1 /* 2 * Copyright (C) 2013-2014 Renesas Electronics Europe Ltd. 3 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of version 2 of the GNU General Public License as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/bitmap.h> 11 #include <linux/bitops.h> 12 #include <linux/clk.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/log2.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/platform_device.h> 24 #include <linux/slab.h> 25 26 #include <dt-bindings/dma/nbpfaxi.h> 27 28 #include "dmaengine.h" 29 30 #define NBPF_REG_CHAN_OFFSET 0 31 #define NBPF_REG_CHAN_SIZE 0x40 32 33 /* Channel Current Transaction Byte register */ 34 #define NBPF_CHAN_CUR_TR_BYTE 0x20 35 36 /* Channel Status register */ 37 #define NBPF_CHAN_STAT 0x24 38 #define NBPF_CHAN_STAT_EN 1 39 #define NBPF_CHAN_STAT_TACT 4 40 #define NBPF_CHAN_STAT_ERR 0x10 41 #define NBPF_CHAN_STAT_END 0x20 42 #define NBPF_CHAN_STAT_TC 0x40 43 #define NBPF_CHAN_STAT_DER 0x400 44 45 /* Channel Control register */ 46 #define NBPF_CHAN_CTRL 0x28 47 #define NBPF_CHAN_CTRL_SETEN 1 48 #define NBPF_CHAN_CTRL_CLREN 2 49 #define NBPF_CHAN_CTRL_STG 4 50 #define NBPF_CHAN_CTRL_SWRST 8 51 #define NBPF_CHAN_CTRL_CLRRQ 0x10 52 #define NBPF_CHAN_CTRL_CLREND 0x20 53 #define NBPF_CHAN_CTRL_CLRTC 0x40 54 #define NBPF_CHAN_CTRL_SETSUS 0x100 55 #define NBPF_CHAN_CTRL_CLRSUS 0x200 56 57 /* Channel Configuration register */ 58 #define NBPF_CHAN_CFG 0x2c 59 #define NBPF_CHAN_CFG_SEL 7 /* terminal SELect: 0..7 */ 60 #define NBPF_CHAN_CFG_REQD 8 /* REQuest Direction: DMAREQ is 0: input, 1: output */ 61 #define NBPF_CHAN_CFG_LOEN 0x10 /* LOw ENable: low DMA request line is: 0: inactive, 1: active */ 62 #define NBPF_CHAN_CFG_HIEN 0x20 /* HIgh ENable: high DMA request line is: 0: inactive, 1: active */ 63 #define NBPF_CHAN_CFG_LVL 0x40 /* LeVeL: DMA request line is sensed as 0: edge, 1: level */ 64 #define NBPF_CHAN_CFG_AM 0x700 /* ACK Mode: 0: Pulse mode, 1: Level mode, b'1x: Bus Cycle */ 65 #define NBPF_CHAN_CFG_SDS 0xf000 /* Source Data Size: 0: 8 bits,... , 7: 1024 bits */ 66 #define NBPF_CHAN_CFG_DDS 0xf0000 /* Destination Data Size: as above */ 67 #define NBPF_CHAN_CFG_SAD 0x100000 /* Source ADdress counting: 0: increment, 1: fixed */ 68 #define NBPF_CHAN_CFG_DAD 0x200000 /* Destination ADdress counting: 0: increment, 1: fixed */ 69 #define NBPF_CHAN_CFG_TM 0x400000 /* Transfer Mode: 0: single, 1: block TM */ 70 #define NBPF_CHAN_CFG_DEM 0x1000000 /* DMAEND interrupt Mask */ 71 #define NBPF_CHAN_CFG_TCM 0x2000000 /* DMATCO interrupt Mask */ 72 #define NBPF_CHAN_CFG_SBE 0x8000000 /* Sweep Buffer Enable */ 73 #define NBPF_CHAN_CFG_RSEL 0x10000000 /* RM: Register Set sELect */ 74 #define NBPF_CHAN_CFG_RSW 0x20000000 /* RM: Register Select sWitch */ 75 #define NBPF_CHAN_CFG_REN 0x40000000 /* RM: Register Set Enable */ 76 #define NBPF_CHAN_CFG_DMS 0x80000000 /* 0: register mode (RM), 1: link mode (LM) */ 77 78 #define NBPF_CHAN_NXLA 0x38 79 #define NBPF_CHAN_CRLA 0x3c 80 81 /* Link Header field */ 82 #define NBPF_HEADER_LV 1 83 #define NBPF_HEADER_LE 2 84 #define NBPF_HEADER_WBD 4 85 #define NBPF_HEADER_DIM 8 86 87 #define NBPF_CTRL 0x300 88 #define NBPF_CTRL_PR 1 /* 0: fixed priority, 1: round robin */ 89 #define NBPF_CTRL_LVINT 2 /* DMAEND and DMAERR signalling: 0: pulse, 1: level */ 90 91 #define NBPF_DSTAT_ER 0x314 92 #define NBPF_DSTAT_END 0x318 93 94 #define NBPF_DMA_BUSWIDTHS \ 95 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ 96 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 97 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 98 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 99 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 100 101 struct nbpf_config { 102 int num_channels; 103 int buffer_size; 104 }; 105 106 /* 107 * We've got 3 types of objects, used to describe DMA transfers: 108 * 1. high-level descriptor, containing a struct dma_async_tx_descriptor object 109 * in it, used to communicate with the user 110 * 2. hardware DMA link descriptors, that we pass to DMAC for DMA transfer 111 * queuing, these must be DMAable, using either the streaming DMA API or 112 * allocated from coherent memory - one per SG segment 113 * 3. one per SG segment descriptors, used to manage HW link descriptors from 114 * (2). They do not have to be DMAable. They can either be (a) allocated 115 * together with link descriptors as mixed (DMA / CPU) objects, or (b) 116 * separately. Even if allocated separately it would be best to link them 117 * to link descriptors once during channel resource allocation and always 118 * use them as a single object. 119 * Therefore for both cases (a) and (b) at run-time objects (2) and (3) shall be 120 * treated as a single SG segment descriptor. 121 */ 122 123 struct nbpf_link_reg { 124 u32 header; 125 u32 src_addr; 126 u32 dst_addr; 127 u32 transaction_size; 128 u32 config; 129 u32 interval; 130 u32 extension; 131 u32 next; 132 } __packed; 133 134 struct nbpf_device; 135 struct nbpf_channel; 136 struct nbpf_desc; 137 138 struct nbpf_link_desc { 139 struct nbpf_link_reg *hwdesc; 140 dma_addr_t hwdesc_dma_addr; 141 struct nbpf_desc *desc; 142 struct list_head node; 143 }; 144 145 /** 146 * struct nbpf_desc - DMA transfer descriptor 147 * @async_tx: dmaengine object 148 * @user_wait: waiting for a user ack 149 * @length: total transfer length 150 * @sg: list of hardware descriptors, represented by struct nbpf_link_desc 151 * @node: member in channel descriptor lists 152 */ 153 struct nbpf_desc { 154 struct dma_async_tx_descriptor async_tx; 155 bool user_wait; 156 size_t length; 157 struct nbpf_channel *chan; 158 struct list_head sg; 159 struct list_head node; 160 }; 161 162 /* Take a wild guess: allocate 4 segments per descriptor */ 163 #define NBPF_SEGMENTS_PER_DESC 4 164 #define NBPF_DESCS_PER_PAGE ((PAGE_SIZE - sizeof(struct list_head)) / \ 165 (sizeof(struct nbpf_desc) + \ 166 NBPF_SEGMENTS_PER_DESC * \ 167 (sizeof(struct nbpf_link_desc) + sizeof(struct nbpf_link_reg)))) 168 #define NBPF_SEGMENTS_PER_PAGE (NBPF_SEGMENTS_PER_DESC * NBPF_DESCS_PER_PAGE) 169 170 struct nbpf_desc_page { 171 struct list_head node; 172 struct nbpf_desc desc[NBPF_DESCS_PER_PAGE]; 173 struct nbpf_link_desc ldesc[NBPF_SEGMENTS_PER_PAGE]; 174 struct nbpf_link_reg hwdesc[NBPF_SEGMENTS_PER_PAGE]; 175 }; 176 177 /** 178 * struct nbpf_channel - one DMAC channel 179 * @dma_chan: standard dmaengine channel object 180 * @base: register address base 181 * @nbpf: DMAC 182 * @name: IRQ name 183 * @irq: IRQ number 184 * @slave_addr: address for slave DMA 185 * @slave_width:slave data size in bytes 186 * @slave_burst:maximum slave burst size in bytes 187 * @terminal: DMA terminal, assigned to this channel 188 * @dmarq_cfg: DMA request line configuration - high / low, edge / level for NBPF_CHAN_CFG 189 * @flags: configuration flags from DT 190 * @lock: protect descriptor lists 191 * @free_links: list of free link descriptors 192 * @free: list of free descriptors 193 * @queued: list of queued descriptors 194 * @active: list of descriptors, scheduled for processing 195 * @done: list of completed descriptors, waiting post-processing 196 * @desc_page: list of additionally allocated descriptor pages - if any 197 */ 198 struct nbpf_channel { 199 struct dma_chan dma_chan; 200 struct tasklet_struct tasklet; 201 void __iomem *base; 202 struct nbpf_device *nbpf; 203 char name[16]; 204 int irq; 205 dma_addr_t slave_src_addr; 206 size_t slave_src_width; 207 size_t slave_src_burst; 208 dma_addr_t slave_dst_addr; 209 size_t slave_dst_width; 210 size_t slave_dst_burst; 211 unsigned int terminal; 212 u32 dmarq_cfg; 213 unsigned long flags; 214 spinlock_t lock; 215 struct list_head free_links; 216 struct list_head free; 217 struct list_head queued; 218 struct list_head active; 219 struct list_head done; 220 struct list_head desc_page; 221 struct nbpf_desc *running; 222 bool paused; 223 }; 224 225 struct nbpf_device { 226 struct dma_device dma_dev; 227 void __iomem *base; 228 struct clk *clk; 229 const struct nbpf_config *config; 230 struct nbpf_channel chan[]; 231 }; 232 233 enum nbpf_model { 234 NBPF1B4, 235 NBPF1B8, 236 NBPF1B16, 237 NBPF4B4, 238 NBPF4B8, 239 NBPF4B16, 240 NBPF8B4, 241 NBPF8B8, 242 NBPF8B16, 243 }; 244 245 static struct nbpf_config nbpf_cfg[] = { 246 [NBPF1B4] = { 247 .num_channels = 1, 248 .buffer_size = 4, 249 }, 250 [NBPF1B8] = { 251 .num_channels = 1, 252 .buffer_size = 8, 253 }, 254 [NBPF1B16] = { 255 .num_channels = 1, 256 .buffer_size = 16, 257 }, 258 [NBPF4B4] = { 259 .num_channels = 4, 260 .buffer_size = 4, 261 }, 262 [NBPF4B8] = { 263 .num_channels = 4, 264 .buffer_size = 8, 265 }, 266 [NBPF4B16] = { 267 .num_channels = 4, 268 .buffer_size = 16, 269 }, 270 [NBPF8B4] = { 271 .num_channels = 8, 272 .buffer_size = 4, 273 }, 274 [NBPF8B8] = { 275 .num_channels = 8, 276 .buffer_size = 8, 277 }, 278 [NBPF8B16] = { 279 .num_channels = 8, 280 .buffer_size = 16, 281 }, 282 }; 283 284 #define nbpf_to_chan(d) container_of(d, struct nbpf_channel, dma_chan) 285 286 /* 287 * dmaengine drivers seem to have a lot in common and instead of sharing more 288 * code, they reimplement those common algorithms independently. In this driver 289 * we try to separate the hardware-specific part from the (largely) generic 290 * part. This improves code readability and makes it possible in the future to 291 * reuse the generic code in form of a helper library. That generic code should 292 * be suitable for various DMA controllers, using transfer descriptors in RAM 293 * and pushing one SG list at a time to the DMA controller. 294 */ 295 296 /* Hardware-specific part */ 297 298 static inline u32 nbpf_chan_read(struct nbpf_channel *chan, 299 unsigned int offset) 300 { 301 u32 data = ioread32(chan->base + offset); 302 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 303 __func__, chan->base, offset, data); 304 return data; 305 } 306 307 static inline void nbpf_chan_write(struct nbpf_channel *chan, 308 unsigned int offset, u32 data) 309 { 310 iowrite32(data, chan->base + offset); 311 dev_dbg(chan->dma_chan.device->dev, "%s(0x%p + 0x%x) = 0x%x\n", 312 __func__, chan->base, offset, data); 313 } 314 315 static inline u32 nbpf_read(struct nbpf_device *nbpf, 316 unsigned int offset) 317 { 318 u32 data = ioread32(nbpf->base + offset); 319 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 320 __func__, nbpf->base, offset, data); 321 return data; 322 } 323 324 static inline void nbpf_write(struct nbpf_device *nbpf, 325 unsigned int offset, u32 data) 326 { 327 iowrite32(data, nbpf->base + offset); 328 dev_dbg(nbpf->dma_dev.dev, "%s(0x%p + 0x%x) = 0x%x\n", 329 __func__, nbpf->base, offset, data); 330 } 331 332 static void nbpf_chan_halt(struct nbpf_channel *chan) 333 { 334 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 335 } 336 337 static bool nbpf_status_get(struct nbpf_channel *chan) 338 { 339 u32 status = nbpf_read(chan->nbpf, NBPF_DSTAT_END); 340 341 return status & BIT(chan - chan->nbpf->chan); 342 } 343 344 static void nbpf_status_ack(struct nbpf_channel *chan) 345 { 346 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREND); 347 } 348 349 static u32 nbpf_error_get(struct nbpf_device *nbpf) 350 { 351 return nbpf_read(nbpf, NBPF_DSTAT_ER); 352 } 353 354 static struct nbpf_channel *nbpf_error_get_channel(struct nbpf_device *nbpf, u32 error) 355 { 356 return nbpf->chan + __ffs(error); 357 } 358 359 static void nbpf_error_clear(struct nbpf_channel *chan) 360 { 361 u32 status; 362 int i; 363 364 /* Stop the channel, make sure DMA has been aborted */ 365 nbpf_chan_halt(chan); 366 367 for (i = 1000; i; i--) { 368 status = nbpf_chan_read(chan, NBPF_CHAN_STAT); 369 if (!(status & NBPF_CHAN_STAT_TACT)) 370 break; 371 cpu_relax(); 372 } 373 374 if (!i) 375 dev_err(chan->dma_chan.device->dev, 376 "%s(): abort timeout, channel status 0x%x\n", __func__, status); 377 378 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SWRST); 379 } 380 381 static int nbpf_start(struct nbpf_desc *desc) 382 { 383 struct nbpf_channel *chan = desc->chan; 384 struct nbpf_link_desc *ldesc = list_first_entry(&desc->sg, struct nbpf_link_desc, node); 385 386 nbpf_chan_write(chan, NBPF_CHAN_NXLA, (u32)ldesc->hwdesc_dma_addr); 387 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETEN | NBPF_CHAN_CTRL_CLRSUS); 388 chan->paused = false; 389 390 /* Software trigger MEMCPY - only MEMCPY uses the block mode */ 391 if (ldesc->hwdesc->config & NBPF_CHAN_CFG_TM) 392 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_STG); 393 394 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): next 0x%x, cur 0x%x\n", __func__, 395 nbpf_chan_read(chan, NBPF_CHAN_NXLA), nbpf_chan_read(chan, NBPF_CHAN_CRLA)); 396 397 return 0; 398 } 399 400 static void nbpf_chan_prepare(struct nbpf_channel *chan) 401 { 402 chan->dmarq_cfg = (chan->flags & NBPF_SLAVE_RQ_HIGH ? NBPF_CHAN_CFG_HIEN : 0) | 403 (chan->flags & NBPF_SLAVE_RQ_LOW ? NBPF_CHAN_CFG_LOEN : 0) | 404 (chan->flags & NBPF_SLAVE_RQ_LEVEL ? 405 NBPF_CHAN_CFG_LVL | (NBPF_CHAN_CFG_AM & 0x200) : 0) | 406 chan->terminal; 407 } 408 409 static void nbpf_chan_prepare_default(struct nbpf_channel *chan) 410 { 411 /* Don't output DMAACK */ 412 chan->dmarq_cfg = NBPF_CHAN_CFG_AM & 0x400; 413 chan->terminal = 0; 414 chan->flags = 0; 415 } 416 417 static void nbpf_chan_configure(struct nbpf_channel *chan) 418 { 419 /* 420 * We assume, that only the link mode and DMA request line configuration 421 * have to be set in the configuration register manually. Dynamic 422 * per-transfer configuration will be loaded from transfer descriptors. 423 */ 424 nbpf_chan_write(chan, NBPF_CHAN_CFG, NBPF_CHAN_CFG_DMS | chan->dmarq_cfg); 425 } 426 427 static u32 nbpf_xfer_ds(struct nbpf_device *nbpf, size_t size) 428 { 429 /* Maximum supported bursts depend on the buffer size */ 430 return min_t(int, __ffs(size), ilog2(nbpf->config->buffer_size * 8)); 431 } 432 433 static size_t nbpf_xfer_size(struct nbpf_device *nbpf, 434 enum dma_slave_buswidth width, u32 burst) 435 { 436 size_t size; 437 438 if (!burst) 439 burst = 1; 440 441 switch (width) { 442 case DMA_SLAVE_BUSWIDTH_8_BYTES: 443 size = 8 * burst; 444 break; 445 446 case DMA_SLAVE_BUSWIDTH_4_BYTES: 447 size = 4 * burst; 448 break; 449 450 case DMA_SLAVE_BUSWIDTH_2_BYTES: 451 size = 2 * burst; 452 break; 453 454 default: 455 pr_warn("%s(): invalid bus width %u\n", __func__, width); 456 case DMA_SLAVE_BUSWIDTH_1_BYTE: 457 size = burst; 458 } 459 460 return nbpf_xfer_ds(nbpf, size); 461 } 462 463 /* 464 * We need a way to recognise slaves, whose data is sent "raw" over the bus, 465 * i.e. it isn't known in advance how many bytes will be received. Therefore 466 * the slave driver has to provide a "large enough" buffer and either read the 467 * buffer, when it is full, or detect, that some data has arrived, then wait for 468 * a timeout, if no more data arrives - receive what's already there. We want to 469 * handle such slaves in a special way to allow an optimised mode for other 470 * users, for whom the amount of data is known in advance. So far there's no way 471 * to recognise such slaves. We use a data-width check to distinguish between 472 * the SD host and the PL011 UART. 473 */ 474 475 static int nbpf_prep_one(struct nbpf_link_desc *ldesc, 476 enum dma_transfer_direction direction, 477 dma_addr_t src, dma_addr_t dst, size_t size, bool last) 478 { 479 struct nbpf_link_reg *hwdesc = ldesc->hwdesc; 480 struct nbpf_desc *desc = ldesc->desc; 481 struct nbpf_channel *chan = desc->chan; 482 struct device *dev = chan->dma_chan.device->dev; 483 size_t mem_xfer, slave_xfer; 484 bool can_burst; 485 486 hwdesc->header = NBPF_HEADER_WBD | NBPF_HEADER_LV | 487 (last ? NBPF_HEADER_LE : 0); 488 489 hwdesc->src_addr = src; 490 hwdesc->dst_addr = dst; 491 hwdesc->transaction_size = size; 492 493 /* 494 * set config: SAD, DAD, DDS, SDS, etc. 495 * Note on transfer sizes: the DMAC can perform unaligned DMA transfers, 496 * but it is important to have transaction size a multiple of both 497 * receiver and transmitter transfer sizes. It is also possible to use 498 * different RAM and device transfer sizes, and it does work well with 499 * some devices, e.g. with V08R07S01E SD host controllers, which can use 500 * 128 byte transfers. But this doesn't work with other devices, 501 * especially when the transaction size is unknown. This is the case, 502 * e.g. with serial drivers like amba-pl011.c. For reception it sets up 503 * the transaction size of 4K and if fewer bytes are received, it 504 * pauses DMA and reads out data received via DMA as well as those left 505 * in the Rx FIFO. For this to work with the RAM side using burst 506 * transfers we enable the SBE bit and terminate the transfer in our 507 * .device_pause handler. 508 */ 509 mem_xfer = nbpf_xfer_ds(chan->nbpf, size); 510 511 switch (direction) { 512 case DMA_DEV_TO_MEM: 513 can_burst = chan->slave_src_width >= 3; 514 slave_xfer = min(mem_xfer, can_burst ? 515 chan->slave_src_burst : chan->slave_src_width); 516 /* 517 * Is the slave narrower than 64 bits, i.e. isn't using the full 518 * bus width and cannot use bursts? 519 */ 520 if (mem_xfer > chan->slave_src_burst && !can_burst) 521 mem_xfer = chan->slave_src_burst; 522 /* Device-to-RAM DMA is unreliable without REQD set */ 523 hwdesc->config = NBPF_CHAN_CFG_SAD | (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)) | 524 (NBPF_CHAN_CFG_SDS & (slave_xfer << 12)) | NBPF_CHAN_CFG_REQD | 525 NBPF_CHAN_CFG_SBE; 526 break; 527 528 case DMA_MEM_TO_DEV: 529 slave_xfer = min(mem_xfer, chan->slave_dst_width >= 3 ? 530 chan->slave_dst_burst : chan->slave_dst_width); 531 hwdesc->config = NBPF_CHAN_CFG_DAD | (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 532 (NBPF_CHAN_CFG_DDS & (slave_xfer << 16)) | NBPF_CHAN_CFG_REQD; 533 break; 534 535 case DMA_MEM_TO_MEM: 536 hwdesc->config = NBPF_CHAN_CFG_TCM | NBPF_CHAN_CFG_TM | 537 (NBPF_CHAN_CFG_SDS & (mem_xfer << 12)) | 538 (NBPF_CHAN_CFG_DDS & (mem_xfer << 16)); 539 break; 540 541 default: 542 return -EINVAL; 543 } 544 545 hwdesc->config |= chan->dmarq_cfg | (last ? 0 : NBPF_CHAN_CFG_DEM) | 546 NBPF_CHAN_CFG_DMS; 547 548 dev_dbg(dev, "%s(): desc @ %pad: hdr 0x%x, cfg 0x%x, %zu @ %pad -> %pad\n", 549 __func__, &ldesc->hwdesc_dma_addr, hwdesc->header, 550 hwdesc->config, size, &src, &dst); 551 552 dma_sync_single_for_device(dev, ldesc->hwdesc_dma_addr, sizeof(*hwdesc), 553 DMA_TO_DEVICE); 554 555 return 0; 556 } 557 558 static size_t nbpf_bytes_left(struct nbpf_channel *chan) 559 { 560 return nbpf_chan_read(chan, NBPF_CHAN_CUR_TR_BYTE); 561 } 562 563 static void nbpf_configure(struct nbpf_device *nbpf) 564 { 565 nbpf_write(nbpf, NBPF_CTRL, NBPF_CTRL_LVINT); 566 } 567 568 /* Generic part */ 569 570 /* DMA ENGINE functions */ 571 static void nbpf_issue_pending(struct dma_chan *dchan) 572 { 573 struct nbpf_channel *chan = nbpf_to_chan(dchan); 574 unsigned long flags; 575 576 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 577 578 spin_lock_irqsave(&chan->lock, flags); 579 if (list_empty(&chan->queued)) 580 goto unlock; 581 582 list_splice_tail_init(&chan->queued, &chan->active); 583 584 if (!chan->running) { 585 struct nbpf_desc *desc = list_first_entry(&chan->active, 586 struct nbpf_desc, node); 587 if (!nbpf_start(desc)) 588 chan->running = desc; 589 } 590 591 unlock: 592 spin_unlock_irqrestore(&chan->lock, flags); 593 } 594 595 static enum dma_status nbpf_tx_status(struct dma_chan *dchan, 596 dma_cookie_t cookie, struct dma_tx_state *state) 597 { 598 struct nbpf_channel *chan = nbpf_to_chan(dchan); 599 enum dma_status status = dma_cookie_status(dchan, cookie, state); 600 601 if (state) { 602 dma_cookie_t running; 603 unsigned long flags; 604 605 spin_lock_irqsave(&chan->lock, flags); 606 running = chan->running ? chan->running->async_tx.cookie : -EINVAL; 607 608 if (cookie == running) { 609 state->residue = nbpf_bytes_left(chan); 610 dev_dbg(dchan->device->dev, "%s(): residue %u\n", __func__, 611 state->residue); 612 } else if (status == DMA_IN_PROGRESS) { 613 struct nbpf_desc *desc; 614 bool found = false; 615 616 list_for_each_entry(desc, &chan->active, node) 617 if (desc->async_tx.cookie == cookie) { 618 found = true; 619 break; 620 } 621 622 if (!found) 623 list_for_each_entry(desc, &chan->queued, node) 624 if (desc->async_tx.cookie == cookie) { 625 found = true; 626 break; 627 628 } 629 630 state->residue = found ? desc->length : 0; 631 } 632 633 spin_unlock_irqrestore(&chan->lock, flags); 634 } 635 636 if (chan->paused) 637 status = DMA_PAUSED; 638 639 return status; 640 } 641 642 static dma_cookie_t nbpf_tx_submit(struct dma_async_tx_descriptor *tx) 643 { 644 struct nbpf_desc *desc = container_of(tx, struct nbpf_desc, async_tx); 645 struct nbpf_channel *chan = desc->chan; 646 unsigned long flags; 647 dma_cookie_t cookie; 648 649 spin_lock_irqsave(&chan->lock, flags); 650 cookie = dma_cookie_assign(tx); 651 list_add_tail(&desc->node, &chan->queued); 652 spin_unlock_irqrestore(&chan->lock, flags); 653 654 dev_dbg(chan->dma_chan.device->dev, "Entry %s(%d)\n", __func__, cookie); 655 656 return cookie; 657 } 658 659 static int nbpf_desc_page_alloc(struct nbpf_channel *chan) 660 { 661 struct dma_chan *dchan = &chan->dma_chan; 662 struct nbpf_desc_page *dpage = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); 663 struct nbpf_link_desc *ldesc; 664 struct nbpf_link_reg *hwdesc; 665 struct nbpf_desc *desc; 666 LIST_HEAD(head); 667 LIST_HEAD(lhead); 668 int i; 669 struct device *dev = dchan->device->dev; 670 671 if (!dpage) 672 return -ENOMEM; 673 674 dev_dbg(dev, "%s(): alloc %lu descriptors, %lu segments, total alloc %zu\n", 675 __func__, NBPF_DESCS_PER_PAGE, NBPF_SEGMENTS_PER_PAGE, sizeof(*dpage)); 676 677 for (i = 0, ldesc = dpage->ldesc, hwdesc = dpage->hwdesc; 678 i < ARRAY_SIZE(dpage->ldesc); 679 i++, ldesc++, hwdesc++) { 680 ldesc->hwdesc = hwdesc; 681 list_add_tail(&ldesc->node, &lhead); 682 ldesc->hwdesc_dma_addr = dma_map_single(dchan->device->dev, 683 hwdesc, sizeof(*hwdesc), DMA_TO_DEVICE); 684 685 dev_dbg(dev, "%s(): mapped 0x%p to %pad\n", __func__, 686 hwdesc, &ldesc->hwdesc_dma_addr); 687 } 688 689 for (i = 0, desc = dpage->desc; 690 i < ARRAY_SIZE(dpage->desc); 691 i++, desc++) { 692 dma_async_tx_descriptor_init(&desc->async_tx, dchan); 693 desc->async_tx.tx_submit = nbpf_tx_submit; 694 desc->chan = chan; 695 INIT_LIST_HEAD(&desc->sg); 696 list_add_tail(&desc->node, &head); 697 } 698 699 /* 700 * This function cannot be called from interrupt context, so, no need to 701 * save flags 702 */ 703 spin_lock_irq(&chan->lock); 704 list_splice_tail(&lhead, &chan->free_links); 705 list_splice_tail(&head, &chan->free); 706 list_add(&dpage->node, &chan->desc_page); 707 spin_unlock_irq(&chan->lock); 708 709 return ARRAY_SIZE(dpage->desc); 710 } 711 712 static void nbpf_desc_put(struct nbpf_desc *desc) 713 { 714 struct nbpf_channel *chan = desc->chan; 715 struct nbpf_link_desc *ldesc, *tmp; 716 unsigned long flags; 717 718 spin_lock_irqsave(&chan->lock, flags); 719 list_for_each_entry_safe(ldesc, tmp, &desc->sg, node) 720 list_move(&ldesc->node, &chan->free_links); 721 722 list_add(&desc->node, &chan->free); 723 spin_unlock_irqrestore(&chan->lock, flags); 724 } 725 726 static void nbpf_scan_acked(struct nbpf_channel *chan) 727 { 728 struct nbpf_desc *desc, *tmp; 729 unsigned long flags; 730 LIST_HEAD(head); 731 732 spin_lock_irqsave(&chan->lock, flags); 733 list_for_each_entry_safe(desc, tmp, &chan->done, node) 734 if (async_tx_test_ack(&desc->async_tx) && desc->user_wait) { 735 list_move(&desc->node, &head); 736 desc->user_wait = false; 737 } 738 spin_unlock_irqrestore(&chan->lock, flags); 739 740 list_for_each_entry_safe(desc, tmp, &head, node) { 741 list_del(&desc->node); 742 nbpf_desc_put(desc); 743 } 744 } 745 746 /* 747 * We have to allocate descriptors with the channel lock dropped. This means, 748 * before we re-acquire the lock buffers can be taken already, so we have to 749 * re-check after re-acquiring the lock and possibly retry, if buffers are gone 750 * again. 751 */ 752 static struct nbpf_desc *nbpf_desc_get(struct nbpf_channel *chan, size_t len) 753 { 754 struct nbpf_desc *desc = NULL; 755 struct nbpf_link_desc *ldesc, *prev = NULL; 756 757 nbpf_scan_acked(chan); 758 759 spin_lock_irq(&chan->lock); 760 761 do { 762 int i = 0, ret; 763 764 if (list_empty(&chan->free)) { 765 /* No more free descriptors */ 766 spin_unlock_irq(&chan->lock); 767 ret = nbpf_desc_page_alloc(chan); 768 if (ret < 0) 769 return NULL; 770 spin_lock_irq(&chan->lock); 771 continue; 772 } 773 desc = list_first_entry(&chan->free, struct nbpf_desc, node); 774 list_del(&desc->node); 775 776 do { 777 if (list_empty(&chan->free_links)) { 778 /* No more free link descriptors */ 779 spin_unlock_irq(&chan->lock); 780 ret = nbpf_desc_page_alloc(chan); 781 if (ret < 0) { 782 nbpf_desc_put(desc); 783 return NULL; 784 } 785 spin_lock_irq(&chan->lock); 786 continue; 787 } 788 789 ldesc = list_first_entry(&chan->free_links, 790 struct nbpf_link_desc, node); 791 ldesc->desc = desc; 792 if (prev) 793 prev->hwdesc->next = (u32)ldesc->hwdesc_dma_addr; 794 795 prev = ldesc; 796 list_move_tail(&ldesc->node, &desc->sg); 797 798 i++; 799 } while (i < len); 800 } while (!desc); 801 802 prev->hwdesc->next = 0; 803 804 spin_unlock_irq(&chan->lock); 805 806 return desc; 807 } 808 809 static void nbpf_chan_idle(struct nbpf_channel *chan) 810 { 811 struct nbpf_desc *desc, *tmp; 812 unsigned long flags; 813 LIST_HEAD(head); 814 815 spin_lock_irqsave(&chan->lock, flags); 816 817 list_splice_init(&chan->done, &head); 818 list_splice_init(&chan->active, &head); 819 list_splice_init(&chan->queued, &head); 820 821 chan->running = NULL; 822 823 spin_unlock_irqrestore(&chan->lock, flags); 824 825 list_for_each_entry_safe(desc, tmp, &head, node) { 826 dev_dbg(chan->nbpf->dma_dev.dev, "%s(): force-free desc %p cookie %d\n", 827 __func__, desc, desc->async_tx.cookie); 828 list_del(&desc->node); 829 nbpf_desc_put(desc); 830 } 831 } 832 833 static int nbpf_pause(struct dma_chan *dchan) 834 { 835 struct nbpf_channel *chan = nbpf_to_chan(dchan); 836 837 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 838 839 chan->paused = true; 840 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_SETSUS); 841 /* See comment in nbpf_prep_one() */ 842 nbpf_chan_write(chan, NBPF_CHAN_CTRL, NBPF_CHAN_CTRL_CLREN); 843 844 return 0; 845 } 846 847 static int nbpf_terminate_all(struct dma_chan *dchan) 848 { 849 struct nbpf_channel *chan = nbpf_to_chan(dchan); 850 851 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 852 dev_dbg(dchan->device->dev, "Terminating\n"); 853 854 nbpf_chan_halt(chan); 855 nbpf_chan_idle(chan); 856 857 return 0; 858 } 859 860 static int nbpf_config(struct dma_chan *dchan, 861 struct dma_slave_config *config) 862 { 863 struct nbpf_channel *chan = nbpf_to_chan(dchan); 864 865 dev_dbg(dchan->device->dev, "Entry %s\n", __func__); 866 867 /* 868 * We could check config->slave_id to match chan->terminal here, 869 * but with DT they would be coming from the same source, so 870 * such a check would be superflous 871 */ 872 873 chan->slave_dst_addr = config->dst_addr; 874 chan->slave_dst_width = nbpf_xfer_size(chan->nbpf, 875 config->dst_addr_width, 1); 876 chan->slave_dst_burst = nbpf_xfer_size(chan->nbpf, 877 config->dst_addr_width, 878 config->dst_maxburst); 879 chan->slave_src_addr = config->src_addr; 880 chan->slave_src_width = nbpf_xfer_size(chan->nbpf, 881 config->src_addr_width, 1); 882 chan->slave_src_burst = nbpf_xfer_size(chan->nbpf, 883 config->src_addr_width, 884 config->src_maxburst); 885 886 return 0; 887 } 888 889 static struct dma_async_tx_descriptor *nbpf_prep_sg(struct nbpf_channel *chan, 890 struct scatterlist *src_sg, struct scatterlist *dst_sg, 891 size_t len, enum dma_transfer_direction direction, 892 unsigned long flags) 893 { 894 struct nbpf_link_desc *ldesc; 895 struct scatterlist *mem_sg; 896 struct nbpf_desc *desc; 897 bool inc_src, inc_dst; 898 size_t data_len = 0; 899 int i = 0; 900 901 switch (direction) { 902 case DMA_DEV_TO_MEM: 903 mem_sg = dst_sg; 904 inc_src = false; 905 inc_dst = true; 906 break; 907 908 case DMA_MEM_TO_DEV: 909 mem_sg = src_sg; 910 inc_src = true; 911 inc_dst = false; 912 break; 913 914 default: 915 case DMA_MEM_TO_MEM: 916 mem_sg = src_sg; 917 inc_src = true; 918 inc_dst = true; 919 } 920 921 desc = nbpf_desc_get(chan, len); 922 if (!desc) 923 return NULL; 924 925 desc->async_tx.flags = flags; 926 desc->async_tx.cookie = -EBUSY; 927 desc->user_wait = false; 928 929 /* 930 * This is a private descriptor list, and we own the descriptor. No need 931 * to lock. 932 */ 933 list_for_each_entry(ldesc, &desc->sg, node) { 934 int ret = nbpf_prep_one(ldesc, direction, 935 sg_dma_address(src_sg), 936 sg_dma_address(dst_sg), 937 sg_dma_len(mem_sg), 938 i == len - 1); 939 if (ret < 0) { 940 nbpf_desc_put(desc); 941 return NULL; 942 } 943 data_len += sg_dma_len(mem_sg); 944 if (inc_src) 945 src_sg = sg_next(src_sg); 946 if (inc_dst) 947 dst_sg = sg_next(dst_sg); 948 mem_sg = direction == DMA_DEV_TO_MEM ? dst_sg : src_sg; 949 i++; 950 } 951 952 desc->length = data_len; 953 954 /* The user has to return the descriptor to us ASAP via .tx_submit() */ 955 return &desc->async_tx; 956 } 957 958 static struct dma_async_tx_descriptor *nbpf_prep_memcpy( 959 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, 960 size_t len, unsigned long flags) 961 { 962 struct nbpf_channel *chan = nbpf_to_chan(dchan); 963 struct scatterlist dst_sg; 964 struct scatterlist src_sg; 965 966 sg_init_table(&dst_sg, 1); 967 sg_init_table(&src_sg, 1); 968 969 sg_dma_address(&dst_sg) = dst; 970 sg_dma_address(&src_sg) = src; 971 972 sg_dma_len(&dst_sg) = len; 973 sg_dma_len(&src_sg) = len; 974 975 dev_dbg(dchan->device->dev, "%s(): %zu @ %pad -> %pad\n", 976 __func__, len, &src, &dst); 977 978 return nbpf_prep_sg(chan, &src_sg, &dst_sg, 1, 979 DMA_MEM_TO_MEM, flags); 980 } 981 982 static struct dma_async_tx_descriptor *nbpf_prep_memcpy_sg( 983 struct dma_chan *dchan, 984 struct scatterlist *dst_sg, unsigned int dst_nents, 985 struct scatterlist *src_sg, unsigned int src_nents, 986 unsigned long flags) 987 { 988 struct nbpf_channel *chan = nbpf_to_chan(dchan); 989 990 if (dst_nents != src_nents) 991 return NULL; 992 993 return nbpf_prep_sg(chan, src_sg, dst_sg, src_nents, 994 DMA_MEM_TO_MEM, flags); 995 } 996 997 static struct dma_async_tx_descriptor *nbpf_prep_slave_sg( 998 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 999 enum dma_transfer_direction direction, unsigned long flags, void *context) 1000 { 1001 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1002 struct scatterlist slave_sg; 1003 1004 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1005 1006 sg_init_table(&slave_sg, 1); 1007 1008 switch (direction) { 1009 case DMA_MEM_TO_DEV: 1010 sg_dma_address(&slave_sg) = chan->slave_dst_addr; 1011 return nbpf_prep_sg(chan, sgl, &slave_sg, sg_len, 1012 direction, flags); 1013 1014 case DMA_DEV_TO_MEM: 1015 sg_dma_address(&slave_sg) = chan->slave_src_addr; 1016 return nbpf_prep_sg(chan, &slave_sg, sgl, sg_len, 1017 direction, flags); 1018 1019 default: 1020 return NULL; 1021 } 1022 } 1023 1024 static int nbpf_alloc_chan_resources(struct dma_chan *dchan) 1025 { 1026 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1027 int ret; 1028 1029 INIT_LIST_HEAD(&chan->free); 1030 INIT_LIST_HEAD(&chan->free_links); 1031 INIT_LIST_HEAD(&chan->queued); 1032 INIT_LIST_HEAD(&chan->active); 1033 INIT_LIST_HEAD(&chan->done); 1034 1035 ret = nbpf_desc_page_alloc(chan); 1036 if (ret < 0) 1037 return ret; 1038 1039 dev_dbg(dchan->device->dev, "Entry %s(): terminal %u\n", __func__, 1040 chan->terminal); 1041 1042 nbpf_chan_configure(chan); 1043 1044 return ret; 1045 } 1046 1047 static void nbpf_free_chan_resources(struct dma_chan *dchan) 1048 { 1049 struct nbpf_channel *chan = nbpf_to_chan(dchan); 1050 struct nbpf_desc_page *dpage, *tmp; 1051 1052 dev_dbg(dchan->device->dev, "Entry %s()\n", __func__); 1053 1054 nbpf_chan_halt(chan); 1055 nbpf_chan_idle(chan); 1056 /* Clean up for if a channel is re-used for MEMCPY after slave DMA */ 1057 nbpf_chan_prepare_default(chan); 1058 1059 list_for_each_entry_safe(dpage, tmp, &chan->desc_page, node) { 1060 struct nbpf_link_desc *ldesc; 1061 int i; 1062 list_del(&dpage->node); 1063 for (i = 0, ldesc = dpage->ldesc; 1064 i < ARRAY_SIZE(dpage->ldesc); 1065 i++, ldesc++) 1066 dma_unmap_single(dchan->device->dev, ldesc->hwdesc_dma_addr, 1067 sizeof(*ldesc->hwdesc), DMA_TO_DEVICE); 1068 free_page((unsigned long)dpage); 1069 } 1070 } 1071 1072 static struct dma_chan *nbpf_of_xlate(struct of_phandle_args *dma_spec, 1073 struct of_dma *ofdma) 1074 { 1075 struct nbpf_device *nbpf = ofdma->of_dma_data; 1076 struct dma_chan *dchan; 1077 struct nbpf_channel *chan; 1078 1079 if (dma_spec->args_count != 2) 1080 return NULL; 1081 1082 dchan = dma_get_any_slave_channel(&nbpf->dma_dev); 1083 if (!dchan) 1084 return NULL; 1085 1086 dev_dbg(dchan->device->dev, "Entry %s(%s)\n", __func__, 1087 dma_spec->np->name); 1088 1089 chan = nbpf_to_chan(dchan); 1090 1091 chan->terminal = dma_spec->args[0]; 1092 chan->flags = dma_spec->args[1]; 1093 1094 nbpf_chan_prepare(chan); 1095 nbpf_chan_configure(chan); 1096 1097 return dchan; 1098 } 1099 1100 static void nbpf_chan_tasklet(unsigned long data) 1101 { 1102 struct nbpf_channel *chan = (struct nbpf_channel *)data; 1103 struct nbpf_desc *desc, *tmp; 1104 dma_async_tx_callback callback; 1105 void *param; 1106 1107 while (!list_empty(&chan->done)) { 1108 bool found = false, must_put, recycling = false; 1109 1110 spin_lock_irq(&chan->lock); 1111 1112 list_for_each_entry_safe(desc, tmp, &chan->done, node) { 1113 if (!desc->user_wait) { 1114 /* Newly completed descriptor, have to process */ 1115 found = true; 1116 break; 1117 } else if (async_tx_test_ack(&desc->async_tx)) { 1118 /* 1119 * This descriptor was waiting for a user ACK, 1120 * it can be recycled now. 1121 */ 1122 list_del(&desc->node); 1123 spin_unlock_irq(&chan->lock); 1124 nbpf_desc_put(desc); 1125 recycling = true; 1126 break; 1127 } 1128 } 1129 1130 if (recycling) 1131 continue; 1132 1133 if (!found) { 1134 /* This can happen if TERMINATE_ALL has been called */ 1135 spin_unlock_irq(&chan->lock); 1136 break; 1137 } 1138 1139 dma_cookie_complete(&desc->async_tx); 1140 1141 /* 1142 * With released lock we cannot dereference desc, maybe it's 1143 * still on the "done" list 1144 */ 1145 if (async_tx_test_ack(&desc->async_tx)) { 1146 list_del(&desc->node); 1147 must_put = true; 1148 } else { 1149 desc->user_wait = true; 1150 must_put = false; 1151 } 1152 1153 callback = desc->async_tx.callback; 1154 param = desc->async_tx.callback_param; 1155 1156 /* ack and callback completed descriptor */ 1157 spin_unlock_irq(&chan->lock); 1158 1159 if (callback) 1160 callback(param); 1161 1162 if (must_put) 1163 nbpf_desc_put(desc); 1164 } 1165 } 1166 1167 static irqreturn_t nbpf_chan_irq(int irq, void *dev) 1168 { 1169 struct nbpf_channel *chan = dev; 1170 bool done = nbpf_status_get(chan); 1171 struct nbpf_desc *desc; 1172 irqreturn_t ret; 1173 bool bh = false; 1174 1175 if (!done) 1176 return IRQ_NONE; 1177 1178 nbpf_status_ack(chan); 1179 1180 dev_dbg(&chan->dma_chan.dev->device, "%s()\n", __func__); 1181 1182 spin_lock(&chan->lock); 1183 desc = chan->running; 1184 if (WARN_ON(!desc)) { 1185 ret = IRQ_NONE; 1186 goto unlock; 1187 } else { 1188 ret = IRQ_HANDLED; 1189 bh = true; 1190 } 1191 1192 list_move_tail(&desc->node, &chan->done); 1193 chan->running = NULL; 1194 1195 if (!list_empty(&chan->active)) { 1196 desc = list_first_entry(&chan->active, 1197 struct nbpf_desc, node); 1198 if (!nbpf_start(desc)) 1199 chan->running = desc; 1200 } 1201 1202 unlock: 1203 spin_unlock(&chan->lock); 1204 1205 if (bh) 1206 tasklet_schedule(&chan->tasklet); 1207 1208 return ret; 1209 } 1210 1211 static irqreturn_t nbpf_err_irq(int irq, void *dev) 1212 { 1213 struct nbpf_device *nbpf = dev; 1214 u32 error = nbpf_error_get(nbpf); 1215 1216 dev_warn(nbpf->dma_dev.dev, "DMA error IRQ %u\n", irq); 1217 1218 if (!error) 1219 return IRQ_NONE; 1220 1221 do { 1222 struct nbpf_channel *chan = nbpf_error_get_channel(nbpf, error); 1223 /* On error: abort all queued transfers, no callback */ 1224 nbpf_error_clear(chan); 1225 nbpf_chan_idle(chan); 1226 error = nbpf_error_get(nbpf); 1227 } while (error); 1228 1229 return IRQ_HANDLED; 1230 } 1231 1232 static int nbpf_chan_probe(struct nbpf_device *nbpf, int n) 1233 { 1234 struct dma_device *dma_dev = &nbpf->dma_dev; 1235 struct nbpf_channel *chan = nbpf->chan + n; 1236 int ret; 1237 1238 chan->nbpf = nbpf; 1239 chan->base = nbpf->base + NBPF_REG_CHAN_OFFSET + NBPF_REG_CHAN_SIZE * n; 1240 INIT_LIST_HEAD(&chan->desc_page); 1241 spin_lock_init(&chan->lock); 1242 chan->dma_chan.device = dma_dev; 1243 dma_cookie_init(&chan->dma_chan); 1244 nbpf_chan_prepare_default(chan); 1245 1246 dev_dbg(dma_dev->dev, "%s(): channel %d: -> %p\n", __func__, n, chan->base); 1247 1248 snprintf(chan->name, sizeof(chan->name), "nbpf %d", n); 1249 1250 tasklet_init(&chan->tasklet, nbpf_chan_tasklet, (unsigned long)chan); 1251 ret = devm_request_irq(dma_dev->dev, chan->irq, 1252 nbpf_chan_irq, IRQF_SHARED, 1253 chan->name, chan); 1254 if (ret < 0) 1255 return ret; 1256 1257 /* Add the channel to DMA device channel list */ 1258 list_add_tail(&chan->dma_chan.device_node, 1259 &dma_dev->channels); 1260 1261 return 0; 1262 } 1263 1264 static const struct of_device_id nbpf_match[] = { 1265 {.compatible = "renesas,nbpfaxi64dmac1b4", .data = &nbpf_cfg[NBPF1B4]}, 1266 {.compatible = "renesas,nbpfaxi64dmac1b8", .data = &nbpf_cfg[NBPF1B8]}, 1267 {.compatible = "renesas,nbpfaxi64dmac1b16", .data = &nbpf_cfg[NBPF1B16]}, 1268 {.compatible = "renesas,nbpfaxi64dmac4b4", .data = &nbpf_cfg[NBPF4B4]}, 1269 {.compatible = "renesas,nbpfaxi64dmac4b8", .data = &nbpf_cfg[NBPF4B8]}, 1270 {.compatible = "renesas,nbpfaxi64dmac4b16", .data = &nbpf_cfg[NBPF4B16]}, 1271 {.compatible = "renesas,nbpfaxi64dmac8b4", .data = &nbpf_cfg[NBPF8B4]}, 1272 {.compatible = "renesas,nbpfaxi64dmac8b8", .data = &nbpf_cfg[NBPF8B8]}, 1273 {.compatible = "renesas,nbpfaxi64dmac8b16", .data = &nbpf_cfg[NBPF8B16]}, 1274 {} 1275 }; 1276 MODULE_DEVICE_TABLE(of, nbpf_match); 1277 1278 static int nbpf_probe(struct platform_device *pdev) 1279 { 1280 struct device *dev = &pdev->dev; 1281 const struct of_device_id *of_id = of_match_device(nbpf_match, dev); 1282 struct device_node *np = dev->of_node; 1283 struct nbpf_device *nbpf; 1284 struct dma_device *dma_dev; 1285 struct resource *iomem, *irq_res; 1286 const struct nbpf_config *cfg; 1287 int num_channels; 1288 int ret, irq, eirq, i; 1289 int irqbuf[9] /* maximum 8 channels + error IRQ */; 1290 unsigned int irqs = 0; 1291 1292 BUILD_BUG_ON(sizeof(struct nbpf_desc_page) > PAGE_SIZE); 1293 1294 /* DT only */ 1295 if (!np || !of_id || !of_id->data) 1296 return -ENODEV; 1297 1298 cfg = of_id->data; 1299 num_channels = cfg->num_channels; 1300 1301 nbpf = devm_kzalloc(dev, sizeof(*nbpf) + num_channels * 1302 sizeof(nbpf->chan[0]), GFP_KERNEL); 1303 if (!nbpf) { 1304 dev_err(dev, "Memory allocation failed\n"); 1305 return -ENOMEM; 1306 } 1307 dma_dev = &nbpf->dma_dev; 1308 dma_dev->dev = dev; 1309 1310 iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1311 nbpf->base = devm_ioremap_resource(dev, iomem); 1312 if (IS_ERR(nbpf->base)) 1313 return PTR_ERR(nbpf->base); 1314 1315 nbpf->clk = devm_clk_get(dev, NULL); 1316 if (IS_ERR(nbpf->clk)) 1317 return PTR_ERR(nbpf->clk); 1318 1319 nbpf->config = cfg; 1320 1321 for (i = 0; irqs < ARRAY_SIZE(irqbuf); i++) { 1322 irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, i); 1323 if (!irq_res) 1324 break; 1325 1326 for (irq = irq_res->start; irq <= irq_res->end; 1327 irq++, irqs++) 1328 irqbuf[irqs] = irq; 1329 } 1330 1331 /* 1332 * 3 IRQ resource schemes are supported: 1333 * 1. 1 shared IRQ for error and all channels 1334 * 2. 2 IRQs: one for error and one shared for all channels 1335 * 3. 1 IRQ for error and an own IRQ for each channel 1336 */ 1337 if (irqs != 1 && irqs != 2 && irqs != num_channels + 1) 1338 return -ENXIO; 1339 1340 if (irqs == 1) { 1341 eirq = irqbuf[0]; 1342 1343 for (i = 0; i <= num_channels; i++) 1344 nbpf->chan[i].irq = irqbuf[0]; 1345 } else { 1346 eirq = platform_get_irq_byname(pdev, "error"); 1347 if (eirq < 0) 1348 return eirq; 1349 1350 if (irqs == num_channels + 1) { 1351 struct nbpf_channel *chan; 1352 1353 for (i = 0, chan = nbpf->chan; i <= num_channels; 1354 i++, chan++) { 1355 /* Skip the error IRQ */ 1356 if (irqbuf[i] == eirq) 1357 i++; 1358 chan->irq = irqbuf[i]; 1359 } 1360 1361 if (chan != nbpf->chan + num_channels) 1362 return -EINVAL; 1363 } else { 1364 /* 2 IRQs and more than one channel */ 1365 if (irqbuf[0] == eirq) 1366 irq = irqbuf[1]; 1367 else 1368 irq = irqbuf[0]; 1369 1370 for (i = 0; i <= num_channels; i++) 1371 nbpf->chan[i].irq = irq; 1372 } 1373 } 1374 1375 ret = devm_request_irq(dev, eirq, nbpf_err_irq, 1376 IRQF_SHARED, "dma error", nbpf); 1377 if (ret < 0) 1378 return ret; 1379 1380 INIT_LIST_HEAD(&dma_dev->channels); 1381 1382 /* Create DMA Channel */ 1383 for (i = 0; i < num_channels; i++) { 1384 ret = nbpf_chan_probe(nbpf, i); 1385 if (ret < 0) 1386 return ret; 1387 } 1388 1389 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1390 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); 1391 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); 1392 dma_cap_set(DMA_SG, dma_dev->cap_mask); 1393 1394 /* Common and MEMCPY operations */ 1395 dma_dev->device_alloc_chan_resources 1396 = nbpf_alloc_chan_resources; 1397 dma_dev->device_free_chan_resources = nbpf_free_chan_resources; 1398 dma_dev->device_prep_dma_sg = nbpf_prep_memcpy_sg; 1399 dma_dev->device_prep_dma_memcpy = nbpf_prep_memcpy; 1400 dma_dev->device_tx_status = nbpf_tx_status; 1401 dma_dev->device_issue_pending = nbpf_issue_pending; 1402 1403 /* 1404 * If we drop support for unaligned MEMCPY buffer addresses and / or 1405 * lengths by setting 1406 * dma_dev->copy_align = 4; 1407 * then we can set transfer length to 4 bytes in nbpf_prep_one() for 1408 * DMA_MEM_TO_MEM 1409 */ 1410 1411 /* Compulsory for DMA_SLAVE fields */ 1412 dma_dev->device_prep_slave_sg = nbpf_prep_slave_sg; 1413 dma_dev->device_config = nbpf_config; 1414 dma_dev->device_pause = nbpf_pause; 1415 dma_dev->device_terminate_all = nbpf_terminate_all; 1416 1417 dma_dev->src_addr_widths = NBPF_DMA_BUSWIDTHS; 1418 dma_dev->dst_addr_widths = NBPF_DMA_BUSWIDTHS; 1419 dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1420 1421 platform_set_drvdata(pdev, nbpf); 1422 1423 ret = clk_prepare_enable(nbpf->clk); 1424 if (ret < 0) 1425 return ret; 1426 1427 nbpf_configure(nbpf); 1428 1429 ret = dma_async_device_register(dma_dev); 1430 if (ret < 0) 1431 goto e_clk_off; 1432 1433 ret = of_dma_controller_register(np, nbpf_of_xlate, nbpf); 1434 if (ret < 0) 1435 goto e_dma_dev_unreg; 1436 1437 return 0; 1438 1439 e_dma_dev_unreg: 1440 dma_async_device_unregister(dma_dev); 1441 e_clk_off: 1442 clk_disable_unprepare(nbpf->clk); 1443 1444 return ret; 1445 } 1446 1447 static int nbpf_remove(struct platform_device *pdev) 1448 { 1449 struct nbpf_device *nbpf = platform_get_drvdata(pdev); 1450 1451 of_dma_controller_free(pdev->dev.of_node); 1452 dma_async_device_unregister(&nbpf->dma_dev); 1453 clk_disable_unprepare(nbpf->clk); 1454 1455 return 0; 1456 } 1457 1458 static struct platform_device_id nbpf_ids[] = { 1459 {"nbpfaxi64dmac1b4", (kernel_ulong_t)&nbpf_cfg[NBPF1B4]}, 1460 {"nbpfaxi64dmac1b8", (kernel_ulong_t)&nbpf_cfg[NBPF1B8]}, 1461 {"nbpfaxi64dmac1b16", (kernel_ulong_t)&nbpf_cfg[NBPF1B16]}, 1462 {"nbpfaxi64dmac4b4", (kernel_ulong_t)&nbpf_cfg[NBPF4B4]}, 1463 {"nbpfaxi64dmac4b8", (kernel_ulong_t)&nbpf_cfg[NBPF4B8]}, 1464 {"nbpfaxi64dmac4b16", (kernel_ulong_t)&nbpf_cfg[NBPF4B16]}, 1465 {"nbpfaxi64dmac8b4", (kernel_ulong_t)&nbpf_cfg[NBPF8B4]}, 1466 {"nbpfaxi64dmac8b8", (kernel_ulong_t)&nbpf_cfg[NBPF8B8]}, 1467 {"nbpfaxi64dmac8b16", (kernel_ulong_t)&nbpf_cfg[NBPF8B16]}, 1468 {}, 1469 }; 1470 MODULE_DEVICE_TABLE(platform, nbpf_ids); 1471 1472 #ifdef CONFIG_PM 1473 static int nbpf_runtime_suspend(struct device *dev) 1474 { 1475 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); 1476 clk_disable_unprepare(nbpf->clk); 1477 return 0; 1478 } 1479 1480 static int nbpf_runtime_resume(struct device *dev) 1481 { 1482 struct nbpf_device *nbpf = platform_get_drvdata(to_platform_device(dev)); 1483 return clk_prepare_enable(nbpf->clk); 1484 } 1485 #endif 1486 1487 static const struct dev_pm_ops nbpf_pm_ops = { 1488 SET_RUNTIME_PM_OPS(nbpf_runtime_suspend, nbpf_runtime_resume, NULL) 1489 }; 1490 1491 static struct platform_driver nbpf_driver = { 1492 .driver = { 1493 .name = "dma-nbpf", 1494 .of_match_table = nbpf_match, 1495 .pm = &nbpf_pm_ops, 1496 }, 1497 .id_table = nbpf_ids, 1498 .probe = nbpf_probe, 1499 .remove = nbpf_remove, 1500 }; 1501 1502 module_platform_driver(nbpf_driver); 1503 1504 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1505 MODULE_DESCRIPTION("dmaengine driver for NBPFAXI64* DMACs"); 1506 MODULE_LICENSE("GPL v2"); 1507