1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved. 4 // 5 // Refer to drivers/dma/imx-sdma.c 6 7 #include <linux/init.h> 8 #include <linux/types.h> 9 #include <linux/mm.h> 10 #include <linux/interrupt.h> 11 #include <linux/clk.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/semaphore.h> 15 #include <linux/device.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/slab.h> 18 #include <linux/platform_device.h> 19 #include <linux/dmaengine.h> 20 #include <linux/delay.h> 21 #include <linux/module.h> 22 #include <linux/stmp_device.h> 23 #include <linux/of.h> 24 #include <linux/of_dma.h> 25 #include <linux/list.h> 26 #include <linux/dma/mxs-dma.h> 27 28 #include <asm/irq.h> 29 30 #include "dmaengine.h" 31 32 /* 33 * NOTE: The term "PIO" throughout the mxs-dma implementation means 34 * PIO mode of mxs apbh-dma and apbx-dma. With this working mode, 35 * dma can program the controller registers of peripheral devices. 36 */ 37 38 #define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH) 39 #define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA) 40 41 #define HW_APBHX_CTRL0 0x000 42 #define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29) 43 #define BM_APBH_CTRL0_APB_BURST_EN (1 << 28) 44 #define BP_APBH_CTRL0_RESET_CHANNEL 16 45 #define HW_APBHX_CTRL1 0x010 46 #define HW_APBHX_CTRL2 0x020 47 #define HW_APBHX_CHANNEL_CTRL 0x030 48 #define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16 49 /* 50 * The offset of NXTCMDAR register is different per both dma type and version, 51 * while stride for each channel is all the same 0x70. 52 */ 53 #define HW_APBHX_CHn_NXTCMDAR(d, n) \ 54 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70) 55 #define HW_APBHX_CHn_SEMA(d, n) \ 56 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70) 57 #define HW_APBHX_CHn_BAR(d, n) \ 58 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70) 59 #define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70) 60 61 /* 62 * ccw bits definitions 63 * 64 * COMMAND: 0..1 (2) 65 * CHAIN: 2 (1) 66 * IRQ: 3 (1) 67 * NAND_LOCK: 4 (1) - not implemented 68 * NAND_WAIT4READY: 5 (1) - not implemented 69 * DEC_SEM: 6 (1) 70 * WAIT4END: 7 (1) 71 * HALT_ON_TERMINATE: 8 (1) 72 * TERMINATE_FLUSH: 9 (1) 73 * RESERVED: 10..11 (2) 74 * PIO_NUM: 12..15 (4) 75 */ 76 #define BP_CCW_COMMAND 0 77 #define BM_CCW_COMMAND (3 << 0) 78 #define CCW_CHAIN (1 << 2) 79 #define CCW_IRQ (1 << 3) 80 #define CCW_WAIT4RDY (1 << 5) 81 #define CCW_DEC_SEM (1 << 6) 82 #define CCW_WAIT4END (1 << 7) 83 #define CCW_HALT_ON_TERM (1 << 8) 84 #define CCW_TERM_FLUSH (1 << 9) 85 #define BP_CCW_PIO_NUM 12 86 #define BM_CCW_PIO_NUM (0xf << 12) 87 88 #define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field) 89 90 #define MXS_DMA_CMD_NO_XFER 0 91 #define MXS_DMA_CMD_WRITE 1 92 #define MXS_DMA_CMD_READ 2 93 #define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */ 94 95 struct mxs_dma_ccw { 96 u32 next; 97 u16 bits; 98 u16 xfer_bytes; 99 #define MAX_XFER_BYTES 0xff00 100 u32 bufaddr; 101 #define MXS_PIO_WORDS 16 102 u32 pio_words[MXS_PIO_WORDS]; 103 }; 104 105 #define CCW_BLOCK_SIZE (4 * PAGE_SIZE) 106 #define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw)) 107 108 struct mxs_dma_chan { 109 struct mxs_dma_engine *mxs_dma; 110 struct dma_chan chan; 111 struct dma_async_tx_descriptor desc; 112 struct tasklet_struct tasklet; 113 unsigned int chan_irq; 114 struct mxs_dma_ccw *ccw; 115 dma_addr_t ccw_phys; 116 int desc_count; 117 enum dma_status status; 118 unsigned int flags; 119 bool reset; 120 #define MXS_DMA_SG_LOOP (1 << 0) 121 #define MXS_DMA_USE_SEMAPHORE (1 << 1) 122 }; 123 124 #define MXS_DMA_CHANNELS 16 125 #define MXS_DMA_CHANNELS_MASK 0xffff 126 127 enum mxs_dma_devtype { 128 MXS_DMA_APBH, 129 MXS_DMA_APBX, 130 }; 131 132 enum mxs_dma_id { 133 IMX23_DMA, 134 IMX28_DMA, 135 }; 136 137 struct mxs_dma_engine { 138 enum mxs_dma_id dev_id; 139 enum mxs_dma_devtype type; 140 void __iomem *base; 141 struct clk *clk; 142 struct dma_device dma_device; 143 struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS]; 144 struct platform_device *pdev; 145 unsigned int nr_channels; 146 }; 147 148 struct mxs_dma_type { 149 enum mxs_dma_id id; 150 enum mxs_dma_devtype type; 151 }; 152 153 static struct mxs_dma_type mxs_dma_types[] = { 154 { 155 .id = IMX23_DMA, 156 .type = MXS_DMA_APBH, 157 }, { 158 .id = IMX23_DMA, 159 .type = MXS_DMA_APBX, 160 }, { 161 .id = IMX28_DMA, 162 .type = MXS_DMA_APBH, 163 }, { 164 .id = IMX28_DMA, 165 .type = MXS_DMA_APBX, 166 } 167 }; 168 169 static const struct of_device_id mxs_dma_dt_ids[] = { 170 { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], }, 171 { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], }, 172 { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], }, 173 { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], }, 174 { /* sentinel */ } 175 }; 176 MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids); 177 178 static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan) 179 { 180 return container_of(chan, struct mxs_dma_chan, chan); 181 } 182 183 static void mxs_dma_reset_chan(struct dma_chan *chan) 184 { 185 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 186 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 187 int chan_id = mxs_chan->chan.chan_id; 188 189 /* 190 * mxs dma channel resets can cause a channel stall. To recover from a 191 * channel stall, we have to reset the whole DMA engine. To avoid this, 192 * we use cyclic DMA with semaphores, that are enhanced in 193 * mxs_dma_int_handler. To reset the channel, we can simply stop writing 194 * into the semaphore counter. 195 */ 196 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && 197 mxs_chan->flags & MXS_DMA_SG_LOOP) { 198 mxs_chan->reset = true; 199 } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) { 200 writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL), 201 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 202 } else { 203 unsigned long elapsed = 0; 204 const unsigned long max_wait = 50000; /* 50ms */ 205 void __iomem *reg_dbg1 = mxs_dma->base + 206 HW_APBX_CHn_DEBUG1(mxs_dma, chan_id); 207 208 /* 209 * On i.MX28 APBX, the DMA channel can stop working if we reset 210 * the channel while it is in READ_FLUSH (0x08) state. 211 * We wait here until we leave the state. Then we trigger the 212 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash 213 * because of this. 214 */ 215 while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) { 216 udelay(100); 217 elapsed += 100; 218 } 219 220 if (elapsed >= max_wait) 221 dev_err(&mxs_chan->mxs_dma->pdev->dev, 222 "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n", 223 chan_id); 224 225 writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL), 226 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); 227 } 228 229 mxs_chan->status = DMA_COMPLETE; 230 } 231 232 static void mxs_dma_enable_chan(struct dma_chan *chan) 233 { 234 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 235 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 236 int chan_id = mxs_chan->chan.chan_id; 237 238 /* set cmd_addr up */ 239 writel(mxs_chan->ccw_phys, 240 mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id)); 241 242 /* write 1 to SEMA to kick off the channel */ 243 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE && 244 mxs_chan->flags & MXS_DMA_SG_LOOP) { 245 /* A cyclic DMA consists of at least 2 segments, so initialize 246 * the semaphore with 2 so we have enough time to add 1 to the 247 * semaphore if we need to */ 248 writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); 249 } else { 250 writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id)); 251 } 252 mxs_chan->reset = false; 253 } 254 255 static void mxs_dma_disable_chan(struct dma_chan *chan) 256 { 257 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 258 259 mxs_chan->status = DMA_COMPLETE; 260 } 261 262 static int mxs_dma_pause_chan(struct dma_chan *chan) 263 { 264 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 265 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 266 int chan_id = mxs_chan->chan.chan_id; 267 268 /* freeze the channel */ 269 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) 270 writel(1 << chan_id, 271 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 272 else 273 writel(1 << chan_id, 274 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET); 275 276 mxs_chan->status = DMA_PAUSED; 277 return 0; 278 } 279 280 static int mxs_dma_resume_chan(struct dma_chan *chan) 281 { 282 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 283 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 284 int chan_id = mxs_chan->chan.chan_id; 285 286 /* unfreeze the channel */ 287 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) 288 writel(1 << chan_id, 289 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR); 290 else 291 writel(1 << chan_id, 292 mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR); 293 294 mxs_chan->status = DMA_IN_PROGRESS; 295 return 0; 296 } 297 298 static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx) 299 { 300 return dma_cookie_assign(tx); 301 } 302 303 static void mxs_dma_tasklet(struct tasklet_struct *t) 304 { 305 struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet); 306 307 dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL); 308 } 309 310 static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq) 311 { 312 int i; 313 314 for (i = 0; i != mxs_dma->nr_channels; ++i) 315 if (mxs_dma->mxs_chans[i].chan_irq == irq) 316 return i; 317 318 return -EINVAL; 319 } 320 321 static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id) 322 { 323 struct mxs_dma_engine *mxs_dma = dev_id; 324 struct mxs_dma_chan *mxs_chan; 325 u32 completed; 326 u32 err; 327 int chan = mxs_dma_irq_to_chan(mxs_dma, irq); 328 329 if (chan < 0) 330 return IRQ_NONE; 331 332 /* completion status */ 333 completed = readl(mxs_dma->base + HW_APBHX_CTRL1); 334 completed = (completed >> chan) & 0x1; 335 336 /* Clear interrupt */ 337 writel((1 << chan), 338 mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR); 339 340 /* error status */ 341 err = readl(mxs_dma->base + HW_APBHX_CTRL2); 342 err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan); 343 344 /* 345 * error status bit is in the upper 16 bits, error irq bit in the lower 346 * 16 bits. We transform it into a simpler error code: 347 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR 348 */ 349 err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan); 350 351 /* Clear error irq */ 352 writel((1 << chan), 353 mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR); 354 355 /* 356 * When both completion and error of termination bits set at the 357 * same time, we do not take it as an error. IOW, it only becomes 358 * an error we need to handle here in case of either it's a bus 359 * error or a termination error with no completion. 0x01 is termination 360 * error, so we can subtract err & completed to get the real error case. 361 */ 362 err -= err & completed; 363 364 mxs_chan = &mxs_dma->mxs_chans[chan]; 365 366 if (err) { 367 dev_dbg(mxs_dma->dma_device.dev, 368 "%s: error in channel %d\n", __func__, 369 chan); 370 mxs_chan->status = DMA_ERROR; 371 mxs_dma_reset_chan(&mxs_chan->chan); 372 } else if (mxs_chan->status != DMA_COMPLETE) { 373 if (mxs_chan->flags & MXS_DMA_SG_LOOP) { 374 mxs_chan->status = DMA_IN_PROGRESS; 375 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE) 376 writel(1, mxs_dma->base + 377 HW_APBHX_CHn_SEMA(mxs_dma, chan)); 378 } else { 379 mxs_chan->status = DMA_COMPLETE; 380 } 381 } 382 383 if (mxs_chan->status == DMA_COMPLETE) { 384 if (mxs_chan->reset) 385 return IRQ_HANDLED; 386 dma_cookie_complete(&mxs_chan->desc); 387 } 388 389 /* schedule tasklet on this channel */ 390 tasklet_schedule(&mxs_chan->tasklet); 391 392 return IRQ_HANDLED; 393 } 394 395 static int mxs_dma_alloc_chan_resources(struct dma_chan *chan) 396 { 397 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 398 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 399 int ret; 400 401 mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev, 402 CCW_BLOCK_SIZE, 403 &mxs_chan->ccw_phys, GFP_KERNEL); 404 if (!mxs_chan->ccw) { 405 ret = -ENOMEM; 406 goto err_alloc; 407 } 408 409 ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler, 410 0, "mxs-dma", mxs_dma); 411 if (ret) 412 goto err_irq; 413 414 ret = clk_prepare_enable(mxs_dma->clk); 415 if (ret) 416 goto err_clk; 417 418 mxs_dma_reset_chan(chan); 419 420 dma_async_tx_descriptor_init(&mxs_chan->desc, chan); 421 mxs_chan->desc.tx_submit = mxs_dma_tx_submit; 422 423 /* the descriptor is ready */ 424 async_tx_ack(&mxs_chan->desc); 425 426 return 0; 427 428 err_clk: 429 free_irq(mxs_chan->chan_irq, mxs_dma); 430 err_irq: 431 dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, 432 mxs_chan->ccw, mxs_chan->ccw_phys); 433 err_alloc: 434 return ret; 435 } 436 437 static void mxs_dma_free_chan_resources(struct dma_chan *chan) 438 { 439 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 440 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 441 442 mxs_dma_disable_chan(chan); 443 444 free_irq(mxs_chan->chan_irq, mxs_dma); 445 446 dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE, 447 mxs_chan->ccw, mxs_chan->ccw_phys); 448 449 clk_disable_unprepare(mxs_dma->clk); 450 } 451 452 /* 453 * How to use the flags for ->device_prep_slave_sg() : 454 * [1] If there is only one DMA command in the DMA chain, the code should be: 455 * ...... 456 * ->device_prep_slave_sg(DMA_CTRL_ACK); 457 * ...... 458 * [2] If there are two DMA commands in the DMA chain, the code should be 459 * ...... 460 * ->device_prep_slave_sg(0); 461 * ...... 462 * ->device_prep_slave_sg(DMA_CTRL_ACK); 463 * ...... 464 * [3] If there are more than two DMA commands in the DMA chain, the code 465 * should be: 466 * ...... 467 * ->device_prep_slave_sg(0); // First 468 * ...... 469 * ->device_prep_slave_sg(DMA_CTRL_ACK]); 470 * ...... 471 * ->device_prep_slave_sg(DMA_CTRL_ACK); // Last 472 * ...... 473 */ 474 static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg( 475 struct dma_chan *chan, struct scatterlist *sgl, 476 unsigned int sg_len, enum dma_transfer_direction direction, 477 unsigned long flags, void *context) 478 { 479 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 480 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 481 struct mxs_dma_ccw *ccw; 482 struct scatterlist *sg; 483 u32 i, j; 484 u32 *pio; 485 int idx = 0; 486 487 if (mxs_chan->status == DMA_IN_PROGRESS) 488 idx = mxs_chan->desc_count; 489 490 if (sg_len + idx > NUM_CCW) { 491 dev_err(mxs_dma->dma_device.dev, 492 "maximum number of sg exceeded: %d > %d\n", 493 sg_len, NUM_CCW); 494 goto err_out; 495 } 496 497 mxs_chan->status = DMA_IN_PROGRESS; 498 mxs_chan->flags = 0; 499 500 /* 501 * If the sg is prepared with append flag set, the sg 502 * will be appended to the last prepared sg. 503 */ 504 if (idx) { 505 BUG_ON(idx < 1); 506 ccw = &mxs_chan->ccw[idx - 1]; 507 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; 508 ccw->bits |= CCW_CHAIN; 509 ccw->bits &= ~CCW_IRQ; 510 ccw->bits &= ~CCW_DEC_SEM; 511 } else { 512 idx = 0; 513 } 514 515 if (direction == DMA_TRANS_NONE) { 516 ccw = &mxs_chan->ccw[idx++]; 517 pio = (u32 *) sgl; 518 519 for (j = 0; j < sg_len;) 520 ccw->pio_words[j++] = *pio++; 521 522 ccw->bits = 0; 523 ccw->bits |= CCW_IRQ; 524 ccw->bits |= CCW_DEC_SEM; 525 if (flags & MXS_DMA_CTRL_WAIT4END) 526 ccw->bits |= CCW_WAIT4END; 527 ccw->bits |= CCW_HALT_ON_TERM; 528 ccw->bits |= CCW_TERM_FLUSH; 529 ccw->bits |= BF_CCW(sg_len, PIO_NUM); 530 ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND); 531 if (flags & MXS_DMA_CTRL_WAIT4RDY) 532 ccw->bits |= CCW_WAIT4RDY; 533 } else { 534 for_each_sg(sgl, sg, sg_len, i) { 535 if (sg_dma_len(sg) > MAX_XFER_BYTES) { 536 dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n", 537 sg_dma_len(sg), MAX_XFER_BYTES); 538 goto err_out; 539 } 540 541 ccw = &mxs_chan->ccw[idx++]; 542 543 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx; 544 ccw->bufaddr = sg->dma_address; 545 ccw->xfer_bytes = sg_dma_len(sg); 546 547 ccw->bits = 0; 548 ccw->bits |= CCW_CHAIN; 549 ccw->bits |= CCW_HALT_ON_TERM; 550 ccw->bits |= CCW_TERM_FLUSH; 551 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? 552 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, 553 COMMAND); 554 555 if (i + 1 == sg_len) { 556 ccw->bits &= ~CCW_CHAIN; 557 ccw->bits |= CCW_IRQ; 558 ccw->bits |= CCW_DEC_SEM; 559 if (flags & MXS_DMA_CTRL_WAIT4END) 560 ccw->bits |= CCW_WAIT4END; 561 } 562 } 563 } 564 mxs_chan->desc_count = idx; 565 566 return &mxs_chan->desc; 567 568 err_out: 569 mxs_chan->status = DMA_ERROR; 570 return NULL; 571 } 572 573 static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic( 574 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 575 size_t period_len, enum dma_transfer_direction direction, 576 unsigned long flags) 577 { 578 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 579 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 580 u32 num_periods = buf_len / period_len; 581 u32 i = 0, buf = 0; 582 583 if (mxs_chan->status == DMA_IN_PROGRESS) 584 return NULL; 585 586 mxs_chan->status = DMA_IN_PROGRESS; 587 mxs_chan->flags |= MXS_DMA_SG_LOOP; 588 mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE; 589 590 if (num_periods > NUM_CCW) { 591 dev_err(mxs_dma->dma_device.dev, 592 "maximum number of sg exceeded: %d > %d\n", 593 num_periods, NUM_CCW); 594 goto err_out; 595 } 596 597 if (period_len > MAX_XFER_BYTES) { 598 dev_err(mxs_dma->dma_device.dev, 599 "maximum period size exceeded: %zu > %d\n", 600 period_len, MAX_XFER_BYTES); 601 goto err_out; 602 } 603 604 while (buf < buf_len) { 605 struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i]; 606 607 if (i + 1 == num_periods) 608 ccw->next = mxs_chan->ccw_phys; 609 else 610 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1); 611 612 ccw->bufaddr = dma_addr; 613 ccw->xfer_bytes = period_len; 614 615 ccw->bits = 0; 616 ccw->bits |= CCW_CHAIN; 617 ccw->bits |= CCW_IRQ; 618 ccw->bits |= CCW_HALT_ON_TERM; 619 ccw->bits |= CCW_TERM_FLUSH; 620 ccw->bits |= CCW_DEC_SEM; 621 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ? 622 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND); 623 624 dma_addr += period_len; 625 buf += period_len; 626 627 i++; 628 } 629 mxs_chan->desc_count = i; 630 631 return &mxs_chan->desc; 632 633 err_out: 634 mxs_chan->status = DMA_ERROR; 635 return NULL; 636 } 637 638 static int mxs_dma_terminate_all(struct dma_chan *chan) 639 { 640 mxs_dma_reset_chan(chan); 641 mxs_dma_disable_chan(chan); 642 643 return 0; 644 } 645 646 static enum dma_status mxs_dma_tx_status(struct dma_chan *chan, 647 dma_cookie_t cookie, struct dma_tx_state *txstate) 648 { 649 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 650 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 651 u32 residue = 0; 652 653 if (mxs_chan->status == DMA_IN_PROGRESS && 654 mxs_chan->flags & MXS_DMA_SG_LOOP) { 655 struct mxs_dma_ccw *last_ccw; 656 u32 bar; 657 658 last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1]; 659 residue = last_ccw->xfer_bytes + last_ccw->bufaddr; 660 661 bar = readl(mxs_dma->base + 662 HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id)); 663 residue -= bar; 664 } 665 666 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 667 residue); 668 669 return mxs_chan->status; 670 } 671 672 static int mxs_dma_init(struct mxs_dma_engine *mxs_dma) 673 { 674 int ret; 675 676 ret = clk_prepare_enable(mxs_dma->clk); 677 if (ret) 678 return ret; 679 680 ret = stmp_reset_block(mxs_dma->base); 681 if (ret) 682 goto err_out; 683 684 /* enable apbh burst */ 685 if (dma_is_apbh(mxs_dma)) { 686 writel(BM_APBH_CTRL0_APB_BURST_EN, 687 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 688 writel(BM_APBH_CTRL0_APB_BURST8_EN, 689 mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET); 690 } 691 692 /* enable irq for all the channels */ 693 writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS, 694 mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET); 695 696 err_out: 697 clk_disable_unprepare(mxs_dma->clk); 698 return ret; 699 } 700 701 struct mxs_dma_filter_param { 702 unsigned int chan_id; 703 }; 704 705 static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param) 706 { 707 struct mxs_dma_filter_param *param = fn_param; 708 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan); 709 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma; 710 int chan_irq; 711 712 if (chan->chan_id != param->chan_id) 713 return false; 714 715 chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id); 716 if (chan_irq < 0) 717 return false; 718 719 mxs_chan->chan_irq = chan_irq; 720 721 return true; 722 } 723 724 static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec, 725 struct of_dma *ofdma) 726 { 727 struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data; 728 dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask; 729 struct mxs_dma_filter_param param; 730 731 if (dma_spec->args_count != 1) 732 return NULL; 733 734 param.chan_id = dma_spec->args[0]; 735 736 if (param.chan_id >= mxs_dma->nr_channels) 737 return NULL; 738 739 return __dma_request_channel(&mask, mxs_dma_filter_fn, ¶m, 740 ofdma->of_node); 741 } 742 743 static int mxs_dma_probe(struct platform_device *pdev) 744 { 745 struct device_node *np = pdev->dev.of_node; 746 const struct mxs_dma_type *dma_type; 747 struct mxs_dma_engine *mxs_dma; 748 int ret, i; 749 750 mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL); 751 if (!mxs_dma) 752 return -ENOMEM; 753 754 ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels); 755 if (ret) { 756 dev_err(&pdev->dev, "failed to read dma-channels\n"); 757 return ret; 758 } 759 760 dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev); 761 mxs_dma->type = dma_type->type; 762 mxs_dma->dev_id = dma_type->id; 763 764 mxs_dma->base = devm_platform_ioremap_resource(pdev, 0); 765 if (IS_ERR(mxs_dma->base)) 766 return PTR_ERR(mxs_dma->base); 767 768 mxs_dma->clk = devm_clk_get(&pdev->dev, NULL); 769 if (IS_ERR(mxs_dma->clk)) 770 return PTR_ERR(mxs_dma->clk); 771 772 dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask); 773 dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask); 774 775 INIT_LIST_HEAD(&mxs_dma->dma_device.channels); 776 777 /* Initialize channel parameters */ 778 for (i = 0; i < MXS_DMA_CHANNELS; i++) { 779 struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i]; 780 781 mxs_chan->mxs_dma = mxs_dma; 782 mxs_chan->chan.device = &mxs_dma->dma_device; 783 dma_cookie_init(&mxs_chan->chan); 784 785 tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet); 786 787 788 /* Add the channel to mxs_chan list */ 789 list_add_tail(&mxs_chan->chan.device_node, 790 &mxs_dma->dma_device.channels); 791 } 792 793 ret = mxs_dma_init(mxs_dma); 794 if (ret) 795 return ret; 796 797 mxs_dma->pdev = pdev; 798 mxs_dma->dma_device.dev = &pdev->dev; 799 800 /* mxs_dma gets 65535 bytes maximum sg size */ 801 dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES); 802 803 mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources; 804 mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources; 805 mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status; 806 mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg; 807 mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic; 808 mxs_dma->dma_device.device_pause = mxs_dma_pause_chan; 809 mxs_dma->dma_device.device_resume = mxs_dma_resume_chan; 810 mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all; 811 mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 812 mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); 813 mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 814 mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 815 mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan; 816 817 ret = dmaenginem_async_device_register(&mxs_dma->dma_device); 818 if (ret) { 819 dev_err(mxs_dma->dma_device.dev, "unable to register\n"); 820 return ret; 821 } 822 823 ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma); 824 if (ret) { 825 dev_err(mxs_dma->dma_device.dev, 826 "failed to register controller\n"); 827 } 828 829 dev_info(mxs_dma->dma_device.dev, "initialized\n"); 830 831 return 0; 832 } 833 834 static struct platform_driver mxs_dma_driver = { 835 .driver = { 836 .name = "mxs-dma", 837 .of_match_table = mxs_dma_dt_ids, 838 }, 839 .probe = mxs_dma_probe, 840 }; 841 842 builtin_platform_driver(mxs_dma_driver); 843