1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2012 Marvell International Ltd. 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/types.h> 10 #include <linux/interrupt.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/slab.h> 13 #include <linux/dmaengine.h> 14 #include <linux/platform_device.h> 15 #include <linux/device.h> 16 #include <linux/platform_data/mmp_dma.h> 17 #include <linux/dmapool.h> 18 #include <linux/of_dma.h> 19 #include <linux/of.h> 20 21 #include "dmaengine.h" 22 23 #define DCSR 0x0000 24 #define DALGN 0x00a0 25 #define DINT 0x00f0 26 #define DDADR 0x0200 27 #define DSADR(n) (0x0204 + ((n) << 4)) 28 #define DTADR(n) (0x0208 + ((n) << 4)) 29 #define DCMD 0x020c 30 31 #define DCSR_RUN BIT(31) /* Run Bit (read / write) */ 32 #define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */ 33 #define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */ 34 #define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */ 35 #define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */ 36 #define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */ 37 #define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */ 38 #define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */ 39 40 #define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */ 41 #define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */ 42 #define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */ 43 #define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */ 44 #define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */ 45 #define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */ 46 #define DCSR_EORINTR BIT(9) /* The end of Receive */ 47 48 #define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2)) 49 #define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */ 50 #define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */ 51 52 #define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */ 53 #define DDADR_STOP BIT(0) /* Stop (read / write) */ 54 55 #define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */ 56 #define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */ 57 #define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */ 58 #define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */ 59 #define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */ 60 #define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */ 61 #define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */ 62 #define DCMD_BURST8 (1 << 16) /* 8 byte burst */ 63 #define DCMD_BURST16 (2 << 16) /* 16 byte burst */ 64 #define DCMD_BURST32 (3 << 16) /* 32 byte burst */ 65 #define DCMD_WIDTH1 (1 << 14) /* 1 byte width */ 66 #define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */ 67 #define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */ 68 #define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */ 69 70 #define PDMA_MAX_DESC_BYTES DCMD_LENGTH 71 72 struct mmp_pdma_desc_hw { 73 u32 ddadr; /* Points to the next descriptor + flags */ 74 u32 dsadr; /* DSADR value for the current transfer */ 75 u32 dtadr; /* DTADR value for the current transfer */ 76 u32 dcmd; /* DCMD value for the current transfer */ 77 } __aligned(32); 78 79 struct mmp_pdma_desc_sw { 80 struct mmp_pdma_desc_hw desc; 81 struct list_head node; 82 struct list_head tx_list; 83 struct dma_async_tx_descriptor async_tx; 84 }; 85 86 struct mmp_pdma_phy; 87 88 struct mmp_pdma_chan { 89 struct device *dev; 90 struct dma_chan chan; 91 struct dma_async_tx_descriptor desc; 92 struct mmp_pdma_phy *phy; 93 enum dma_transfer_direction dir; 94 struct dma_slave_config slave_config; 95 96 struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel 97 * is in cyclic mode */ 98 99 /* channel's basic info */ 100 struct tasklet_struct tasklet; 101 u32 dcmd; 102 u32 drcmr; 103 u32 dev_addr; 104 105 /* list for desc */ 106 spinlock_t desc_lock; /* Descriptor list lock */ 107 struct list_head chain_pending; /* Link descriptors queue for pending */ 108 struct list_head chain_running; /* Link descriptors queue for running */ 109 bool idle; /* channel statue machine */ 110 bool byte_align; 111 112 struct dma_pool *desc_pool; /* Descriptors pool */ 113 }; 114 115 struct mmp_pdma_phy { 116 int idx; 117 void __iomem *base; 118 struct mmp_pdma_chan *vchan; 119 }; 120 121 struct mmp_pdma_device { 122 int dma_channels; 123 void __iomem *base; 124 struct device *dev; 125 struct dma_device device; 126 struct mmp_pdma_phy *phy; 127 spinlock_t phy_lock; /* protect alloc/free phy channels */ 128 }; 129 130 #define tx_to_mmp_pdma_desc(tx) \ 131 container_of(tx, struct mmp_pdma_desc_sw, async_tx) 132 #define to_mmp_pdma_desc(lh) \ 133 container_of(lh, struct mmp_pdma_desc_sw, node) 134 #define to_mmp_pdma_chan(dchan) \ 135 container_of(dchan, struct mmp_pdma_chan, chan) 136 #define to_mmp_pdma_dev(dmadev) \ 137 container_of(dmadev, struct mmp_pdma_device, device) 138 139 static int mmp_pdma_config_write(struct dma_chan *dchan, 140 struct dma_slave_config *cfg, 141 enum dma_transfer_direction direction); 142 143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr) 144 { 145 u32 reg = (phy->idx << 4) + DDADR; 146 147 writel(addr, phy->base + reg); 148 } 149 150 static void enable_chan(struct mmp_pdma_phy *phy) 151 { 152 u32 reg, dalgn; 153 154 if (!phy->vchan) 155 return; 156 157 reg = DRCMR(phy->vchan->drcmr); 158 writel(DRCMR_MAPVLD | phy->idx, phy->base + reg); 159 160 dalgn = readl(phy->base + DALGN); 161 if (phy->vchan->byte_align) 162 dalgn |= 1 << phy->idx; 163 else 164 dalgn &= ~(1 << phy->idx); 165 writel(dalgn, phy->base + DALGN); 166 167 reg = (phy->idx << 2) + DCSR; 168 writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg); 169 } 170 171 static void disable_chan(struct mmp_pdma_phy *phy) 172 { 173 u32 reg; 174 175 if (!phy) 176 return; 177 178 reg = (phy->idx << 2) + DCSR; 179 writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg); 180 } 181 182 static int clear_chan_irq(struct mmp_pdma_phy *phy) 183 { 184 u32 dcsr; 185 u32 dint = readl(phy->base + DINT); 186 u32 reg = (phy->idx << 2) + DCSR; 187 188 if (!(dint & BIT(phy->idx))) 189 return -EAGAIN; 190 191 /* clear irq */ 192 dcsr = readl(phy->base + reg); 193 writel(dcsr, phy->base + reg); 194 if ((dcsr & DCSR_BUSERR) && (phy->vchan)) 195 dev_warn(phy->vchan->dev, "DCSR_BUSERR\n"); 196 197 return 0; 198 } 199 200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id) 201 { 202 struct mmp_pdma_phy *phy = dev_id; 203 204 if (clear_chan_irq(phy) != 0) 205 return IRQ_NONE; 206 207 tasklet_schedule(&phy->vchan->tasklet); 208 return IRQ_HANDLED; 209 } 210 211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id) 212 { 213 struct mmp_pdma_device *pdev = dev_id; 214 struct mmp_pdma_phy *phy; 215 u32 dint = readl(pdev->base + DINT); 216 int i, ret; 217 int irq_num = 0; 218 219 while (dint) { 220 i = __ffs(dint); 221 /* only handle interrupts belonging to pdma driver*/ 222 if (i >= pdev->dma_channels) 223 break; 224 dint &= (dint - 1); 225 phy = &pdev->phy[i]; 226 ret = mmp_pdma_chan_handler(irq, phy); 227 if (ret == IRQ_HANDLED) 228 irq_num++; 229 } 230 231 if (irq_num) 232 return IRQ_HANDLED; 233 234 return IRQ_NONE; 235 } 236 237 /* lookup free phy channel as descending priority */ 238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan) 239 { 240 int prio, i; 241 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 242 struct mmp_pdma_phy *phy, *found = NULL; 243 unsigned long flags; 244 245 /* 246 * dma channel priorities 247 * ch 0 - 3, 16 - 19 <--> (0) 248 * ch 4 - 7, 20 - 23 <--> (1) 249 * ch 8 - 11, 24 - 27 <--> (2) 250 * ch 12 - 15, 28 - 31 <--> (3) 251 */ 252 253 spin_lock_irqsave(&pdev->phy_lock, flags); 254 for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) { 255 for (i = 0; i < pdev->dma_channels; i++) { 256 if (prio != (i & 0xf) >> 2) 257 continue; 258 phy = &pdev->phy[i]; 259 if (!phy->vchan) { 260 phy->vchan = pchan; 261 found = phy; 262 goto out_unlock; 263 } 264 } 265 } 266 267 out_unlock: 268 spin_unlock_irqrestore(&pdev->phy_lock, flags); 269 return found; 270 } 271 272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan) 273 { 274 struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device); 275 unsigned long flags; 276 u32 reg; 277 278 if (!pchan->phy) 279 return; 280 281 /* clear the channel mapping in DRCMR */ 282 reg = DRCMR(pchan->drcmr); 283 writel(0, pchan->phy->base + reg); 284 285 spin_lock_irqsave(&pdev->phy_lock, flags); 286 pchan->phy->vchan = NULL; 287 pchan->phy = NULL; 288 spin_unlock_irqrestore(&pdev->phy_lock, flags); 289 } 290 291 /* 292 * start_pending_queue - transfer any pending transactions 293 * pending list ==> running list 294 */ 295 static void start_pending_queue(struct mmp_pdma_chan *chan) 296 { 297 struct mmp_pdma_desc_sw *desc; 298 299 /* still in running, irq will start the pending list */ 300 if (!chan->idle) { 301 dev_dbg(chan->dev, "DMA controller still busy\n"); 302 return; 303 } 304 305 if (list_empty(&chan->chain_pending)) { 306 /* chance to re-fetch phy channel with higher prio */ 307 mmp_pdma_free_phy(chan); 308 dev_dbg(chan->dev, "no pending list\n"); 309 return; 310 } 311 312 if (!chan->phy) { 313 chan->phy = lookup_phy(chan); 314 if (!chan->phy) { 315 dev_dbg(chan->dev, "no free dma channel\n"); 316 return; 317 } 318 } 319 320 /* 321 * pending -> running 322 * reintilize pending list 323 */ 324 desc = list_first_entry(&chan->chain_pending, 325 struct mmp_pdma_desc_sw, node); 326 list_splice_tail_init(&chan->chain_pending, &chan->chain_running); 327 328 /* 329 * Program the descriptor's address into the DMA controller, 330 * then start the DMA transaction 331 */ 332 set_desc(chan->phy, desc->async_tx.phys); 333 enable_chan(chan->phy); 334 chan->idle = false; 335 } 336 337 338 /* desc->tx_list ==> pending list */ 339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx) 340 { 341 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan); 342 struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx); 343 struct mmp_pdma_desc_sw *child; 344 unsigned long flags; 345 dma_cookie_t cookie = -EBUSY; 346 347 spin_lock_irqsave(&chan->desc_lock, flags); 348 349 list_for_each_entry(child, &desc->tx_list, node) { 350 cookie = dma_cookie_assign(&child->async_tx); 351 } 352 353 /* softly link to pending list - desc->tx_list ==> pending list */ 354 list_splice_tail_init(&desc->tx_list, &chan->chain_pending); 355 356 spin_unlock_irqrestore(&chan->desc_lock, flags); 357 358 return cookie; 359 } 360 361 static struct mmp_pdma_desc_sw * 362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan) 363 { 364 struct mmp_pdma_desc_sw *desc; 365 dma_addr_t pdesc; 366 367 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc); 368 if (!desc) { 369 dev_err(chan->dev, "out of memory for link descriptor\n"); 370 return NULL; 371 } 372 373 INIT_LIST_HEAD(&desc->tx_list); 374 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan); 375 /* each desc has submit */ 376 desc->async_tx.tx_submit = mmp_pdma_tx_submit; 377 desc->async_tx.phys = pdesc; 378 379 return desc; 380 } 381 382 /* 383 * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel. 384 * 385 * This function will create a dma pool for descriptor allocation. 386 * Request irq only when channel is requested 387 * Return - The number of allocated descriptors. 388 */ 389 390 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan) 391 { 392 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 393 394 if (chan->desc_pool) 395 return 1; 396 397 chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device), 398 chan->dev, 399 sizeof(struct mmp_pdma_desc_sw), 400 __alignof__(struct mmp_pdma_desc_sw), 401 0); 402 if (!chan->desc_pool) { 403 dev_err(chan->dev, "unable to allocate descriptor pool\n"); 404 return -ENOMEM; 405 } 406 407 mmp_pdma_free_phy(chan); 408 chan->idle = true; 409 chan->dev_addr = 0; 410 return 1; 411 } 412 413 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan, 414 struct list_head *list) 415 { 416 struct mmp_pdma_desc_sw *desc, *_desc; 417 418 list_for_each_entry_safe(desc, _desc, list, node) { 419 list_del(&desc->node); 420 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys); 421 } 422 } 423 424 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan) 425 { 426 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 427 unsigned long flags; 428 429 spin_lock_irqsave(&chan->desc_lock, flags); 430 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 431 mmp_pdma_free_desc_list(chan, &chan->chain_running); 432 spin_unlock_irqrestore(&chan->desc_lock, flags); 433 434 dma_pool_destroy(chan->desc_pool); 435 chan->desc_pool = NULL; 436 chan->idle = true; 437 chan->dev_addr = 0; 438 mmp_pdma_free_phy(chan); 439 return; 440 } 441 442 static struct dma_async_tx_descriptor * 443 mmp_pdma_prep_memcpy(struct dma_chan *dchan, 444 dma_addr_t dma_dst, dma_addr_t dma_src, 445 size_t len, unsigned long flags) 446 { 447 struct mmp_pdma_chan *chan; 448 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 449 size_t copy = 0; 450 451 if (!dchan) 452 return NULL; 453 454 if (!len) 455 return NULL; 456 457 chan = to_mmp_pdma_chan(dchan); 458 chan->byte_align = false; 459 460 if (!chan->dir) { 461 chan->dir = DMA_MEM_TO_MEM; 462 chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR; 463 chan->dcmd |= DCMD_BURST32; 464 } 465 466 do { 467 /* Allocate the link descriptor from DMA pool */ 468 new = mmp_pdma_alloc_descriptor(chan); 469 if (!new) { 470 dev_err(chan->dev, "no memory for desc\n"); 471 goto fail; 472 } 473 474 copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES); 475 if (dma_src & 0x7 || dma_dst & 0x7) 476 chan->byte_align = true; 477 478 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy); 479 new->desc.dsadr = dma_src; 480 new->desc.dtadr = dma_dst; 481 482 if (!first) 483 first = new; 484 else 485 prev->desc.ddadr = new->async_tx.phys; 486 487 new->async_tx.cookie = 0; 488 async_tx_ack(&new->async_tx); 489 490 prev = new; 491 len -= copy; 492 493 if (chan->dir == DMA_MEM_TO_DEV) { 494 dma_src += copy; 495 } else if (chan->dir == DMA_DEV_TO_MEM) { 496 dma_dst += copy; 497 } else if (chan->dir == DMA_MEM_TO_MEM) { 498 dma_src += copy; 499 dma_dst += copy; 500 } 501 502 /* Insert the link descriptor to the LD ring */ 503 list_add_tail(&new->node, &first->tx_list); 504 } while (len); 505 506 first->async_tx.flags = flags; /* client is in control of this ack */ 507 first->async_tx.cookie = -EBUSY; 508 509 /* last desc and fire IRQ */ 510 new->desc.ddadr = DDADR_STOP; 511 new->desc.dcmd |= DCMD_ENDIRQEN; 512 513 chan->cyclic_first = NULL; 514 515 return &first->async_tx; 516 517 fail: 518 if (first) 519 mmp_pdma_free_desc_list(chan, &first->tx_list); 520 return NULL; 521 } 522 523 static struct dma_async_tx_descriptor * 524 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 525 unsigned int sg_len, enum dma_transfer_direction dir, 526 unsigned long flags, void *context) 527 { 528 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 529 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL; 530 size_t len, avail; 531 struct scatterlist *sg; 532 dma_addr_t addr; 533 int i; 534 535 if ((sgl == NULL) || (sg_len == 0)) 536 return NULL; 537 538 chan->byte_align = false; 539 540 mmp_pdma_config_write(dchan, &chan->slave_config, dir); 541 542 for_each_sg(sgl, sg, sg_len, i) { 543 addr = sg_dma_address(sg); 544 avail = sg_dma_len(sgl); 545 546 do { 547 len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES); 548 if (addr & 0x7) 549 chan->byte_align = true; 550 551 /* allocate and populate the descriptor */ 552 new = mmp_pdma_alloc_descriptor(chan); 553 if (!new) { 554 dev_err(chan->dev, "no memory for desc\n"); 555 goto fail; 556 } 557 558 new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len); 559 if (dir == DMA_MEM_TO_DEV) { 560 new->desc.dsadr = addr; 561 new->desc.dtadr = chan->dev_addr; 562 } else { 563 new->desc.dsadr = chan->dev_addr; 564 new->desc.dtadr = addr; 565 } 566 567 if (!first) 568 first = new; 569 else 570 prev->desc.ddadr = new->async_tx.phys; 571 572 new->async_tx.cookie = 0; 573 async_tx_ack(&new->async_tx); 574 prev = new; 575 576 /* Insert the link descriptor to the LD ring */ 577 list_add_tail(&new->node, &first->tx_list); 578 579 /* update metadata */ 580 addr += len; 581 avail -= len; 582 } while (avail); 583 } 584 585 first->async_tx.cookie = -EBUSY; 586 first->async_tx.flags = flags; 587 588 /* last desc and fire IRQ */ 589 new->desc.ddadr = DDADR_STOP; 590 new->desc.dcmd |= DCMD_ENDIRQEN; 591 592 chan->dir = dir; 593 chan->cyclic_first = NULL; 594 595 return &first->async_tx; 596 597 fail: 598 if (first) 599 mmp_pdma_free_desc_list(chan, &first->tx_list); 600 return NULL; 601 } 602 603 static struct dma_async_tx_descriptor * 604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan, 605 dma_addr_t buf_addr, size_t len, size_t period_len, 606 enum dma_transfer_direction direction, 607 unsigned long flags) 608 { 609 struct mmp_pdma_chan *chan; 610 struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new; 611 dma_addr_t dma_src, dma_dst; 612 613 if (!dchan || !len || !period_len) 614 return NULL; 615 616 /* the buffer length must be a multiple of period_len */ 617 if (len % period_len != 0) 618 return NULL; 619 620 if (period_len > PDMA_MAX_DESC_BYTES) 621 return NULL; 622 623 chan = to_mmp_pdma_chan(dchan); 624 mmp_pdma_config_write(dchan, &chan->slave_config, direction); 625 626 switch (direction) { 627 case DMA_MEM_TO_DEV: 628 dma_src = buf_addr; 629 dma_dst = chan->dev_addr; 630 break; 631 case DMA_DEV_TO_MEM: 632 dma_dst = buf_addr; 633 dma_src = chan->dev_addr; 634 break; 635 default: 636 dev_err(chan->dev, "Unsupported direction for cyclic DMA\n"); 637 return NULL; 638 } 639 640 chan->dir = direction; 641 642 do { 643 /* Allocate the link descriptor from DMA pool */ 644 new = mmp_pdma_alloc_descriptor(chan); 645 if (!new) { 646 dev_err(chan->dev, "no memory for desc\n"); 647 goto fail; 648 } 649 650 new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN | 651 (DCMD_LENGTH & period_len)); 652 new->desc.dsadr = dma_src; 653 new->desc.dtadr = dma_dst; 654 655 if (!first) 656 first = new; 657 else 658 prev->desc.ddadr = new->async_tx.phys; 659 660 new->async_tx.cookie = 0; 661 async_tx_ack(&new->async_tx); 662 663 prev = new; 664 len -= period_len; 665 666 if (chan->dir == DMA_MEM_TO_DEV) 667 dma_src += period_len; 668 else 669 dma_dst += period_len; 670 671 /* Insert the link descriptor to the LD ring */ 672 list_add_tail(&new->node, &first->tx_list); 673 } while (len); 674 675 first->async_tx.flags = flags; /* client is in control of this ack */ 676 first->async_tx.cookie = -EBUSY; 677 678 /* make the cyclic link */ 679 new->desc.ddadr = first->async_tx.phys; 680 chan->cyclic_first = first; 681 682 return &first->async_tx; 683 684 fail: 685 if (first) 686 mmp_pdma_free_desc_list(chan, &first->tx_list); 687 return NULL; 688 } 689 690 static int mmp_pdma_config_write(struct dma_chan *dchan, 691 struct dma_slave_config *cfg, 692 enum dma_transfer_direction direction) 693 { 694 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 695 u32 maxburst = 0, addr = 0; 696 enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 697 698 if (!dchan) 699 return -EINVAL; 700 701 if (direction == DMA_DEV_TO_MEM) { 702 chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC; 703 maxburst = cfg->src_maxburst; 704 width = cfg->src_addr_width; 705 addr = cfg->src_addr; 706 } else if (direction == DMA_MEM_TO_DEV) { 707 chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG; 708 maxburst = cfg->dst_maxburst; 709 width = cfg->dst_addr_width; 710 addr = cfg->dst_addr; 711 } 712 713 if (width == DMA_SLAVE_BUSWIDTH_1_BYTE) 714 chan->dcmd |= DCMD_WIDTH1; 715 else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES) 716 chan->dcmd |= DCMD_WIDTH2; 717 else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES) 718 chan->dcmd |= DCMD_WIDTH4; 719 720 if (maxburst == 8) 721 chan->dcmd |= DCMD_BURST8; 722 else if (maxburst == 16) 723 chan->dcmd |= DCMD_BURST16; 724 else if (maxburst == 32) 725 chan->dcmd |= DCMD_BURST32; 726 727 chan->dir = direction; 728 chan->dev_addr = addr; 729 730 return 0; 731 } 732 733 static int mmp_pdma_config(struct dma_chan *dchan, 734 struct dma_slave_config *cfg) 735 { 736 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 737 738 memcpy(&chan->slave_config, cfg, sizeof(*cfg)); 739 return 0; 740 } 741 742 static int mmp_pdma_terminate_all(struct dma_chan *dchan) 743 { 744 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 745 unsigned long flags; 746 747 if (!dchan) 748 return -EINVAL; 749 750 disable_chan(chan->phy); 751 mmp_pdma_free_phy(chan); 752 spin_lock_irqsave(&chan->desc_lock, flags); 753 mmp_pdma_free_desc_list(chan, &chan->chain_pending); 754 mmp_pdma_free_desc_list(chan, &chan->chain_running); 755 spin_unlock_irqrestore(&chan->desc_lock, flags); 756 chan->idle = true; 757 758 return 0; 759 } 760 761 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan, 762 dma_cookie_t cookie) 763 { 764 struct mmp_pdma_desc_sw *sw; 765 u32 curr, residue = 0; 766 bool passed = false; 767 bool cyclic = chan->cyclic_first != NULL; 768 769 /* 770 * If the channel does not have a phy pointer anymore, it has already 771 * been completed. Therefore, its residue is 0. 772 */ 773 if (!chan->phy) 774 return 0; 775 776 if (chan->dir == DMA_DEV_TO_MEM) 777 curr = readl(chan->phy->base + DTADR(chan->phy->idx)); 778 else 779 curr = readl(chan->phy->base + DSADR(chan->phy->idx)); 780 781 list_for_each_entry(sw, &chan->chain_running, node) { 782 u32 start, end, len; 783 784 if (chan->dir == DMA_DEV_TO_MEM) 785 start = sw->desc.dtadr; 786 else 787 start = sw->desc.dsadr; 788 789 len = sw->desc.dcmd & DCMD_LENGTH; 790 end = start + len; 791 792 /* 793 * 'passed' will be latched once we found the descriptor which 794 * lies inside the boundaries of the curr pointer. All 795 * descriptors that occur in the list _after_ we found that 796 * partially handled descriptor are still to be processed and 797 * are hence added to the residual bytes counter. 798 */ 799 800 if (passed) { 801 residue += len; 802 } else if (curr >= start && curr <= end) { 803 residue += end - curr; 804 passed = true; 805 } 806 807 /* 808 * Descriptors that have the ENDIRQEN bit set mark the end of a 809 * transaction chain, and the cookie assigned with it has been 810 * returned previously from mmp_pdma_tx_submit(). 811 * 812 * In case we have multiple transactions in the running chain, 813 * and the cookie does not match the one the user asked us 814 * about, reset the state variables and start over. 815 * 816 * This logic does not apply to cyclic transactions, where all 817 * descriptors have the ENDIRQEN bit set, and for which we 818 * can't have multiple transactions on one channel anyway. 819 */ 820 if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN)) 821 continue; 822 823 if (sw->async_tx.cookie == cookie) { 824 return residue; 825 } else { 826 residue = 0; 827 passed = false; 828 } 829 } 830 831 /* We should only get here in case of cyclic transactions */ 832 return residue; 833 } 834 835 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan, 836 dma_cookie_t cookie, 837 struct dma_tx_state *txstate) 838 { 839 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 840 enum dma_status ret; 841 842 ret = dma_cookie_status(dchan, cookie, txstate); 843 if (likely(ret != DMA_ERROR)) 844 dma_set_residue(txstate, mmp_pdma_residue(chan, cookie)); 845 846 return ret; 847 } 848 849 /* 850 * mmp_pdma_issue_pending - Issue the DMA start command 851 * pending list ==> running list 852 */ 853 static void mmp_pdma_issue_pending(struct dma_chan *dchan) 854 { 855 struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan); 856 unsigned long flags; 857 858 spin_lock_irqsave(&chan->desc_lock, flags); 859 start_pending_queue(chan); 860 spin_unlock_irqrestore(&chan->desc_lock, flags); 861 } 862 863 /* 864 * dma_do_tasklet 865 * Do call back 866 * Start pending list 867 */ 868 static void dma_do_tasklet(struct tasklet_struct *t) 869 { 870 struct mmp_pdma_chan *chan = from_tasklet(chan, t, tasklet); 871 struct mmp_pdma_desc_sw *desc, *_desc; 872 LIST_HEAD(chain_cleanup); 873 unsigned long flags; 874 struct dmaengine_desc_callback cb; 875 876 if (chan->cyclic_first) { 877 spin_lock_irqsave(&chan->desc_lock, flags); 878 desc = chan->cyclic_first; 879 dmaengine_desc_get_callback(&desc->async_tx, &cb); 880 spin_unlock_irqrestore(&chan->desc_lock, flags); 881 882 dmaengine_desc_callback_invoke(&cb, NULL); 883 884 return; 885 } 886 887 /* submit pending list; callback for each desc; free desc */ 888 spin_lock_irqsave(&chan->desc_lock, flags); 889 890 list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) { 891 /* 892 * move the descriptors to a temporary list so we can drop 893 * the lock during the entire cleanup operation 894 */ 895 list_move(&desc->node, &chain_cleanup); 896 897 /* 898 * Look for the first list entry which has the ENDIRQEN flag 899 * set. That is the descriptor we got an interrupt for, so 900 * complete that transaction and its cookie. 901 */ 902 if (desc->desc.dcmd & DCMD_ENDIRQEN) { 903 dma_cookie_t cookie = desc->async_tx.cookie; 904 dma_cookie_complete(&desc->async_tx); 905 dev_dbg(chan->dev, "completed_cookie=%d\n", cookie); 906 break; 907 } 908 } 909 910 /* 911 * The hardware is idle and ready for more when the 912 * chain_running list is empty. 913 */ 914 chan->idle = list_empty(&chan->chain_running); 915 916 /* Start any pending transactions automatically */ 917 start_pending_queue(chan); 918 spin_unlock_irqrestore(&chan->desc_lock, flags); 919 920 /* Run the callback for each descriptor, in order */ 921 list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) { 922 struct dma_async_tx_descriptor *txd = &desc->async_tx; 923 924 /* Remove from the list of transactions */ 925 list_del(&desc->node); 926 /* Run the link descriptor callback function */ 927 dmaengine_desc_get_callback(txd, &cb); 928 dmaengine_desc_callback_invoke(&cb, NULL); 929 930 dma_pool_free(chan->desc_pool, desc, txd->phys); 931 } 932 } 933 934 static void mmp_pdma_remove(struct platform_device *op) 935 { 936 struct mmp_pdma_device *pdev = platform_get_drvdata(op); 937 struct mmp_pdma_phy *phy; 938 int i, irq = 0, irq_num = 0; 939 940 if (op->dev.of_node) 941 of_dma_controller_free(op->dev.of_node); 942 943 for (i = 0; i < pdev->dma_channels; i++) { 944 if (platform_get_irq(op, i) > 0) 945 irq_num++; 946 } 947 948 if (irq_num != pdev->dma_channels) { 949 irq = platform_get_irq(op, 0); 950 devm_free_irq(&op->dev, irq, pdev); 951 } else { 952 for (i = 0; i < pdev->dma_channels; i++) { 953 phy = &pdev->phy[i]; 954 irq = platform_get_irq(op, i); 955 devm_free_irq(&op->dev, irq, phy); 956 } 957 } 958 959 dma_async_device_unregister(&pdev->device); 960 } 961 962 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq) 963 { 964 struct mmp_pdma_phy *phy = &pdev->phy[idx]; 965 struct mmp_pdma_chan *chan; 966 int ret; 967 968 chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL); 969 if (chan == NULL) 970 return -ENOMEM; 971 972 phy->idx = idx; 973 phy->base = pdev->base; 974 975 if (irq) { 976 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler, 977 IRQF_SHARED, "pdma", phy); 978 if (ret) { 979 dev_err(pdev->dev, "channel request irq fail!\n"); 980 return ret; 981 } 982 } 983 984 spin_lock_init(&chan->desc_lock); 985 chan->dev = pdev->dev; 986 chan->chan.device = &pdev->device; 987 tasklet_setup(&chan->tasklet, dma_do_tasklet); 988 INIT_LIST_HEAD(&chan->chain_pending); 989 INIT_LIST_HEAD(&chan->chain_running); 990 991 /* register virt channel to dma engine */ 992 list_add_tail(&chan->chan.device_node, &pdev->device.channels); 993 994 return 0; 995 } 996 997 static const struct of_device_id mmp_pdma_dt_ids[] = { 998 { .compatible = "marvell,pdma-1.0", }, 999 {} 1000 }; 1001 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids); 1002 1003 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec, 1004 struct of_dma *ofdma) 1005 { 1006 struct mmp_pdma_device *d = ofdma->of_dma_data; 1007 struct dma_chan *chan; 1008 1009 chan = dma_get_any_slave_channel(&d->device); 1010 if (!chan) 1011 return NULL; 1012 1013 to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0]; 1014 1015 return chan; 1016 } 1017 1018 static int mmp_pdma_probe(struct platform_device *op) 1019 { 1020 struct mmp_pdma_device *pdev; 1021 struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev); 1022 int i, ret, irq = 0; 1023 int dma_channels = 0, irq_num = 0; 1024 const enum dma_slave_buswidth widths = 1025 DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES | 1026 DMA_SLAVE_BUSWIDTH_4_BYTES; 1027 1028 pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL); 1029 if (!pdev) 1030 return -ENOMEM; 1031 1032 pdev->dev = &op->dev; 1033 1034 spin_lock_init(&pdev->phy_lock); 1035 1036 pdev->base = devm_platform_ioremap_resource(op, 0); 1037 if (IS_ERR(pdev->base)) 1038 return PTR_ERR(pdev->base); 1039 1040 if (pdev->dev->of_node) { 1041 /* Parse new and deprecated dma-channels properties */ 1042 if (of_property_read_u32(pdev->dev->of_node, "dma-channels", 1043 &dma_channels)) 1044 of_property_read_u32(pdev->dev->of_node, "#dma-channels", 1045 &dma_channels); 1046 } else if (pdata && pdata->dma_channels) { 1047 dma_channels = pdata->dma_channels; 1048 } else { 1049 dma_channels = 32; /* default 32 channel */ 1050 } 1051 pdev->dma_channels = dma_channels; 1052 1053 for (i = 0; i < dma_channels; i++) { 1054 if (platform_get_irq_optional(op, i) > 0) 1055 irq_num++; 1056 } 1057 1058 pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy), 1059 GFP_KERNEL); 1060 if (pdev->phy == NULL) 1061 return -ENOMEM; 1062 1063 INIT_LIST_HEAD(&pdev->device.channels); 1064 1065 if (irq_num != dma_channels) { 1066 /* all chan share one irq, demux inside */ 1067 irq = platform_get_irq(op, 0); 1068 ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler, 1069 IRQF_SHARED, "pdma", pdev); 1070 if (ret) 1071 return ret; 1072 } 1073 1074 for (i = 0; i < dma_channels; i++) { 1075 irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i); 1076 ret = mmp_pdma_chan_init(pdev, i, irq); 1077 if (ret) 1078 return ret; 1079 } 1080 1081 dma_cap_set(DMA_SLAVE, pdev->device.cap_mask); 1082 dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask); 1083 dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask); 1084 dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask); 1085 pdev->device.dev = &op->dev; 1086 pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources; 1087 pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources; 1088 pdev->device.device_tx_status = mmp_pdma_tx_status; 1089 pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy; 1090 pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg; 1091 pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic; 1092 pdev->device.device_issue_pending = mmp_pdma_issue_pending; 1093 pdev->device.device_config = mmp_pdma_config; 1094 pdev->device.device_terminate_all = mmp_pdma_terminate_all; 1095 pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES; 1096 pdev->device.src_addr_widths = widths; 1097 pdev->device.dst_addr_widths = widths; 1098 pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM); 1099 pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 1100 1101 if (pdev->dev->coherent_dma_mask) 1102 dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask); 1103 else 1104 dma_set_mask(pdev->dev, DMA_BIT_MASK(64)); 1105 1106 ret = dma_async_device_register(&pdev->device); 1107 if (ret) { 1108 dev_err(pdev->device.dev, "unable to register\n"); 1109 return ret; 1110 } 1111 1112 if (op->dev.of_node) { 1113 /* Device-tree DMA controller registration */ 1114 ret = of_dma_controller_register(op->dev.of_node, 1115 mmp_pdma_dma_xlate, pdev); 1116 if (ret < 0) { 1117 dev_err(&op->dev, "of_dma_controller_register failed\n"); 1118 dma_async_device_unregister(&pdev->device); 1119 return ret; 1120 } 1121 } 1122 1123 platform_set_drvdata(op, pdev); 1124 dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels); 1125 return 0; 1126 } 1127 1128 static const struct platform_device_id mmp_pdma_id_table[] = { 1129 { "mmp-pdma", }, 1130 { }, 1131 }; 1132 1133 static struct platform_driver mmp_pdma_driver = { 1134 .driver = { 1135 .name = "mmp-pdma", 1136 .of_match_table = mmp_pdma_dt_ids, 1137 }, 1138 .id_table = mmp_pdma_id_table, 1139 .probe = mmp_pdma_probe, 1140 .remove_new = mmp_pdma_remove, 1141 }; 1142 1143 module_platform_driver(mmp_pdma_driver); 1144 1145 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver"); 1146 MODULE_AUTHOR("Marvell International Ltd."); 1147 MODULE_LICENSE("GPL v2"); 1148