xref: /linux/drivers/dma/mv_xor.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * offload engine driver for the Marvell XOR engine
3  * Copyright (C) 2007, 2008, Marvell International Ltd.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/memory.h>
28 #include <plat/mv_xor.h>
29 #include "mv_xor.h"
30 
31 static void mv_xor_issue_pending(struct dma_chan *chan);
32 
33 #define to_mv_xor_chan(chan)		\
34 	container_of(chan, struct mv_xor_chan, common)
35 
36 #define to_mv_xor_device(dev)		\
37 	container_of(dev, struct mv_xor_device, common)
38 
39 #define to_mv_xor_slot(tx)		\
40 	container_of(tx, struct mv_xor_desc_slot, async_tx)
41 
42 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
43 {
44 	struct mv_xor_desc *hw_desc = desc->hw_desc;
45 
46 	hw_desc->status = (1 << 31);
47 	hw_desc->phy_next_desc = 0;
48 	hw_desc->desc_command = (1 << 31);
49 }
50 
51 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
52 {
53 	struct mv_xor_desc *hw_desc = desc->hw_desc;
54 	return hw_desc->phy_dest_addr;
55 }
56 
57 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
58 				int src_idx)
59 {
60 	struct mv_xor_desc *hw_desc = desc->hw_desc;
61 	return hw_desc->phy_src_addr[src_idx];
62 }
63 
64 
65 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
66 				   u32 byte_count)
67 {
68 	struct mv_xor_desc *hw_desc = desc->hw_desc;
69 	hw_desc->byte_count = byte_count;
70 }
71 
72 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
73 				  u32 next_desc_addr)
74 {
75 	struct mv_xor_desc *hw_desc = desc->hw_desc;
76 	BUG_ON(hw_desc->phy_next_desc);
77 	hw_desc->phy_next_desc = next_desc_addr;
78 }
79 
80 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
81 {
82 	struct mv_xor_desc *hw_desc = desc->hw_desc;
83 	hw_desc->phy_next_desc = 0;
84 }
85 
86 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
87 {
88 	desc->value = val;
89 }
90 
91 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
92 				  dma_addr_t addr)
93 {
94 	struct mv_xor_desc *hw_desc = desc->hw_desc;
95 	hw_desc->phy_dest_addr = addr;
96 }
97 
98 static int mv_chan_memset_slot_count(size_t len)
99 {
100 	return 1;
101 }
102 
103 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
104 
105 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
106 				 int index, dma_addr_t addr)
107 {
108 	struct mv_xor_desc *hw_desc = desc->hw_desc;
109 	hw_desc->phy_src_addr[index] = addr;
110 	if (desc->type == DMA_XOR)
111 		hw_desc->desc_command |= (1 << index);
112 }
113 
114 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
115 {
116 	return __raw_readl(XOR_CURR_DESC(chan));
117 }
118 
119 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
120 					u32 next_desc_addr)
121 {
122 	__raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
123 }
124 
125 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
126 {
127 	__raw_writel(desc_addr, XOR_DEST_POINTER(chan));
128 }
129 
130 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
131 {
132 	__raw_writel(block_size, XOR_BLOCK_SIZE(chan));
133 }
134 
135 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
136 {
137 	__raw_writel(value, XOR_INIT_VALUE_LOW(chan));
138 	__raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
139 }
140 
141 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
142 {
143 	u32 val = __raw_readl(XOR_INTR_MASK(chan));
144 	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
145 	__raw_writel(val, XOR_INTR_MASK(chan));
146 }
147 
148 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
149 {
150 	u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
151 	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
152 	return intr_cause;
153 }
154 
155 static int mv_is_err_intr(u32 intr_cause)
156 {
157 	if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
158 		return 1;
159 
160 	return 0;
161 }
162 
163 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
164 {
165 	u32 val = (1 << (1 + (chan->idx * 16)));
166 	dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
167 	__raw_writel(val, XOR_INTR_CAUSE(chan));
168 }
169 
170 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
171 {
172 	u32 val = 0xFFFF0000 >> (chan->idx * 16);
173 	__raw_writel(val, XOR_INTR_CAUSE(chan));
174 }
175 
176 static int mv_can_chain(struct mv_xor_desc_slot *desc)
177 {
178 	struct mv_xor_desc_slot *chain_old_tail = list_entry(
179 		desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
180 
181 	if (chain_old_tail->type != desc->type)
182 		return 0;
183 	if (desc->type == DMA_MEMSET)
184 		return 0;
185 
186 	return 1;
187 }
188 
189 static void mv_set_mode(struct mv_xor_chan *chan,
190 			       enum dma_transaction_type type)
191 {
192 	u32 op_mode;
193 	u32 config = __raw_readl(XOR_CONFIG(chan));
194 
195 	switch (type) {
196 	case DMA_XOR:
197 		op_mode = XOR_OPERATION_MODE_XOR;
198 		break;
199 	case DMA_MEMCPY:
200 		op_mode = XOR_OPERATION_MODE_MEMCPY;
201 		break;
202 	case DMA_MEMSET:
203 		op_mode = XOR_OPERATION_MODE_MEMSET;
204 		break;
205 	default:
206 		dev_printk(KERN_ERR, chan->device->common.dev,
207 			   "error: unsupported operation %d.\n",
208 			   type);
209 		BUG();
210 		return;
211 	}
212 
213 	config &= ~0x7;
214 	config |= op_mode;
215 	__raw_writel(config, XOR_CONFIG(chan));
216 	chan->current_type = type;
217 }
218 
219 static void mv_chan_activate(struct mv_xor_chan *chan)
220 {
221 	u32 activation;
222 
223 	dev_dbg(chan->device->common.dev, " activate chan.\n");
224 	activation = __raw_readl(XOR_ACTIVATION(chan));
225 	activation |= 0x1;
226 	__raw_writel(activation, XOR_ACTIVATION(chan));
227 }
228 
229 static char mv_chan_is_busy(struct mv_xor_chan *chan)
230 {
231 	u32 state = __raw_readl(XOR_ACTIVATION(chan));
232 
233 	state = (state >> 4) & 0x3;
234 
235 	return (state == 1) ? 1 : 0;
236 }
237 
238 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
239 {
240 	return 1;
241 }
242 
243 /**
244  * mv_xor_free_slots - flags descriptor slots for reuse
245  * @slot: Slot to free
246  * Caller must hold &mv_chan->lock while calling this function
247  */
248 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
249 			      struct mv_xor_desc_slot *slot)
250 {
251 	dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
252 		__func__, __LINE__, slot);
253 
254 	slot->slots_per_op = 0;
255 
256 }
257 
258 /*
259  * mv_xor_start_new_chain - program the engine to operate on new chain headed by
260  * sw_desc
261  * Caller must hold &mv_chan->lock while calling this function
262  */
263 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
264 				   struct mv_xor_desc_slot *sw_desc)
265 {
266 	dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
267 		__func__, __LINE__, sw_desc);
268 	if (sw_desc->type != mv_chan->current_type)
269 		mv_set_mode(mv_chan, sw_desc->type);
270 
271 	if (sw_desc->type == DMA_MEMSET) {
272 		/* for memset requests we need to program the engine, no
273 		 * descriptors used.
274 		 */
275 		struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
276 		mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
277 		mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
278 		mv_chan_set_value(mv_chan, sw_desc->value);
279 	} else {
280 		/* set the hardware chain */
281 		mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
282 	}
283 	mv_chan->pending += sw_desc->slot_cnt;
284 	mv_xor_issue_pending(&mv_chan->common);
285 }
286 
287 static dma_cookie_t
288 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
289 	struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
290 {
291 	BUG_ON(desc->async_tx.cookie < 0);
292 
293 	if (desc->async_tx.cookie > 0) {
294 		cookie = desc->async_tx.cookie;
295 
296 		/* call the callback (must not sleep or submit new
297 		 * operations to this channel)
298 		 */
299 		if (desc->async_tx.callback)
300 			desc->async_tx.callback(
301 				desc->async_tx.callback_param);
302 
303 		/* unmap dma addresses
304 		 * (unmap_single vs unmap_page?)
305 		 */
306 		if (desc->group_head && desc->unmap_len) {
307 			struct mv_xor_desc_slot *unmap = desc->group_head;
308 			struct device *dev =
309 				&mv_chan->device->pdev->dev;
310 			u32 len = unmap->unmap_len;
311 			enum dma_ctrl_flags flags = desc->async_tx.flags;
312 			u32 src_cnt;
313 			dma_addr_t addr;
314 			dma_addr_t dest;
315 
316 			src_cnt = unmap->unmap_src_cnt;
317 			dest = mv_desc_get_dest_addr(unmap);
318 			if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
319 				enum dma_data_direction dir;
320 
321 				if (src_cnt > 1) /* is xor ? */
322 					dir = DMA_BIDIRECTIONAL;
323 				else
324 					dir = DMA_FROM_DEVICE;
325 				dma_unmap_page(dev, dest, len, dir);
326 			}
327 
328 			if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
329 				while (src_cnt--) {
330 					addr = mv_desc_get_src_addr(unmap,
331 								    src_cnt);
332 					if (addr == dest)
333 						continue;
334 					dma_unmap_page(dev, addr, len,
335 						       DMA_TO_DEVICE);
336 				}
337 			}
338 			desc->group_head = NULL;
339 		}
340 	}
341 
342 	/* run dependent operations */
343 	dma_run_dependencies(&desc->async_tx);
344 
345 	return cookie;
346 }
347 
348 static int
349 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
350 {
351 	struct mv_xor_desc_slot *iter, *_iter;
352 
353 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
354 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
355 				 completed_node) {
356 
357 		if (async_tx_test_ack(&iter->async_tx)) {
358 			list_del(&iter->completed_node);
359 			mv_xor_free_slots(mv_chan, iter);
360 		}
361 	}
362 	return 0;
363 }
364 
365 static int
366 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
367 	struct mv_xor_chan *mv_chan)
368 {
369 	dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
370 		__func__, __LINE__, desc, desc->async_tx.flags);
371 	list_del(&desc->chain_node);
372 	/* the client is allowed to attach dependent operations
373 	 * until 'ack' is set
374 	 */
375 	if (!async_tx_test_ack(&desc->async_tx)) {
376 		/* move this slot to the completed_slots */
377 		list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
378 		return 0;
379 	}
380 
381 	mv_xor_free_slots(mv_chan, desc);
382 	return 0;
383 }
384 
385 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
386 {
387 	struct mv_xor_desc_slot *iter, *_iter;
388 	dma_cookie_t cookie = 0;
389 	int busy = mv_chan_is_busy(mv_chan);
390 	u32 current_desc = mv_chan_get_current_desc(mv_chan);
391 	int seen_current = 0;
392 
393 	dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
394 	dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
395 	mv_xor_clean_completed_slots(mv_chan);
396 
397 	/* free completed slots from the chain starting with
398 	 * the oldest descriptor
399 	 */
400 
401 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
402 					chain_node) {
403 		prefetch(_iter);
404 		prefetch(&_iter->async_tx);
405 
406 		/* do not advance past the current descriptor loaded into the
407 		 * hardware channel, subsequent descriptors are either in
408 		 * process or have not been submitted
409 		 */
410 		if (seen_current)
411 			break;
412 
413 		/* stop the search if we reach the current descriptor and the
414 		 * channel is busy
415 		 */
416 		if (iter->async_tx.phys == current_desc) {
417 			seen_current = 1;
418 			if (busy)
419 				break;
420 		}
421 
422 		cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
423 
424 		if (mv_xor_clean_slot(iter, mv_chan))
425 			break;
426 	}
427 
428 	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
429 		struct mv_xor_desc_slot *chain_head;
430 		chain_head = list_entry(mv_chan->chain.next,
431 					struct mv_xor_desc_slot,
432 					chain_node);
433 
434 		mv_xor_start_new_chain(mv_chan, chain_head);
435 	}
436 
437 	if (cookie > 0)
438 		mv_chan->completed_cookie = cookie;
439 }
440 
441 static void
442 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
443 {
444 	spin_lock_bh(&mv_chan->lock);
445 	__mv_xor_slot_cleanup(mv_chan);
446 	spin_unlock_bh(&mv_chan->lock);
447 }
448 
449 static void mv_xor_tasklet(unsigned long data)
450 {
451 	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
452 	__mv_xor_slot_cleanup(chan);
453 }
454 
455 static struct mv_xor_desc_slot *
456 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
457 		    int slots_per_op)
458 {
459 	struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
460 	LIST_HEAD(chain);
461 	int slots_found, retry = 0;
462 
463 	/* start search from the last allocated descrtiptor
464 	 * if a contiguous allocation can not be found start searching
465 	 * from the beginning of the list
466 	 */
467 retry:
468 	slots_found = 0;
469 	if (retry == 0)
470 		iter = mv_chan->last_used;
471 	else
472 		iter = list_entry(&mv_chan->all_slots,
473 			struct mv_xor_desc_slot,
474 			slot_node);
475 
476 	list_for_each_entry_safe_continue(
477 		iter, _iter, &mv_chan->all_slots, slot_node) {
478 		prefetch(_iter);
479 		prefetch(&_iter->async_tx);
480 		if (iter->slots_per_op) {
481 			/* give up after finding the first busy slot
482 			 * on the second pass through the list
483 			 */
484 			if (retry)
485 				break;
486 
487 			slots_found = 0;
488 			continue;
489 		}
490 
491 		/* start the allocation if the slot is correctly aligned */
492 		if (!slots_found++)
493 			alloc_start = iter;
494 
495 		if (slots_found == num_slots) {
496 			struct mv_xor_desc_slot *alloc_tail = NULL;
497 			struct mv_xor_desc_slot *last_used = NULL;
498 			iter = alloc_start;
499 			while (num_slots) {
500 				int i;
501 
502 				/* pre-ack all but the last descriptor */
503 				async_tx_ack(&iter->async_tx);
504 
505 				list_add_tail(&iter->chain_node, &chain);
506 				alloc_tail = iter;
507 				iter->async_tx.cookie = 0;
508 				iter->slot_cnt = num_slots;
509 				iter->xor_check_result = NULL;
510 				for (i = 0; i < slots_per_op; i++) {
511 					iter->slots_per_op = slots_per_op - i;
512 					last_used = iter;
513 					iter = list_entry(iter->slot_node.next,
514 						struct mv_xor_desc_slot,
515 						slot_node);
516 				}
517 				num_slots -= slots_per_op;
518 			}
519 			alloc_tail->group_head = alloc_start;
520 			alloc_tail->async_tx.cookie = -EBUSY;
521 			list_splice(&chain, &alloc_tail->tx_list);
522 			mv_chan->last_used = last_used;
523 			mv_desc_clear_next_desc(alloc_start);
524 			mv_desc_clear_next_desc(alloc_tail);
525 			return alloc_tail;
526 		}
527 	}
528 	if (!retry++)
529 		goto retry;
530 
531 	/* try to free some slots if the allocation fails */
532 	tasklet_schedule(&mv_chan->irq_tasklet);
533 
534 	return NULL;
535 }
536 
537 static dma_cookie_t
538 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
539 		      struct mv_xor_desc_slot *desc)
540 {
541 	dma_cookie_t cookie = mv_chan->common.cookie;
542 
543 	if (++cookie < 0)
544 		cookie = 1;
545 	mv_chan->common.cookie = desc->async_tx.cookie = cookie;
546 	return cookie;
547 }
548 
549 /************************ DMA engine API functions ****************************/
550 static dma_cookie_t
551 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
552 {
553 	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
554 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
555 	struct mv_xor_desc_slot *grp_start, *old_chain_tail;
556 	dma_cookie_t cookie;
557 	int new_hw_chain = 1;
558 
559 	dev_dbg(mv_chan->device->common.dev,
560 		"%s sw_desc %p: async_tx %p\n",
561 		__func__, sw_desc, &sw_desc->async_tx);
562 
563 	grp_start = sw_desc->group_head;
564 
565 	spin_lock_bh(&mv_chan->lock);
566 	cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
567 
568 	if (list_empty(&mv_chan->chain))
569 		list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
570 	else {
571 		new_hw_chain = 0;
572 
573 		old_chain_tail = list_entry(mv_chan->chain.prev,
574 					    struct mv_xor_desc_slot,
575 					    chain_node);
576 		list_splice_init(&grp_start->tx_list,
577 				 &old_chain_tail->chain_node);
578 
579 		if (!mv_can_chain(grp_start))
580 			goto submit_done;
581 
582 		dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
583 			old_chain_tail->async_tx.phys);
584 
585 		/* fix up the hardware chain */
586 		mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
587 
588 		/* if the channel is not busy */
589 		if (!mv_chan_is_busy(mv_chan)) {
590 			u32 current_desc = mv_chan_get_current_desc(mv_chan);
591 			/*
592 			 * and the curren desc is the end of the chain before
593 			 * the append, then we need to start the channel
594 			 */
595 			if (current_desc == old_chain_tail->async_tx.phys)
596 				new_hw_chain = 1;
597 		}
598 	}
599 
600 	if (new_hw_chain)
601 		mv_xor_start_new_chain(mv_chan, grp_start);
602 
603 submit_done:
604 	spin_unlock_bh(&mv_chan->lock);
605 
606 	return cookie;
607 }
608 
609 /* returns the number of allocated descriptors */
610 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
611 {
612 	char *hw_desc;
613 	int idx;
614 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
615 	struct mv_xor_desc_slot *slot = NULL;
616 	struct mv_xor_platform_data *plat_data =
617 		mv_chan->device->pdev->dev.platform_data;
618 	int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
619 
620 	/* Allocate descriptor slots */
621 	idx = mv_chan->slots_allocated;
622 	while (idx < num_descs_in_pool) {
623 		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
624 		if (!slot) {
625 			printk(KERN_INFO "MV XOR Channel only initialized"
626 				" %d descriptor slots", idx);
627 			break;
628 		}
629 		hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
630 		slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
631 
632 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
633 		slot->async_tx.tx_submit = mv_xor_tx_submit;
634 		INIT_LIST_HEAD(&slot->chain_node);
635 		INIT_LIST_HEAD(&slot->slot_node);
636 		INIT_LIST_HEAD(&slot->tx_list);
637 		hw_desc = (char *) mv_chan->device->dma_desc_pool;
638 		slot->async_tx.phys =
639 			(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
640 		slot->idx = idx++;
641 
642 		spin_lock_bh(&mv_chan->lock);
643 		mv_chan->slots_allocated = idx;
644 		list_add_tail(&slot->slot_node, &mv_chan->all_slots);
645 		spin_unlock_bh(&mv_chan->lock);
646 	}
647 
648 	if (mv_chan->slots_allocated && !mv_chan->last_used)
649 		mv_chan->last_used = list_entry(mv_chan->all_slots.next,
650 					struct mv_xor_desc_slot,
651 					slot_node);
652 
653 	dev_dbg(mv_chan->device->common.dev,
654 		"allocated %d descriptor slots last_used: %p\n",
655 		mv_chan->slots_allocated, mv_chan->last_used);
656 
657 	return mv_chan->slots_allocated ? : -ENOMEM;
658 }
659 
660 static struct dma_async_tx_descriptor *
661 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
662 		size_t len, unsigned long flags)
663 {
664 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
665 	struct mv_xor_desc_slot *sw_desc, *grp_start;
666 	int slot_cnt;
667 
668 	dev_dbg(mv_chan->device->common.dev,
669 		"%s dest: %x src %x len: %u flags: %ld\n",
670 		__func__, dest, src, len, flags);
671 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
672 		return NULL;
673 
674 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
675 
676 	spin_lock_bh(&mv_chan->lock);
677 	slot_cnt = mv_chan_memcpy_slot_count(len);
678 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
679 	if (sw_desc) {
680 		sw_desc->type = DMA_MEMCPY;
681 		sw_desc->async_tx.flags = flags;
682 		grp_start = sw_desc->group_head;
683 		mv_desc_init(grp_start, flags);
684 		mv_desc_set_byte_count(grp_start, len);
685 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
686 		mv_desc_set_src_addr(grp_start, 0, src);
687 		sw_desc->unmap_src_cnt = 1;
688 		sw_desc->unmap_len = len;
689 	}
690 	spin_unlock_bh(&mv_chan->lock);
691 
692 	dev_dbg(mv_chan->device->common.dev,
693 		"%s sw_desc %p async_tx %p\n",
694 		__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
695 
696 	return sw_desc ? &sw_desc->async_tx : NULL;
697 }
698 
699 static struct dma_async_tx_descriptor *
700 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
701 		       size_t len, unsigned long flags)
702 {
703 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
704 	struct mv_xor_desc_slot *sw_desc, *grp_start;
705 	int slot_cnt;
706 
707 	dev_dbg(mv_chan->device->common.dev,
708 		"%s dest: %x len: %u flags: %ld\n",
709 		__func__, dest, len, flags);
710 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
711 		return NULL;
712 
713 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
714 
715 	spin_lock_bh(&mv_chan->lock);
716 	slot_cnt = mv_chan_memset_slot_count(len);
717 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
718 	if (sw_desc) {
719 		sw_desc->type = DMA_MEMSET;
720 		sw_desc->async_tx.flags = flags;
721 		grp_start = sw_desc->group_head;
722 		mv_desc_init(grp_start, flags);
723 		mv_desc_set_byte_count(grp_start, len);
724 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
725 		mv_desc_set_block_fill_val(grp_start, value);
726 		sw_desc->unmap_src_cnt = 1;
727 		sw_desc->unmap_len = len;
728 	}
729 	spin_unlock_bh(&mv_chan->lock);
730 	dev_dbg(mv_chan->device->common.dev,
731 		"%s sw_desc %p async_tx %p \n",
732 		__func__, sw_desc, &sw_desc->async_tx);
733 	return sw_desc ? &sw_desc->async_tx : NULL;
734 }
735 
736 static struct dma_async_tx_descriptor *
737 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
738 		    unsigned int src_cnt, size_t len, unsigned long flags)
739 {
740 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
741 	struct mv_xor_desc_slot *sw_desc, *grp_start;
742 	int slot_cnt;
743 
744 	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
745 		return NULL;
746 
747 	BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
748 
749 	dev_dbg(mv_chan->device->common.dev,
750 		"%s src_cnt: %d len: dest %x %u flags: %ld\n",
751 		__func__, src_cnt, len, dest, flags);
752 
753 	spin_lock_bh(&mv_chan->lock);
754 	slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
755 	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
756 	if (sw_desc) {
757 		sw_desc->type = DMA_XOR;
758 		sw_desc->async_tx.flags = flags;
759 		grp_start = sw_desc->group_head;
760 		mv_desc_init(grp_start, flags);
761 		/* the byte count field is the same as in memcpy desc*/
762 		mv_desc_set_byte_count(grp_start, len);
763 		mv_desc_set_dest_addr(sw_desc->group_head, dest);
764 		sw_desc->unmap_src_cnt = src_cnt;
765 		sw_desc->unmap_len = len;
766 		while (src_cnt--)
767 			mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
768 	}
769 	spin_unlock_bh(&mv_chan->lock);
770 	dev_dbg(mv_chan->device->common.dev,
771 		"%s sw_desc %p async_tx %p \n",
772 		__func__, sw_desc, &sw_desc->async_tx);
773 	return sw_desc ? &sw_desc->async_tx : NULL;
774 }
775 
776 static void mv_xor_free_chan_resources(struct dma_chan *chan)
777 {
778 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
779 	struct mv_xor_desc_slot *iter, *_iter;
780 	int in_use_descs = 0;
781 
782 	mv_xor_slot_cleanup(mv_chan);
783 
784 	spin_lock_bh(&mv_chan->lock);
785 	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
786 					chain_node) {
787 		in_use_descs++;
788 		list_del(&iter->chain_node);
789 	}
790 	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
791 				 completed_node) {
792 		in_use_descs++;
793 		list_del(&iter->completed_node);
794 	}
795 	list_for_each_entry_safe_reverse(
796 		iter, _iter, &mv_chan->all_slots, slot_node) {
797 		list_del(&iter->slot_node);
798 		kfree(iter);
799 		mv_chan->slots_allocated--;
800 	}
801 	mv_chan->last_used = NULL;
802 
803 	dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
804 		__func__, mv_chan->slots_allocated);
805 	spin_unlock_bh(&mv_chan->lock);
806 
807 	if (in_use_descs)
808 		dev_err(mv_chan->device->common.dev,
809 			"freeing %d in use descriptors!\n", in_use_descs);
810 }
811 
812 /**
813  * mv_xor_status - poll the status of an XOR transaction
814  * @chan: XOR channel handle
815  * @cookie: XOR transaction identifier
816  * @txstate: XOR transactions state holder (or NULL)
817  */
818 static enum dma_status mv_xor_status(struct dma_chan *chan,
819 					  dma_cookie_t cookie,
820 					  struct dma_tx_state *txstate)
821 {
822 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
823 	dma_cookie_t last_used;
824 	dma_cookie_t last_complete;
825 	enum dma_status ret;
826 
827 	last_used = chan->cookie;
828 	last_complete = mv_chan->completed_cookie;
829 	mv_chan->is_complete_cookie = cookie;
830 	dma_set_tx_state(txstate, last_complete, last_used, 0);
831 
832 	ret = dma_async_is_complete(cookie, last_complete, last_used);
833 	if (ret == DMA_SUCCESS) {
834 		mv_xor_clean_completed_slots(mv_chan);
835 		return ret;
836 	}
837 	mv_xor_slot_cleanup(mv_chan);
838 
839 	last_used = chan->cookie;
840 	last_complete = mv_chan->completed_cookie;
841 
842 	dma_set_tx_state(txstate, last_complete, last_used, 0);
843 	return dma_async_is_complete(cookie, last_complete, last_used);
844 }
845 
846 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
847 {
848 	u32 val;
849 
850 	val = __raw_readl(XOR_CONFIG(chan));
851 	dev_printk(KERN_ERR, chan->device->common.dev,
852 		   "config       0x%08x.\n", val);
853 
854 	val = __raw_readl(XOR_ACTIVATION(chan));
855 	dev_printk(KERN_ERR, chan->device->common.dev,
856 		   "activation   0x%08x.\n", val);
857 
858 	val = __raw_readl(XOR_INTR_CAUSE(chan));
859 	dev_printk(KERN_ERR, chan->device->common.dev,
860 		   "intr cause   0x%08x.\n", val);
861 
862 	val = __raw_readl(XOR_INTR_MASK(chan));
863 	dev_printk(KERN_ERR, chan->device->common.dev,
864 		   "intr mask    0x%08x.\n", val);
865 
866 	val = __raw_readl(XOR_ERROR_CAUSE(chan));
867 	dev_printk(KERN_ERR, chan->device->common.dev,
868 		   "error cause  0x%08x.\n", val);
869 
870 	val = __raw_readl(XOR_ERROR_ADDR(chan));
871 	dev_printk(KERN_ERR, chan->device->common.dev,
872 		   "error addr   0x%08x.\n", val);
873 }
874 
875 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
876 					 u32 intr_cause)
877 {
878 	if (intr_cause & (1 << 4)) {
879 	     dev_dbg(chan->device->common.dev,
880 		     "ignore this error\n");
881 	     return;
882 	}
883 
884 	dev_printk(KERN_ERR, chan->device->common.dev,
885 		   "error on chan %d. intr cause 0x%08x.\n",
886 		   chan->idx, intr_cause);
887 
888 	mv_dump_xor_regs(chan);
889 	BUG();
890 }
891 
892 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
893 {
894 	struct mv_xor_chan *chan = data;
895 	u32 intr_cause = mv_chan_get_intr_cause(chan);
896 
897 	dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
898 
899 	if (mv_is_err_intr(intr_cause))
900 		mv_xor_err_interrupt_handler(chan, intr_cause);
901 
902 	tasklet_schedule(&chan->irq_tasklet);
903 
904 	mv_xor_device_clear_eoc_cause(chan);
905 
906 	return IRQ_HANDLED;
907 }
908 
909 static void mv_xor_issue_pending(struct dma_chan *chan)
910 {
911 	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
912 
913 	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
914 		mv_chan->pending = 0;
915 		mv_chan_activate(mv_chan);
916 	}
917 }
918 
919 /*
920  * Perform a transaction to verify the HW works.
921  */
922 #define MV_XOR_TEST_SIZE 2000
923 
924 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
925 {
926 	int i;
927 	void *src, *dest;
928 	dma_addr_t src_dma, dest_dma;
929 	struct dma_chan *dma_chan;
930 	dma_cookie_t cookie;
931 	struct dma_async_tx_descriptor *tx;
932 	int err = 0;
933 	struct mv_xor_chan *mv_chan;
934 
935 	src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
936 	if (!src)
937 		return -ENOMEM;
938 
939 	dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
940 	if (!dest) {
941 		kfree(src);
942 		return -ENOMEM;
943 	}
944 
945 	/* Fill in src buffer */
946 	for (i = 0; i < MV_XOR_TEST_SIZE; i++)
947 		((u8 *) src)[i] = (u8)i;
948 
949 	/* Start copy, using first DMA channel */
950 	dma_chan = container_of(device->common.channels.next,
951 				struct dma_chan,
952 				device_node);
953 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
954 		err = -ENODEV;
955 		goto out;
956 	}
957 
958 	dest_dma = dma_map_single(dma_chan->device->dev, dest,
959 				  MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
960 
961 	src_dma = dma_map_single(dma_chan->device->dev, src,
962 				 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
963 
964 	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
965 				    MV_XOR_TEST_SIZE, 0);
966 	cookie = mv_xor_tx_submit(tx);
967 	mv_xor_issue_pending(dma_chan);
968 	async_tx_ack(tx);
969 	msleep(1);
970 
971 	if (mv_xor_status(dma_chan, cookie, NULL) !=
972 	    DMA_SUCCESS) {
973 		dev_printk(KERN_ERR, dma_chan->device->dev,
974 			   "Self-test copy timed out, disabling\n");
975 		err = -ENODEV;
976 		goto free_resources;
977 	}
978 
979 	mv_chan = to_mv_xor_chan(dma_chan);
980 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
981 				MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
982 	if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
983 		dev_printk(KERN_ERR, dma_chan->device->dev,
984 			   "Self-test copy failed compare, disabling\n");
985 		err = -ENODEV;
986 		goto free_resources;
987 	}
988 
989 free_resources:
990 	mv_xor_free_chan_resources(dma_chan);
991 out:
992 	kfree(src);
993 	kfree(dest);
994 	return err;
995 }
996 
997 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
998 static int __devinit
999 mv_xor_xor_self_test(struct mv_xor_device *device)
1000 {
1001 	int i, src_idx;
1002 	struct page *dest;
1003 	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
1004 	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
1005 	dma_addr_t dest_dma;
1006 	struct dma_async_tx_descriptor *tx;
1007 	struct dma_chan *dma_chan;
1008 	dma_cookie_t cookie;
1009 	u8 cmp_byte = 0;
1010 	u32 cmp_word;
1011 	int err = 0;
1012 	struct mv_xor_chan *mv_chan;
1013 
1014 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1015 		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1016 		if (!xor_srcs[src_idx]) {
1017 			while (src_idx--)
1018 				__free_page(xor_srcs[src_idx]);
1019 			return -ENOMEM;
1020 		}
1021 	}
1022 
1023 	dest = alloc_page(GFP_KERNEL);
1024 	if (!dest) {
1025 		while (src_idx--)
1026 			__free_page(xor_srcs[src_idx]);
1027 		return -ENOMEM;
1028 	}
1029 
1030 	/* Fill in src buffers */
1031 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1032 		u8 *ptr = page_address(xor_srcs[src_idx]);
1033 		for (i = 0; i < PAGE_SIZE; i++)
1034 			ptr[i] = (1 << src_idx);
1035 	}
1036 
1037 	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1038 		cmp_byte ^= (u8) (1 << src_idx);
1039 
1040 	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1041 		(cmp_byte << 8) | cmp_byte;
1042 
1043 	memset(page_address(dest), 0, PAGE_SIZE);
1044 
1045 	dma_chan = container_of(device->common.channels.next,
1046 				struct dma_chan,
1047 				device_node);
1048 	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1049 		err = -ENODEV;
1050 		goto out;
1051 	}
1052 
1053 	/* test xor */
1054 	dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1055 				DMA_FROM_DEVICE);
1056 
1057 	for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1058 		dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1059 					   0, PAGE_SIZE, DMA_TO_DEVICE);
1060 
1061 	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1062 				 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1063 
1064 	cookie = mv_xor_tx_submit(tx);
1065 	mv_xor_issue_pending(dma_chan);
1066 	async_tx_ack(tx);
1067 	msleep(8);
1068 
1069 	if (mv_xor_status(dma_chan, cookie, NULL) !=
1070 	    DMA_SUCCESS) {
1071 		dev_printk(KERN_ERR, dma_chan->device->dev,
1072 			   "Self-test xor timed out, disabling\n");
1073 		err = -ENODEV;
1074 		goto free_resources;
1075 	}
1076 
1077 	mv_chan = to_mv_xor_chan(dma_chan);
1078 	dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1079 				PAGE_SIZE, DMA_FROM_DEVICE);
1080 	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1081 		u32 *ptr = page_address(dest);
1082 		if (ptr[i] != cmp_word) {
1083 			dev_printk(KERN_ERR, dma_chan->device->dev,
1084 				   "Self-test xor failed compare, disabling."
1085 				   " index %d, data %x, expected %x\n", i,
1086 				   ptr[i], cmp_word);
1087 			err = -ENODEV;
1088 			goto free_resources;
1089 		}
1090 	}
1091 
1092 free_resources:
1093 	mv_xor_free_chan_resources(dma_chan);
1094 out:
1095 	src_idx = MV_XOR_NUM_SRC_TEST;
1096 	while (src_idx--)
1097 		__free_page(xor_srcs[src_idx]);
1098 	__free_page(dest);
1099 	return err;
1100 }
1101 
1102 static int __devexit mv_xor_remove(struct platform_device *dev)
1103 {
1104 	struct mv_xor_device *device = platform_get_drvdata(dev);
1105 	struct dma_chan *chan, *_chan;
1106 	struct mv_xor_chan *mv_chan;
1107 	struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1108 
1109 	dma_async_device_unregister(&device->common);
1110 
1111 	dma_free_coherent(&dev->dev, plat_data->pool_size,
1112 			device->dma_desc_pool_virt, device->dma_desc_pool);
1113 
1114 	list_for_each_entry_safe(chan, _chan, &device->common.channels,
1115 				device_node) {
1116 		mv_chan = to_mv_xor_chan(chan);
1117 		list_del(&chan->device_node);
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static int __devinit mv_xor_probe(struct platform_device *pdev)
1124 {
1125 	int ret = 0;
1126 	int irq;
1127 	struct mv_xor_device *adev;
1128 	struct mv_xor_chan *mv_chan;
1129 	struct dma_device *dma_dev;
1130 	struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1131 
1132 
1133 	adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1134 	if (!adev)
1135 		return -ENOMEM;
1136 
1137 	dma_dev = &adev->common;
1138 
1139 	/* allocate coherent memory for hardware descriptors
1140 	 * note: writecombine gives slightly better performance, but
1141 	 * requires that we explicitly flush the writes
1142 	 */
1143 	adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1144 							  plat_data->pool_size,
1145 							  &adev->dma_desc_pool,
1146 							  GFP_KERNEL);
1147 	if (!adev->dma_desc_pool_virt)
1148 		return -ENOMEM;
1149 
1150 	adev->id = plat_data->hw_id;
1151 
1152 	/* discover transaction capabilites from the platform data */
1153 	dma_dev->cap_mask = plat_data->cap_mask;
1154 	adev->pdev = pdev;
1155 	platform_set_drvdata(pdev, adev);
1156 
1157 	adev->shared = platform_get_drvdata(plat_data->shared);
1158 
1159 	INIT_LIST_HEAD(&dma_dev->channels);
1160 
1161 	/* set base routines */
1162 	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1163 	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1164 	dma_dev->device_tx_status = mv_xor_status;
1165 	dma_dev->device_issue_pending = mv_xor_issue_pending;
1166 	dma_dev->dev = &pdev->dev;
1167 
1168 	/* set prep routines based on capability */
1169 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1170 		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1171 	if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1172 		dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1173 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1174 		dma_dev->max_xor = 8;
1175 		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1176 	}
1177 
1178 	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1179 	if (!mv_chan) {
1180 		ret = -ENOMEM;
1181 		goto err_free_dma;
1182 	}
1183 	mv_chan->device = adev;
1184 	mv_chan->idx = plat_data->hw_id;
1185 	mv_chan->mmr_base = adev->shared->xor_base;
1186 
1187 	if (!mv_chan->mmr_base) {
1188 		ret = -ENOMEM;
1189 		goto err_free_dma;
1190 	}
1191 	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1192 		     mv_chan);
1193 
1194 	/* clear errors before enabling interrupts */
1195 	mv_xor_device_clear_err_status(mv_chan);
1196 
1197 	irq = platform_get_irq(pdev, 0);
1198 	if (irq < 0) {
1199 		ret = irq;
1200 		goto err_free_dma;
1201 	}
1202 	ret = devm_request_irq(&pdev->dev, irq,
1203 			       mv_xor_interrupt_handler,
1204 			       0, dev_name(&pdev->dev), mv_chan);
1205 	if (ret)
1206 		goto err_free_dma;
1207 
1208 	mv_chan_unmask_interrupts(mv_chan);
1209 
1210 	mv_set_mode(mv_chan, DMA_MEMCPY);
1211 
1212 	spin_lock_init(&mv_chan->lock);
1213 	INIT_LIST_HEAD(&mv_chan->chain);
1214 	INIT_LIST_HEAD(&mv_chan->completed_slots);
1215 	INIT_LIST_HEAD(&mv_chan->all_slots);
1216 	mv_chan->common.device = dma_dev;
1217 
1218 	list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1219 
1220 	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1221 		ret = mv_xor_memcpy_self_test(adev);
1222 		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1223 		if (ret)
1224 			goto err_free_dma;
1225 	}
1226 
1227 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1228 		ret = mv_xor_xor_self_test(adev);
1229 		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1230 		if (ret)
1231 			goto err_free_dma;
1232 	}
1233 
1234 	dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1235 	  "( %s%s%s%s)\n",
1236 	  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1237 	  dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)  ? "fill " : "",
1238 	  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1239 	  dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1240 
1241 	dma_async_device_register(dma_dev);
1242 	goto out;
1243 
1244  err_free_dma:
1245 	dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1246 			adev->dma_desc_pool_virt, adev->dma_desc_pool);
1247  out:
1248 	return ret;
1249 }
1250 
1251 static void
1252 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1253 			 struct mbus_dram_target_info *dram)
1254 {
1255 	void __iomem *base = msp->xor_base;
1256 	u32 win_enable = 0;
1257 	int i;
1258 
1259 	for (i = 0; i < 8; i++) {
1260 		writel(0, base + WINDOW_BASE(i));
1261 		writel(0, base + WINDOW_SIZE(i));
1262 		if (i < 4)
1263 			writel(0, base + WINDOW_REMAP_HIGH(i));
1264 	}
1265 
1266 	for (i = 0; i < dram->num_cs; i++) {
1267 		struct mbus_dram_window *cs = dram->cs + i;
1268 
1269 		writel((cs->base & 0xffff0000) |
1270 		       (cs->mbus_attr << 8) |
1271 		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1272 		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1273 
1274 		win_enable |= (1 << i);
1275 		win_enable |= 3 << (16 + (2 * i));
1276 	}
1277 
1278 	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1279 	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1280 }
1281 
1282 static struct platform_driver mv_xor_driver = {
1283 	.probe		= mv_xor_probe,
1284 	.remove		= __devexit_p(mv_xor_remove),
1285 	.driver		= {
1286 		.owner	= THIS_MODULE,
1287 		.name	= MV_XOR_NAME,
1288 	},
1289 };
1290 
1291 static int mv_xor_shared_probe(struct platform_device *pdev)
1292 {
1293 	struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1294 	struct mv_xor_shared_private *msp;
1295 	struct resource *res;
1296 
1297 	dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1298 
1299 	msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1300 	if (!msp)
1301 		return -ENOMEM;
1302 
1303 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304 	if (!res)
1305 		return -ENODEV;
1306 
1307 	msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1308 				     res->end - res->start + 1);
1309 	if (!msp->xor_base)
1310 		return -EBUSY;
1311 
1312 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1313 	if (!res)
1314 		return -ENODEV;
1315 
1316 	msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1317 					  res->end - res->start + 1);
1318 	if (!msp->xor_high_base)
1319 		return -EBUSY;
1320 
1321 	platform_set_drvdata(pdev, msp);
1322 
1323 	/*
1324 	 * (Re-)program MBUS remapping windows if we are asked to.
1325 	 */
1326 	if (msd != NULL && msd->dram != NULL)
1327 		mv_xor_conf_mbus_windows(msp, msd->dram);
1328 
1329 	return 0;
1330 }
1331 
1332 static int mv_xor_shared_remove(struct platform_device *pdev)
1333 {
1334 	return 0;
1335 }
1336 
1337 static struct platform_driver mv_xor_shared_driver = {
1338 	.probe		= mv_xor_shared_probe,
1339 	.remove		= mv_xor_shared_remove,
1340 	.driver		= {
1341 		.owner	= THIS_MODULE,
1342 		.name	= MV_XOR_SHARED_NAME,
1343 	},
1344 };
1345 
1346 
1347 static int __init mv_xor_init(void)
1348 {
1349 	int rc;
1350 
1351 	rc = platform_driver_register(&mv_xor_shared_driver);
1352 	if (!rc) {
1353 		rc = platform_driver_register(&mv_xor_driver);
1354 		if (rc)
1355 			platform_driver_unregister(&mv_xor_shared_driver);
1356 	}
1357 	return rc;
1358 }
1359 module_init(mv_xor_init);
1360 
1361 /* it's currently unsafe to unload this module */
1362 #if 0
1363 static void __exit mv_xor_exit(void)
1364 {
1365 	platform_driver_unregister(&mv_xor_driver);
1366 	platform_driver_unregister(&mv_xor_shared_driver);
1367 	return;
1368 }
1369 
1370 module_exit(mv_xor_exit);
1371 #endif
1372 
1373 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1374 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1375 MODULE_LICENSE("GPL");
1376