xref: /linux/drivers/dma/mxs-dma.c (revision 9a4e47ef98a3041f6d2869ba2cd3401701776275)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
4 //
5 // Refer to drivers/dma/imx-sdma.c
6 
7 #include <linux/init.h>
8 #include <linux/types.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/clk.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/semaphore.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
18 #include <linux/platform_device.h>
19 #include <linux/dmaengine.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/stmp_device.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/list.h>
26 #include <linux/dma/mxs-dma.h>
27 
28 #include <asm/irq.h>
29 
30 #include "dmaengine.h"
31 
32 /*
33  * NOTE: The term "PIO" throughout the mxs-dma implementation means
34  * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
35  * dma can program the controller registers of peripheral devices.
36  */
37 
38 #define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
39 #define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
40 
41 #define HW_APBHX_CTRL0				0x000
42 #define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
43 #define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
44 #define BP_APBH_CTRL0_RESET_CHANNEL		16
45 #define HW_APBHX_CTRL1				0x010
46 #define HW_APBHX_CTRL2				0x020
47 #define HW_APBHX_CHANNEL_CTRL			0x030
48 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
49 /*
50  * The offset of NXTCMDAR register is different per both dma type and version,
51  * while stride for each channel is all the same 0x70.
52  */
53 #define HW_APBHX_CHn_NXTCMDAR(d, n) \
54 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
55 #define HW_APBHX_CHn_SEMA(d, n) \
56 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
57 #define HW_APBHX_CHn_BAR(d, n) \
58 	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
59 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
60 
61 /*
62  * ccw bits definitions
63  *
64  * COMMAND:		0..1	(2)
65  * CHAIN:		2	(1)
66  * IRQ:			3	(1)
67  * NAND_LOCK:		4	(1) - not implemented
68  * NAND_WAIT4READY:	5	(1) - not implemented
69  * DEC_SEM:		6	(1)
70  * WAIT4END:		7	(1)
71  * HALT_ON_TERMINATE:	8	(1)
72  * TERMINATE_FLUSH:	9	(1)
73  * RESERVED:		10..11	(2)
74  * PIO_NUM:		12..15	(4)
75  */
76 #define BP_CCW_COMMAND		0
77 #define BM_CCW_COMMAND		(3 << 0)
78 #define CCW_CHAIN		(1 << 2)
79 #define CCW_IRQ			(1 << 3)
80 #define CCW_WAIT4RDY		(1 << 5)
81 #define CCW_DEC_SEM		(1 << 6)
82 #define CCW_WAIT4END		(1 << 7)
83 #define CCW_HALT_ON_TERM	(1 << 8)
84 #define CCW_TERM_FLUSH		(1 << 9)
85 #define BP_CCW_PIO_NUM		12
86 #define BM_CCW_PIO_NUM		(0xf << 12)
87 
88 #define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
89 
90 #define MXS_DMA_CMD_NO_XFER	0
91 #define MXS_DMA_CMD_WRITE	1
92 #define MXS_DMA_CMD_READ	2
93 #define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
94 
95 struct mxs_dma_ccw {
96 	u32		next;
97 	u16		bits;
98 	u16		xfer_bytes;
99 #define MAX_XFER_BYTES	0xff00
100 	u32		bufaddr;
101 #define MXS_PIO_WORDS	16
102 	u32		pio_words[MXS_PIO_WORDS];
103 };
104 
105 #define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
106 #define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
107 
108 struct mxs_dma_chan {
109 	struct mxs_dma_engine		*mxs_dma;
110 	struct dma_chan			chan;
111 	struct dma_async_tx_descriptor	desc;
112 	struct tasklet_struct		tasklet;
113 	unsigned int			chan_irq;
114 	struct mxs_dma_ccw		*ccw;
115 	dma_addr_t			ccw_phys;
116 	int				desc_count;
117 	enum dma_status			status;
118 	unsigned int			flags;
119 	bool				reset;
120 #define MXS_DMA_SG_LOOP			(1 << 0)
121 #define MXS_DMA_USE_SEMAPHORE		(1 << 1)
122 };
123 
124 #define MXS_DMA_CHANNELS		16
125 #define MXS_DMA_CHANNELS_MASK		0xffff
126 
127 enum mxs_dma_devtype {
128 	MXS_DMA_APBH,
129 	MXS_DMA_APBX,
130 };
131 
132 enum mxs_dma_id {
133 	IMX23_DMA,
134 	IMX28_DMA,
135 };
136 
137 struct mxs_dma_engine {
138 	enum mxs_dma_id			dev_id;
139 	enum mxs_dma_devtype		type;
140 	void __iomem			*base;
141 	struct clk			*clk;
142 	struct dma_device		dma_device;
143 	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
144 	struct platform_device		*pdev;
145 	unsigned int			nr_channels;
146 };
147 
148 struct mxs_dma_type {
149 	enum mxs_dma_id id;
150 	enum mxs_dma_devtype type;
151 };
152 
153 static struct mxs_dma_type mxs_dma_types[] = {
154 	{
155 		.id = IMX23_DMA,
156 		.type = MXS_DMA_APBH,
157 	}, {
158 		.id = IMX23_DMA,
159 		.type = MXS_DMA_APBX,
160 	}, {
161 		.id = IMX28_DMA,
162 		.type = MXS_DMA_APBH,
163 	}, {
164 		.id = IMX28_DMA,
165 		.type = MXS_DMA_APBX,
166 	}
167 };
168 
169 static const struct of_device_id mxs_dma_dt_ids[] = {
170 	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], },
171 	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], },
172 	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], },
173 	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], },
174 	{ /* sentinel */ }
175 };
176 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
177 
178 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
179 {
180 	return container_of(chan, struct mxs_dma_chan, chan);
181 }
182 
183 static void mxs_dma_reset_chan(struct dma_chan *chan)
184 {
185 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
186 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
187 	int chan_id = mxs_chan->chan.chan_id;
188 
189 	/*
190 	 * mxs dma channel resets can cause a channel stall. To recover from a
191 	 * channel stall, we have to reset the whole DMA engine. To avoid this,
192 	 * we use cyclic DMA with semaphores, that are enhanced in
193 	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
194 	 * into the semaphore counter.
195 	 */
196 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
197 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
198 		mxs_chan->reset = true;
199 	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
200 		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
201 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
202 	} else {
203 		unsigned long elapsed = 0;
204 		const unsigned long max_wait = 50000; /* 50ms */
205 		void __iomem *reg_dbg1 = mxs_dma->base +
206 				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
207 
208 		/*
209 		 * On i.MX28 APBX, the DMA channel can stop working if we reset
210 		 * the channel while it is in READ_FLUSH (0x08) state.
211 		 * We wait here until we leave the state. Then we trigger the
212 		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
213 		 * because of this.
214 		 */
215 		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
216 			udelay(100);
217 			elapsed += 100;
218 		}
219 
220 		if (elapsed >= max_wait)
221 			dev_err(&mxs_chan->mxs_dma->pdev->dev,
222 					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
223 					chan_id);
224 
225 		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
226 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
227 	}
228 
229 	mxs_chan->status = DMA_COMPLETE;
230 }
231 
232 static void mxs_dma_enable_chan(struct dma_chan *chan)
233 {
234 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
235 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
236 	int chan_id = mxs_chan->chan.chan_id;
237 
238 	/* set cmd_addr up */
239 	writel(mxs_chan->ccw_phys,
240 		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
241 
242 	/* write 1 to SEMA to kick off the channel */
243 	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
244 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
245 		/* A cyclic DMA consists of at least 2 segments, so initialize
246 		 * the semaphore with 2 so we have enough time to add 1 to the
247 		 * semaphore if we need to */
248 		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
249 	} else {
250 		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
251 	}
252 	mxs_chan->reset = false;
253 }
254 
255 static void mxs_dma_disable_chan(struct dma_chan *chan)
256 {
257 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
258 
259 	mxs_chan->status = DMA_COMPLETE;
260 }
261 
262 static int mxs_dma_pause_chan(struct dma_chan *chan)
263 {
264 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
265 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
266 	int chan_id = mxs_chan->chan.chan_id;
267 
268 	/* freeze the channel */
269 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
270 		writel(1 << chan_id,
271 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
272 	else
273 		writel(1 << chan_id,
274 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
275 
276 	mxs_chan->status = DMA_PAUSED;
277 	return 0;
278 }
279 
280 static int mxs_dma_resume_chan(struct dma_chan *chan)
281 {
282 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
283 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
284 	int chan_id = mxs_chan->chan.chan_id;
285 
286 	/* unfreeze the channel */
287 	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
288 		writel(1 << chan_id,
289 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
290 	else
291 		writel(1 << chan_id,
292 			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
293 
294 	mxs_chan->status = DMA_IN_PROGRESS;
295 	return 0;
296 }
297 
298 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
299 {
300 	return dma_cookie_assign(tx);
301 }
302 
303 static void mxs_dma_tasklet(struct tasklet_struct *t)
304 {
305 	struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet);
306 
307 	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
308 }
309 
310 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
311 {
312 	int i;
313 
314 	for (i = 0; i != mxs_dma->nr_channels; ++i)
315 		if (mxs_dma->mxs_chans[i].chan_irq == irq)
316 			return i;
317 
318 	return -EINVAL;
319 }
320 
321 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
322 {
323 	struct mxs_dma_engine *mxs_dma = dev_id;
324 	struct mxs_dma_chan *mxs_chan;
325 	u32 completed;
326 	u32 err;
327 	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
328 
329 	if (chan < 0)
330 		return IRQ_NONE;
331 
332 	/* completion status */
333 	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
334 	completed = (completed >> chan) & 0x1;
335 
336 	/* Clear interrupt */
337 	writel((1 << chan),
338 			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
339 
340 	/* error status */
341 	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
342 	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
343 
344 	/*
345 	 * error status bit is in the upper 16 bits, error irq bit in the lower
346 	 * 16 bits. We transform it into a simpler error code:
347 	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
348 	 */
349 	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
350 
351 	/* Clear error irq */
352 	writel((1 << chan),
353 			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
354 
355 	/*
356 	 * When both completion and error of termination bits set at the
357 	 * same time, we do not take it as an error.  IOW, it only becomes
358 	 * an error we need to handle here in case of either it's a bus
359 	 * error or a termination error with no completion. 0x01 is termination
360 	 * error, so we can subtract err & completed to get the real error case.
361 	 */
362 	err -= err & completed;
363 
364 	mxs_chan = &mxs_dma->mxs_chans[chan];
365 
366 	if (err) {
367 		dev_dbg(mxs_dma->dma_device.dev,
368 			"%s: error in channel %d\n", __func__,
369 			chan);
370 		mxs_chan->status = DMA_ERROR;
371 		mxs_dma_reset_chan(&mxs_chan->chan);
372 	} else if (mxs_chan->status != DMA_COMPLETE) {
373 		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
374 			mxs_chan->status = DMA_IN_PROGRESS;
375 			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
376 				writel(1, mxs_dma->base +
377 					HW_APBHX_CHn_SEMA(mxs_dma, chan));
378 		} else {
379 			mxs_chan->status = DMA_COMPLETE;
380 		}
381 	}
382 
383 	if (mxs_chan->status == DMA_COMPLETE) {
384 		if (mxs_chan->reset)
385 			return IRQ_HANDLED;
386 		dma_cookie_complete(&mxs_chan->desc);
387 	}
388 
389 	/* schedule tasklet on this channel */
390 	tasklet_schedule(&mxs_chan->tasklet);
391 
392 	return IRQ_HANDLED;
393 }
394 
395 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
396 {
397 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
398 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
399 	int ret;
400 
401 	mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev,
402 					   CCW_BLOCK_SIZE,
403 					   &mxs_chan->ccw_phys, GFP_KERNEL);
404 	if (!mxs_chan->ccw) {
405 		ret = -ENOMEM;
406 		goto err_alloc;
407 	}
408 
409 	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
410 			  0, "mxs-dma", mxs_dma);
411 	if (ret)
412 		goto err_irq;
413 
414 	ret = clk_prepare_enable(mxs_dma->clk);
415 	if (ret)
416 		goto err_clk;
417 
418 	mxs_dma_reset_chan(chan);
419 
420 	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
421 	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
422 
423 	/* the descriptor is ready */
424 	async_tx_ack(&mxs_chan->desc);
425 
426 	return 0;
427 
428 err_clk:
429 	free_irq(mxs_chan->chan_irq, mxs_dma);
430 err_irq:
431 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
432 			mxs_chan->ccw, mxs_chan->ccw_phys);
433 err_alloc:
434 	return ret;
435 }
436 
437 static void mxs_dma_free_chan_resources(struct dma_chan *chan)
438 {
439 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
440 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
441 
442 	mxs_dma_disable_chan(chan);
443 
444 	free_irq(mxs_chan->chan_irq, mxs_dma);
445 
446 	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
447 			mxs_chan->ccw, mxs_chan->ccw_phys);
448 
449 	clk_disable_unprepare(mxs_dma->clk);
450 }
451 
452 /*
453  * How to use the flags for ->device_prep_slave_sg() :
454  *    [1] If there is only one DMA command in the DMA chain, the code should be:
455  *            ......
456  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
457  *            ......
458  *    [2] If there are two DMA commands in the DMA chain, the code should be
459  *            ......
460  *            ->device_prep_slave_sg(0);
461  *            ......
462  *            ->device_prep_slave_sg(DMA_CTRL_ACK);
463  *            ......
464  *    [3] If there are more than two DMA commands in the DMA chain, the code
465  *        should be:
466  *            ......
467  *            ->device_prep_slave_sg(0);                                // First
468  *            ......
469  *            ->device_prep_slave_sg(DMA_CTRL_ACK]);
470  *            ......
471  *            ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
472  *            ......
473  */
474 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
475 		struct dma_chan *chan, struct scatterlist *sgl,
476 		unsigned int sg_len, enum dma_transfer_direction direction,
477 		unsigned long flags, void *context)
478 {
479 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
480 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
481 	struct mxs_dma_ccw *ccw;
482 	struct scatterlist *sg;
483 	u32 i, j;
484 	u32 *pio;
485 	int idx = 0;
486 
487 	if (mxs_chan->status == DMA_IN_PROGRESS)
488 		idx = mxs_chan->desc_count;
489 
490 	if (sg_len + idx > NUM_CCW) {
491 		dev_err(mxs_dma->dma_device.dev,
492 				"maximum number of sg exceeded: %d > %d\n",
493 				sg_len, NUM_CCW);
494 		goto err_out;
495 	}
496 
497 	mxs_chan->status = DMA_IN_PROGRESS;
498 	mxs_chan->flags = 0;
499 
500 	/*
501 	 * If the sg is prepared with append flag set, the sg
502 	 * will be appended to the last prepared sg.
503 	 */
504 	if (idx) {
505 		BUG_ON(idx < 1);
506 		ccw = &mxs_chan->ccw[idx - 1];
507 		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
508 		ccw->bits |= CCW_CHAIN;
509 		ccw->bits &= ~CCW_IRQ;
510 		ccw->bits &= ~CCW_DEC_SEM;
511 	} else {
512 		idx = 0;
513 	}
514 
515 	if (direction == DMA_TRANS_NONE) {
516 		ccw = &mxs_chan->ccw[idx++];
517 		pio = (u32 *) sgl;
518 
519 		for (j = 0; j < sg_len;)
520 			ccw->pio_words[j++] = *pio++;
521 
522 		ccw->bits = 0;
523 		ccw->bits |= CCW_IRQ;
524 		ccw->bits |= CCW_DEC_SEM;
525 		if (flags & MXS_DMA_CTRL_WAIT4END)
526 			ccw->bits |= CCW_WAIT4END;
527 		ccw->bits |= CCW_HALT_ON_TERM;
528 		ccw->bits |= CCW_TERM_FLUSH;
529 		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
530 		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
531 		if (flags & MXS_DMA_CTRL_WAIT4RDY)
532 			ccw->bits |= CCW_WAIT4RDY;
533 	} else {
534 		for_each_sg(sgl, sg, sg_len, i) {
535 			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
536 				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
537 						sg_dma_len(sg), MAX_XFER_BYTES);
538 				goto err_out;
539 			}
540 
541 			ccw = &mxs_chan->ccw[idx++];
542 
543 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
544 			ccw->bufaddr = sg->dma_address;
545 			ccw->xfer_bytes = sg_dma_len(sg);
546 
547 			ccw->bits = 0;
548 			ccw->bits |= CCW_CHAIN;
549 			ccw->bits |= CCW_HALT_ON_TERM;
550 			ccw->bits |= CCW_TERM_FLUSH;
551 			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
552 					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
553 					COMMAND);
554 
555 			if (i + 1 == sg_len) {
556 				ccw->bits &= ~CCW_CHAIN;
557 				ccw->bits |= CCW_IRQ;
558 				ccw->bits |= CCW_DEC_SEM;
559 				if (flags & MXS_DMA_CTRL_WAIT4END)
560 					ccw->bits |= CCW_WAIT4END;
561 			}
562 		}
563 	}
564 	mxs_chan->desc_count = idx;
565 
566 	return &mxs_chan->desc;
567 
568 err_out:
569 	mxs_chan->status = DMA_ERROR;
570 	return NULL;
571 }
572 
573 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
574 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
575 		size_t period_len, enum dma_transfer_direction direction,
576 		unsigned long flags)
577 {
578 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
579 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
580 	u32 num_periods = buf_len / period_len;
581 	u32 i = 0, buf = 0;
582 
583 	if (mxs_chan->status == DMA_IN_PROGRESS)
584 		return NULL;
585 
586 	mxs_chan->status = DMA_IN_PROGRESS;
587 	mxs_chan->flags |= MXS_DMA_SG_LOOP;
588 	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
589 
590 	if (num_periods > NUM_CCW) {
591 		dev_err(mxs_dma->dma_device.dev,
592 				"maximum number of sg exceeded: %d > %d\n",
593 				num_periods, NUM_CCW);
594 		goto err_out;
595 	}
596 
597 	if (period_len > MAX_XFER_BYTES) {
598 		dev_err(mxs_dma->dma_device.dev,
599 				"maximum period size exceeded: %zu > %d\n",
600 				period_len, MAX_XFER_BYTES);
601 		goto err_out;
602 	}
603 
604 	while (buf < buf_len) {
605 		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
606 
607 		if (i + 1 == num_periods)
608 			ccw->next = mxs_chan->ccw_phys;
609 		else
610 			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
611 
612 		ccw->bufaddr = dma_addr;
613 		ccw->xfer_bytes = period_len;
614 
615 		ccw->bits = 0;
616 		ccw->bits |= CCW_CHAIN;
617 		ccw->bits |= CCW_IRQ;
618 		ccw->bits |= CCW_HALT_ON_TERM;
619 		ccw->bits |= CCW_TERM_FLUSH;
620 		ccw->bits |= CCW_DEC_SEM;
621 		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
622 				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
623 
624 		dma_addr += period_len;
625 		buf += period_len;
626 
627 		i++;
628 	}
629 	mxs_chan->desc_count = i;
630 
631 	return &mxs_chan->desc;
632 
633 err_out:
634 	mxs_chan->status = DMA_ERROR;
635 	return NULL;
636 }
637 
638 static int mxs_dma_terminate_all(struct dma_chan *chan)
639 {
640 	mxs_dma_reset_chan(chan);
641 	mxs_dma_disable_chan(chan);
642 
643 	return 0;
644 }
645 
646 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
647 			dma_cookie_t cookie, struct dma_tx_state *txstate)
648 {
649 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
650 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
651 	u32 residue = 0;
652 
653 	if (mxs_chan->status == DMA_IN_PROGRESS &&
654 			mxs_chan->flags & MXS_DMA_SG_LOOP) {
655 		struct mxs_dma_ccw *last_ccw;
656 		u32 bar;
657 
658 		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
659 		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
660 
661 		bar = readl(mxs_dma->base +
662 				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
663 		residue -= bar;
664 	}
665 
666 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
667 			residue);
668 
669 	return mxs_chan->status;
670 }
671 
672 static int mxs_dma_init(struct mxs_dma_engine *mxs_dma)
673 {
674 	int ret;
675 
676 	ret = clk_prepare_enable(mxs_dma->clk);
677 	if (ret)
678 		return ret;
679 
680 	ret = stmp_reset_block(mxs_dma->base);
681 	if (ret)
682 		goto err_out;
683 
684 	/* enable apbh burst */
685 	if (dma_is_apbh(mxs_dma)) {
686 		writel(BM_APBH_CTRL0_APB_BURST_EN,
687 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
688 		writel(BM_APBH_CTRL0_APB_BURST8_EN,
689 			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
690 	}
691 
692 	/* enable irq for all the channels */
693 	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
694 		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
695 
696 err_out:
697 	clk_disable_unprepare(mxs_dma->clk);
698 	return ret;
699 }
700 
701 struct mxs_dma_filter_param {
702 	unsigned int chan_id;
703 };
704 
705 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
706 {
707 	struct mxs_dma_filter_param *param = fn_param;
708 	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
709 	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
710 	int chan_irq;
711 
712 	if (chan->chan_id != param->chan_id)
713 		return false;
714 
715 	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
716 	if (chan_irq < 0)
717 		return false;
718 
719 	mxs_chan->chan_irq = chan_irq;
720 
721 	return true;
722 }
723 
724 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
725 			       struct of_dma *ofdma)
726 {
727 	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
728 	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
729 	struct mxs_dma_filter_param param;
730 
731 	if (dma_spec->args_count != 1)
732 		return NULL;
733 
734 	param.chan_id = dma_spec->args[0];
735 
736 	if (param.chan_id >= mxs_dma->nr_channels)
737 		return NULL;
738 
739 	return __dma_request_channel(&mask, mxs_dma_filter_fn, &param,
740 				     ofdma->of_node);
741 }
742 
743 static int mxs_dma_probe(struct platform_device *pdev)
744 {
745 	struct device_node *np = pdev->dev.of_node;
746 	const struct mxs_dma_type *dma_type;
747 	struct mxs_dma_engine *mxs_dma;
748 	int ret, i;
749 
750 	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
751 	if (!mxs_dma)
752 		return -ENOMEM;
753 
754 	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
755 	if (ret) {
756 		dev_err(&pdev->dev, "failed to read dma-channels\n");
757 		return ret;
758 	}
759 
760 	dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev);
761 	mxs_dma->type = dma_type->type;
762 	mxs_dma->dev_id = dma_type->id;
763 
764 	mxs_dma->base = devm_platform_ioremap_resource(pdev, 0);
765 	if (IS_ERR(mxs_dma->base))
766 		return PTR_ERR(mxs_dma->base);
767 
768 	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
769 	if (IS_ERR(mxs_dma->clk))
770 		return PTR_ERR(mxs_dma->clk);
771 
772 	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
773 	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
774 
775 	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
776 
777 	/* Initialize channel parameters */
778 	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
779 		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
780 
781 		mxs_chan->mxs_dma = mxs_dma;
782 		mxs_chan->chan.device = &mxs_dma->dma_device;
783 		dma_cookie_init(&mxs_chan->chan);
784 
785 		tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet);
786 
787 
788 		/* Add the channel to mxs_chan list */
789 		list_add_tail(&mxs_chan->chan.device_node,
790 			&mxs_dma->dma_device.channels);
791 	}
792 
793 	ret = mxs_dma_init(mxs_dma);
794 	if (ret)
795 		return ret;
796 
797 	mxs_dma->pdev = pdev;
798 	mxs_dma->dma_device.dev = &pdev->dev;
799 
800 	/* mxs_dma gets 65535 bytes maximum sg size */
801 	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
802 
803 	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
804 	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
805 	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
806 	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
807 	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
808 	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
809 	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
810 	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
811 	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
812 	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
813 	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
814 	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
815 	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
816 
817 	ret = dmaenginem_async_device_register(&mxs_dma->dma_device);
818 	if (ret) {
819 		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
820 		return ret;
821 	}
822 
823 	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
824 	if (ret) {
825 		dev_err(mxs_dma->dma_device.dev,
826 			"failed to register controller\n");
827 	}
828 
829 	dev_info(mxs_dma->dma_device.dev, "initialized\n");
830 
831 	return 0;
832 }
833 
834 static struct platform_driver mxs_dma_driver = {
835 	.driver		= {
836 		.name	= "mxs-dma",
837 		.of_match_table = mxs_dma_dt_ids,
838 	},
839 	.probe = mxs_dma_probe,
840 };
841 
842 builtin_platform_driver(mxs_dma_driver);
843