xref: /linux/drivers/dma/mv_xor.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
30 
31 #include "dmaengine.h"
32 #include "mv_xor.h"
33 
34 enum mv_xor_type {
35 	XOR_ORION,
36 	XOR_ARMADA_38X,
37 	XOR_ARMADA_37XX,
38 };
39 
40 enum mv_xor_mode {
41 	XOR_MODE_IN_REG,
42 	XOR_MODE_IN_DESC,
43 };
44 
45 static void mv_xor_issue_pending(struct dma_chan *chan);
46 
47 #define to_mv_xor_chan(chan)		\
48 	container_of(chan, struct mv_xor_chan, dmachan)
49 
50 #define to_mv_xor_slot(tx)		\
51 	container_of(tx, struct mv_xor_desc_slot, async_tx)
52 
53 #define mv_chan_to_devp(chan)           \
54 	((chan)->dmadev.dev)
55 
56 static void mv_desc_init(struct mv_xor_desc_slot *desc,
57 			 dma_addr_t addr, u32 byte_count,
58 			 enum dma_ctrl_flags flags)
59 {
60 	struct mv_xor_desc *hw_desc = desc->hw_desc;
61 
62 	hw_desc->status = XOR_DESC_DMA_OWNED;
63 	hw_desc->phy_next_desc = 0;
64 	/* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 	hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
66 				XOR_DESC_EOD_INT_EN : 0;
67 	hw_desc->phy_dest_addr = addr;
68 	hw_desc->byte_count = byte_count;
69 }
70 
71 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
72 {
73 	struct mv_xor_desc *hw_desc = desc->hw_desc;
74 
75 	switch (desc->type) {
76 	case DMA_XOR:
77 	case DMA_INTERRUPT:
78 		hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
79 		break;
80 	case DMA_MEMCPY:
81 		hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
82 		break;
83 	default:
84 		BUG();
85 		return;
86 	}
87 }
88 
89 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
90 				  u32 next_desc_addr)
91 {
92 	struct mv_xor_desc *hw_desc = desc->hw_desc;
93 	BUG_ON(hw_desc->phy_next_desc);
94 	hw_desc->phy_next_desc = next_desc_addr;
95 }
96 
97 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
98 				 int index, dma_addr_t addr)
99 {
100 	struct mv_xor_desc *hw_desc = desc->hw_desc;
101 	hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
102 	if (desc->type == DMA_XOR)
103 		hw_desc->desc_command |= (1 << index);
104 }
105 
106 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
107 {
108 	return readl_relaxed(XOR_CURR_DESC(chan));
109 }
110 
111 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
112 					u32 next_desc_addr)
113 {
114 	writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
115 }
116 
117 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
118 {
119 	u32 val = readl_relaxed(XOR_INTR_MASK(chan));
120 	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
121 	writel_relaxed(val, XOR_INTR_MASK(chan));
122 }
123 
124 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
125 {
126 	u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
127 	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
128 	return intr_cause;
129 }
130 
131 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
132 {
133 	u32 val;
134 
135 	val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
136 	val = ~(val << (chan->idx * 16));
137 	dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
138 	writel_relaxed(val, XOR_INTR_CAUSE(chan));
139 }
140 
141 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
142 {
143 	u32 val = 0xFFFF0000 >> (chan->idx * 16);
144 	writel_relaxed(val, XOR_INTR_CAUSE(chan));
145 }
146 
147 static void mv_chan_set_mode(struct mv_xor_chan *chan,
148 			     u32 op_mode)
149 {
150 	u32 config = readl_relaxed(XOR_CONFIG(chan));
151 
152 	config &= ~0x7;
153 	config |= op_mode;
154 
155 #if defined(__BIG_ENDIAN)
156 	config |= XOR_DESCRIPTOR_SWAP;
157 #else
158 	config &= ~XOR_DESCRIPTOR_SWAP;
159 #endif
160 
161 	writel_relaxed(config, XOR_CONFIG(chan));
162 }
163 
164 static void mv_chan_activate(struct mv_xor_chan *chan)
165 {
166 	dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
167 
168 	/* writel ensures all descriptors are flushed before activation */
169 	writel(BIT(0), XOR_ACTIVATION(chan));
170 }
171 
172 static char mv_chan_is_busy(struct mv_xor_chan *chan)
173 {
174 	u32 state = readl_relaxed(XOR_ACTIVATION(chan));
175 
176 	state = (state >> 4) & 0x3;
177 
178 	return (state == 1) ? 1 : 0;
179 }
180 
181 /*
182  * mv_chan_start_new_chain - program the engine to operate on new
183  * chain headed by sw_desc
184  * Caller must hold &mv_chan->lock while calling this function
185  */
186 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
187 				    struct mv_xor_desc_slot *sw_desc)
188 {
189 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
190 		__func__, __LINE__, sw_desc);
191 
192 	/* set the hardware chain */
193 	mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
194 
195 	mv_chan->pending++;
196 	mv_xor_issue_pending(&mv_chan->dmachan);
197 }
198 
199 static dma_cookie_t
200 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
201 				struct mv_xor_chan *mv_chan,
202 				dma_cookie_t cookie)
203 {
204 	BUG_ON(desc->async_tx.cookie < 0);
205 
206 	if (desc->async_tx.cookie > 0) {
207 		cookie = desc->async_tx.cookie;
208 
209 		dma_descriptor_unmap(&desc->async_tx);
210 		/* call the callback (must not sleep or submit new
211 		 * operations to this channel)
212 		 */
213 		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
214 	}
215 
216 	/* run dependent operations */
217 	dma_run_dependencies(&desc->async_tx);
218 
219 	return cookie;
220 }
221 
222 static int
223 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
224 {
225 	struct mv_xor_desc_slot *iter, *_iter;
226 
227 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
228 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
229 				 node) {
230 
231 		if (async_tx_test_ack(&iter->async_tx)) {
232 			list_move_tail(&iter->node, &mv_chan->free_slots);
233 			if (!list_empty(&iter->sg_tx_list)) {
234 				list_splice_tail_init(&iter->sg_tx_list,
235 							&mv_chan->free_slots);
236 			}
237 		}
238 	}
239 	return 0;
240 }
241 
242 static int
243 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
244 		   struct mv_xor_chan *mv_chan)
245 {
246 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
247 		__func__, __LINE__, desc, desc->async_tx.flags);
248 
249 	/* the client is allowed to attach dependent operations
250 	 * until 'ack' is set
251 	 */
252 	if (!async_tx_test_ack(&desc->async_tx)) {
253 		/* move this slot to the completed_slots */
254 		list_move_tail(&desc->node, &mv_chan->completed_slots);
255 		if (!list_empty(&desc->sg_tx_list)) {
256 			list_splice_tail_init(&desc->sg_tx_list,
257 					      &mv_chan->completed_slots);
258 		}
259 	} else {
260 		list_move_tail(&desc->node, &mv_chan->free_slots);
261 		if (!list_empty(&desc->sg_tx_list)) {
262 			list_splice_tail_init(&desc->sg_tx_list,
263 					      &mv_chan->free_slots);
264 		}
265 	}
266 
267 	return 0;
268 }
269 
270 /* This function must be called with the mv_xor_chan spinlock held */
271 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
272 {
273 	struct mv_xor_desc_slot *iter, *_iter;
274 	dma_cookie_t cookie = 0;
275 	int busy = mv_chan_is_busy(mv_chan);
276 	u32 current_desc = mv_chan_get_current_desc(mv_chan);
277 	int current_cleaned = 0;
278 	struct mv_xor_desc *hw_desc;
279 
280 	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
281 	dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
282 	mv_chan_clean_completed_slots(mv_chan);
283 
284 	/* free completed slots from the chain starting with
285 	 * the oldest descriptor
286 	 */
287 
288 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
289 				 node) {
290 
291 		/* clean finished descriptors */
292 		hw_desc = iter->hw_desc;
293 		if (hw_desc->status & XOR_DESC_SUCCESS) {
294 			cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
295 								 cookie);
296 
297 			/* done processing desc, clean slot */
298 			mv_desc_clean_slot(iter, mv_chan);
299 
300 			/* break if we did cleaned the current */
301 			if (iter->async_tx.phys == current_desc) {
302 				current_cleaned = 1;
303 				break;
304 			}
305 		} else {
306 			if (iter->async_tx.phys == current_desc) {
307 				current_cleaned = 0;
308 				break;
309 			}
310 		}
311 	}
312 
313 	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
314 		if (current_cleaned) {
315 			/*
316 			 * current descriptor cleaned and removed, run
317 			 * from list head
318 			 */
319 			iter = list_entry(mv_chan->chain.next,
320 					  struct mv_xor_desc_slot,
321 					  node);
322 			mv_chan_start_new_chain(mv_chan, iter);
323 		} else {
324 			if (!list_is_last(&iter->node, &mv_chan->chain)) {
325 				/*
326 				 * descriptors are still waiting after
327 				 * current, trigger them
328 				 */
329 				iter = list_entry(iter->node.next,
330 						  struct mv_xor_desc_slot,
331 						  node);
332 				mv_chan_start_new_chain(mv_chan, iter);
333 			} else {
334 				/*
335 				 * some descriptors are still waiting
336 				 * to be cleaned
337 				 */
338 				tasklet_schedule(&mv_chan->irq_tasklet);
339 			}
340 		}
341 	}
342 
343 	if (cookie > 0)
344 		mv_chan->dmachan.completed_cookie = cookie;
345 }
346 
347 static void mv_xor_tasklet(unsigned long data)
348 {
349 	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
350 
351 	spin_lock(&chan->lock);
352 	mv_chan_slot_cleanup(chan);
353 	spin_unlock(&chan->lock);
354 }
355 
356 static struct mv_xor_desc_slot *
357 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
358 {
359 	struct mv_xor_desc_slot *iter;
360 
361 	spin_lock_bh(&mv_chan->lock);
362 
363 	if (!list_empty(&mv_chan->free_slots)) {
364 		iter = list_first_entry(&mv_chan->free_slots,
365 					struct mv_xor_desc_slot,
366 					node);
367 
368 		list_move_tail(&iter->node, &mv_chan->allocated_slots);
369 
370 		spin_unlock_bh(&mv_chan->lock);
371 
372 		/* pre-ack descriptor */
373 		async_tx_ack(&iter->async_tx);
374 		iter->async_tx.cookie = -EBUSY;
375 
376 		return iter;
377 
378 	}
379 
380 	spin_unlock_bh(&mv_chan->lock);
381 
382 	/* try to free some slots if the allocation fails */
383 	tasklet_schedule(&mv_chan->irq_tasklet);
384 
385 	return NULL;
386 }
387 
388 /************************ DMA engine API functions ****************************/
389 static dma_cookie_t
390 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
391 {
392 	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
393 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
394 	struct mv_xor_desc_slot *old_chain_tail;
395 	dma_cookie_t cookie;
396 	int new_hw_chain = 1;
397 
398 	dev_dbg(mv_chan_to_devp(mv_chan),
399 		"%s sw_desc %p: async_tx %p\n",
400 		__func__, sw_desc, &sw_desc->async_tx);
401 
402 	spin_lock_bh(&mv_chan->lock);
403 	cookie = dma_cookie_assign(tx);
404 
405 	if (list_empty(&mv_chan->chain))
406 		list_move_tail(&sw_desc->node, &mv_chan->chain);
407 	else {
408 		new_hw_chain = 0;
409 
410 		old_chain_tail = list_entry(mv_chan->chain.prev,
411 					    struct mv_xor_desc_slot,
412 					    node);
413 		list_move_tail(&sw_desc->node, &mv_chan->chain);
414 
415 		dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
416 			&old_chain_tail->async_tx.phys);
417 
418 		/* fix up the hardware chain */
419 		mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
420 
421 		/* if the channel is not busy */
422 		if (!mv_chan_is_busy(mv_chan)) {
423 			u32 current_desc = mv_chan_get_current_desc(mv_chan);
424 			/*
425 			 * and the curren desc is the end of the chain before
426 			 * the append, then we need to start the channel
427 			 */
428 			if (current_desc == old_chain_tail->async_tx.phys)
429 				new_hw_chain = 1;
430 		}
431 	}
432 
433 	if (new_hw_chain)
434 		mv_chan_start_new_chain(mv_chan, sw_desc);
435 
436 	spin_unlock_bh(&mv_chan->lock);
437 
438 	return cookie;
439 }
440 
441 /* returns the number of allocated descriptors */
442 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
443 {
444 	void *virt_desc;
445 	dma_addr_t dma_desc;
446 	int idx;
447 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
448 	struct mv_xor_desc_slot *slot = NULL;
449 	int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
450 
451 	/* Allocate descriptor slots */
452 	idx = mv_chan->slots_allocated;
453 	while (idx < num_descs_in_pool) {
454 		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
455 		if (!slot) {
456 			dev_info(mv_chan_to_devp(mv_chan),
457 				 "channel only initialized %d descriptor slots",
458 				 idx);
459 			break;
460 		}
461 		virt_desc = mv_chan->dma_desc_pool_virt;
462 		slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
463 
464 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
465 		slot->async_tx.tx_submit = mv_xor_tx_submit;
466 		INIT_LIST_HEAD(&slot->node);
467 		INIT_LIST_HEAD(&slot->sg_tx_list);
468 		dma_desc = mv_chan->dma_desc_pool;
469 		slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
470 		slot->idx = idx++;
471 
472 		spin_lock_bh(&mv_chan->lock);
473 		mv_chan->slots_allocated = idx;
474 		list_add_tail(&slot->node, &mv_chan->free_slots);
475 		spin_unlock_bh(&mv_chan->lock);
476 	}
477 
478 	dev_dbg(mv_chan_to_devp(mv_chan),
479 		"allocated %d descriptor slots\n",
480 		mv_chan->slots_allocated);
481 
482 	return mv_chan->slots_allocated ? : -ENOMEM;
483 }
484 
485 /*
486  * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
487  * a new MBus window if necessary. Use a cache for these check so that
488  * the MMIO mapped registers don't have to be accessed for this check
489  * to speed up this process.
490  */
491 static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr)
492 {
493 	struct mv_xor_device *xordev = mv_chan->xordev;
494 	void __iomem *base = mv_chan->mmr_high_base;
495 	u32 win_enable;
496 	u32 size;
497 	u8 target, attr;
498 	int ret;
499 	int i;
500 
501 	/* Nothing needs to get done for the Armada 3700 */
502 	if (xordev->xor_type == XOR_ARMADA_37XX)
503 		return 0;
504 
505 	/*
506 	 * Loop over the cached windows to check, if the requested area
507 	 * is already mapped. If this the case, nothing needs to be done
508 	 * and we can return.
509 	 */
510 	for (i = 0; i < WINDOW_COUNT; i++) {
511 		if (addr >= xordev->win_start[i] &&
512 		    addr <= xordev->win_end[i]) {
513 			/* Window is already mapped */
514 			return 0;
515 		}
516 	}
517 
518 	/*
519 	 * The window is not mapped, so we need to create the new mapping
520 	 */
521 
522 	/* If no IO window is found that addr has to be located in SDRAM */
523 	ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr);
524 	if (ret < 0)
525 		return 0;
526 
527 	/*
528 	 * Mask the base addr 'addr' according to 'size' read back from the
529 	 * MBus window. Otherwise we might end up with an address located
530 	 * somewhere in the middle of this area here.
531 	 */
532 	size -= 1;
533 	addr &= ~size;
534 
535 	/*
536 	 * Reading one of both enabled register is enough, as they are always
537 	 * programmed to the identical values
538 	 */
539 	win_enable = readl(base + WINDOW_BAR_ENABLE(0));
540 
541 	/* Set 'i' to the first free window to write the new values to */
542 	i = ffs(~win_enable) - 1;
543 	if (i >= WINDOW_COUNT)
544 		return -ENOMEM;
545 
546 	writel((addr & 0xffff0000) | (attr << 8) | target,
547 	       base + WINDOW_BASE(i));
548 	writel(size & 0xffff0000, base + WINDOW_SIZE(i));
549 
550 	/* Fill the caching variables for later use */
551 	xordev->win_start[i] = addr;
552 	xordev->win_end[i] = addr + size;
553 
554 	win_enable |= (1 << i);
555 	win_enable |= 3 << (16 + (2 * i));
556 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
557 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
558 
559 	return 0;
560 }
561 
562 static struct dma_async_tx_descriptor *
563 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
564 		    unsigned int src_cnt, size_t len, unsigned long flags)
565 {
566 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
567 	struct mv_xor_desc_slot *sw_desc;
568 	int ret;
569 
570 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
571 		return NULL;
572 
573 	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
574 
575 	dev_dbg(mv_chan_to_devp(mv_chan),
576 		"%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
577 		__func__, src_cnt, len, &dest, flags);
578 
579 	/* Check if a new window needs to get added for 'dest' */
580 	ret = mv_xor_add_io_win(mv_chan, dest);
581 	if (ret)
582 		return NULL;
583 
584 	sw_desc = mv_chan_alloc_slot(mv_chan);
585 	if (sw_desc) {
586 		sw_desc->type = DMA_XOR;
587 		sw_desc->async_tx.flags = flags;
588 		mv_desc_init(sw_desc, dest, len, flags);
589 		if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
590 			mv_desc_set_mode(sw_desc);
591 		while (src_cnt--) {
592 			/* Check if a new window needs to get added for 'src' */
593 			ret = mv_xor_add_io_win(mv_chan, src[src_cnt]);
594 			if (ret)
595 				return NULL;
596 			mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
597 		}
598 	}
599 
600 	dev_dbg(mv_chan_to_devp(mv_chan),
601 		"%s sw_desc %p async_tx %p \n",
602 		__func__, sw_desc, &sw_desc->async_tx);
603 	return sw_desc ? &sw_desc->async_tx : NULL;
604 }
605 
606 static struct dma_async_tx_descriptor *
607 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
608 		size_t len, unsigned long flags)
609 {
610 	/*
611 	 * A MEMCPY operation is identical to an XOR operation with only
612 	 * a single source address.
613 	 */
614 	return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
615 }
616 
617 static struct dma_async_tx_descriptor *
618 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
619 {
620 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
621 	dma_addr_t src, dest;
622 	size_t len;
623 
624 	src = mv_chan->dummy_src_addr;
625 	dest = mv_chan->dummy_dst_addr;
626 	len = MV_XOR_MIN_BYTE_COUNT;
627 
628 	/*
629 	 * We implement the DMA_INTERRUPT operation as a minimum sized
630 	 * XOR operation with a single dummy source address.
631 	 */
632 	return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
633 }
634 
635 static void mv_xor_free_chan_resources(struct dma_chan *chan)
636 {
637 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
638 	struct mv_xor_desc_slot *iter, *_iter;
639 	int in_use_descs = 0;
640 
641 	spin_lock_bh(&mv_chan->lock);
642 
643 	mv_chan_slot_cleanup(mv_chan);
644 
645 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
646 					node) {
647 		in_use_descs++;
648 		list_move_tail(&iter->node, &mv_chan->free_slots);
649 	}
650 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
651 				 node) {
652 		in_use_descs++;
653 		list_move_tail(&iter->node, &mv_chan->free_slots);
654 	}
655 	list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
656 				 node) {
657 		in_use_descs++;
658 		list_move_tail(&iter->node, &mv_chan->free_slots);
659 	}
660 	list_for_each_entry_safe_reverse(
661 		iter, _iter, &mv_chan->free_slots, node) {
662 		list_del(&iter->node);
663 		kfree(iter);
664 		mv_chan->slots_allocated--;
665 	}
666 
667 	dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
668 		__func__, mv_chan->slots_allocated);
669 	spin_unlock_bh(&mv_chan->lock);
670 
671 	if (in_use_descs)
672 		dev_err(mv_chan_to_devp(mv_chan),
673 			"freeing %d in use descriptors!\n", in_use_descs);
674 }
675 
676 /**
677  * mv_xor_status - poll the status of an XOR transaction
678  * @chan: XOR channel handle
679  * @cookie: XOR transaction identifier
680  * @txstate: XOR transactions state holder (or NULL)
681  */
682 static enum dma_status mv_xor_status(struct dma_chan *chan,
683 					  dma_cookie_t cookie,
684 					  struct dma_tx_state *txstate)
685 {
686 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
687 	enum dma_status ret;
688 
689 	ret = dma_cookie_status(chan, cookie, txstate);
690 	if (ret == DMA_COMPLETE)
691 		return ret;
692 
693 	spin_lock_bh(&mv_chan->lock);
694 	mv_chan_slot_cleanup(mv_chan);
695 	spin_unlock_bh(&mv_chan->lock);
696 
697 	return dma_cookie_status(chan, cookie, txstate);
698 }
699 
700 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
701 {
702 	u32 val;
703 
704 	val = readl_relaxed(XOR_CONFIG(chan));
705 	dev_err(mv_chan_to_devp(chan), "config       0x%08x\n", val);
706 
707 	val = readl_relaxed(XOR_ACTIVATION(chan));
708 	dev_err(mv_chan_to_devp(chan), "activation   0x%08x\n", val);
709 
710 	val = readl_relaxed(XOR_INTR_CAUSE(chan));
711 	dev_err(mv_chan_to_devp(chan), "intr cause   0x%08x\n", val);
712 
713 	val = readl_relaxed(XOR_INTR_MASK(chan));
714 	dev_err(mv_chan_to_devp(chan), "intr mask    0x%08x\n", val);
715 
716 	val = readl_relaxed(XOR_ERROR_CAUSE(chan));
717 	dev_err(mv_chan_to_devp(chan), "error cause  0x%08x\n", val);
718 
719 	val = readl_relaxed(XOR_ERROR_ADDR(chan));
720 	dev_err(mv_chan_to_devp(chan), "error addr   0x%08x\n", val);
721 }
722 
723 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
724 					  u32 intr_cause)
725 {
726 	if (intr_cause & XOR_INT_ERR_DECODE) {
727 		dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
728 		return;
729 	}
730 
731 	dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
732 		chan->idx, intr_cause);
733 
734 	mv_chan_dump_regs(chan);
735 	WARN_ON(1);
736 }
737 
738 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
739 {
740 	struct mv_xor_chan *chan = data;
741 	u32 intr_cause = mv_chan_get_intr_cause(chan);
742 
743 	dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
744 
745 	if (intr_cause & XOR_INTR_ERRORS)
746 		mv_chan_err_interrupt_handler(chan, intr_cause);
747 
748 	tasklet_schedule(&chan->irq_tasklet);
749 
750 	mv_chan_clear_eoc_cause(chan);
751 
752 	return IRQ_HANDLED;
753 }
754 
755 static void mv_xor_issue_pending(struct dma_chan *chan)
756 {
757 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
758 
759 	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
760 		mv_chan->pending = 0;
761 		mv_chan_activate(mv_chan);
762 	}
763 }
764 
765 /*
766  * Perform a transaction to verify the HW works.
767  */
768 
769 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
770 {
771 	int i, ret;
772 	void *src, *dest;
773 	dma_addr_t src_dma, dest_dma;
774 	struct dma_chan *dma_chan;
775 	dma_cookie_t cookie;
776 	struct dma_async_tx_descriptor *tx;
777 	struct dmaengine_unmap_data *unmap;
778 	int err = 0;
779 
780 	src = kmalloc(PAGE_SIZE, GFP_KERNEL);
781 	if (!src)
782 		return -ENOMEM;
783 
784 	dest = kzalloc(PAGE_SIZE, GFP_KERNEL);
785 	if (!dest) {
786 		kfree(src);
787 		return -ENOMEM;
788 	}
789 
790 	/* Fill in src buffer */
791 	for (i = 0; i < PAGE_SIZE; i++)
792 		((u8 *) src)[i] = (u8)i;
793 
794 	dma_chan = &mv_chan->dmachan;
795 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
796 		err = -ENODEV;
797 		goto out;
798 	}
799 
800 	unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
801 	if (!unmap) {
802 		err = -ENOMEM;
803 		goto free_resources;
804 	}
805 
806 	src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
807 			       offset_in_page(src), PAGE_SIZE,
808 			       DMA_TO_DEVICE);
809 	unmap->addr[0] = src_dma;
810 
811 	ret = dma_mapping_error(dma_chan->device->dev, src_dma);
812 	if (ret) {
813 		err = -ENOMEM;
814 		goto free_resources;
815 	}
816 	unmap->to_cnt = 1;
817 
818 	dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
819 				offset_in_page(dest), PAGE_SIZE,
820 				DMA_FROM_DEVICE);
821 	unmap->addr[1] = dest_dma;
822 
823 	ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
824 	if (ret) {
825 		err = -ENOMEM;
826 		goto free_resources;
827 	}
828 	unmap->from_cnt = 1;
829 	unmap->len = PAGE_SIZE;
830 
831 	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
832 				    PAGE_SIZE, 0);
833 	if (!tx) {
834 		dev_err(dma_chan->device->dev,
835 			"Self-test cannot prepare operation, disabling\n");
836 		err = -ENODEV;
837 		goto free_resources;
838 	}
839 
840 	cookie = mv_xor_tx_submit(tx);
841 	if (dma_submit_error(cookie)) {
842 		dev_err(dma_chan->device->dev,
843 			"Self-test submit error, disabling\n");
844 		err = -ENODEV;
845 		goto free_resources;
846 	}
847 
848 	mv_xor_issue_pending(dma_chan);
849 	async_tx_ack(tx);
850 	msleep(1);
851 
852 	if (mv_xor_status(dma_chan, cookie, NULL) !=
853 	    DMA_COMPLETE) {
854 		dev_err(dma_chan->device->dev,
855 			"Self-test copy timed out, disabling\n");
856 		err = -ENODEV;
857 		goto free_resources;
858 	}
859 
860 	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
861 				PAGE_SIZE, DMA_FROM_DEVICE);
862 	if (memcmp(src, dest, PAGE_SIZE)) {
863 		dev_err(dma_chan->device->dev,
864 			"Self-test copy failed compare, disabling\n");
865 		err = -ENODEV;
866 		goto free_resources;
867 	}
868 
869 free_resources:
870 	dmaengine_unmap_put(unmap);
871 	mv_xor_free_chan_resources(dma_chan);
872 out:
873 	kfree(src);
874 	kfree(dest);
875 	return err;
876 }
877 
878 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
879 static int
880 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
881 {
882 	int i, src_idx, ret;
883 	struct page *dest;
884 	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
885 	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
886 	dma_addr_t dest_dma;
887 	struct dma_async_tx_descriptor *tx;
888 	struct dmaengine_unmap_data *unmap;
889 	struct dma_chan *dma_chan;
890 	dma_cookie_t cookie;
891 	u8 cmp_byte = 0;
892 	u32 cmp_word;
893 	int err = 0;
894 	int src_count = MV_XOR_NUM_SRC_TEST;
895 
896 	for (src_idx = 0; src_idx < src_count; src_idx++) {
897 		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
898 		if (!xor_srcs[src_idx]) {
899 			while (src_idx--)
900 				__free_page(xor_srcs[src_idx]);
901 			return -ENOMEM;
902 		}
903 	}
904 
905 	dest = alloc_page(GFP_KERNEL);
906 	if (!dest) {
907 		while (src_idx--)
908 			__free_page(xor_srcs[src_idx]);
909 		return -ENOMEM;
910 	}
911 
912 	/* Fill in src buffers */
913 	for (src_idx = 0; src_idx < src_count; src_idx++) {
914 		u8 *ptr = page_address(xor_srcs[src_idx]);
915 		for (i = 0; i < PAGE_SIZE; i++)
916 			ptr[i] = (1 << src_idx);
917 	}
918 
919 	for (src_idx = 0; src_idx < src_count; src_idx++)
920 		cmp_byte ^= (u8) (1 << src_idx);
921 
922 	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
923 		(cmp_byte << 8) | cmp_byte;
924 
925 	memset(page_address(dest), 0, PAGE_SIZE);
926 
927 	dma_chan = &mv_chan->dmachan;
928 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
929 		err = -ENODEV;
930 		goto out;
931 	}
932 
933 	unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
934 					 GFP_KERNEL);
935 	if (!unmap) {
936 		err = -ENOMEM;
937 		goto free_resources;
938 	}
939 
940 	/* test xor */
941 	for (i = 0; i < src_count; i++) {
942 		unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
943 					      0, PAGE_SIZE, DMA_TO_DEVICE);
944 		dma_srcs[i] = unmap->addr[i];
945 		ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
946 		if (ret) {
947 			err = -ENOMEM;
948 			goto free_resources;
949 		}
950 		unmap->to_cnt++;
951 	}
952 
953 	unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
954 				      DMA_FROM_DEVICE);
955 	dest_dma = unmap->addr[src_count];
956 	ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
957 	if (ret) {
958 		err = -ENOMEM;
959 		goto free_resources;
960 	}
961 	unmap->from_cnt = 1;
962 	unmap->len = PAGE_SIZE;
963 
964 	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
965 				 src_count, PAGE_SIZE, 0);
966 	if (!tx) {
967 		dev_err(dma_chan->device->dev,
968 			"Self-test cannot prepare operation, disabling\n");
969 		err = -ENODEV;
970 		goto free_resources;
971 	}
972 
973 	cookie = mv_xor_tx_submit(tx);
974 	if (dma_submit_error(cookie)) {
975 		dev_err(dma_chan->device->dev,
976 			"Self-test submit error, disabling\n");
977 		err = -ENODEV;
978 		goto free_resources;
979 	}
980 
981 	mv_xor_issue_pending(dma_chan);
982 	async_tx_ack(tx);
983 	msleep(8);
984 
985 	if (mv_xor_status(dma_chan, cookie, NULL) !=
986 	    DMA_COMPLETE) {
987 		dev_err(dma_chan->device->dev,
988 			"Self-test xor timed out, disabling\n");
989 		err = -ENODEV;
990 		goto free_resources;
991 	}
992 
993 	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
994 				PAGE_SIZE, DMA_FROM_DEVICE);
995 	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
996 		u32 *ptr = page_address(dest);
997 		if (ptr[i] != cmp_word) {
998 			dev_err(dma_chan->device->dev,
999 				"Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
1000 				i, ptr[i], cmp_word);
1001 			err = -ENODEV;
1002 			goto free_resources;
1003 		}
1004 	}
1005 
1006 free_resources:
1007 	dmaengine_unmap_put(unmap);
1008 	mv_xor_free_chan_resources(dma_chan);
1009 out:
1010 	src_idx = src_count;
1011 	while (src_idx--)
1012 		__free_page(xor_srcs[src_idx]);
1013 	__free_page(dest);
1014 	return err;
1015 }
1016 
1017 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1018 {
1019 	struct dma_chan *chan, *_chan;
1020 	struct device *dev = mv_chan->dmadev.dev;
1021 
1022 	dma_async_device_unregister(&mv_chan->dmadev);
1023 
1024 	dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1025 			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1026 	dma_unmap_single(dev, mv_chan->dummy_src_addr,
1027 			 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1028 	dma_unmap_single(dev, mv_chan->dummy_dst_addr,
1029 			 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1030 
1031 	list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1032 				 device_node) {
1033 		list_del(&chan->device_node);
1034 	}
1035 
1036 	free_irq(mv_chan->irq, mv_chan);
1037 
1038 	return 0;
1039 }
1040 
1041 static struct mv_xor_chan *
1042 mv_xor_channel_add(struct mv_xor_device *xordev,
1043 		   struct platform_device *pdev,
1044 		   int idx, dma_cap_mask_t cap_mask, int irq)
1045 {
1046 	int ret = 0;
1047 	struct mv_xor_chan *mv_chan;
1048 	struct dma_device *dma_dev;
1049 
1050 	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1051 	if (!mv_chan)
1052 		return ERR_PTR(-ENOMEM);
1053 
1054 	mv_chan->idx = idx;
1055 	mv_chan->irq = irq;
1056 	if (xordev->xor_type == XOR_ORION)
1057 		mv_chan->op_in_desc = XOR_MODE_IN_REG;
1058 	else
1059 		mv_chan->op_in_desc = XOR_MODE_IN_DESC;
1060 
1061 	dma_dev = &mv_chan->dmadev;
1062 	dma_dev->dev = &pdev->dev;
1063 	mv_chan->xordev = xordev;
1064 
1065 	/*
1066 	 * These source and destination dummy buffers are used to implement
1067 	 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1068 	 * Hence, we only need to map the buffers at initialization-time.
1069 	 */
1070 	mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
1071 		mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1072 	mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
1073 		mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1074 
1075 	/* allocate coherent memory for hardware descriptors
1076 	 * note: writecombine gives slightly better performance, but
1077 	 * requires that we explicitly flush the writes
1078 	 */
1079 	mv_chan->dma_desc_pool_virt =
1080 	  dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
1081 		       GFP_KERNEL);
1082 	if (!mv_chan->dma_desc_pool_virt)
1083 		return ERR_PTR(-ENOMEM);
1084 
1085 	/* discover transaction capabilites from the platform data */
1086 	dma_dev->cap_mask = cap_mask;
1087 
1088 	INIT_LIST_HEAD(&dma_dev->channels);
1089 
1090 	/* set base routines */
1091 	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1092 	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1093 	dma_dev->device_tx_status = mv_xor_status;
1094 	dma_dev->device_issue_pending = mv_xor_issue_pending;
1095 
1096 	/* set prep routines based on capability */
1097 	if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1098 		dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1099 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1100 		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1101 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1102 		dma_dev->max_xor = 8;
1103 		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1104 	}
1105 
1106 	mv_chan->mmr_base = xordev->xor_base;
1107 	mv_chan->mmr_high_base = xordev->xor_high_base;
1108 	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1109 		     mv_chan);
1110 
1111 	/* clear errors before enabling interrupts */
1112 	mv_chan_clear_err_status(mv_chan);
1113 
1114 	ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1115 			  0, dev_name(&pdev->dev), mv_chan);
1116 	if (ret)
1117 		goto err_free_dma;
1118 
1119 	mv_chan_unmask_interrupts(mv_chan);
1120 
1121 	if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1122 		mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1123 	else
1124 		mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1125 
1126 	spin_lock_init(&mv_chan->lock);
1127 	INIT_LIST_HEAD(&mv_chan->chain);
1128 	INIT_LIST_HEAD(&mv_chan->completed_slots);
1129 	INIT_LIST_HEAD(&mv_chan->free_slots);
1130 	INIT_LIST_HEAD(&mv_chan->allocated_slots);
1131 	mv_chan->dmachan.device = dma_dev;
1132 	dma_cookie_init(&mv_chan->dmachan);
1133 
1134 	list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1135 
1136 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1137 		ret = mv_chan_memcpy_self_test(mv_chan);
1138 		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1139 		if (ret)
1140 			goto err_free_irq;
1141 	}
1142 
1143 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1144 		ret = mv_chan_xor_self_test(mv_chan);
1145 		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1146 		if (ret)
1147 			goto err_free_irq;
1148 	}
1149 
1150 	dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n",
1151 		 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1152 		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1153 		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1154 		 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1155 
1156 	ret = dma_async_device_register(dma_dev);
1157 	if (ret)
1158 		goto err_free_irq;
1159 
1160 	return mv_chan;
1161 
1162 err_free_irq:
1163 	free_irq(mv_chan->irq, mv_chan);
1164 err_free_dma:
1165 	dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1166 			  mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1167 	return ERR_PTR(ret);
1168 }
1169 
1170 static void
1171 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1172 			 const struct mbus_dram_target_info *dram)
1173 {
1174 	void __iomem *base = xordev->xor_high_base;
1175 	u32 win_enable = 0;
1176 	int i;
1177 
1178 	for (i = 0; i < 8; i++) {
1179 		writel(0, base + WINDOW_BASE(i));
1180 		writel(0, base + WINDOW_SIZE(i));
1181 		if (i < 4)
1182 			writel(0, base + WINDOW_REMAP_HIGH(i));
1183 	}
1184 
1185 	for (i = 0; i < dram->num_cs; i++) {
1186 		const struct mbus_dram_window *cs = dram->cs + i;
1187 
1188 		writel((cs->base & 0xffff0000) |
1189 		       (cs->mbus_attr << 8) |
1190 		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1191 		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1192 
1193 		/* Fill the caching variables for later use */
1194 		xordev->win_start[i] = cs->base;
1195 		xordev->win_end[i] = cs->base + cs->size - 1;
1196 
1197 		win_enable |= (1 << i);
1198 		win_enable |= 3 << (16 + (2 * i));
1199 	}
1200 
1201 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1202 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1203 	writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1204 	writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1205 }
1206 
1207 static void
1208 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev)
1209 {
1210 	void __iomem *base = xordev->xor_high_base;
1211 	u32 win_enable = 0;
1212 	int i;
1213 
1214 	for (i = 0; i < 8; i++) {
1215 		writel(0, base + WINDOW_BASE(i));
1216 		writel(0, base + WINDOW_SIZE(i));
1217 		if (i < 4)
1218 			writel(0, base + WINDOW_REMAP_HIGH(i));
1219 	}
1220 	/*
1221 	 * For Armada3700 open default 4GB Mbus window. The dram
1222 	 * related configuration are done at AXIS level.
1223 	 */
1224 	writel(0xffff0000, base + WINDOW_SIZE(0));
1225 	win_enable |= 1;
1226 	win_enable |= 3 << 16;
1227 
1228 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1229 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1230 	writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1231 	writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1232 }
1233 
1234 /*
1235  * Since this XOR driver is basically used only for RAID5, we don't
1236  * need to care about synchronizing ->suspend with DMA activity,
1237  * because the DMA engine will naturally be quiet due to the block
1238  * devices being suspended.
1239  */
1240 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1241 {
1242 	struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1243 	int i;
1244 
1245 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1246 		struct mv_xor_chan *mv_chan = xordev->channels[i];
1247 
1248 		if (!mv_chan)
1249 			continue;
1250 
1251 		mv_chan->saved_config_reg =
1252 			readl_relaxed(XOR_CONFIG(mv_chan));
1253 		mv_chan->saved_int_mask_reg =
1254 			readl_relaxed(XOR_INTR_MASK(mv_chan));
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static int mv_xor_resume(struct platform_device *dev)
1261 {
1262 	struct mv_xor_device *xordev = platform_get_drvdata(dev);
1263 	const struct mbus_dram_target_info *dram;
1264 	int i;
1265 
1266 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1267 		struct mv_xor_chan *mv_chan = xordev->channels[i];
1268 
1269 		if (!mv_chan)
1270 			continue;
1271 
1272 		writel_relaxed(mv_chan->saved_config_reg,
1273 			       XOR_CONFIG(mv_chan));
1274 		writel_relaxed(mv_chan->saved_int_mask_reg,
1275 			       XOR_INTR_MASK(mv_chan));
1276 	}
1277 
1278 	if (xordev->xor_type == XOR_ARMADA_37XX) {
1279 		mv_xor_conf_mbus_windows_a3700(xordev);
1280 		return 0;
1281 	}
1282 
1283 	dram = mv_mbus_dram_info();
1284 	if (dram)
1285 		mv_xor_conf_mbus_windows(xordev, dram);
1286 
1287 	return 0;
1288 }
1289 
1290 static const struct of_device_id mv_xor_dt_ids[] = {
1291 	{ .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION },
1292 	{ .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X },
1293 	{ .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX },
1294 	{},
1295 };
1296 
1297 static unsigned int mv_xor_engine_count;
1298 
1299 static int mv_xor_probe(struct platform_device *pdev)
1300 {
1301 	const struct mbus_dram_target_info *dram;
1302 	struct mv_xor_device *xordev;
1303 	struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1304 	struct resource *res;
1305 	unsigned int max_engines, max_channels;
1306 	int i, ret;
1307 
1308 	dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1309 
1310 	xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1311 	if (!xordev)
1312 		return -ENOMEM;
1313 
1314 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1315 	if (!res)
1316 		return -ENODEV;
1317 
1318 	xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1319 					resource_size(res));
1320 	if (!xordev->xor_base)
1321 		return -EBUSY;
1322 
1323 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1324 	if (!res)
1325 		return -ENODEV;
1326 
1327 	xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1328 					     resource_size(res));
1329 	if (!xordev->xor_high_base)
1330 		return -EBUSY;
1331 
1332 	platform_set_drvdata(pdev, xordev);
1333 
1334 
1335 	/*
1336 	 * We need to know which type of XOR device we use before
1337 	 * setting up. In non-dt case it can only be the legacy one.
1338 	 */
1339 	xordev->xor_type = XOR_ORION;
1340 	if (pdev->dev.of_node) {
1341 		const struct of_device_id *of_id =
1342 			of_match_device(mv_xor_dt_ids,
1343 					&pdev->dev);
1344 
1345 		xordev->xor_type = (uintptr_t)of_id->data;
1346 	}
1347 
1348 	/*
1349 	 * (Re-)program MBUS remapping windows if we are asked to.
1350 	 */
1351 	if (xordev->xor_type == XOR_ARMADA_37XX) {
1352 		mv_xor_conf_mbus_windows_a3700(xordev);
1353 	} else {
1354 		dram = mv_mbus_dram_info();
1355 		if (dram)
1356 			mv_xor_conf_mbus_windows(xordev, dram);
1357 	}
1358 
1359 	/* Not all platforms can gate the clock, so it is not
1360 	 * an error if the clock does not exists.
1361 	 */
1362 	xordev->clk = clk_get(&pdev->dev, NULL);
1363 	if (!IS_ERR(xordev->clk))
1364 		clk_prepare_enable(xordev->clk);
1365 
1366 	/*
1367 	 * We don't want to have more than one channel per CPU in
1368 	 * order for async_tx to perform well. So we limit the number
1369 	 * of engines and channels so that we take into account this
1370 	 * constraint. Note that we also want to use channels from
1371 	 * separate engines when possible.  For dual-CPU Armada 3700
1372 	 * SoC with single XOR engine allow using its both channels.
1373 	 */
1374 	max_engines = num_present_cpus();
1375 	if (xordev->xor_type == XOR_ARMADA_37XX)
1376 		max_channels =	num_present_cpus();
1377 	else
1378 		max_channels = min_t(unsigned int,
1379 				     MV_XOR_MAX_CHANNELS,
1380 				     DIV_ROUND_UP(num_present_cpus(), 2));
1381 
1382 	if (mv_xor_engine_count >= max_engines)
1383 		return 0;
1384 
1385 	if (pdev->dev.of_node) {
1386 		struct device_node *np;
1387 		int i = 0;
1388 
1389 		for_each_child_of_node(pdev->dev.of_node, np) {
1390 			struct mv_xor_chan *chan;
1391 			dma_cap_mask_t cap_mask;
1392 			int irq;
1393 
1394 			if (i >= max_channels)
1395 				continue;
1396 
1397 			dma_cap_zero(cap_mask);
1398 			dma_cap_set(DMA_MEMCPY, cap_mask);
1399 			dma_cap_set(DMA_XOR, cap_mask);
1400 			dma_cap_set(DMA_INTERRUPT, cap_mask);
1401 
1402 			irq = irq_of_parse_and_map(np, 0);
1403 			if (!irq) {
1404 				ret = -ENODEV;
1405 				goto err_channel_add;
1406 			}
1407 
1408 			chan = mv_xor_channel_add(xordev, pdev, i,
1409 						  cap_mask, irq);
1410 			if (IS_ERR(chan)) {
1411 				ret = PTR_ERR(chan);
1412 				irq_dispose_mapping(irq);
1413 				goto err_channel_add;
1414 			}
1415 
1416 			xordev->channels[i] = chan;
1417 			i++;
1418 		}
1419 	} else if (pdata && pdata->channels) {
1420 		for (i = 0; i < max_channels; i++) {
1421 			struct mv_xor_channel_data *cd;
1422 			struct mv_xor_chan *chan;
1423 			int irq;
1424 
1425 			cd = &pdata->channels[i];
1426 			irq = platform_get_irq(pdev, i);
1427 			if (irq < 0) {
1428 				ret = irq;
1429 				goto err_channel_add;
1430 			}
1431 
1432 			chan = mv_xor_channel_add(xordev, pdev, i,
1433 						  cd->cap_mask, irq);
1434 			if (IS_ERR(chan)) {
1435 				ret = PTR_ERR(chan);
1436 				goto err_channel_add;
1437 			}
1438 
1439 			xordev->channels[i] = chan;
1440 		}
1441 	}
1442 
1443 	return 0;
1444 
1445 err_channel_add:
1446 	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1447 		if (xordev->channels[i]) {
1448 			mv_xor_channel_remove(xordev->channels[i]);
1449 			if (pdev->dev.of_node)
1450 				irq_dispose_mapping(xordev->channels[i]->irq);
1451 		}
1452 
1453 	if (!IS_ERR(xordev->clk)) {
1454 		clk_disable_unprepare(xordev->clk);
1455 		clk_put(xordev->clk);
1456 	}
1457 
1458 	return ret;
1459 }
1460 
1461 static struct platform_driver mv_xor_driver = {
1462 	.probe		= mv_xor_probe,
1463 	.suspend        = mv_xor_suspend,
1464 	.resume         = mv_xor_resume,
1465 	.driver		= {
1466 		.name	        = MV_XOR_NAME,
1467 		.of_match_table = of_match_ptr(mv_xor_dt_ids),
1468 	},
1469 };
1470 
1471 builtin_platform_driver(mv_xor_driver);
1472 
1473 /*
1474 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1475 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1476 MODULE_LICENSE("GPL");
1477 */
1478