbufferable */
42 	CCTRL1,		/* Bufferable only */
43 	CCTRL2,		/* Cacheable, but do not allocate */
44 	CCTRL3,		/* Cacheable and bufferable, but do not allocate */
45 	INVALID1,	/* AWCACHE = 0x1000 */
46 	INVALID2,
47 	CCTRL6,		/* Cacheable write-through, allocate on writes only */
48 	CCTRL7,		/* Cacheable write-back, allocate on writes only */
49 };
50 
51 enum pl330_byteswap {
52 	SWAP_NO,
53 	SWAP_2,
54 	SWAP_4,
55 	SWAP_8,
56 	SWAP_16,
57 };
58 
59 /* Register and Bit field Definitions */
60 #define DS			0x0
61 #define DS_ST_STOP		0x0
62 #define DS_ST_EXEC		0x1
63 #define DS_ST_CMISS		0x2
64 #define DS_ST_UPDTPC		0x3
65 #define DS_ST_WFE		0x4
66 #define DS_ST_ATBRR		0x5
67 #define DS_ST_QBUSY		0x6
68 #define DS_ST_WFP		0x7
69 #define DS_ST_KILL		0x8
70 #define DS_ST_CMPLT		0x9
71 #define DS_ST_FLTCMP		0xe
72 #define DS_ST_FAULT		0xf
73 
74 #define DPC			0x4
75 #define INTEN			0x20
76 #define ES			0x24
77 #define INTSTATUS		0x28
78 #define INTCLR			0x2c
79 #define FSM			0x30
80 #define FSC			0x34
81 #define FTM			0x38
82 
83 #define _FTC			0x40
84 #define FTC(n)			(_FTC + (n)*0x4)
85 
86 #define _CS			0x100
87 #define CS(n)			(_CS + (n)*0x8)
88 #define CS_CNS			(1 << 21)
89 
90 #define _CPC			0x104
91 #define CPC(n)			(_CPC + (n)*0x8)
92 
93 #define _SA			0x400
94 #define SA(n)			(_SA + (n)*0x20)
95 
96 #define _DA			0x404
97 #define DA(n)			(_DA + (n)*0x20)
98 
99 #define _CC			0x408
100 #define CC(n)			(_CC + (n)*0x20)
101 
102 #define CC_SRCINC		(1 << 0)
103 #define CC_DSTINC		(1 << 14)
104 #define CC_SRCPRI		(1 << 8)
105 #define CC_DSTPRI		(1 << 22)
106 #define CC_SRCNS		(1 << 9)
107 #define CC_DSTNS		(1 << 23)
108 #define CC_SRCIA		(1 << 10)
109 #define CC_DSTIA		(1 << 24)
110 #define CC_SRCBRSTLEN_SHFT	4
111 #define CC_DSTBRSTLEN_SHFT	18
112 #define CC_SRCBRSTSIZE_SHFT	1
113 #define CC_DSTBRSTSIZE_SHFT	15
114 #define CC_SRCCCTRL_SHFT	11
115 #define CC_SRCCCTRL_MASK	0x7
116 #define CC_DSTCCTRL_SHFT	25
117 #define CC_DRCCCTRL_MASK	0x7
118 #define CC_SWAP_SHFT		28
119 
120 #define _LC0			0x40c
121 #define LC0(n)			(_LC0 + (n)*0x20)
122 
123 #define _LC1			0x410
124 #define LC1(n)			(_LC1 + (n)*0x20)
125 
126 #define DBGSTATUS		0xd00
127 #define DBG_BUSY		(1 << 0)
128 
129 #define DBGCMD			0xd04
130 #define DBGINST0		0xd08
131 #define DBGINST1		0xd0c
132 
133 #define CR0			0xe00
134 #define CR1			0xe04
135 #define CR2			0xe08
136 #define CR3			0xe0c
137 #define CR4			0xe10
138 #define CRD			0xe14
139 
140 #define PERIPH_ID		0xfe0
141 #define PERIPH_REV_SHIFT	20
142 #define PERIPH_REV_MASK		0xf
143 #define PERIPH_REV_R0P0		0
144 #define PERIPH_REV_R1P0		1
145 #define PERIPH_REV_R1P1		2
146 
147 #define CR0_PERIPH_REQ_SET	(1 << 0)
148 #define CR0_BOOT_EN_SET		(1 << 1)
149 #define CR0_BOOT_MAN_NS		(1 << 2)
150 #define CR0_NUM_CHANS_SHIFT	4
151 #define CR0_NUM_CHANS_MASK	0x7
152 #define CR0_NUM_PERIPH_SHIFT	12
153 #define CR0_NUM_PERIPH_MASK	0x1f
154 #define CR0_NUM_EVENTS_SHIFT	17
155 #define CR0_NUM_EVENTS_MASK	0x1f
156 
157 #define CR1_ICACHE_LEN_SHIFT	0
158 #define CR1_ICACHE_LEN_MASK	0x7
159 #define CR1_NUM_ICACHELINES_SHIFT	4
160 #define CR1_NUM_ICACHELINES_MASK	0xf
161 
162 #define CRD_DATA_WIDTH_SHIFT	0
163 #define CRD_DATA_WIDTH_MASK	0x7
164 #define CRD_WR_CAP_SHIFT	4
165 #define CRD_WR_CAP_MASK		0x7
166 #define CRD_WR_Q_DEP_SHIFT	8
167 #define CRD_WR_Q_DEP_MASK	0xf
168 #define CRD_RD_CAP_SHIFT	12
169 #define CRD_RD_CAP_MASK		0x7
170 #define CRD_RD_Q_DEP_SHIFT	16
171 #define CRD_RD_Q_DEP_MASK	0xf
172 #define CRD_DATA_BUFF_SHIFT	20
173 #define CRD_DATA_BUFF_MASK	0x3ff
174 
175 #define PART			0x330
176 #define DESIGNER		0x41
177 #define REVISION		0x0
178 #define INTEG_CFG		0x0
179 #define PERIPH_ID_VAL		((PART << 0) | (DESIGNER << 12))
180 
181 #define PL330_STATE_STOPPED		(1 << 0)
182 #define PL330_STATE_EXECUTING		(1 << 1)
183 #define PL330_STATE_WFE			(1 << 2)
184 #define PL330_STATE_FAULTING		(1 << 3)
185 #define PL330_STATE_COMPLETING		(1 << 4)
186 #define PL330_STATE_WFP			(1 << 5)
187 #define PL330_STATE_KILLING		(1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING	(1 << 7)
189 #define PL330_STATE_CACHEMISS		(1 << 8)
190 #define PL330_STATE_UPDTPC		(1 << 9)
191 #define PL330_STATE_ATBARRIER		(1 << 10)
192 #define PL330_STATE_QUEUEBUSY		(1 << 11)
193 #define PL330_STATE_INVALID		(1 << 15)
194 
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 				| PL330_STATE_WFE | PL330_STATE_FAULTING)
197 
198 #define CMD_DMAADDH		0x54
199 #define CMD_DMAEND		0x00
200 #define CMD_DMAFLUSHP		0x35
201 #define CMD_DMAGO		0xa0
202 #define CMD_DMALD		0x04
203 #define CMD_DMALDP		0x25
204 #define CMD_DMALP		0x20
205 #define CMD_DMALPEND		0x28
206 #define CMD_DMAKILL		0x01
207 #define CMD_DMAMOV		0xbc
208 #define CMD_DMANOP		0x18
209 #define CMD_DMARMB		0x12
210 #define CMD_DMASEV		0x34
211 #define CMD_DMAST		0x08
212 #define CMD_DMASTP		0x29
213 #define CMD_DMASTZ		0x0c
214 #define CMD_DMAWFE		0x36
215 #define CMD_DMAWFP		0x30
216 #define CMD_DMAWMB		0x13
217 
218 #define SZ_DMAADDH		3
219 #define SZ_DMAEND		1
220 #define SZ_DMAFLUSHP		2
221 #define SZ_DMALD		1
222 #define SZ_DMALDP		2
223 #define SZ_DMALP		2
224 #define SZ_DMALPEND		2
225 #define SZ_DMAKILL		1
226 #define SZ_DMAMOV		6
227 #define SZ_DMANOP		1
228 #define SZ_DMARMB		1
229 #define SZ_DMASEV		2
230 #define SZ_DMAST		1
231 #define SZ_DMASTP		2
232 #define SZ_DMASTZ		1
233 #define SZ_DMAWFE		2
234 #define SZ_DMAWFP		2
235 #define SZ_DMAWMB		1
236 #define SZ_DMAGO		6
237 
238 #define BRST_LEN(ccr)		((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr)		(1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240 
241 #define BYTE_TO_BURST(b, ccr)	((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr)	((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243 
244 /*
245  * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246  * at 1byte/burst for P<->M and M<->M respectively.
247  * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248  * should be enough for P<->M and M<->M respectively.
249  */
250 #define MCODE_BUFF_PER_REQ	256
251 
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s)	while (!(_state(t) & (s))) cpu_relax();
254 
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...)	do { \
258 						printk("%x:", cmd_line); \
259 						printk(x); \
260 						cmd_line += off; \
261 					} while (0)
262 #define PL330_DBGMC_START(addr)		(cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...)	do {} while (0)
265 #define PL330_DBGMC_START(addr)		do {} while (0)
266 #endif
267 
268 /* The number of default descriptors */
269 
270 #define NR_DEFAULT_DESC	16
271 
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274 
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 	u32	periph_id;
278 #define DMAC_MODE_NS	(1 << 0)
279 	unsigned int	mode;
280 	unsigned int	data_bus_width:10; /* In number of bits */
281 	unsigned int	data_buf_dep:11;
282 	unsigned int	num_chan:4;
283 	unsigned int	num_peri:6;
284 	u32		peri_ns;
285 	unsigned int	num_events:6;
286 	u32		irq_ns;
287 };
288 
289 /**
290  * Request Configuration.
291  * The PL330 core does not modify this and uses the last
292  * working configuration if the request doesn't provide any.
293  *
294  * The Client may want to provide this info only for the
295  * first request and a request with new settings.
296  */
297 struct pl330_reqcfg {
298 	/* Address Incrementing */
299 	unsigned dst_inc:1;
300 	unsigned src_inc:1;
301 
302 	/*
303 	 * For now, the SRC & DST protection levels
304 	 * and burst size/length are assumed same.
305 	 */
306 	bool nonsecure;
307 	bool privileged;
308 	bool insnaccess;
309 	unsigned brst_len:5;
310 	unsigned brst_size:3; /* in power of 2 */
311 
312 	enum pl330_cachectrl dcctl;
313 	enum pl330_cachectrl scctl;
314 	enum pl330_byteswap swap;
315 	struct pl330_config *pcfg;
316 };
317 
318 /*
319  * One cycle of DMAC operation.
320  * There may be more than one xfer in a request.
321  */
322 struct pl330_xfer {
323 	u32 src_addr;
324 	u32 dst_addr;
325 	/* Size to xfer */
326 	u32 bytes;
327 };
328 
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 	/* The all xfers in the request were success. */
332 	PL330_ERR_NONE,
333 	/* If req aborted due to global error. */
334 	PL330_ERR_ABORT,
335 	/* If req failed due to problem with Channel. */
336 	PL330_ERR_FAIL,
337 };
338 
339 enum dmamov_dst {
340 	SAR = 0,
341 	CCR,
342 	DAR,
343 };
344 
345 enum pl330_dst {
346 	SRC = 0,
347 	DST,
348 };
349 
350 enum pl330_cond {
351 	SINGLE,
352 	BURST,
353 	ALWAYS,
354 };
355 
356 struct dma_pl330_desc;
357 
358 struct _pl330_req {
359 	u32 mc_bus;
360 	void *mc_cpu;
361 	struct dma_pl330_desc *desc;
362 };
363 
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 	bool reset_dmac;
367 	bool reset_mngr;
368 	u8 reset_chan;
369 };
370 
371 /* A DMAC Thread */
372 struct pl330_thread {
373 	u8 id;
374 	int ev;
375 	/* If the channel is not yet acquired by any client */
376 	bool free;
377 	/* Parent DMAC */
378 	struct pl330_dmac *dmac;
379 	/* Only two at a time */
380 	struct _pl330_req req[2];
381 	/* Index of the last enqueued request */
382 	unsigned lstenq;
383 	/* Index of the last submitted request or -1 if the DMA is stopped */
384 	int req_running;
385 };
386 
387 enum pl330_dmac_state {
388 	UNINIT,
389 	INIT,
390 	DYING,
391 };
392 
393 enum desc_status {
394 	/* In the DMAC pool */
395 	FREE,
396 	/*
397 	 * Allocated to some channel during prep_xxx
398 	 * Also may be sitting on the work_list.
399 	 */
400 	PREP,
401 	/*
402 	 * Sitting on the work_list and already submitted
403 	 * to the PL330 core. Not more than two descriptors
404 	 * of a channel can be BUSY at any time.
405 	 */
406 	BUSY,
407 	/*
408 	 * Sitting on the channel work_list but xfer done
409 	 * by PL330 core
410 	 */
411 	DONE,
412 };
413 
414 struct dma_pl330_chan {
415 	/* Schedule desc completion */
416 	struct tasklet_struct task;
417 
418 	/* DMA-Engine Channel */
419 	struct dma_chan chan;
420 
421 	/* List of submitted descriptors */
422 	struct list_head submitted_list;
423 	/* List of issued descriptors */
424 	struct list_head work_list;
425 	/* List of completed descriptors */
426 	struct list_head completed_list;
427 
428 	/* Pointer to the DMAC that manages this channel,
429 	 * NULL if the channel is available to be acquired.
430 	 * As the parent, this DMAC also provides descriptors
431 	 * to the channel.
432 	 */
433 	struct pl330_dmac *dmac;
434 
435 	/* To protect channel manipulation */
436 	spinlock_t lock;
437 
438 	/*
439 	 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 	 * available.
441 	 */
442 	struct pl330_thread *thread;
443 
444 	/* For D-to-M and M-to-D channels */
445 	int burst_sz; /* the peripheral fifo width */
446 	int burst_len; /* the number of burst */
447 	dma_addr_t fifo_addr;
448 
449 	/* for cyclic capability */
450 	bool cyclic;
451 };
452 
453 struct pl330_dmac {
454 	/* DMA-Engine Device */
455 	struct dma_device ddma;
456 
457 	/* Holds info about sg limitations */
458 	struct device_dma_parameters dma_parms;
459 
460 	/* Pool of descriptors available for the DMAC's channels */
461 	struct list_head desc_pool;
462 	/* To protect desc_pool manipulation */
463 	spinlock_t pool_lock;
464 
465 	/* Size of MicroCode buffers for each channel. */
466 	unsigned mcbufsz;
467 	/* ioremap'ed address of PL330 registers. */
468 	void __iomem	*base;
469 	/* Populated by the PL330 core driver during pl330_add */
470 	struct pl330_config	pcfg;
471 
472 	spinlock_t		lock;
473 	/* Maximum possible events/irqs */
474 	int			events[32];
475 	/* BUS address of MicroCode buffer */
476 	dma_addr_t		mcode_bus;
477 	/* CPU address of MicroCode buffer */
478 	void			*mcode_cpu;
479 	/* List of all Channel threads */
480 	struct pl330_thread	*channels;
481 	/* Pointer to the MANAGER thread */
482 	struct pl330_thread	*manager;
483 	/* To handle bad news in interrupt */
484 	struct tasklet_struct	tasks;
485 	struct _pl330_tbd	dmac_tbd;
486 	/* State of DMAC operation */
487 	enum pl330_dmac_state	state;
488 	/* Holds list of reqs with due callbacks */
489 	struct list_head        req_done;
490 
491 	/* Peripheral channels connected to this DMAC */
492 	unsigned int num_peripherals;
493 	struct dma_pl330_chan *peripherals; /* keep at end */
494 	int quirks;
495 };
496 
497 static struct pl330_of_quirks {
498 	char *quirk;
499 	int id;
500 } of_quirks[] = {
501 	{
502 		.quirk = "arm,pl330-broken-no-flushp",
503 		.id = PL330_QUIRK_BROKEN_NO_FLUSHP,
504 	}
505 };
506 
507 struct dma_pl330_desc {
508 	/* To attach to a queue as child */
509 	struct list_head node;
510 
511 	/* Descriptor for the DMA Engine API */
512 	struct dma_async_tx_descriptor txd;
513 
514 	/* Xfer for PL330 core */
515 	struct pl330_xfer px;
516 
517 	struct pl330_reqcfg rqcfg;
518 
519 	enum desc_status status;
520 
521 	int bytes_requested;
522 	bool last;
523 
524 	/* The channel which currently holds this desc */
525 	struct dma_pl330_chan *pchan;
526 
527 	enum dma_transfer_direction rqtype;
528 	/* Index of peripheral for the xfer. */
529 	unsigned peri:5;
530 	/* Hook to attach to DMAC's list of reqs with due callback */
531 	struct list_head rqd;
532 };
533 
534 struct _xfer_spec {
535 	u32 ccr;
536 	struct dma_pl330_desc *desc;
537 };
538 
539 static inline bool _queue_empty(struct pl330_thread *thrd)
540 {
541 	return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
542 }
543 
544 static inline bool _queue_full(struct pl330_thread *thrd)
545 {
546 	return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
547 }
548 
549 static inline bool is_manager(struct pl330_thread *thrd)
550 {
551 	return thrd->dmac->manager == thrd;
552 }
553 
554 /* If manager of the thread is in Non-Secure mode */
555 static inline bool _manager_ns(struct pl330_thread *thrd)
556 {
557 	return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
558 }
559 
560 static inline u32 get_revision(u32 periph_id)
561 {
562 	return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
563 }
564 
565 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
566 		enum pl330_dst da, u16 val)
567 {
568 	if (dry_run)
569 		return SZ_DMAADDH;
570 
571 	buf[0] = CMD_DMAADDH;
572 	buf[0] |= (da << 1);
573 	*((__le16 *)&buf[1]) = cpu_to_le16(val);
574 
575 	PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
576 		da == 1 ? "DA" : "SA", val);
577 
578 	return SZ_DMAADDH;
579 }
580 
581 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
582 {
583 	if (dry_run)
584 		return SZ_DMAEND;
585 
586 	buf[0] = CMD_DMAEND;
587 
588 	PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
589 
590 	return SZ_DMAEND;
591 }
592 
593 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
594 {
595 	if (dry_run)
596 		return SZ_DMAFLUSHP;
597 
598 	buf[0] = CMD_DMAFLUSHP;
599 
600 	peri &= 0x1f;
601 	peri <<= 3;
602 	buf[1] = peri;
603 
604 	PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
605 
606 	return SZ_DMAFLUSHP;
607 }
608 
609 static inline u32 _emit_LD(unsigned dry_run, u8 buf[],	enum pl330_cond cond)
610 {
611 	if (dry_run)
612 		return SZ_DMALD;
613 
614 	buf[0] = CMD_DMALD;
615 
616 	if (cond == SINGLE)
617 		buf[0] |= (0 << 1) | (1 << 0);
618 	else if (cond == BURST)
619 		buf[0] |= (1 << 1) | (1 << 0);
620 
621 	PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
622 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
623 
624 	return SZ_DMALD;
625 }
626 
627 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
628 		enum pl330_cond cond, u8 peri)
629 {
630 	if (dry_run)
631 		return SZ_DMALDP;
632 
633 	buf[0] = CMD_DMALDP;
634 
635 	if (cond == BURST)
636 		buf[0] |= (1 << 1);
637 
638 	peri &= 0x1f;
639 	peri <<= 3;
640 	buf[1] = peri;
641 
642 	PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
643 		cond == SINGLE ? 'S' : 'B', peri >> 3);
644 
645 	return SZ_DMALDP;
646 }
647 
648 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
649 		unsigned loop, u8 cnt)
650 {
651 	if (dry_run)
652 		return SZ_DMALP;
653 
654 	buf[0] = CMD_DMALP;
655 
656 	if (loop)
657 		buf[0] |= (1 << 1);
658 
659 	cnt--; /* DMAC increments by 1 internally */
660 	buf[1] = cnt;
661 
662 	PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
663 
664 	return SZ_DMALP;
665 }
666 
667 struct _arg_LPEND {
668 	enum pl330_cond cond;
669 	bool forever;
670 	unsigned loop;
671 	u8 bjump;
672 };
673 
674 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
675 		const struct _arg_LPEND *arg)
676 {
677 	enum pl330_cond cond = arg->cond;
678 	bool forever = arg->forever;
679 	unsigned loop = arg->loop;
680 	u8 bjump = arg->bjump;
681 
682 	if (dry_run)
683 		return SZ_DMALPEND;
684 
685 	buf[0] = CMD_DMALPEND;
686 
687 	if (loop)
688 		buf[0] |= (1 << 2);
689 
690 	if (!forever)
691 		buf[0] |= (1 << 4);
692 
693 	if (cond == SINGLE)
694 		buf[0] |= (0 << 1) | (1 << 0);
695 	else if (cond == BURST)
696 		buf[0] |= (1 << 1) | (1 << 0);
697 
698 	buf[1] = bjump;
699 
700 	PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
701 			forever ? "FE" : "END",
702 			cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
703 			loop ? '1' : '0',
704 			bjump);
705 
706 	return SZ_DMALPEND;
707 }
708 
709 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
710 {
711 	if (dry_run)
712 		return SZ_DMAKILL;
713 
714 	buf[0] = CMD_DMAKILL;
715 
716 	return SZ_DMAKILL;
717 }
718 
719 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
720 		enum dmamov_dst dst, u32 val)
721 {
722 	if (dry_run)
723 		return SZ_DMAMOV;
724 
725 	buf[0] = CMD_DMAMOV;
726 	buf[1] = dst;
727 	*((__le32 *)&buf[2]) = cpu_to_le32(val);
728 
729 	PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
730 		dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
731 
732 	return SZ_DMAMOV;
733 }
734 
735 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
736 {
737 	if (dry_run)
738 		return SZ_DMANOP;
739 
740 	buf[0] = CMD_DMANOP;
741 
742 	PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
743 
744 	return SZ_DMANOP;
745 }
746 
747 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
748 {
749 	if (dry_run)
750 		return SZ_DMARMB;
751 
752 	buf[0] = CMD_DMARMB;
753 
754 	PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
755 
756 	return SZ_DMARMB;
757 }
758 
759 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
760 {
761 	if (dry_run)
762 		return SZ_DMASEV;
763 
764 	buf[0] = CMD_DMASEV;
765 
766 	ev &= 0x1f;
767 	ev <<= 3;
768 	buf[1] = ev;
769 
770 	PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
771 
772 	return SZ_DMASEV;
773 }
774 
775 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
776 {
777 	if (dry_run)
778 		return SZ_DMAST;
779 
780 	buf[0] = CMD_DMAST;
781 
782 	if (cond == SINGLE)
783 		buf[0] |= (0 << 1) | (1 << 0);
784 	else if (cond == BURST)
785 		buf[0] |= (1 << 1) | (1 << 0);
786 
787 	PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
788 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
789 
790 	return SZ_DMAST;
791 }
792 
793 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
794 		enum pl330_cond cond, u8 peri)
795 {
796 	if (dry_run)
797 		return SZ_DMASTP;
798 
799 	buf[0] = CMD_DMASTP;
800 
801 	if (cond == BURST)
802 		buf[0] |= (1 << 1);
803 
804 	peri &= 0x1f;
805 	peri <<= 3;
806 	buf[1] = peri;
807 
808 	PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
809 		cond == SINGLE ? 'S' : 'B', peri >> 3);
810 
811 	return SZ_DMASTP;
812 }
813 
814 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
815 {
816 	if (dry_run)
817 		return SZ_DMASTZ;
818 
819 	buf[0] = CMD_DMASTZ;
820 
821 	PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
822 
823 	return SZ_DMASTZ;
824 }
825 
826 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
827 		unsigned invalidate)
828 {
829 	if (dry_run)
830 		return SZ_DMAWFE;
831 
832 	buf[0] = CMD_DMAWFE;
833 
834 	ev &= 0x1f;
835 	ev <<= 3;
836 	buf[1] = ev;
837 
838 	if (invalidate)
839 		buf[1] |= (1 << 1);
840 
841 	PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
842 		ev >> 3, invalidate ? ", I" : "");
843 
844 	return SZ_DMAWFE;
845 }
846 
847 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
848 		enum pl330_cond cond, u8 peri)
849 {
850 	if (dry_run)
851 		return SZ_DMAWFP;
852 
853 	buf[0] = CMD_DMAWFP;
854 
855 	if (cond == SINGLE)
856 		buf[0] |= (0 << 1) | (0 << 0);
857 	else if (cond == BURST)
858 		buf[0] |= (1 << 1) | (0 << 0);
859 	else
860 		buf[0] |= (0 << 1) | (1 << 0);
861 
862 	peri &= 0x1f;
863 	peri <<= 3;
864 	buf[1] = peri;
865 
866 	PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
867 		cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
868 
869 	return SZ_DMAWFP;
870 }
871 
872 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
873 {
874 	if (dry_run)
875 		return SZ_DMAWMB;
876 
877 	buf[0] = CMD_DMAWMB;
878 
879 	PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
880 
881 	return SZ_DMAWMB;
882 }
883 
884 struct _arg_GO {
885 	u8 chan;
886 	u32 addr;
887 	unsigned ns;
888 };
889 
890 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
891 		const struct _arg_GO *arg)
892 {
893 	u8 chan = arg->chan;
894 	u32 addr = arg->addr;
895 	unsigned ns = arg->ns;
896 
897 	if (dry_run)
898 		return SZ_DMAGO;
899 
900 	buf[0] = CMD_DMAGO;
901 	buf[0] |= (ns << 1);
902 
903 	buf[1] = chan & 0x7;
904 
905 	*((__le32 *)&buf[2]) = cpu_to_le32(addr);
906 
907 	return SZ_DMAGO;
908 }
909 
910 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
911 
912 /* Returns Time-Out */
913 static bool _until_dmac_idle(struct pl330_thread *thrd)
914 {
915 	void __iomem *regs = thrd->dmac->base;
916 	unsigned long loops = msecs_to_loops(5);
917 
918 	do {
919 		/* Until Manager is Idle */
920 		if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
921 			break;
922 
923 		cpu_relax();
924 	} while (--loops);
925 
926 	if (!loops)
927 		return true;
928 
929 	return false;
930 }
931 
932 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
933 		u8 insn[], bool as_manager)
934 {
935 	void __iomem *regs = thrd->dmac->base;
936 	u32 val;
937 
938 	val = (insn[0] << 16) | (insn[1] << 24);
939 	if (!as_manager) {
940 		val |= (1 << 0);
941 		val |= (thrd->id << 8); /* Channel Number */
942 	}
943 	writel(val, regs + DBGINST0);
944 
945 	val = le32_to_cpu(*((__le32 *)&insn[2]));
946 	writel(val, regs + DBGINST1);
947 
948 	/* If timed out due to halted state-machine */
949 	if (_until_dmac_idle(thrd)) {
950 		dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
951 		return;
952 	}
953 
954 	/* Get going */
955 	writel(0, regs + DBGCMD);
956 }
957 
958 static inline u32 _state(struct pl330_thread *thrd)
959 {
960 	void __iomem *regs = thrd->dmac->base;
961 	u32 val;
962 
963 	if (is_manager(thrd))
964 		val = readl(regs + DS) & 0xf;
965 	else
966 		val = readl(regs + CS(thrd->id)) & 0xf;
967 
968 	switch (val) {
969 	case DS_ST_STOP:
970 		return PL330_STATE_STOPPED;
971 	case DS_ST_EXEC:
972 		return PL330_STATE_EXECUTING;
973 	case DS_ST_CMISS:
974 		return PL330_STATE_CACHEMISS;
975 	case DS_ST_UPDTPC:
976 		return PL330_STATE_UPDTPC;
977 	case DS_ST_WFE:
978 		return PL330_STATE_WFE;
979 	case DS_ST_FAULT:
980 		return PL330_STATE_FAULTING;
981 	case DS_ST_ATBRR:
982 		if (is_manager(thrd))
983 			return PL330_STATE_INVALID;
984 		else
985 			return PL330_STATE_ATBARRIER;
986 	case DS_ST_QBUSY:
987 		if (is_manager(thrd))
988 			return PL330_STATE_INVALID;
989 		else
990 			return PL330_STATE_QUEUEBUSY;
991 	case DS_ST_WFP:
992 		if (is_manager(thrd))
993 			return PL330_STATE_INVALID;
994 		else
995 			return PL330_STATE_WFP;
996 	case DS_ST_KILL:
997 		if (is_manager(thrd))
998 			return PL330_STATE_INVALID;
999 		else
1000 			return PL330_STATE_KILLING;
1001 	case DS_ST_CMPLT:
1002 		if (is_manager(thrd))
1003 			return PL330_STATE_INVALID;
1004 		else
1005 			return PL330_STATE_COMPLETING;
1006 	case DS_ST_FLTCMP:
1007 		if (is_manager(thrd))
1008 			return PL330_STATE_INVALID;
1009 		else
1010 			return PL330_STATE_FAULT_COMPLETING;
1011 	default:
1012 		return PL330_STATE_INVALID;
1013 	}
1014 }
1015 
1016 static void _stop(struct pl330_thread *thrd)
1017 {
1018 	void __iomem *regs = thrd->dmac->base;
1019 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1020 
1021 	if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1022 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1023 
1024 	/* Return if nothing needs to be done */
1025 	if (_state(thrd) == PL330_STATE_COMPLETING
1026 		  || _state(thrd) == PL330_STATE_KILLING
1027 		  || _state(thrd) == PL330_STATE_STOPPED)
1028 		return;
1029 
1030 	_emit_KILL(0, insn);
1031 
1032 	/* Stop generating interrupts for SEV */
1033 	writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1034 
1035 	_execute_DBGINSN(thrd, insn, is_manager(thrd));
1036 }
1037 
1038 /* Start doing req 'idx' of thread 'thrd' */
1039 static bool _trigger(struct pl330_thread *thrd)
1040 {
1041 	void __iomem *regs = thrd->dmac->base;
1042 	struct _pl330_req *req;
1043 	struct dma_pl330_desc *desc;
1044 	struct _arg_GO go;
1045 	unsigned ns;
1046 	u8 insn[6] = {0, 0, 0, 0, 0, 0};
1047 	int idx;
1048 
1049 	/* Return if already ACTIVE */
1050 	if (_state(thrd) != PL330_STATE_STOPPED)
1051 		return true;
1052 
1053 	idx = 1 - thrd->lstenq;
1054 	if (thrd->req[idx].desc != NULL) {
1055 		req = &thrd->req[idx];
1056 	} else {
1057 		idx = thrd->lstenq;
1058 		if (thrd->req[idx].desc != NULL)
1059 			req = &thrd->req[idx];
1060 		else
1061 			req = NULL;
1062 	}
1063 
1064 	/* Return if no request */
1065 	if (!req)
1066 		return true;
1067 
1068 	/* Return if req is running */
1069 	if (idx == thrd->req_running)
1070 		return true;
1071 
1072 	desc = req->desc;
1073 
1074 	ns = desc->rqcfg.nonsecure ? 1 : 0;
1075 
1076 	/* See 'Abort Sources' point-4 at Page 2-25 */
1077 	if (_manager_ns(thrd) && !ns)
1078 		dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1079 			__func__, __LINE__);
1080 
1081 	go.chan = thrd->id;
1082 	go.addr = req->mc_bus;
1083 	go.ns = ns;
1084 	_emit_GO(0, insn, &go);
1085 
1086 	/* Set to generate interrupts for SEV */
1087 	writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1088 
1089 	/* Only manager can execute GO */
1090 	_execute_DBGINSN(thrd, insn, true);
1091 
1092 	thrd->req_running = idx;
1093 
1094 	return true;
1095 }
1096 
1097 static bool _start(struct pl330_thread *thrd)
1098 {
1099 	switch (_state(thrd)) {
1100 	case PL330_STATE_FAULT_COMPLETING:
1101 		UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1102 
1103 		if (_state(thrd) == PL330_STATE_KILLING)
1104 			UNTIL(thrd, PL330_STATE_STOPPED)
1105 
1106 	case PL330_STATE_FAULTING:
1107 		_stop(thrd);
1108 
1109 	case PL330_STATE_KILLING:
1110 	case PL330_STATE_COMPLETING:
1111 		UNTIL(thrd, PL330_STATE_STOPPED)
1112 
1113 	case PL330_STATE_STOPPED:
1114 		return _trigger(thrd);
1115 
1116 	case PL330_STATE_WFP:
1117 	case PL330_STATE_QUEUEBUSY:
1118 	case PL330_STATE_ATBARRIER:
1119 	case PL330_STATE_UPDTPC:
1120 	case PL330_STATE_CACHEMISS:
1121 	case PL330_STATE_EXECUTING:
1122 		return true;
1123 
1124 	case PL330_STATE_WFE: /* For RESUME, nothing yet */
1125 	default:
1126 		return false;
1127 	}
1128 }
1129 
1130 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1131 		const struct _xfer_spec *pxs, int cyc)
1132 {
1133 	int off = 0;
1134 	struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1135 
1136 	/* check lock-up free version */
1137 	if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1138 		while (cyc--) {
1139 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1140 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1141 		}
1142 	} else {
1143 		while (cyc--) {
1144 			off += _emit_LD(dry_run, &buf[off], ALWAYS);
1145 			off += _emit_RMB(dry_run, &buf[off]);
1146 			off += _emit_ST(dry_run, &buf[off], ALWAYS);
1147 			off += _emit_WMB(dry_run, &buf[off]);
1148 		}
1149 	}
1150 
1151 	return off;
1152 }
1153 
1154 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1155 				 u8 buf[], const struct _xfer_spec *pxs,
1156 				 int cyc)
1157 {
1158 	int off = 0;
1159 	enum pl330_cond cond;
1160 
1161 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1162 		cond = BURST;
1163 	else
1164 		cond = SINGLE;
1165 
1166 	while (cyc--) {
1167 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1168 		off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1169 		off += _emit_ST(dry_run, &buf[off], ALWAYS);
1170 
1171 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1172 			off += _emit_FLUSHP(dry_run, &buf[off],
1173 					    pxs->desc->peri);
1174 	}
1175 
1176 	return off;
1177 }
1178 
1179 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1180 				 unsigned dry_run, u8 buf[],
1181 				 const struct _xfer_spec *pxs, int cyc)
1182 {
1183 	int off = 0;
1184 	enum pl330_cond cond;
1185 
1186 	if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1187 		cond = BURST;
1188 	else
1189 		cond = SINGLE;
1190 
1191 	while (cyc--) {
1192 		off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1193 		off += _emit_LD(dry_run, &buf[off], ALWAYS);
1194 		off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1195 
1196 		if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1197 			off += _emit_FLUSHP(dry_run, &buf[off],
1198 					    pxs->desc->peri);
1199 	}
1200 
1201 	return off;
1202 }
1203 
1204 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1205 		const struct _xfer_spec *pxs, int cyc)
1206 {
1207 	int off = 0;
1208 
1209 	switch (pxs->desc->rqtype) {
1210 	case DMA_MEM_TO_DEV:
1211 		off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1212 		break;
1213 	case DMA_DEV_TO_MEM:
1214 		off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1215 		break;
1216 	case DMA_MEM_TO_MEM:
1217 		off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1218 		break;
1219 	default:
1220 		off += 0x40000000; /* Scare off the Client */
1221 		break;
1222 	}
1223 
1224 	return off;
1225 }
1226 
1227 /* Returns bytes consumed and updates bursts */
1228 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1229 		unsigned long *bursts, const struct _xfer_spec *pxs)
1230 {
1231 	int cyc, cycmax, szlp, szlpend, szbrst, off;
1232 	unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1233 	struct _arg_LPEND lpend;
1234 
1235 	if (*bursts == 1)
1236 		return _bursts(pl330, dry_run, buf, pxs, 1);
1237 
1238 	/* Max iterations possible in DMALP is 256 */
1239 	if (*bursts >= 256*256) {
1240 		lcnt1 = 256;
1241 		lcnt0 = 256;
1242 		cyc = *bursts / lcnt1 / lcnt0;
1243 	} else if (*bursts > 256) {
1244 		lcnt1 = 256;
1245 		lcnt0 = *bursts / lcnt1;
1246 		cyc = 1;
1247 	} else {
1248 		lcnt1 = *bursts;
1249 		lcnt0 = 0;
1250 		cyc = 1;
1251 	}
1252 
1253 	szlp = _emit_LP(1, buf, 0, 0);
1254 	szbrst = _bursts(pl330, 1, buf, pxs, 1);
1255 
1256 	lpend.cond = ALWAYS;
1257 	lpend.forever = false;
1258 	lpend.loop = 0;
1259 	lpend.bjump = 0;
1260 	szlpend = _emit_LPEND(1, buf, &lpend);
1261 
1262 	if (lcnt0) {
1263 		szlp *= 2;
1264 		szlpend *= 2;
1265 	}
1266 
1267 	/*
1268 	 * Max bursts that we can unroll due to limit on the
1269 	 * size of backward jump that can be encoded in DMALPEND
1270 	 * which is 8-bits and hence 255
1271 	 */
1272 	cycmax = (255 - (szlp + szlpend)) / szbrst;
1273 
1274 	cyc = (cycmax < cyc) ? cycmax : cyc;
1275 
1276 	off = 0;
1277 
1278 	if (lcnt0) {
1279 		off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1280 		ljmp0 = off;
1281 	}
1282 
1283 	off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1284 	ljmp1 = off;
1285 
1286 	off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1287 
1288 	lpend.cond = ALWAYS;
1289 	lpend.forever = false;
1290 	lpend.loop = 1;
1291 	lpend.bjump = off - ljmp1;
1292 	off += _emit_LPEND(dry_run, &buf[off], &lpend);
1293 
1294 	if (lcnt0) {
1295 		lpend.cond = ALWAYS;
1296 		lpend.forever = false;
1297 		lpend.loop = 0;
1298 		lpend.bjump = off - ljmp0;
1299 		off += _emit_LPEND(dry_run, &buf[off], &lpend);
1300 	}
1301 
1302 	*bursts = lcnt1 * cyc;
1303 	if (lcnt0)
1304 		*bursts *= lcnt0;
1305 
1306 	return off;
1307 }
1308 
1309 static inline int _setup_loops(struct pl330_dmac *pl330,
1310 			       unsigned dry_run, u8 buf[],
1311 			       const struct _xfer_spec *pxs)
1312 {
1313 	struct pl330_xfer *x = &pxs->desc->px;
1314 	u32 ccr = pxs->ccr;
1315 	unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1316 	int off = 0;
1317 
1318 	while (bursts) {
1319 		c = bursts;
1320 		off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1321 		bursts -= c;
1322 	}
1323 
1324 	return off;
1325 }
1326 
1327 static inline int _setup_xfer(struct pl330_dmac *pl330,
1328 			      unsigned dry_run, u8 buf[],
1329 			      const struct _xfer_spec *pxs)
1330 {
1331 	struct pl330_xfer *x = &pxs->desc->px;
1332 	int off = 0;
1333 
1334 	/* DMAMOV SAR, x->src_addr */
1335 	off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1336 	/* DMAMOV DAR, x->dst_addr */
1337 	off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1338 
1339 	/* Setup Loop(s) */
1340 	off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1341 
1342 	return off;
1343 }
1344 
1345 /*
1346  * A req is a sequence of one or more xfer units.
1347  * Returns the number of bytes taken to setup the MC for the req.
1348  */
1349 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1350 		      struct pl330_thread *thrd, unsigned index,
1351 		      struct _xfer_spec *pxs)
1352 {
1353 	struct _pl330_req *req = &thrd->req[index];
1354 	struct pl330_xfer *x;
1355 	u8 *buf = req->mc_cpu;
1356 	int off = 0;
1357 
1358 	PL330_DBGMC_START(req->mc_bus);
1359 
1360 	/* DMAMOV CCR, ccr */
1361 	off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1362 
1363 	x = &pxs->desc->px;
1364 	/* Error if xfer length is not aligned at burst size */
1365 	if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1366 		return -EINVAL;
1367 
1368 	off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1369 
1370 	/* DMASEV peripheral/event */
1371 	off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1372 	/* DMAEND */
1373 	off += _emit_END(dry_run, &buf[off]);
1374 
1375 	return off;
1376 }
1377 
1378 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1379 {
1380 	u32 ccr = 0;
1381 
1382 	if (rqc->src_inc)
1383 		ccr |= CC_SRCINC;
1384 
1385 	if (rqc->dst_inc)
1386 		ccr |= CC_DSTINC;
1387 
1388 	/* We set same protection levels for Src and DST for now */
1389 	if (rqc->privileged)
1390 		ccr |= CC_SRCPRI | CC_DSTPRI;
1391 	if (rqc->nonsecure)
1392 		ccr |= CC_SRCNS | CC_DSTNS;
1393 	if (rqc->insnaccess)
1394 		ccr |= CC_SRCIA | CC_DSTIA;
1395 
1396 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1397 	ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1398 
1399 	ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1400 	ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1401 
1402 	ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1403 	ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1404 
1405 	ccr |= (rqc->swap << CC_SWAP_SHFT);
1406 
1407 	return ccr;
1408 }
1409 
1410 /*
1411  * Submit a list of xfers after which the client wants notification.
1412  * Client is not notified after each xfer unit, just once after all
1413  * xfer units are done or some error occurs.
1414  */
1415 static int pl330_submit_req(struct pl330_thread *thrd,
1416 	struct dma_pl330_desc *desc)
1417 {
1418 	struct pl330_dmac *pl330 = thrd->dmac;
1419 	struct _xfer_spec xs;
1420 	unsigned long flags;
1421 	unsigned idx;
1422 	u32 ccr;
1423 	int ret = 0;
1424 
1425 	if (pl330->state == DYING
1426 		|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1427 		dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1428 			__func__, __LINE__);
1429 		return -EAGAIN;
1430 	}
1431 
1432 	/* If request for non-existing peripheral */
1433 	if (desc->rqtype != DMA_MEM_TO_MEM &&
1434 	    desc->peri >= pl330->pcfg.num_peri) {
1435 		dev_info(thrd->dmac->ddma.dev,
1436 				"%s:%d Invalid peripheral(%u)!\n",
1437 				__func__, __LINE__, desc->peri);
1438 		return -EINVAL;
1439 	}
1440 
1441 	spin_lock_irqsave(&pl330->lock, flags);
1442 
1443 	if (_queue_full(thrd)) {
1444 		ret = -EAGAIN;
1445 		goto xfer_exit;
1446 	}
1447 
1448 	/* Prefer Secure Channel */
1449 	if (!_manager_ns(thrd))
1450 		desc->rqcfg.nonsecure = 0;
1451 	else
1452 		desc->rqcfg.nonsecure = 1;
1453 
1454 	ccr = _prepare_ccr(&desc->rqcfg);
1455 
1456 	idx = thrd->req[0].desc == NULL ? 0 : 1;
1457 
1458 	xs.ccr = ccr;
1459 	xs.desc = desc;
1460 
1461 	/* First dry run to check if req is acceptable */
1462 	ret = _setup_req(pl330, 1, thrd, idx, &xs);
1463 	if (ret < 0)
1464 		goto xfer_exit;
1465 
1466 	if (ret > pl330->mcbufsz / 2) {
1467 		dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1468 				__func__, __LINE__, ret, pl330->mcbufsz / 2);
1469 		ret = -ENOMEM;
1470 		goto xfer_exit;
1471 	}
1472 
1473 	/* Hook the request */
1474 	thrd->lstenq = idx;
1475 	thrd->req[idx].desc = desc;
1476 	_setup_req(pl330, 0, thrd, idx, &xs);
1477 
1478 	ret = 0;
1479 
1480 xfer_exit:
1481 	spin_unlock_irqrestore(&pl330->lock, flags);
1482 
1483 	return ret;
1484 }
1485 
1486 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1487 {
1488 	struct dma_pl330_chan *pch;
1489 	unsigned long flags;
1490 
1491 	if (!desc)
1492 		return;
1493 
1494 	pch = desc->pchan;
1495 
1496 	/* If desc aborted */
1497 	if (!pch)
1498 		return;
1499 
1500 	spin_lock_irqsave(&pch->lock, flags);
1501 
1502 	desc->status = DONE;
1503 
1504 	spin_unlock_irqrestore(&pch->lock, flags);
1505 
1506 	tasklet_schedule(&pch->task);
1507 }
1508 
1509 static void pl330_dotask(unsigned long data)
1510 {
1511 	struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1512 	unsigned long flags;
1513 	int i;
1514 
1515 	spin_lock_irqsave(&pl330->lock, flags);
1516 
1517 	/* The DMAC itself gone nuts */
1518 	if (pl330->dmac_tbd.reset_dmac) {
1519 		pl330->state = DYING;
1520 		/* Reset the manager too */
1521 		pl330->dmac_tbd.reset_mngr = true;
1522 		/* Clear the reset flag */
1523 		pl330->dmac_tbd.reset_dmac = false;
1524 	}
1525 
1526 	if (pl330->dmac_tbd.reset_mngr) {
1527 		_stop(pl330->manager);
1528 		/* Reset all channels */
1529 		pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1530 		/* Clear the reset flag */
1531 		pl330->dmac_tbd.reset_mngr = false;
1532 	}
1533 
1534 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1535 
1536 		if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1537 			struct pl330_thread *thrd = &pl330->channels[i];
1538 			void __iomem *regs = pl330->base;
1539 			enum pl330_op_err err;
1540 
1541 			_stop(thrd);
1542 
1543 			if (readl(regs + FSC) & (1 << thrd->id))
1544 				err = PL330_ERR_FAIL;
1545 			else
1546 				err = PL330_ERR_ABORT;
1547 
1548 			spin_unlock_irqrestore(&pl330->lock, flags);
1549 			dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1550 			dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1551 			spin_lock_irqsave(&pl330->lock, flags);
1552 
1553 			thrd->req[0].desc = NULL;
1554 			thrd->req[1].desc = NULL;
1555 			thrd->req_running = -1;
1556 
1557 			/* Clear the reset flag */
1558 			pl330->dmac_tbd.reset_chan &= ~(1 << i);
1559 		}
1560 	}
1561 
1562 	spin_unlock_irqrestore(&pl330->lock, flags);
1563 
1564 	return;
1565 }
1566 
1567 /* Returns 1 if state was updated, 0 otherwise */
1568 static int pl330_update(struct pl330_dmac *pl330)
1569 {
1570 	struct dma_pl330_desc *descdone, *tmp;
1571 	unsigned long flags;
1572 	void __iomem *regs;
1573 	u32 val;
1574 	int id, ev, ret = 0;
1575 
1576 	regs = pl330->base;
1577 
1578 	spin_lock_irqsave(&pl330->lock, flags);
1579 
1580 	val = readl(regs + FSM) & 0x1;
1581 	if (val)
1582 		pl330->dmac_tbd.reset_mngr = true;
1583 	else
1584 		pl330->dmac_tbd.reset_mngr = false;
1585 
1586 	val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1587 	pl330->dmac_tbd.reset_chan |= val;
1588 	if (val) {
1589 		int i = 0;
1590 		while (i < pl330->pcfg.num_chan) {
1591 			if (val & (1 << i)) {
1592 				dev_info(pl330->ddma.dev,
1593 					"Reset Channel-%d\t CS-%x FTC-%x\n",
1594 						i, readl(regs + CS(i)),
1595 						readl(regs + FTC(i)));
1596 				_stop(&pl330->channels[i]);
1597 			}
1598 			i++;
1599 		}
1600 	}
1601 
1602 	/* Check which event happened i.e, thread notified */
1603 	val = readl(regs + ES);
1604 	if (pl330->pcfg.num_events < 32
1605 			&& val & ~((1 << pl330->pcfg.num_events) - 1)) {
1606 		pl330->dmac_tbd.reset_dmac = true;
1607 		dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1608 			__LINE__);
1609 		ret = 1;
1610 		goto updt_exit;
1611 	}
1612 
1613 	for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1614 		if (val & (1 << ev)) { /* Event occurred */
1615 			struct pl330_thread *thrd;
1616 			u32 inten = readl(regs + INTEN);
1617 			int active;
1618 
1619 			/* Clear the event */
1620 			if (inten & (1 << ev))
1621 				writel(1 << ev, regs + INTCLR);
1622 
1623 			ret = 1;
1624 
1625 			id = pl330->events[ev];
1626 
1627 			thrd = &pl330->channels[id];
1628 
1629 			active = thrd->req_running;
1630 			if (active == -1) /* Aborted */
1631 				continue;
1632 
1633 			/* Detach the req */
1634 			descdone = thrd->req[active].desc;
1635 			thrd->req[active].desc = NULL;
1636 
1637 			thrd->req_running = -1;
1638 
1639 			/* Get going again ASAP */
1640 			_start(thrd);
1641 
1642 			/* For now, just make a list of callbacks to be done */
1643 			list_add_tail(&descdone->rqd, &pl330->req_done);
1644 		}
1645 	}
1646 
1647 	/* Now that we are in no hurry, do the callbacks */
1648 	list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1649 		list_del(&descdone->rqd);
1650 		spin_unlock_irqrestore(&pl330->lock, flags);
1651 		dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1652 		spin_lock_irqsave(&pl330->lock, flags);
1653 	}
1654 
1655 updt_exit:
1656 	spin_unlock_irqrestore(&pl330->lock, flags);
1657 
1658 	if (pl330->dmac_tbd.reset_dmac
1659 			|| pl330->dmac_tbd.reset_mngr
1660 			|| pl330->dmac_tbd.reset_chan) {
1661 		ret = 1;
1662 		tasklet_schedule(&pl330->tasks);
1663 	}
1664 
1665 	return ret;
1666 }
1667 
1668 /* Reserve an event */
1669 static inline int _alloc_event(struct pl330_thread *thrd)
1670 {
1671 	struct pl330_dmac *pl330 = thrd->dmac;
1672 	int ev;
1673 
1674 	for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1675 		if (pl330->events[ev] == -1) {
1676 			pl330->events[ev] = thrd->id;
1677 			return ev;
1678 		}
1679 
1680 	return -1;
1681 }
1682 
1683 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1684 {
1685 	return pl330->pcfg.irq_ns & (1 << i);
1686 }
1687 
1688 /* Upon success, returns IdentityToken for the
1689  * allocated channel, NULL otherwise.
1690  */
1691 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1692 {
1693 	struct pl330_thread *thrd = NULL;
1694 	unsigned long flags;
1695 	int chans, i;
1696 
1697 	if (pl330->state == DYING)
1698 		return NULL;
1699 
1700 	chans = pl330->pcfg.num_chan;
1701 
1702 	spin_lock_irqsave(&pl330->lock, flags);
1703 
1704 	for (i = 0; i < chans; i++) {
1705 		thrd = &pl330->channels[i];
1706 		if ((thrd->free) && (!_manager_ns(thrd) ||
1707 					_chan_ns(pl330, i))) {
1708 			thrd->ev = _alloc_event(thrd);
1709 			if (thrd->ev >= 0) {
1710 				thrd->free = false;
1711 				thrd->lstenq = 1;
1712 				thrd->req[0].desc = NULL;
1713 				thrd->req[1].desc = NULL;
1714 				thrd->req_running = -1;
1715 				break;
1716 			}
1717 		}
1718 		thrd = NULL;
1719 	}
1720 
1721 	spin_unlock_irqrestore(&pl330->lock, flags);
1722 
1723 	return thrd;
1724 }
1725 
1726 /* Release an event */
1727 static inline void _free_event(struct pl330_thread *thrd, int ev)
1728 {
1729 	struct pl330_dmac *pl330 = thrd->dmac;
1730 
1731 	/* If the event is valid and was held by the thread */
1732 	if (ev >= 0 && ev < pl330->pcfg.num_events
1733 			&& pl330->events[ev] == thrd->id)
1734 		pl330->events[ev] = -1;
1735 }
1736 
1737 static void pl330_release_channel(struct pl330_thread *thrd)
1738 {
1739 	struct pl330_dmac *pl330;
1740 	unsigned long flags;
1741 
1742 	if (!thrd || thrd->free)
1743 		return;
1744 
1745 	_stop(thrd);
1746 
1747 	dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1748 	dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1749 
1750 	pl330 = thrd->dmac;
1751 
1752 	spin_lock_irqsave(&pl330->lock, flags);
1753 	_free_event(thrd, thrd->ev);
1754 	thrd->free = true;
1755 	spin_unlock_irqrestore(&pl330->lock, flags);
1756 }
1757 
1758 /* Initialize the structure for PL330 configuration, that can be used
1759  * by the client driver the make best use of the DMAC
1760  */
1761 static void read_dmac_config(struct pl330_dmac *pl330)
1762 {
1763 	void __iomem *regs = pl330->base;
1764 	u32 val;
1765 
1766 	val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1767 	val &= CRD_DATA_WIDTH_MASK;
1768 	pl330->pcfg.data_bus_width = 8 * (1 << val);
1769 
1770 	val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1771 	val &= CRD_DATA_BUFF_MASK;
1772 	pl330->pcfg.data_buf_dep = val + 1;
1773 
1774 	val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1775 	val &= CR0_NUM_CHANS_MASK;
1776 	val += 1;
1777 	pl330->pcfg.num_chan = val;
1778 
1779 	val = readl(regs + CR0);
1780 	if (val & CR0_PERIPH_REQ_SET) {
1781 		val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1782 		val += 1;
1783 		pl330->pcfg.num_peri = val;
1784 		pl330->pcfg.peri_ns = readl(regs + CR4);
1785 	} else {
1786 		pl330->pcfg.num_peri = 0;
1787 	}
1788 
1789 	val = readl(regs + CR0);
1790 	if (val & CR0_BOOT_MAN_NS)
1791 		pl330->pcfg.mode |= DMAC_MODE_NS;
1792 	else
1793 		pl330->pcfg.mode &= ~DMAC_MODE_NS;
1794 
1795 	val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1796 	val &= CR0_NUM_EVENTS_MASK;
1797 	val += 1;
1798 	pl330->pcfg.num_events = val;
1799 
1800 	pl330->pcfg.irq_ns = readl(regs + CR3);
1801 }
1802 
1803 static inline void _reset_thread(struct pl330_thread *thrd)
1804 {
1805 	struct pl330_dmac *pl330 = thrd->dmac;
1806 
1807 	thrd->req[0].mc_cpu = pl330->mcode_cpu
1808 				+ (thrd->id * pl330->mcbufsz);
1809 	thrd->req[0].mc_bus = pl330->mcode_bus
1810 				+ (thrd->id * pl330->mcbufsz);
1811 	thrd->req[0].desc = NULL;
1812 
1813 	thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1814 				+ pl330->mcbufsz / 2;
1815 	thrd->req[1].mc_bus = thrd->req[0].mc_bus
1816 				+ pl330->mcbufsz / 2;
1817 	thrd->req[1].desc = NULL;
1818 
1819 	thrd->req_running = -1;
1820 }
1821 
1822 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1823 {
1824 	int chans = pl330->pcfg.num_chan;
1825 	struct pl330_thread *thrd;
1826 	int i;
1827 
1828 	/* Allocate 1 Manager and 'chans' Channel threads */
1829 	pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1830 					GFP_KERNEL);
1831 	if (!pl330->channels)
1832 		return -ENOMEM;
1833 
1834 	/* Init Channel threads */
1835 	for (i = 0; i < chans; i++) {
1836 		thrd = &pl330->channels[i];
1837 		thrd->id = i;
1838 		thrd->dmac = pl330;
1839 		_reset_thread(thrd);
1840 		thrd->free = true;
1841 	}
1842 
1843 	/* MANAGER is indexed at the end */
1844 	thrd = &pl330->channels[chans];
1845 	thrd->id = chans;
1846 	thrd->dmac = pl330;
1847 	thrd->free = false;
1848 	pl330->manager = thrd;
1849 
1850 	return 0;
1851 }
1852 
1853 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1854 {
1855 	int chans = pl330->pcfg.num_chan;
1856 	int ret;
1857 
1858 	/*
1859 	 * Alloc MicroCode buffer for 'chans' Channel threads.
1860 	 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1861 	 */
1862 	pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1863 				chans * pl330->mcbufsz,
1864 				&pl330->mcode_bus, GFP_KERNEL);
1865 	if (!pl330->mcode_cpu) {
1866 		dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1867 			__func__, __LINE__);
1868 		return -ENOMEM;
1869 	}
1870 
1871 	ret = dmac_alloc_threads(pl330);
1872 	if (ret) {
1873 		dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1874 			__func__, __LINE__);
1875 		dma_free_coherent(pl330->ddma.dev,
1876 				chans * pl330->mcbufsz,
1877 				pl330->mcode_cpu, pl330->mcode_bus);
1878 		return ret;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 static int pl330_add(struct pl330_dmac *pl330)
1885 {
1886 	void __iomem *regs;
1887 	int i, ret;
1888 
1889 	regs = pl330->base;
1890 
1891 	/* Check if we can handle this DMAC */
1892 	if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1893 		dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1894 			pl330->pcfg.periph_id);
1895 		return -EINVAL;
1896 	}
1897 
1898 	/* Read the configuration of the DMAC */
1899 	read_dmac_config(pl330);
1900 
1901 	if (pl330->pcfg.num_events == 0) {
1902 		dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1903 			__func__, __LINE__);
1904 		return -EINVAL;
1905 	}
1906 
1907 	spin_lock_init(&pl330->lock);
1908 
1909 	INIT_LIST_HEAD(&pl330->req_done);
1910 
1911 	/* Use default MC buffer size if not provided */
1912 	if (!pl330->mcbufsz)
1913 		pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1914 
1915 	/* Mark all events as free */
1916 	for (i = 0; i < pl330->pcfg.num_events; i++)
1917 		pl330->events[i] = -1;
1918 
1919 	/* Allocate resources needed by the DMAC */
1920 	ret = dmac_alloc_resources(pl330);
1921 	if (ret) {
1922 		dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1923 		return ret;
1924 	}
1925 
1926 	tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1927 
1928 	pl330->state = INIT;
1929 
1930 	return 0;
1931 }
1932 
1933 static int dmac_free_threads(struct pl330_dmac *pl330)
1934 {
1935 	struct pl330_thread *thrd;
1936 	int i;
1937 
1938 	/* Release Channel threads */
1939 	for (i = 0; i < pl330->pcfg.num_chan; i++) {
1940 		thrd = &pl330->channels[i];
1941 		pl330_release_channel(thrd);
1942 	}
1943 
1944 	/* Free memory */
1945 	kfree(pl330->channels);
1946 
1947 	return 0;
1948 }
1949 
1950 static void pl330_del(struct pl330_dmac *pl330)
1951 {
1952 	pl330->state = UNINIT;
1953 
1954 	tasklet_kill(&pl330->tasks);
1955 
1956 	/* Free DMAC resources */
1957 	dmac_free_threads(pl330);
1958 
1959 	dma_free_coherent(pl330->ddma.dev,
1960 		pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1961 		pl330->mcode_bus);
1962 }
1963 
1964 /* forward declaration */
1965 static struct amba_driver pl330_driver;
1966 
1967 static inline struct dma_pl330_chan *
1968 to_pchan(struct dma_chan *ch)
1969 {
1970 	if (!ch)
1971 		return NULL;
1972 
1973 	return container_of(ch, struct dma_pl330_chan, chan);
1974 }
1975 
1976 static inline struct dma_pl330_desc *
1977 to_desc(struct dma_async_tx_descriptor *tx)
1978 {
1979 	return container_of(tx, struct dma_pl330_desc, txd);
1980 }
1981 
1982 static inline void fill_queue(struct dma_pl330_chan *pch)
1983 {
1984 	struct dma_pl330_desc *desc;
1985 	int ret;
1986 
1987 	list_for_each_entry(desc, &pch->work_list, node) {
1988 
1989 		/* If already submitted */
1990 		if (desc->status == BUSY)
1991 			continue;
1992 
1993 		ret = pl330_submit_req(pch->thread, desc);
1994 		if (!ret) {
1995 			desc->status = BUSY;
1996 		} else if (ret == -EAGAIN) {
1997 			/* QFull or DMAC Dying */
1998 			break;
1999 		} else {
2000 			/* Unacceptable request */
2001 			desc->status = DONE;
2002 			dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2003 					__func__, __LINE__, desc->txd.cookie);
2004 			tasklet_schedule(&pch->task);
2005 		}
2006 	}
2007 }
2008 
2009 static void pl330_tasklet(unsigned long data)
2010 {
2011 	struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2012 	struct dma_pl330_desc *desc, *_dt;
2013 	unsigned long flags;
2014 	bool power_down = false;
2015 
2016 	spin_lock_irqsave(&pch->lock, flags);
2017 
2018 	/* Pick up ripe tomatoes */
2019 	list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2020 		if (desc->status == DONE) {
2021 			if (!pch->cyclic)
2022 				dma_cookie_complete(&desc->txd);
2023 			list_move_tail(&desc->node, &pch->completed_list);
2024 		}
2025 
2026 	/* Try to submit a req imm. next to the last completed cookie */
2027 	fill_queue(pch);
2028 
2029 	if (list_empty(&pch->work_list)) {
2030 		spin_lock(&pch->thread->dmac->lock);
2031 		_stop(pch->thread);
2032 		spin_unlock(&pch->thread->dmac->lock);
2033 		power_down = true;
2034 	} else {
2035 		/* Make sure the PL330 Channel thread is active */
2036 		spin_lock(&pch->thread->dmac->lock);
2037 		_start(pch->thread);
2038 		spin_unlock(&pch->thread->dmac->lock);
2039 	}
2040 
2041 	while (!list_empty(&pch->completed_list)) {
2042 		dma_async_tx_callback callback;
2043 		void *callback_param;
2044 
2045 		desc = list_first_entry(&pch->completed_list,
2046 					struct dma_pl330_desc, node);
2047 
2048 		callback = desc->txd.callback;
2049 		callback_param = desc->txd.callback_param;
2050 
2051 		if (pch->cyclic) {
2052 			desc->status = PREP;
2053 			list_move_tail(&desc->node, &pch->work_list);
2054 			if (power_down) {
2055 				spin_lock(&pch->thread->dmac->lock);
2056 				_start(pch->thread);
2057 				spin_unlock(&pch->thread->dmac->lock);
2058 				power_down = false;
2059 			}
2060 		} else {
2061 			desc->status = FREE;
2062 			list_move_tail(&desc->node, &pch->dmac->desc_pool);
2063 		}
2064 
2065 		dma_descriptor_unmap(&desc->txd);
2066 
2067 		if (callback) {
2068 			spin_unlock_irqrestore(&pch->lock, flags);
2069 			callback(callback_param);
2070 			spin_lock_irqsave(&pch->lock, flags);
2071 		}
2072 	}
2073 	spin_unlock_irqrestore(&pch->lock, flags);
2074 
2075 	/* If work list empty, power down */
2076 	if (power_down) {
2077 		pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2078 		pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2079 	}
2080 }
2081 
2082 bool pl330_filter(struct dma_chan *chan, void *param)
2083 {
2084 	u8 *peri_id;
2085 
2086 	if (chan->device->dev->driver != &pl330_driver.drv)
2087 		return false;
2088 
2089 	peri_id = chan->private;
2090 	return *peri_id == (unsigned long)param;
2091 }
2092 EXPORT_SYMBOL(pl330_filter);
2093 
2094 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2095 						struct of_dma *ofdma)
2096 {
2097 	int count = dma_spec->args_count;
2098 	struct pl330_dmac *pl330 = ofdma->of_dma_data;
2099 	unsigned int chan_id;
2100 
2101 	if (!pl330)
2102 		return NULL;
2103 
2104 	if (count != 1)
2105 		return NULL;
2106 
2107 	chan_id = dma_spec->args[0];
2108 	if (chan_id >= pl330->num_peripherals)
2109 		return NULL;
2110 
2111 	return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2112 }
2113 
2114 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2115 {
2116 	struct dma_pl330_chan *pch = to_pchan(chan);
2117 	struct pl330_dmac *pl330 = pch->dmac;
2118 	unsigned long flags;
2119 
2120 	spin_lock_irqsave(&pch->lock, flags);
2121 
2122 	dma_cookie_init(chan);
2123 	pch->cyclic = false;
2124 
2125 	pch->thread = pl330_request_channel(pl330);
2126 	if (!pch->thread) {
2127 		spin_unlock_irqrestore(&pch->lock, flags);
2128 		return -ENOMEM;
2129 	}
2130 
2131 	tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2132 
2133 	spin_unlock_irqrestore(&pch->lock, flags);
2134 
2135 	return 1;
2136 }
2137 
2138 static int pl330_config(struct dma_chan *chan,
2139 			struct dma_slave_config *slave_config)
2140 {
2141 	struct dma_pl330_chan *pch = to_pchan(chan);
2142 
2143 	if (slave_config->direction == DMA_MEM_TO_DEV) {
2144 		if (slave_config->dst_addr)
2145 			pch->fifo_addr = slave_config->dst_addr;
2146 		if (slave_config->dst_addr_width)
2147 			pch->burst_sz = __ffs(slave_config->dst_addr_width);
2148 		if (slave_config->dst_maxburst)
2149 			pch->burst_len = slave_config->dst_maxburst;
2150 	} else if (slave_config->direction == DMA_DEV_TO_MEM) {
2151 		if (slave_config->src_addr)
2152 			pch->fifo_addr = slave_config->src_addr;
2153 		if (slave_config->src_addr_width)
2154 			pch->burst_sz = __ffs(slave_config->src_addr_width);
2155 		if (slave_config->src_maxburst)
2156 			pch->burst_len = slave_config->src_maxburst;
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static int pl330_terminate_all(struct dma_chan *chan)
2163 {
2164 	struct dma_pl330_chan *pch = to_pchan(chan);
2165 	struct dma_pl330_desc *desc;
2166 	unsigned long flags;
2167 	struct pl330_dmac *pl330 = pch->dmac;
2168 	LIST_HEAD(list);
2169 
2170 	pm_runtime_get_sync(pl330->ddma.dev);
2171 	spin_lock_irqsave(&pch->lock, flags);
2172 	spin_lock(&pl330->lock);
2173 	_stop(pch->thread);
2174 	spin_unlock(&pl330->lock);
2175 
2176 	pch->thread->req[0].desc = NULL;
2177 	pch->thread->req[1].desc = NULL;
2178 	pch->thread->req_running = -1;
2179 
2180 	/* Mark all desc done */
2181 	list_for_each_entry(desc, &pch->submitted_list, node) {
2182 		desc->status = FREE;
2183 		dma_cookie_complete(&desc->txd);
2184 	}
2185 
2186 	list_for_each_entry(desc, &pch->work_list , node) {
2187 		desc->status = FREE;
2188 		dma_cookie_complete(&desc->txd);
2189 	}
2190 
2191 	list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2192 	list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2193 	list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2194 	spin_unlock_irqrestore(&pch->lock, flags);
2195 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2196 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2197 
2198 	return 0;
2199 }
2200 
2201 /*
2202  * We don't support DMA_RESUME command because of hardware
2203  * limitations, so after pausing the channel we cannot restore
2204  * it to active state. We have to terminate channel and setup
2205  * DMA transfer again. This pause feature was implemented to
2206  * allow safely read residue before channel termination.
2207  */
2208 static int pl330_pause(struct dma_chan *chan)
2209 {
2210 	struct dma_pl330_chan *pch = to_pchan(chan);
2211 	struct pl330_dmac *pl330 = pch->dmac;
2212 	unsigned long flags;
2213 
2214 	pm_runtime_get_sync(pl330->ddma.dev);
2215 	spin_lock_irqsave(&pch->lock, flags);
2216 
2217 	spin_lock(&pl330->lock);
2218 	_stop(pch->thread);
2219 	spin_unlock(&pl330->lock);
2220 
2221 	spin_unlock_irqrestore(&pch->lock, flags);
2222 	pm_runtime_mark_last_busy(pl330->ddma.dev);
2223 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2224 
2225 	return 0;
2226 }
2227 
2228 static void pl330_free_chan_resources(struct dma_chan *chan)
2229 {
2230 	struct dma_pl330_chan *pch = to_pchan(chan);
2231 	unsigned long flags;
2232 
2233 	tasklet_kill(&pch->task);
2234 
2235 	pm_runtime_get_sync(pch->dmac->ddma.dev);
2236 	spin_lock_irqsave(&pch->lock, flags);
2237 
2238 	pl330_release_channel(pch->thread);
2239 	pch->thread = NULL;
2240 
2241 	if (pch->cyclic)
2242 		list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2243 
2244 	spin_unlock_irqrestore(&pch->lock, flags);
2245 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2246 	pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2247 }
2248 
2249 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2250 					   struct dma_pl330_desc *desc)
2251 {
2252 	struct pl330_thread *thrd = pch->thread;
2253 	struct pl330_dmac *pl330 = pch->dmac;
2254 	void __iomem *regs = thrd->dmac->base;
2255 	u32 val, addr;
2256 
2257 	pm_runtime_get_sync(pl330->ddma.dev);
2258 	val = addr = 0;
2259 	if (desc->rqcfg.src_inc) {
2260 		val = readl(regs + SA(thrd->id));
2261 		addr = desc->px.src_addr;
2262 	} else {
2263 		val = readl(regs + DA(thrd->id));
2264 		addr = desc->px.dst_addr;
2265 	}
2266 	pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2267 	pm_runtime_put_autosuspend(pl330->ddma.dev);
2268 	return val - addr;
2269 }
2270 
2271 static enum dma_status
2272 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2273 		 struct dma_tx_state *txstate)
2274 {
2275 	enum dma_status ret;
2276 	unsigned long flags;
2277 	struct dma_pl330_desc *desc, *running = NULL;
2278 	struct dma_pl330_chan *pch = to_pchan(chan);
2279 	unsigned int transferred, residual = 0;
2280 
2281 	ret = dma_cookie_status(chan, cookie, txstate);
2282 
2283 	if (!txstate)
2284 		return ret;
2285 
2286 	if (ret == DMA_COMPLETE)
2287 		goto out;
2288 
2289 	spin_lock_irqsave(&pch->lock, flags);
2290 
2291 	if (pch->thread->req_running != -1)
2292 		running = pch->thread->req[pch->thread->req_running].desc;
2293 
2294 	/* Check in pending list */
2295 	list_for_each_entry(desc, &pch->work_list, node) {
2296 		if (desc->status == DONE)
2297 			transferred = desc->bytes_requested;
2298 		else if (running && desc == running)
2299 			transferred =
2300 				pl330_get_current_xferred_count(pch, desc);
2301 		else
2302 			transferred = 0;
2303 		residual += desc->bytes_requested - transferred;
2304 		if (desc->txd.cookie == cookie) {
2305 			switch (desc->status) {
2306 			case DONE:
2307 				ret = DMA_COMPLETE;
2308 				break;
2309 			case PREP:
2310 			case BUSY:
2311 				ret = DMA_IN_PROGRESS;
2312 				break;
2313 			default:
2314 				WARN_ON(1);
2315 			}
2316 			break;
2317 		}
2318 		if (desc->last)
2319 			residual = 0;
2320 	}
2321 	spin_unlock_irqrestore(&pch->lock, flags);
2322 
2323 out:
2324 	dma_set_residue(txstate, residual);
2325 
2326 	return ret;
2327 }
2328 
2329 static void pl330_issue_pending(struct dma_chan *chan)
2330 {
2331 	struct dma_pl330_chan *pch = to_pchan(chan);
2332 	unsigned long flags;
2333 
2334 	spin_lock_irqsave(&pch->lock, flags);
2335 	if (list_empty(&pch->work_list)) {
2336 		/*
2337 		 * Warn on nothing pending. Empty submitted_list may
2338 		 * break our pm_runtime usage counter as it is
2339 		 * updated on work_list emptiness status.
2340 		 */
2341 		WARN_ON(list_empty(&pch->submitted_list));
2342 		pm_runtime_get_sync(pch->dmac->ddma.dev);
2343 	}
2344 	list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2345 	spin_unlock_irqrestore(&pch->lock, flags);
2346 
2347 	pl330_tasklet((unsigned long)pch);
2348 }
2349 
2350 /*
2351  * We returned the last one of the circular list of descriptor(s)
2352  * from prep_xxx, so the argument to submit corresponds to the last
2353  * descriptor of the list.
2354  */
2355 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2356 {
2357 	struct dma_pl330_desc *desc, *last = to_desc(tx);
2358 	struct dma_pl330_chan *pch = to_pchan(tx->chan);
2359 	dma_cookie_t cookie;
2360 	unsigned long flags;
2361 
2362 	spin_lock_irqsave(&pch->lock, flags);
2363 
2364 	/* Assign cookies to all nodes */
2365 	while (!list_empty(&last->node)) {
2366 		desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2367 		if (pch->cyclic) {
2368 			desc->txd.callback = last->txd.callback;
2369 			desc->txd.callback_param = last->txd.callback_param;
2370 		}
2371 		desc->last = false;
2372 
2373 		dma_cookie_assign(&desc->txd);
2374 
2375 		list_move_tail(&desc->node, &pch->submitted_list);
2376 	}
2377 
2378 	last->last = true;
2379 	cookie = dma_cookie_assign(&last->txd);
2380 	list_add_tail(&last->node, &pch->submitted_list);
2381 	spin_unlock_irqrestore(&pch->lock, flags);
2382 
2383 	return cookie;
2384 }
2385 
2386 static inline void _init_desc(struct dma_pl330_desc *desc)
2387 {
2388 	desc->rqcfg.swap = SWAP_NO;
2389 	desc->rqcfg.scctl = CCTRL0;
2390 	desc->rqcfg.dcctl = CCTRL0;
2391 	desc->txd.tx_submit = pl330_tx_submit;
2392 
2393 	INIT_LIST_HEAD(&desc->node);
2394 }
2395 
2396 /* Returns the number of descriptors added to the DMAC pool */
2397 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2398 {
2399 	struct dma_pl330_desc *desc;
2400 	unsigned long flags;
2401 	int i;
2402 
2403 	desc = kcalloc(count, sizeof(*desc), flg);
2404 	if (!desc)
2405 		return 0;
2406 
2407 	spin_lock_irqsave(&pl330->pool_lock, flags);
2408 
2409 	for (i = 0; i < count; i++) {
2410 		_init_desc(&desc[i]);
2411 		list_add_tail(&desc[i].node, &pl330->desc_pool);
2412 	}
2413 
2414 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2415 
2416 	return count;
2417 }
2418 
2419 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2420 {
2421 	struct dma_pl330_desc *desc = NULL;
2422 	unsigned long flags;
2423 
2424 	spin_lock_irqsave(&pl330->pool_lock, flags);
2425 
2426 	if (!list_empty(&pl330->desc_pool)) {
2427 		desc = list_entry(pl330->desc_pool.next,
2428 				struct dma_pl330_desc, node);
2429 
2430 		list_del_init(&desc->node);
2431 
2432 		desc->status = PREP;
2433 		desc->txd.callback = NULL;
2434 	}
2435 
2436 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2437 
2438 	return desc;
2439 }
2440 
2441 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2442 {
2443 	struct pl330_dmac *pl330 = pch->dmac;
2444 	u8 *peri_id = pch->chan.private;
2445 	struct dma_pl330_desc *desc;
2446 
2447 	/* Pluck one desc from the pool of DMAC */
2448 	desc = pluck_desc(pl330);
2449 
2450 	/* If the DMAC pool is empty, alloc new */
2451 	if (!desc) {
2452 		if (!add_desc(pl330, GFP_ATOMIC, 1))
2453 			return NULL;
2454 
2455 		/* Try again */
2456 		desc = pluck_desc(pl330);
2457 		if (!desc) {
2458 			dev_err(pch->dmac->ddma.dev,
2459 				"%s:%d ALERT!\n", __func__, __LINE__);
2460 			return NULL;
2461 		}
2462 	}
2463 
2464 	/* Initialize the descriptor */
2465 	desc->pchan = pch;
2466 	desc->txd.cookie = 0;
2467 	async_tx_ack(&desc->txd);
2468 
2469 	desc->peri = peri_id ? pch->chan.chan_id : 0;
2470 	desc->rqcfg.pcfg = &pch->dmac->pcfg;
2471 
2472 	dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2473 
2474 	return desc;
2475 }
2476 
2477 static inline void fill_px(struct pl330_xfer *px,
2478 		dma_addr_t dst, dma_addr_t src, size_t len)
2479 {
2480 	px->bytes = len;
2481 	px->dst_addr = dst;
2482 	px->src_addr = src;
2483 }
2484 
2485 static struct dma_pl330_desc *
2486 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2487 		dma_addr_t src, size_t len)
2488 {
2489 	struct dma_pl330_desc *desc = pl330_get_desc(pch);
2490 
2491 	if (!desc) {
2492 		dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2493 			__func__, __LINE__);
2494 		return NULL;
2495 	}
2496 
2497 	/*
2498 	 * Ideally we should lookout for reqs bigger than
2499 	 * those that can be programmed with 256 bytes of
2500 	 * MC buffer, but considering a req size is seldom
2501 	 * going to be word-unaligned and more than 200MB,
2502 	 * we take it easy.
2503 	 * Also, should the limit is reached we'd rather
2504 	 * have the platform increase MC buffer size than
2505 	 * complicating this API driver.
2506 	 */
2507 	fill_px(&desc->px, dst, src, len);
2508 
2509 	return desc;
2510 }
2511 
2512 /* Call after fixing burst size */
2513 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2514 {
2515 	struct dma_pl330_chan *pch = desc->pchan;
2516 	struct pl330_dmac *pl330 = pch->dmac;
2517 	int burst_len;
2518 
2519 	burst_len = pl330->pcfg.data_bus_width / 8;
2520 	burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2521 	burst_len >>= desc->rqcfg.brst_size;
2522 
2523 	/* src/dst_burst_len can't be more than 16 */
2524 	if (burst_len > 16)
2525 		burst_len = 16;
2526 
2527 	while (burst_len > 1) {
2528 		if (!(len % (burst_len << desc->rqcfg.brst_size)))
2529 			break;
2530 		burst_len--;
2531 	}
2532 
2533 	return burst_len;
2534 }
2535 
2536 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2537 		struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2538 		size_t period_len, enum dma_transfer_direction direction,
2539 		unsigned long flags)
2540 {
2541 	struct dma_pl330_desc *desc = NULL, *first = NULL;
2542 	struct dma_pl330_chan *pch = to_pchan(chan);
2543 	struct pl330_dmac *pl330 = pch->dmac;
2544 	unsigned int i;
2545 	dma_addr_t dst;
2546 	dma_addr_t src;
2547 
2548 	if (len % period_len != 0)
2549 		return NULL;
2550 
2551 	if (!is_slave_direction(direction)) {
2552 		dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2553 		__func__, __LINE__);
2554 		return NULL;
2555 	}
2556 
2557 	for (i = 0; i < len / period_len; i++) {
2558 		desc = pl330_get_desc(pch);
2559 		if (!desc) {
2560 			dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2561 				__func__, __LINE__);
2562 
2563 			if (!first)
2564 				return NULL;
2565 
2566 			spin_lock_irqsave(&pl330->pool_lock, flags);
2567 
2568 			while (!list_empty(&first->node)) {
2569 				desc = list_entry(first->node.next,
2570 						struct dma_pl330_desc, node);
2571 				list_move_tail(&desc->node, &pl330->desc_pool);
2572 			}
2573 
2574 			list_move_tail(&first->node, &pl330->desc_pool);
2575 
2576 			spin_unlock_irqrestore(&pl330->pool_lock, flags);
2577 
2578 			return NULL;
2579 		}
2580 
2581 		switch (direction) {
2582 		case DMA_MEM_TO_DEV:
2583 			desc->rqcfg.src_inc = 1;
2584 			desc->rqcfg.dst_inc = 0;
2585 			src = dma_addr;
2586 			dst = pch->fifo_addr;
2587 			break;
2588 		case DMA_DEV_TO_MEM:
2589 			desc->rqcfg.src_inc = 0;
2590 			desc->rqcfg.dst_inc = 1;
2591 			src = pch->fifo_addr;
2592 			dst = dma_addr;
2593 			break;
2594 		default:
2595 			break;
2596 		}
2597 
2598 		desc->rqtype = direction;
2599 		desc->rqcfg.brst_size = pch->burst_sz;
2600 		desc->rqcfg.brst_len = 1;
2601 		desc->bytes_requested = period_len;
2602 		fill_px(&desc->px, dst, src, period_len);
2603 
2604 		if (!first)
2605 			first = desc;
2606 		else
2607 			list_add_tail(&desc->node, &first->node);
2608 
2609 		dma_addr += period_len;
2610 	}
2611 
2612 	if (!desc)
2613 		return NULL;
2614 
2615 	pch->cyclic = true;
2616 	desc->txd.flags = flags;
2617 
2618 	return &desc->txd;
2619 }
2620 
2621 static struct dma_async_tx_descriptor *
2622 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2623 		dma_addr_t src, size_t len, unsigned long flags)
2624 {
2625 	struct dma_pl330_desc *desc;
2626 	struct dma_pl330_chan *pch = to_pchan(chan);
2627 	struct pl330_dmac *pl330;
2628 	int burst;
2629 
2630 	if (unlikely(!pch || !len))
2631 		return NULL;
2632 
2633 	pl330 = pch->dmac;
2634 
2635 	desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2636 	if (!desc)
2637 		return NULL;
2638 
2639 	desc->rqcfg.src_inc = 1;
2640 	desc->rqcfg.dst_inc = 1;
2641 	desc->rqtype = DMA_MEM_TO_MEM;
2642 
2643 	/* Select max possible burst size */
2644 	burst = pl330->pcfg.data_bus_width / 8;
2645 
2646 	/*
2647 	 * Make sure we use a burst size that aligns with all the memcpy
2648 	 * parameters because our DMA programming algorithm doesn't cope with
2649 	 * transfers which straddle an entry in the DMA device's MFIFO.
2650 	 */
2651 	while ((src | dst | len) & (burst - 1))
2652 		burst /= 2;
2653 
2654 	desc->rqcfg.brst_size = 0;
2655 	while (burst != (1 << desc->rqcfg.brst_size))
2656 		desc->rqcfg.brst_size++;
2657 
2658 	/*
2659 	 * If burst size is smaller than bus width then make sure we only
2660 	 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2661 	 */
2662 	if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2663 		desc->rqcfg.brst_len = 1;
2664 
2665 	desc->rqcfg.brst_len = get_burst_len(desc, len);
2666 	desc->bytes_requested = len;
2667 
2668 	desc->txd.flags = flags;
2669 
2670 	return &desc->txd;
2671 }
2672 
2673 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2674 				  struct dma_pl330_desc *first)
2675 {
2676 	unsigned long flags;
2677 	struct dma_pl330_desc *desc;
2678 
2679 	if (!first)
2680 		return;
2681 
2682 	spin_lock_irqsave(&pl330->pool_lock, flags);
2683 
2684 	while (!list_empty(&first->node)) {
2685 		desc = list_entry(first->node.next,
2686 				struct dma_pl330_desc, node);
2687 		list_move_tail(&desc->node, &pl330->desc_pool);
2688 	}
2689 
2690 	list_move_tail(&first->node, &pl330->desc_pool);
2691 
2692 	spin_unlock_irqrestore(&pl330->pool_lock, flags);
2693 }
2694 
2695 static struct dma_async_tx_descriptor *
2696 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2697 		unsigned int sg_len, enum dma_transfer_direction direction,
2698 		unsigned long flg, void *context)
2699 {
2700 	struct dma_pl330_desc *first, *desc = NULL;
2701 	struct dma_pl330_chan *pch = to_pchan(chan);
2702 	struct scatterlist *sg;
2703 	int i;
2704 	dma_addr_t addr;
2705 
2706 	if (unlikely(!pch || !sgl || !sg_len))
2707 		return NULL;
2708 
2709 	addr = pch->fifo_addr;
2710 
2711 	first = NULL;
2712 
2713 	for_each_sg(sgl, sg, sg_len, i) {
2714 
2715 		desc = pl330_get_desc(pch);
2716 		if (!desc) {
2717 			struct pl330_dmac *pl330 = pch->dmac;
2718 
2719 			dev_err(pch->dmac->ddma.dev,
2720 				"%s:%d Unable to fetch desc\n",
2721 				__func__, __LINE__);
2722 			__pl330_giveback_desc(pl330, first);
2723 
2724 			return NULL;
2725 		}
2726 
2727 		if (!first)
2728 			first = desc;
2729 		else
2730 			list_add_tail(&desc->node, &first->node);
2731 
2732 		if (direction == DMA_MEM_TO_DEV) {
2733 			desc->rqcfg.src_inc = 1;
2734 			desc->rqcfg.dst_inc = 0;
2735 			fill_px(&desc->px,
2736 				addr, sg_dma_address(sg), sg_dma_len(sg));
2737 		} else {
2738 			desc->rqcfg.src_inc = 0;
2739 			desc->rqcfg.dst_inc = 1;
2740 			fill_px(&desc->px,
2741 				sg_dma_address(sg), addr, sg_dma_len(sg));
2742 		}
2743 
2744 		desc->rqcfg.brst_size = pch->burst_sz;
2745 		desc->rqcfg.brst_len = 1;
2746 		desc->rqtype = direction;
2747 		desc->bytes_requested = sg_dma_len(sg);
2748 	}
2749 
2750 	/* Return the last desc in the chain */
2751 	desc->txd.flags = flg;
2752 	return &desc->txd;
2753 }
2754 
2755 static irqreturn_t pl330_irq_handler(int irq, void *data)
2756 {
2757 	if (pl330_update(data))
2758 		return IRQ_HANDLED;
2759 	else
2760 		return IRQ_NONE;
2761 }
2762 
2763 #define PL330_DMA_BUSWIDTHS \
2764 	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2765 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2766 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2767 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2768 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2769 
2770 /*
2771  * Runtime PM callbacks are provided by amba/bus.c driver.
2772  *
2773  * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2774  * bus driver will only disable/enable the clock in runtime PM callbacks.
2775  */
2776 static int __maybe_unused pl330_suspend(struct device *dev)
2777 {
2778 	struct amba_device *pcdev = to_amba_device(dev);
2779 
2780 	pm_runtime_disable(dev);
2781 
2782 	if (!pm_runtime_status_suspended(dev)) {
2783 		/* amba did not disable the clock */
2784 		amba_pclk_disable(pcdev);
2785 	}
2786 	amba_pclk_unprepare(pcdev);
2787 
2788 	return 0;
2789 }
2790 
2791 static int __maybe_unused pl330_resume(struct device *dev)
2792 {
2793 	struct amba_device *pcdev = to_amba_device(dev);
2794 	int ret;
2795 
2796 	ret = amba_pclk_prepare(pcdev);
2797 	if (ret)
2798 		return ret;
2799 
2800 	if (!pm_runtime_status_suspended(dev))
2801 		ret = amba_pclk_enable(pcdev);
2802 
2803 	pm_runtime_enable(dev);
2804 
2805 	return ret;
2806 }
2807 
2808 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2809 
2810 static int
2811 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2812 {
2813 	struct dma_pl330_platdata *pdat;
2814 	struct pl330_config *pcfg;
2815 	struct pl330_dmac *pl330;
2816 	struct dma_pl330_chan *pch, *_p;
2817 	struct dma_device *pd;
2818 	struct resource *res;
2819 	int i, ret, irq;
2820 	int num_chan;
2821 	struct device_node *np = adev->dev.of_node;
2822 
2823 	pdat = dev_get_platdata(&adev->dev);
2824 
2825 	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2826 	if (ret)
2827 		return ret;
2828 
2829 	/* Allocate a new DMAC and its Channels */
2830 	pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2831 	if (!pl330) {
2832 		dev_err(&adev->dev, "unable to allocate mem\n");
2833 		return -ENOMEM;
2834 	}
2835 
2836 	pd = &pl330->ddma;
2837 	pd->dev = &adev->dev;
2838 
2839 	pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2840 
2841 	/* get quirk */
2842 	for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2843 		if (of_property_read_bool(np, of_quirks[i].quirk))
2844 			pl330->quirks |= of_quirks[i].id;
2845 
2846 	res = &adev->res;
2847 	pl330->base = devm_ioremap_resource(&adev->dev, res);
2848 	if (IS_ERR(pl330->base))
2849 		return PTR_ERR(pl330->base);
2850 
2851 	amba_set_drvdata(adev, pl330);
2852 
2853 	for (i = 0; i < AMBA_NR_IRQS; i++) {
2854 		irq = adev->irq[i];
2855 		if (irq) {
2856 			ret = devm_request_irq(&adev->dev, irq,
2857 					       pl330_irq_handler, 0,
2858 					       dev_name(&adev->dev), pl330);
2859 			if (ret)
2860 				return ret;
2861 		} else {
2862 			break;
2863 		}
2864 	}
2865 
2866 	pcfg = &pl330->pcfg;
2867 
2868 	pcfg->periph_id = adev->periphid;
2869 	ret = pl330_add(pl330);
2870 	if (ret)
2871 		return ret;
2872 
2873 	INIT_LIST_HEAD(&pl330->desc_pool);
2874 	spin_lock_init(&pl330->pool_lock);
2875 
2876 	/* Create a descriptor pool of default size */
2877 	if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2878 		dev_warn(&adev->dev, "unable to allocate desc\n");
2879 
2880 	INIT_LIST_HEAD(&pd->channels);
2881 
2882 	/* Initialize channel parameters */
2883 	if (pdat)
2884 		num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2885 	else
2886 		num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2887 
2888 	pl330->num_peripherals = num_chan;
2889 
2890 	pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2891 	if (!pl330->peripherals) {
2892 		ret = -ENOMEM;
2893 		dev_err(&adev->dev, "unable to allocate pl330->peripherals\n");
2894 		goto probe_err2;
2895 	}
2896 
2897 	for (i = 0; i < num_chan; i++) {
2898 		pch = &pl330->peripherals[i];
2899 		if (!adev->dev.of_node)
2900 			pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2901 		else
2902 			pch->chan.private = adev->dev.of_node;
2903 
2904 		INIT_LIST_HEAD(&pch->submitted_list);
2905 		INIT_LIST_HEAD(&pch->work_list);
2906 		INIT_LIST_HEAD(&pch->completed_list);
2907 		spin_lock_init(&pch->lock);
2908 		pch->thread = NULL;
2909 		pch->chan.device = pd;
2910 		pch->dmac = pl330;
2911 
2912 		/* Add the channel to the DMAC list */
2913 		list_add_tail(&pch->chan.device_node, &pd->channels);
2914 	}
2915 
2916 	if (pdat) {
2917 		pd->cap_mask = pdat->cap_mask;
2918 	} else {
2919 		dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2920 		if (pcfg->num_peri) {
2921 			dma_cap_set(DMA_SLAVE, pd->cap_mask);
2922 			dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2923 			dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2924 		}
2925 	}
2926 
2927 	pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2928 	pd->device_free_chan_resources = pl330_free_chan_resources;
2929 	pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2930 	pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2931 	pd->device_tx_status = pl330_tx_status;
2932 	pd->device_prep_slave_sg = pl330_prep_slave_sg;
2933 	pd->device_config = pl330_config;
2934 	pd->device_pause = pl330_pause;
2935 	pd->device_terminate_all = pl330_terminate_all;
2936 	pd->device_issue_pending = pl330_issue_pending;
2937 	pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2938 	pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2939 	pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2940 	pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2941 	pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2942 			 1 : PL330_MAX_BURST);
2943 
2944 	ret = dma_async_device_register(pd);
2945 	if (ret) {
2946 		dev_err(&adev->dev, "unable to register DMAC\n");
2947 		goto probe_err3;
2948 	}
2949 
2950 	if (adev->dev.of_node) {
2951 		ret = of_dma_controller_register(adev->dev.of_node,
2952 					 of_dma_pl330_xlate, pl330);
2953 		if (ret) {
2954 			dev_err(&adev->dev,
2955 			"unable to register DMA to the generic DT DMA helpers\n");
2956 		}
2957 	}
2958 
2959 	adev->dev.dma_parms = &pl330->dma_parms;
2960 
2961 	/*
2962 	 * This is the limit for transfers with a buswidth of 1, larger
2963 	 * buswidths will have larger limits.
2964 	 */
2965 	ret = dma_set_max_seg_size(&adev->dev, 1900800);
2966 	if (ret)
2967 		dev_err(&adev->dev, "unable to set the seg size\n");
2968 
2969 
2970 	dev_info(&adev->dev,
2971 		"Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2972 	dev_info(&adev->dev,
2973 		"\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2974 		pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2975 		pcfg->num_peri, pcfg->num_events);
2976 
2977 	pm_runtime_irq_safe(&adev->dev);
2978 	pm_runtime_use_autosuspend(&adev->dev);
2979 	pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2980 	pm_runtime_mark_last_busy(&adev->dev);
2981 	pm_runtime_put_autosuspend(&adev->dev);
2982 
2983 	return 0;
2984 probe_err3:
2985 	/* Idle the DMAC */
2986 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2987 			chan.device_node) {
2988 
2989 		/* Remove the channel */
2990 		list_del(&pch->chan.device_node);
2991 
2992 		/* Flush the channel */
2993 		if (pch->thread) {
2994 			pl330_terminate_all(&pch->chan);
2995 			pl330_free_chan_resources(&pch->chan);
2996 		}
2997 	}
2998 probe_err2:
2999 	pl330_del(pl330);
3000 
3001 	return ret;
3002 }
3003 
3004 static int pl330_remove(struct amba_device *adev)
3005 {
3006 	struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3007 	struct dma_pl330_chan *pch, *_p;
3008 
3009 	pm_runtime_get_noresume(pl330->ddma.dev);
3010 
3011 	if (adev->dev.of_node)
3012 		of_dma_controller_free(adev->dev.of_node);
3013 
3014 	dma_async_device_unregister(&pl330->ddma);
3015 
3016 	/* Idle the DMAC */
3017 	list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3018 			chan.device_node) {
3019 
3020 		/* Remove the channel */
3021 		list_del(&pch->chan.device_node);
3022 
3023 		/* Flush the channel */
3024 		if (pch->thread) {
3025 			pl330_terminate_all(&pch->chan);
3026 			pl330_free_chan_resources(&pch->chan);
3027 		}
3028 	}
3029 
3030 	pl330_del(pl330);
3031 
3032 	return 0;
3033 }
3034 
3035 static struct amba_id pl330_ids[] = {
3036 	{
3037 		.id	= 0x00041330,
3038 		.mask	= 0x000fffff,
3039 	},
3040 	{ 0, 0 },
3041 };
3042 
3043 MODULE_DEVICE_TABLE(amba, pl330_ids);
3044 
3045 static struct amba_driver pl330_driver = {
3046 	.drv = {
3047 		.owner = THIS_MODULE,
3048 		.name = "dma-pl330",
3049 		.pm = &pl330_pm,
3050 	},
3051 	.id_table = pl330_ids,
3052 	.probe = pl330_probe,
3053 	.remove = pl330_remove,
3054 };
3055 
3056 module_amba_driver(pl330_driver);
3057 
3058 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3059 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3060 MODULE_LICENSE("GPL");
3061