1 /* 2 * Copyright 2012 Marvell International Ltd. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/err.h> 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/interrupt.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/slab.h> 16 #include <linux/dmaengine.h> 17 #include <linux/platform_device.h> 18 #include <linux/device.h> 19 #include <linux/platform_data/mmp_dma.h> 20 #include <linux/dmapool.h> 21 #include <linux/of_device.h> 22 #include <linux/of_dma.h> 23 #include <linux/of.h> 24 #include <linux/dma/mmp-pdma.h> 25 26 #include "dmaengine.h" 27 28 #define DCSR 0x0000 29 #define DALGN 0x00a0 30 #define DINT 0x00f0 31 #define DDADR 0x0200 32 #define DSADR(n) (0x0204 + ((n) << 4)) 33 #define DTADR(n) (0x0208 + ((n) << 4)) 34 #define DCMD 0x020c 35 36 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */ 37 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */ 38 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */ 39 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */ 40 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */ 41 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */ 42 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */ 43 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */ 44 45 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */ 46 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */ 47 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */ 48 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */ 49 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */ 50 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */ 51 #define DCSR_EORINTR BIT(9) /* The end of Receive */ 52 53 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2)) 54 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */ 55 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ 56 57 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */ 58 #define DDADR_STOP BIT(0) /* Stop (read / write) */ 59 60 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */ 61 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */ 62 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */ 63 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */ 64 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */ 65 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */ 66 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */ 67 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */ 68 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */ 69 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */ 70 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ 71 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ 72 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ 73 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ 74 75 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH 76 77 struct mmp_pdma_desc_hw { 78 u32 ddadr; /* Points to the next descriptor + flags */ 79 u32 dsadr; /* DSADR value for the current transfer */ 80 u32 dtadr; /* DTADR value for the current transfer */ 81 u32 dcmd; /* DCMD value for the current transfer */ 82 } __aligned(32); 83 84 struct mmp_pdma_desc_sw { 85 struct mmp_pdma_desc_hw desc; 86 struct list_head node; 87 struct list_head tx_list; 88 struct dma_async_tx_descriptor async_tx; 89 }; 90 91 struct mmp_pdma_phy; 92 93 struct mmp_pdma_chan { 94 struct device *dev; 95 struct dma_chan chan; 96 struct dma_async_tx_descriptor desc; 97 struct mmp_pdma_phy *phy; 98 enum dma_transfer_direction dir; 99 100 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel 101 * is in cyclic mode */ 102 103 /* channel's basic info */ 104 struct tasklet_struct tasklet; 105 u32 dcmd; 106 u32 drcmr; 107 u32 dev_addr; 108 109 /* list for desc */ 110 spinlock_t desc_lock; /* Descriptor list lock */ 111 struct list_head chain_pending; /* Link descriptors queue for pending */ 112 struct list_head chain_running; /* Link descriptors queue for running */ 113 bool idle; /* channel statue machine */ 114 bool byte_align; 115 116 struct dma_pool *desc_pool; /* Descriptors pool */ 117 }; 118 119 struct mmp_pdma_phy { 120 int idx; 121 void __iomem *base; 122 struct mmp_pdma_chan *vchan; 123 }; 124 125 struct mmp_pdma_device { 126 int dma_channels; 127 void __iomem *base; 128 struct device *dev; 129 struct dma_device device; 130 struct mmp_pdma_phy *phy; 131 spinlock_t phy_lock; /* protect alloc/free phy channels */ 132 }; 133 134 #define tx_to_mmp_pdma_desc(tx) \ 135 container_of(tx, struct mmp_pdma_desc_sw, async_tx) 136 #define to_mmp_pdma_desc(lh) \ 137 container_of(lh, struct mmp_pdma_desc_sw, node) 138 #define to_mmp_pdma_chan(dchan) \ 139 container_of(dchan, struct mmp_pdma_chan, chan) 140 #define to_mmp_pdma_dev(dmadev) \ 141 container_of(dmadev, struct mmp_pdma_device, device) 142 143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr) 144 { 145 u32 reg = (phy->idx << 4) + DDADR; 146 147 writel(addr, phy->base + reg); 148 } 149 150 static void enable_chan(struct mmp_pdma_phy *phy) 151 { 152 u32 reg, dalgn; 153 154 if (!phy->vchan) 155 return; 156 157 reg = DRCMR(phy->vchan->drcmr); 158 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg); 159 160 dalgn = readl(phy->base + DALGN); 161 if (phy->vchan->byte_align) 162 dalgn |= 1 << phy->idx; 163 else 164 dalgn &= ~(1 << phy->idx); 165 writel(dalgn, phy->base + DALGN); 166 167 reg = (phy->idx << 2) + DCSR; 168 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg); 169 } 170 171 static void disable_chan(struct mmp_pdma_phy *phy) 172 { 173 u32 reg; 174 175 if (!phy) 176 return; 177 178 reg = (phy->idx << 2) + DCSR; 179 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg); 180 } 181 182 static int clear_chan_irq(struct mmp_pdma_phy *phy) 183 { 184 u32 dcsr; 185 u32 dint = readl(phy->base + DINT); 186 u32 reg = (phy->idx << 2) + DCSR; 187 188 if (!(dint & BIT(phy->idx))) 189 return -EAGAIN; 190 191 /* clear irq */ 192 dcsr = readl(phy->base + reg); 193 writel(dcsr, phy->base + reg); 194 if ((dcsr & DCSR_BUSERR) && (phy->vchan)) 195 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n"); 196 197 return 0; 198 } 199 200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id) 201 { 202 struct mmp_pdma_phy *phy = dev_id; 203 204 if (clear_chan_irq(phy) != 0) 205 return IRQ_NONE; 206 207 tasklet_schedule(&phy->vchan->tasklet); 208 return IRQ_HANDLED; 209 } 210 211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id) 212 { 213 struct mmp_pdma_device *pdev = dev_id; 214 struct mmp_pdma_phy *phy; 215 u32 dint = readl(pdev->base + DINT); 216 int i, ret; 217 int irq_num = 0; 218 219 while (dint) { 220 i = __ffs(dint); 221 /* only handle interrupts belonging to pdma driver*/ 222 if (i >= pdev->dma_channels) 223 break; 224 dint &= (dint - 1); 225 phy = &pdev->phy[i]; 226 ret = mmp_pdma_chan_handler(irq, phy); 227 if (ret == IRQ_HANDLED) 228 irq_num++; 229 } 230 231 if (irq_num) 232 return IRQ_HANDLED; 233 234 return IRQ_NONE; 235 } 236 237 /* lookup free phy channel as descending priority */ 238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan) 239 { 240 int prio, i; 241 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 242 struct mmp_pdma_phy *phy, *found = NULL; 243 unsigned long flags; 244 245 /* 246 * dma channel priorities 247 * ch 0 - 3, 16 - 19 <--> (0) 248 * ch 4 - 7, 20 - 23 <--> (1) 249 * ch 8 - 11, 24 - 27 <--> (2) 250 * ch 12 - 15, 28 - 31 <--> (3) 251 */ 252 253 spin_lock_irqsave(&pdev->phy_lock, flags); 254 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) { 255 for (i = 0; i < pdev->dma_channels; i++) { 256 if (prio != (i & 0xf) >> 2) 257 continue; 258 phy = &pdev->phy[i]; 259 if (!phy->vchan) { 260 phy->vchan = pchan; 261 found = phy; 262 goto out_unlock; 263 } 264 } 265 } 266 267 out_unlock: 268 spin_unlock_irqrestore(&pdev->phy_lock, flags); 269 return found; 270 } 271 272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan) 273 { 274 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 275 unsigned long flags; 276 u32 reg; 277 278 if (!pchan->phy) 279 return; 280 281 /* clear the channel mapping in DRCMR */ 282 reg = DRCMR(pchan->drcmr); 283 writel(0, pchan->phy->base + reg); 284 285 spin_lock_irqsave(&pdev->phy_lock, flags); 286 pchan->phy->vchan = NULL; 287 pchan->phy = NULL; 288 spin_unlock_irqrestore(&pdev->phy_lock, flags); 289 } 290 291 /** 292 * start_pending_queue - transfer any pending transactions 293 * pending list ==> running list 294 */ 295 static void start_pending_queue(struct mmp_pdma_chan *chan) 296 { 297 struct mmp_pdma_desc_sw *desc; 298 299 /* still in running, irq will start the pending list */ 300 if (!chan->idle) { 301 dev_dbg(chan->dev, "DMA controller still busy\n"); 302 return; 303 } 304 305 if (list_empty(&chan->chain_pending)) { 306 /* chance to re-fetch phy channel with higher prio */ 307 mmp_pdma_free_phy(chan); 308 dev_dbg(chan->dev, "no pending list\n"); 309 return; 310 } 311 312 if (!chan->phy) { 313 chan->phy = lookup_phy(chan); 314 if (!chan->phy) { 315 dev_dbg(chan->dev, "no free dma channel\n"); 316 return; 317 } 318 } 319 320 /* 321 * pending -> running 322 * reintilize pending list 323 */ 324 desc = list_first_entry(&chan->chain_pending, 325 struct mmp_pdma_desc_sw, node); 326 list_splice_tail_init(&chan->chain_pending, &chan->chain_running); 327 328 /* 329 * Program the descriptor's address into the DMA controller, 330 * then start the DMA transaction 331 */ 332 set_desc(chan->phy, desc->async_tx.phys); 333 enable_chan(chan->phy); 334 chan->idle = false; 335 } 336 337 338 /* desc->tx_list ==> pending list */ 339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx) 340 { 341 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan); 342 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx); 343 struct mmp_pdma_desc_sw *child; 344 unsigned long flags; 345 dma_cookie_t cookie = -EBUSY; 346 347 spin_lock_irqsave(&chan->desc_lock, flags); 348 349 list_for_each_entry(child, &desc->tx_list, node) { 350 cookie = dma_cookie_assign(&child->async_tx); 351 } 352 353 /* softly link to pending list - desc->tx_list ==> pending list */ 354 list_splice_tail_init(&desc->tx_list, &chan->chain_pending); 355 356 spin_unlock_irqrestore(&chan->desc_lock, flags); 357 358 return cookie; 359 } 360 361 static struct mmp_pdma_desc_sw * 362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan) 363 { 364 struct mmp_pdma_desc_sw *desc; 365 dma_addr_t pdesc; 366 367 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 368 if (!desc) { 369 dev_err(chan->dev, "out of memory for link descriptor\n"); 370 return NULL; 371 } 372 373 memset(desc, 0, sizeof(*desc)); 374 INIT_LIST_HEAD(&desc->tx_list); 375 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 376 /* each desc has submit */ 377 desc->async_tx.tx_submit = mmp_pdma_tx_submit; 378 desc->async_tx.phys = pdesc; 379 380 return desc; 381 } 382 383 /** 384 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel. 385 * 386 * This function will create a dma pool for descriptor allocation. 387 * Request irq only when channel is requested 388 * Return - The number of allocated descriptors. 389 */ 390 391 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan) 392 { 393 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 394 395 if (chan->desc_pool) 396 return 1; 397 398 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device), 399 chan->dev, 400 sizeof(struct mmp_pdma_desc_sw), 401 __alignof__(struct mmp_pdma_desc_sw), 402 0); 403 if (!chan->desc_pool) { 404 dev_err(chan->dev, "unable to allocate descriptor pool\n"); 405 return -ENOMEM; 406 } 407 408 mmp_pdma_free_phy(chan); 409 chan->idle = true; 410 chan->dev_addr = 0; 411 return 1; 412 } 413 414 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan, 415 struct list_head *list) 416 { 417 struct mmp_pdma_desc_sw *desc, *_desc; 418 419 list_for_each_entry_safe(desc, _desc, list, node) { 420 list_del(&desc->node); 421 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 422 } 423 } 424 425 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan) 426 { 427 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 428 unsigned long flags; 429 430 spin_lock_irqsave(&chan->desc_lock, flags); 431 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 432 mmp_pdma_free_desc_list(chan, &chan->chain_running); 433 spin_unlock_irqrestore(&chan->desc_lock, flags); 434 435 dma_pool_destroy(chan->desc_pool); 436 chan->desc_pool = NULL; 437 chan->idle = true; 438 chan->dev_addr = 0; 439 mmp_pdma_free_phy(chan); 440 return; 441 } 442 443 static struct dma_async_tx_descriptor * 444 mmp_pdma_prep_memcpy(struct dma_chan *dchan, 445 dma_addr_t dma_dst, dma_addr_t dma_src, 446 size_t len, unsigned long flags) 447 { 448 struct mmp_pdma_chan *chan; 449 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 450 size_t copy = 0; 451 452 if (!dchan) 453 return NULL; 454 455 if (!len) 456 return NULL; 457 458 chan = to_mmp_pdma_chan(dchan); 459 chan->byte_align = false; 460 461 if (!chan->dir) { 462 chan->dir = DMA_MEM_TO_MEM; 463 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR; 464 chan->dcmd |= DCMD_BURST32; 465 } 466 467 do { 468 /* Allocate the link descriptor from DMA pool */ 469 new = mmp_pdma_alloc_descriptor(chan); 470 if (!new) { 471 dev_err(chan->dev, "no memory for desc\n"); 472 goto fail; 473 } 474 475 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES); 476 if (dma_src & 0x7 || dma_dst & 0x7) 477 chan->byte_align = true; 478 479 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy); 480 new->desc.dsadr = dma_src; 481 new->desc.dtadr = dma_dst; 482 483 if (!first) 484 first = new; 485 else 486 prev->desc.ddadr = new->async_tx.phys; 487 488 new->async_tx.cookie = 0; 489 async_tx_ack(&new->async_tx); 490 491 prev = new; 492 len -= copy; 493 494 if (chan->dir == DMA_MEM_TO_DEV) { 495 dma_src += copy; 496 } else if (chan->dir == DMA_DEV_TO_MEM) { 497 dma_dst += copy; 498 } else if (chan->dir == DMA_MEM_TO_MEM) { 499 dma_src += copy; 500 dma_dst += copy; 501 } 502 503 /* Insert the link descriptor to the LD ring */ 504 list_add_tail(&new->node, &first->tx_list); 505 } while (len); 506 507 first->async_tx.flags = flags; /* client is in control of this ack */ 508 first->async_tx.cookie = -EBUSY; 509 510 /* last desc and fire IRQ */ 511 new->desc.ddadr = DDADR_STOP; 512 new->desc.dcmd |= DCMD_ENDIRQEN; 513 514 chan->cyclic_first = NULL; 515 516 return &first->async_tx; 517 518 fail: 519 if (first) 520 mmp_pdma_free_desc_list(chan, &first->tx_list); 521 return NULL; 522 } 523 524 static struct dma_async_tx_descriptor * 525 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 526 unsigned int sg_len, enum dma_transfer_direction dir, 527 unsigned long flags, void *context) 528 { 529 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 530 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL; 531 size_t len, avail; 532 struct scatterlist *sg; 533 dma_addr_t addr; 534 int i; 535 536 if ((sgl == NULL) || (sg_len == 0)) 537 return NULL; 538 539 chan->byte_align = false; 540 541 for_each_sg(sgl, sg, sg_len, i) { 542 addr = sg_dma_address(sg); 543 avail = sg_dma_len(sgl); 544 545 do { 546 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES); 547 if (addr & 0x7) 548 chan->byte_align = true; 549 550 /* allocate and populate the descriptor */ 551 new = mmp_pdma_alloc_descriptor(chan); 552 if (!new) { 553 dev_err(chan->dev, "no memory for desc\n"); 554 goto fail; 555 } 556 557 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len); 558 if (dir == DMA_MEM_TO_DEV) { 559 new->desc.dsadr = addr; 560 new->desc.dtadr = chan->dev_addr; 561 } else { 562 new->desc.dsadr = chan->dev_addr; 563 new->desc.dtadr = addr; 564 } 565 566 if (!first) 567 first = new; 568 else 569 prev->desc.ddadr = new->async_tx.phys; 570 571 new->async_tx.cookie = 0; 572 async_tx_ack(&new->async_tx); 573 prev = new; 574 575 /* Insert the link descriptor to the LD ring */ 576 list_add_tail(&new->node, &first->tx_list); 577 578 /* update metadata */ 579 addr += len; 580 avail -= len; 581 } while (avail); 582 } 583 584 first->async_tx.cookie = -EBUSY; 585 first->async_tx.flags = flags; 586 587 /* last desc and fire IRQ */ 588 new->desc.ddadr = DDADR_STOP; 589 new->desc.dcmd |= DCMD_ENDIRQEN; 590 591 chan->dir = dir; 592 chan->cyclic_first = NULL; 593 594 return &first->async_tx; 595 596 fail: 597 if (first) 598 mmp_pdma_free_desc_list(chan, &first->tx_list); 599 return NULL; 600 } 601 602 static struct dma_async_tx_descriptor * 603 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan, 604 dma_addr_t buf_addr, size_t len, size_t period_len, 605 enum dma_transfer_direction direction, 606 unsigned long flags) 607 { 608 struct mmp_pdma_chan *chan; 609 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 610 dma_addr_t dma_src, dma_dst; 611 612 if (!dchan || !len || !period_len) 613 return NULL; 614 615 /* the buffer length must be a multiple of period_len */ 616 if (len % period_len != 0) 617 return NULL; 618 619 if (period_len > PDMA_MAX_DESC_BYTES) 620 return NULL; 621 622 chan = to_mmp_pdma_chan(dchan); 623 624 switch (direction) { 625 case DMA_MEM_TO_DEV: 626 dma_src = buf_addr; 627 dma_dst = chan->dev_addr; 628 break; 629 case DMA_DEV_TO_MEM: 630 dma_dst = buf_addr; 631 dma_src = chan->dev_addr; 632 break; 633 default: 634 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n"); 635 return NULL; 636 } 637 638 chan->dir = direction; 639 640 do { 641 /* Allocate the link descriptor from DMA pool */ 642 new = mmp_pdma_alloc_descriptor(chan); 643 if (!new) { 644 dev_err(chan->dev, "no memory for desc\n"); 645 goto fail; 646 } 647 648 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN | 649 (DCMD_LENGTH & period_len)); 650 new->desc.dsadr = dma_src; 651 new->desc.dtadr = dma_dst; 652 653 if (!first) 654 first = new; 655 else 656 prev->desc.ddadr = new->async_tx.phys; 657 658 new->async_tx.cookie = 0; 659 async_tx_ack(&new->async_tx); 660 661 prev = new; 662 len -= period_len; 663 664 if (chan->dir == DMA_MEM_TO_DEV) 665 dma_src += period_len; 666 else 667 dma_dst += period_len; 668 669 /* Insert the link descriptor to the LD ring */ 670 list_add_tail(&new->node, &first->tx_list); 671 } while (len); 672 673 first->async_tx.flags = flags; /* client is in control of this ack */ 674 first->async_tx.cookie = -EBUSY; 675 676 /* make the cyclic link */ 677 new->desc.ddadr = first->async_tx.phys; 678 chan->cyclic_first = first; 679 680 return &first->async_tx; 681 682 fail: 683 if (first) 684 mmp_pdma_free_desc_list(chan, &first->tx_list); 685 return NULL; 686 } 687 688 static int mmp_pdma_config(struct dma_chan *dchan, 689 struct dma_slave_config *cfg) 690 { 691 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 692 u32 maxburst = 0, addr = 0; 693 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 694 695 if (!dchan) 696 return -EINVAL; 697 698 if (cfg->direction == DMA_DEV_TO_MEM) { 699 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; 700 maxburst = cfg->src_maxburst; 701 width = cfg->src_addr_width; 702 addr = cfg->src_addr; 703 } else if (cfg->direction == DMA_MEM_TO_DEV) { 704 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; 705 maxburst = cfg->dst_maxburst; 706 width = cfg->dst_addr_width; 707 addr = cfg->dst_addr; 708 } 709 710 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) 711 chan->dcmd |= DCMD_WIDTH1; 712 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) 713 chan->dcmd |= DCMD_WIDTH2; 714 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES) 715 chan->dcmd |= DCMD_WIDTH4; 716 717 if (maxburst == 8) 718 chan->dcmd |= DCMD_BURST8; 719 else if (maxburst == 16) 720 chan->dcmd |= DCMD_BURST16; 721 else if (maxburst == 32) 722 chan->dcmd |= DCMD_BURST32; 723 724 chan->dir = cfg->direction; 725 chan->dev_addr = addr; 726 /* FIXME: drivers should be ported over to use the filter 727 * function. Once that's done, the following two lines can 728 * be removed. 729 */ 730 if (cfg->slave_id) 731 chan->drcmr = cfg->slave_id; 732 733 return 0; 734 } 735 736 static int mmp_pdma_terminate_all(struct dma_chan *dchan) 737 { 738 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 739 unsigned long flags; 740 741 if (!dchan) 742 return -EINVAL; 743 744 disable_chan(chan->phy); 745 mmp_pdma_free_phy(chan); 746 spin_lock_irqsave(&chan->desc_lock, flags); 747 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 748 mmp_pdma_free_desc_list(chan, &chan->chain_running); 749 spin_unlock_irqrestore(&chan->desc_lock, flags); 750 chan->idle = true; 751 752 return 0; 753 } 754 755 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan, 756 dma_cookie_t cookie) 757 { 758 struct mmp_pdma_desc_sw *sw; 759 u32 curr, residue = 0; 760 bool passed = false; 761 bool cyclic = chan->cyclic_first != NULL; 762 763 /* 764 * If the channel does not have a phy pointer anymore, it has already 765 * been completed. Therefore, its residue is 0. 766 */ 767 if (!chan->phy) 768 return 0; 769 770 if (chan->dir == DMA_DEV_TO_MEM) 771 curr = readl(chan->phy->base + DTADR(chan->phy->idx)); 772 else 773 curr = readl(chan->phy->base + DSADR(chan->phy->idx)); 774 775 list_for_each_entry(sw, &chan->chain_running, node) { 776 u32 start, end, len; 777 778 if (chan->dir == DMA_DEV_TO_MEM) 779 start = sw->desc.dtadr; 780 else 781 start = sw->desc.dsadr; 782 783 len = sw->desc.dcmd & DCMD_LENGTH; 784 end = start + len; 785 786 /* 787 * 'passed' will be latched once we found the descriptor which 788 * lies inside the boundaries of the curr pointer. All 789 * descriptors that occur in the list _after_ we found that 790 * partially handled descriptor are still to be processed and 791 * are hence added to the residual bytes counter. 792 */ 793 794 if (passed) { 795 residue += len; 796 } else if (curr >= start && curr <= end) { 797 residue += end - curr; 798 passed = true; 799 } 800 801 /* 802 * Descriptors that have the ENDIRQEN bit set mark the end of a 803 * transaction chain, and the cookie assigned with it has been 804 * returned previously from mmp_pdma_tx_submit(). 805 * 806 * In case we have multiple transactions in the running chain, 807 * and the cookie does not match the one the user asked us 808 * about, reset the state variables and start over. 809 * 810 * This logic does not apply to cyclic transactions, where all 811 * descriptors have the ENDIRQEN bit set, and for which we 812 * can't have multiple transactions on one channel anyway. 813 */ 814 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN)) 815 continue; 816 817 if (sw->async_tx.cookie == cookie) { 818 return residue; 819 } else { 820 residue = 0; 821 passed = false; 822 } 823 } 824 825 /* We should only get here in case of cyclic transactions */ 826 return residue; 827 } 828 829 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan, 830 dma_cookie_t cookie, 831 struct dma_tx_state *txstate) 832 { 833 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 834 enum dma_status ret; 835 836 ret = dma_cookie_status(dchan, cookie, txstate); 837 if (likely(ret != DMA_ERROR)) 838 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie)); 839 840 return ret; 841 } 842 843 /** 844 * mmp_pdma_issue_pending - Issue the DMA start command 845 * pending list ==> running list 846 */ 847 static void mmp_pdma_issue_pending(struct dma_chan *dchan) 848 { 849 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 850 unsigned long flags; 851 852 spin_lock_irqsave(&chan->desc_lock, flags); 853 start_pending_queue(chan); 854 spin_unlock_irqrestore(&chan->desc_lock, flags); 855 } 856 857 /* 858 * dma_do_tasklet 859 * Do call back 860 * Start pending list 861 */ 862 static void dma_do_tasklet(unsigned long data) 863 { 864 struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data; 865 struct mmp_pdma_desc_sw *desc, *_desc; 866 LIST_HEAD(chain_cleanup); 867 unsigned long flags; 868 869 if (chan->cyclic_first) { 870 dma_async_tx_callback cb = NULL; 871 void *cb_data = NULL; 872 873 spin_lock_irqsave(&chan->desc_lock, flags); 874 desc = chan->cyclic_first; 875 cb = desc->async_tx.callback; 876 cb_data = desc->async_tx.callback_param; 877 spin_unlock_irqrestore(&chan->desc_lock, flags); 878 879 if (cb) 880 cb(cb_data); 881 882 return; 883 } 884 885 /* submit pending list; callback for each desc; free desc */ 886 spin_lock_irqsave(&chan->desc_lock, flags); 887 888 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) { 889 /* 890 * move the descriptors to a temporary list so we can drop 891 * the lock during the entire cleanup operation 892 */ 893 list_move(&desc->node, &chain_cleanup); 894 895 /* 896 * Look for the first list entry which has the ENDIRQEN flag 897 * set. That is the descriptor we got an interrupt for, so 898 * complete that transaction and its cookie. 899 */ 900 if (desc->desc.dcmd & DCMD_ENDIRQEN) { 901 dma_cookie_t cookie = desc->async_tx.cookie; 902 dma_cookie_complete(&desc->async_tx); 903 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie); 904 break; 905 } 906 } 907 908 /* 909 * The hardware is idle and ready for more when the 910 * chain_running list is empty. 911 */ 912 chan->idle = list_empty(&chan->chain_running); 913 914 /* Start any pending transactions automatically */ 915 start_pending_queue(chan); 916 spin_unlock_irqrestore(&chan->desc_lock, flags); 917 918 /* Run the callback for each descriptor, in order */ 919 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) { 920 struct dma_async_tx_descriptor *txd = &desc->async_tx; 921 922 /* Remove from the list of transactions */ 923 list_del(&desc->node); 924 /* Run the link descriptor callback function */ 925 if (txd->callback) 926 txd->callback(txd->callback_param); 927 928 dma_pool_free(chan->desc_pool, desc, txd->phys); 929 } 930 } 931 932 static int mmp_pdma_remove(struct platform_device *op) 933 { 934 struct mmp_pdma_device *pdev = platform_get_drvdata(op); 935 936 dma_async_device_unregister(&pdev->device); 937 return 0; 938 } 939 940 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq) 941 { 942 struct mmp_pdma_phy *phy = &pdev->phy[idx]; 943 struct mmp_pdma_chan *chan; 944 int ret; 945 946 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL); 947 if (chan == NULL) 948 return -ENOMEM; 949 950 phy->idx = idx; 951 phy->base = pdev->base; 952 953 if (irq) { 954 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler, 955 IRQF_SHARED, "pdma", phy); 956 if (ret) { 957 dev_err(pdev->dev, "channel request irq fail!\n"); 958 return ret; 959 } 960 } 961 962 spin_lock_init(&chan->desc_lock); 963 chan->dev = pdev->dev; 964 chan->chan.device = &pdev->device; 965 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan); 966 INIT_LIST_HEAD(&chan->chain_pending); 967 INIT_LIST_HEAD(&chan->chain_running); 968 969 /* register virt channel to dma engine */ 970 list_add_tail(&chan->chan.device_node, &pdev->device.channels); 971 972 return 0; 973 } 974 975 static const struct of_device_id mmp_pdma_dt_ids[] = { 976 { .compatible = "marvell,pdma-1.0", }, 977 {} 978 }; 979 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids); 980 981 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec, 982 struct of_dma *ofdma) 983 { 984 struct mmp_pdma_device *d = ofdma->of_dma_data; 985 struct dma_chan *chan; 986 987 chan = dma_get_any_slave_channel(&d->device); 988 if (!chan) 989 return NULL; 990 991 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0]; 992 993 return chan; 994 } 995 996 static int mmp_pdma_probe(struct platform_device *op) 997 { 998 struct mmp_pdma_device *pdev; 999 const struct of_device_id *of_id; 1000 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev); 1001 struct resource *iores; 1002 int i, ret, irq = 0; 1003 int dma_channels = 0, irq_num = 0; 1004 const enum dma_slave_buswidth widths = 1005 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES | 1006 DMA_SLAVE_BUSWIDTH_4_BYTES; 1007 1008 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL); 1009 if (!pdev) 1010 return -ENOMEM; 1011 1012 pdev->dev = &op->dev; 1013 1014 spin_lock_init(&pdev->phy_lock); 1015 1016 iores = platform_get_resource(op, IORESOURCE_MEM, 0); 1017 pdev->base = devm_ioremap_resource(pdev->dev, iores); 1018 if (IS_ERR(pdev->base)) 1019 return PTR_ERR(pdev->base); 1020 1021 of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev); 1022 if (of_id) 1023 of_property_read_u32(pdev->dev->of_node, "#dma-channels", 1024 &dma_channels); 1025 else if (pdata && pdata->dma_channels) 1026 dma_channels = pdata->dma_channels; 1027 else 1028 dma_channels = 32; /* default 32 channel */ 1029 pdev->dma_channels = dma_channels; 1030 1031 for (i = 0; i < dma_channels; i++) { 1032 if (platform_get_irq(op, i) > 0) 1033 irq_num++; 1034 } 1035 1036 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy), 1037 GFP_KERNEL); 1038 if (pdev->phy == NULL) 1039 return -ENOMEM; 1040 1041 INIT_LIST_HEAD(&pdev->device.channels); 1042 1043 if (irq_num != dma_channels) { 1044 /* all chan share one irq, demux inside */ 1045 irq = platform_get_irq(op, 0); 1046 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler, 1047 IRQF_SHARED, "pdma", pdev); 1048 if (ret) 1049 return ret; 1050 } 1051 1052 for (i = 0; i < dma_channels; i++) { 1053 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i); 1054 ret = mmp_pdma_chan_init(pdev, i, irq); 1055 if (ret) 1056 return ret; 1057 } 1058 1059 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask); 1060 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask); 1061 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask); 1062 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask); 1063 pdev->device.dev = &op->dev; 1064 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources; 1065 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources; 1066 pdev->device.device_tx_status = mmp_pdma_tx_status; 1067 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy; 1068 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg; 1069 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic; 1070 pdev->device.device_issue_pending = mmp_pdma_issue_pending; 1071 pdev->device.device_config = mmp_pdma_config; 1072 pdev->device.device_terminate_all = mmp_pdma_terminate_all; 1073 pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES; 1074 pdev->device.src_addr_widths = widths; 1075 pdev->device.dst_addr_widths = widths; 1076 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1077 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1078 1079 if (pdev->dev->coherent_dma_mask) 1080 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask); 1081 else 1082 dma_set_mask(pdev->dev, DMA_BIT_MASK(64)); 1083 1084 ret = dma_async_device_register(&pdev->device); 1085 if (ret) { 1086 dev_err(pdev->device.dev, "unable to register\n"); 1087 return ret; 1088 } 1089 1090 if (op->dev.of_node) { 1091 /* Device-tree DMA controller registration */ 1092 ret = of_dma_controller_register(op->dev.of_node, 1093 mmp_pdma_dma_xlate, pdev); 1094 if (ret < 0) { 1095 dev_err(&op->dev, "of_dma_controller_register failed\n"); 1096 return ret; 1097 } 1098 } 1099 1100 platform_set_drvdata(op, pdev); 1101 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels); 1102 return 0; 1103 } 1104 1105 static const struct platform_device_id mmp_pdma_id_table[] = { 1106 { "mmp-pdma", }, 1107 { }, 1108 }; 1109 1110 static struct platform_driver mmp_pdma_driver = { 1111 .driver = { 1112 .name = "mmp-pdma", 1113 .of_match_table = mmp_pdma_dt_ids, 1114 }, 1115 .id_table = mmp_pdma_id_table, 1116 .probe = mmp_pdma_probe, 1117 .remove = mmp_pdma_remove, 1118 }; 1119 1120 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param) 1121 { 1122 struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan); 1123 1124 if (chan->device->dev->driver != &mmp_pdma_driver.driver) 1125 return false; 1126 1127 c->drcmr = *(unsigned int *)param; 1128 1129 return true; 1130 } 1131 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn); 1132 1133 module_platform_driver(mmp_pdma_driver); 1134 1135 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver"); 1136 MODULE_AUTHOR("Marvell International Ltd."); 1137 MODULE_LICENSE("GPL v2"); 1138