xref: /linux/drivers/dma/mmp_pdma.c (revision a83c29e1d145cca5240952100acd1cd60f25fb5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2012 Marvell International Ltd.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/device.h>
16 #include <linux/platform_data/mmp_dma.h>
17 #include <linux/dmapool.h>
18 #include <linux/of_dma.h>
19 #include <linux/of.h>
20 
21 #include "dmaengine.h"
22 
23 #define DCSR		0x0000
24 #define DALGN		0x00a0
25 #define DINT		0x00f0
26 #define DDADR		0x0200
27 #define DSADR(n)	(0x0204 + ((n) << 4))
28 #define DTADR(n)	(0x0208 + ((n) << 4))
29 #define DCMD		0x020c
30 
31 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
32 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
33 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
34 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
35 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
36 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
37 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
38 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
39 
40 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
41 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
42 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
43 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
44 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
45 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
46 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
47 
48 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
49 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
50 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
51 
52 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
53 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
54 
55 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
56 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
57 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
58 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
59 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
60 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
61 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
62 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
63 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
64 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
65 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
66 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
67 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
68 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
69 
70 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
71 
72 struct mmp_pdma_desc_hw {
73 	u32 ddadr;	/* Points to the next descriptor + flags */
74 	u32 dsadr;	/* DSADR value for the current transfer */
75 	u32 dtadr;	/* DTADR value for the current transfer */
76 	u32 dcmd;	/* DCMD value for the current transfer */
77 } __aligned(32);
78 
79 struct mmp_pdma_desc_sw {
80 	struct mmp_pdma_desc_hw desc;
81 	struct list_head node;
82 	struct list_head tx_list;
83 	struct dma_async_tx_descriptor async_tx;
84 };
85 
86 struct mmp_pdma_phy;
87 
88 struct mmp_pdma_chan {
89 	struct device *dev;
90 	struct dma_chan chan;
91 	struct dma_async_tx_descriptor desc;
92 	struct mmp_pdma_phy *phy;
93 	enum dma_transfer_direction dir;
94 	struct dma_slave_config slave_config;
95 
96 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
97 						 * is in cyclic mode */
98 
99 	/* channel's basic info */
100 	struct tasklet_struct tasklet;
101 	u32 dcmd;
102 	u32 drcmr;
103 	u32 dev_addr;
104 
105 	/* list for desc */
106 	spinlock_t desc_lock;		/* Descriptor list lock */
107 	struct list_head chain_pending;	/* Link descriptors queue for pending */
108 	struct list_head chain_running;	/* Link descriptors queue for running */
109 	bool idle;			/* channel statue machine */
110 	bool byte_align;
111 
112 	struct dma_pool *desc_pool;	/* Descriptors pool */
113 };
114 
115 struct mmp_pdma_phy {
116 	int idx;
117 	void __iomem *base;
118 	struct mmp_pdma_chan *vchan;
119 };
120 
121 struct mmp_pdma_device {
122 	int				dma_channels;
123 	void __iomem			*base;
124 	struct device			*dev;
125 	struct dma_device		device;
126 	struct mmp_pdma_phy		*phy;
127 	spinlock_t phy_lock; /* protect alloc/free phy channels */
128 };
129 
130 #define tx_to_mmp_pdma_desc(tx)					\
131 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
132 #define to_mmp_pdma_desc(lh)					\
133 	container_of(lh, struct mmp_pdma_desc_sw, node)
134 #define to_mmp_pdma_chan(dchan)					\
135 	container_of(dchan, struct mmp_pdma_chan, chan)
136 #define to_mmp_pdma_dev(dmadev)					\
137 	container_of(dmadev, struct mmp_pdma_device, device)
138 
139 static int mmp_pdma_config_write(struct dma_chan *dchan,
140 			   struct dma_slave_config *cfg,
141 			   enum dma_transfer_direction direction);
142 
143 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
144 {
145 	u32 reg = (phy->idx << 4) + DDADR;
146 
147 	writel(addr, phy->base + reg);
148 }
149 
150 static void enable_chan(struct mmp_pdma_phy *phy)
151 {
152 	u32 reg, dalgn;
153 
154 	if (!phy->vchan)
155 		return;
156 
157 	reg = DRCMR(phy->vchan->drcmr);
158 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
159 
160 	dalgn = readl(phy->base + DALGN);
161 	if (phy->vchan->byte_align)
162 		dalgn |= 1 << phy->idx;
163 	else
164 		dalgn &= ~(1 << phy->idx);
165 	writel(dalgn, phy->base + DALGN);
166 
167 	reg = (phy->idx << 2) + DCSR;
168 	writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
169 }
170 
171 static void disable_chan(struct mmp_pdma_phy *phy)
172 {
173 	u32 reg;
174 
175 	if (!phy)
176 		return;
177 
178 	reg = (phy->idx << 2) + DCSR;
179 	writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
180 }
181 
182 static int clear_chan_irq(struct mmp_pdma_phy *phy)
183 {
184 	u32 dcsr;
185 	u32 dint = readl(phy->base + DINT);
186 	u32 reg = (phy->idx << 2) + DCSR;
187 
188 	if (!(dint & BIT(phy->idx)))
189 		return -EAGAIN;
190 
191 	/* clear irq */
192 	dcsr = readl(phy->base + reg);
193 	writel(dcsr, phy->base + reg);
194 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
195 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
196 
197 	return 0;
198 }
199 
200 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
201 {
202 	struct mmp_pdma_phy *phy = dev_id;
203 
204 	if (clear_chan_irq(phy) != 0)
205 		return IRQ_NONE;
206 
207 	tasklet_schedule(&phy->vchan->tasklet);
208 	return IRQ_HANDLED;
209 }
210 
211 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
212 {
213 	struct mmp_pdma_device *pdev = dev_id;
214 	struct mmp_pdma_phy *phy;
215 	u32 dint = readl(pdev->base + DINT);
216 	int i, ret;
217 	int irq_num = 0;
218 
219 	while (dint) {
220 		i = __ffs(dint);
221 		/* only handle interrupts belonging to pdma driver*/
222 		if (i >= pdev->dma_channels)
223 			break;
224 		dint &= (dint - 1);
225 		phy = &pdev->phy[i];
226 		ret = mmp_pdma_chan_handler(irq, phy);
227 		if (ret == IRQ_HANDLED)
228 			irq_num++;
229 	}
230 
231 	if (irq_num)
232 		return IRQ_HANDLED;
233 
234 	return IRQ_NONE;
235 }
236 
237 /* lookup free phy channel as descending priority */
238 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
239 {
240 	int prio, i;
241 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
242 	struct mmp_pdma_phy *phy, *found = NULL;
243 	unsigned long flags;
244 
245 	/*
246 	 * dma channel priorities
247 	 * ch 0 - 3,  16 - 19  <--> (0)
248 	 * ch 4 - 7,  20 - 23  <--> (1)
249 	 * ch 8 - 11, 24 - 27  <--> (2)
250 	 * ch 12 - 15, 28 - 31  <--> (3)
251 	 */
252 
253 	spin_lock_irqsave(&pdev->phy_lock, flags);
254 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
255 		for (i = 0; i < pdev->dma_channels; i++) {
256 			if (prio != (i & 0xf) >> 2)
257 				continue;
258 			phy = &pdev->phy[i];
259 			if (!phy->vchan) {
260 				phy->vchan = pchan;
261 				found = phy;
262 				goto out_unlock;
263 			}
264 		}
265 	}
266 
267 out_unlock:
268 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
269 	return found;
270 }
271 
272 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
273 {
274 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
275 	unsigned long flags;
276 	u32 reg;
277 
278 	if (!pchan->phy)
279 		return;
280 
281 	/* clear the channel mapping in DRCMR */
282 	reg = DRCMR(pchan->drcmr);
283 	writel(0, pchan->phy->base + reg);
284 
285 	spin_lock_irqsave(&pdev->phy_lock, flags);
286 	pchan->phy->vchan = NULL;
287 	pchan->phy = NULL;
288 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
289 }
290 
291 /*
292  * start_pending_queue - transfer any pending transactions
293  * pending list ==> running list
294  */
295 static void start_pending_queue(struct mmp_pdma_chan *chan)
296 {
297 	struct mmp_pdma_desc_sw *desc;
298 
299 	/* still in running, irq will start the pending list */
300 	if (!chan->idle) {
301 		dev_dbg(chan->dev, "DMA controller still busy\n");
302 		return;
303 	}
304 
305 	if (list_empty(&chan->chain_pending)) {
306 		/* chance to re-fetch phy channel with higher prio */
307 		mmp_pdma_free_phy(chan);
308 		dev_dbg(chan->dev, "no pending list\n");
309 		return;
310 	}
311 
312 	if (!chan->phy) {
313 		chan->phy = lookup_phy(chan);
314 		if (!chan->phy) {
315 			dev_dbg(chan->dev, "no free dma channel\n");
316 			return;
317 		}
318 	}
319 
320 	/*
321 	 * pending -> running
322 	 * reintilize pending list
323 	 */
324 	desc = list_first_entry(&chan->chain_pending,
325 				struct mmp_pdma_desc_sw, node);
326 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
327 
328 	/*
329 	 * Program the descriptor's address into the DMA controller,
330 	 * then start the DMA transaction
331 	 */
332 	set_desc(chan->phy, desc->async_tx.phys);
333 	enable_chan(chan->phy);
334 	chan->idle = false;
335 }
336 
337 
338 /* desc->tx_list ==> pending list */
339 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
340 {
341 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
342 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
343 	struct mmp_pdma_desc_sw *child;
344 	unsigned long flags;
345 	dma_cookie_t cookie = -EBUSY;
346 
347 	spin_lock_irqsave(&chan->desc_lock, flags);
348 
349 	list_for_each_entry(child, &desc->tx_list, node) {
350 		cookie = dma_cookie_assign(&child->async_tx);
351 	}
352 
353 	/* softly link to pending list - desc->tx_list ==> pending list */
354 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
355 
356 	spin_unlock_irqrestore(&chan->desc_lock, flags);
357 
358 	return cookie;
359 }
360 
361 static struct mmp_pdma_desc_sw *
362 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
363 {
364 	struct mmp_pdma_desc_sw *desc;
365 	dma_addr_t pdesc;
366 
367 	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
368 	if (!desc) {
369 		dev_err(chan->dev, "out of memory for link descriptor\n");
370 		return NULL;
371 	}
372 
373 	INIT_LIST_HEAD(&desc->tx_list);
374 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
375 	/* each desc has submit */
376 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
377 	desc->async_tx.phys = pdesc;
378 
379 	return desc;
380 }
381 
382 /*
383  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
384  *
385  * This function will create a dma pool for descriptor allocation.
386  * Request irq only when channel is requested
387  * Return - The number of allocated descriptors.
388  */
389 
390 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
391 {
392 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
393 
394 	if (chan->desc_pool)
395 		return 1;
396 
397 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
398 					  chan->dev,
399 					  sizeof(struct mmp_pdma_desc_sw),
400 					  __alignof__(struct mmp_pdma_desc_sw),
401 					  0);
402 	if (!chan->desc_pool) {
403 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
404 		return -ENOMEM;
405 	}
406 
407 	mmp_pdma_free_phy(chan);
408 	chan->idle = true;
409 	chan->dev_addr = 0;
410 	return 1;
411 }
412 
413 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
414 				    struct list_head *list)
415 {
416 	struct mmp_pdma_desc_sw *desc, *_desc;
417 
418 	list_for_each_entry_safe(desc, _desc, list, node) {
419 		list_del(&desc->node);
420 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
421 	}
422 }
423 
424 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
425 {
426 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
427 	unsigned long flags;
428 
429 	spin_lock_irqsave(&chan->desc_lock, flags);
430 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
431 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
432 	spin_unlock_irqrestore(&chan->desc_lock, flags);
433 
434 	dma_pool_destroy(chan->desc_pool);
435 	chan->desc_pool = NULL;
436 	chan->idle = true;
437 	chan->dev_addr = 0;
438 	mmp_pdma_free_phy(chan);
439 	return;
440 }
441 
442 static struct dma_async_tx_descriptor *
443 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
444 		     dma_addr_t dma_dst, dma_addr_t dma_src,
445 		     size_t len, unsigned long flags)
446 {
447 	struct mmp_pdma_chan *chan;
448 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
449 	size_t copy = 0;
450 
451 	if (!dchan)
452 		return NULL;
453 
454 	if (!len)
455 		return NULL;
456 
457 	chan = to_mmp_pdma_chan(dchan);
458 	chan->byte_align = false;
459 
460 	if (!chan->dir) {
461 		chan->dir = DMA_MEM_TO_MEM;
462 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
463 		chan->dcmd |= DCMD_BURST32;
464 	}
465 
466 	do {
467 		/* Allocate the link descriptor from DMA pool */
468 		new = mmp_pdma_alloc_descriptor(chan);
469 		if (!new) {
470 			dev_err(chan->dev, "no memory for desc\n");
471 			goto fail;
472 		}
473 
474 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
475 		if (dma_src & 0x7 || dma_dst & 0x7)
476 			chan->byte_align = true;
477 
478 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
479 		new->desc.dsadr = dma_src;
480 		new->desc.dtadr = dma_dst;
481 
482 		if (!first)
483 			first = new;
484 		else
485 			prev->desc.ddadr = new->async_tx.phys;
486 
487 		new->async_tx.cookie = 0;
488 		async_tx_ack(&new->async_tx);
489 
490 		prev = new;
491 		len -= copy;
492 
493 		if (chan->dir == DMA_MEM_TO_DEV) {
494 			dma_src += copy;
495 		} else if (chan->dir == DMA_DEV_TO_MEM) {
496 			dma_dst += copy;
497 		} else if (chan->dir == DMA_MEM_TO_MEM) {
498 			dma_src += copy;
499 			dma_dst += copy;
500 		}
501 
502 		/* Insert the link descriptor to the LD ring */
503 		list_add_tail(&new->node, &first->tx_list);
504 	} while (len);
505 
506 	first->async_tx.flags = flags; /* client is in control of this ack */
507 	first->async_tx.cookie = -EBUSY;
508 
509 	/* last desc and fire IRQ */
510 	new->desc.ddadr = DDADR_STOP;
511 	new->desc.dcmd |= DCMD_ENDIRQEN;
512 
513 	chan->cyclic_first = NULL;
514 
515 	return &first->async_tx;
516 
517 fail:
518 	if (first)
519 		mmp_pdma_free_desc_list(chan, &first->tx_list);
520 	return NULL;
521 }
522 
523 static struct dma_async_tx_descriptor *
524 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
525 		       unsigned int sg_len, enum dma_transfer_direction dir,
526 		       unsigned long flags, void *context)
527 {
528 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
529 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
530 	size_t len, avail;
531 	struct scatterlist *sg;
532 	dma_addr_t addr;
533 	int i;
534 
535 	if ((sgl == NULL) || (sg_len == 0))
536 		return NULL;
537 
538 	chan->byte_align = false;
539 
540 	mmp_pdma_config_write(dchan, &chan->slave_config, dir);
541 
542 	for_each_sg(sgl, sg, sg_len, i) {
543 		addr = sg_dma_address(sg);
544 		avail = sg_dma_len(sgl);
545 
546 		do {
547 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
548 			if (addr & 0x7)
549 				chan->byte_align = true;
550 
551 			/* allocate and populate the descriptor */
552 			new = mmp_pdma_alloc_descriptor(chan);
553 			if (!new) {
554 				dev_err(chan->dev, "no memory for desc\n");
555 				goto fail;
556 			}
557 
558 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
559 			if (dir == DMA_MEM_TO_DEV) {
560 				new->desc.dsadr = addr;
561 				new->desc.dtadr = chan->dev_addr;
562 			} else {
563 				new->desc.dsadr = chan->dev_addr;
564 				new->desc.dtadr = addr;
565 			}
566 
567 			if (!first)
568 				first = new;
569 			else
570 				prev->desc.ddadr = new->async_tx.phys;
571 
572 			new->async_tx.cookie = 0;
573 			async_tx_ack(&new->async_tx);
574 			prev = new;
575 
576 			/* Insert the link descriptor to the LD ring */
577 			list_add_tail(&new->node, &first->tx_list);
578 
579 			/* update metadata */
580 			addr += len;
581 			avail -= len;
582 		} while (avail);
583 	}
584 
585 	first->async_tx.cookie = -EBUSY;
586 	first->async_tx.flags = flags;
587 
588 	/* last desc and fire IRQ */
589 	new->desc.ddadr = DDADR_STOP;
590 	new->desc.dcmd |= DCMD_ENDIRQEN;
591 
592 	chan->dir = dir;
593 	chan->cyclic_first = NULL;
594 
595 	return &first->async_tx;
596 
597 fail:
598 	if (first)
599 		mmp_pdma_free_desc_list(chan, &first->tx_list);
600 	return NULL;
601 }
602 
603 static struct dma_async_tx_descriptor *
604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
605 			 dma_addr_t buf_addr, size_t len, size_t period_len,
606 			 enum dma_transfer_direction direction,
607 			 unsigned long flags)
608 {
609 	struct mmp_pdma_chan *chan;
610 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
611 	dma_addr_t dma_src, dma_dst;
612 
613 	if (!dchan || !len || !period_len)
614 		return NULL;
615 
616 	/* the buffer length must be a multiple of period_len */
617 	if (len % period_len != 0)
618 		return NULL;
619 
620 	if (period_len > PDMA_MAX_DESC_BYTES)
621 		return NULL;
622 
623 	chan = to_mmp_pdma_chan(dchan);
624 	mmp_pdma_config_write(dchan, &chan->slave_config, direction);
625 
626 	switch (direction) {
627 	case DMA_MEM_TO_DEV:
628 		dma_src = buf_addr;
629 		dma_dst = chan->dev_addr;
630 		break;
631 	case DMA_DEV_TO_MEM:
632 		dma_dst = buf_addr;
633 		dma_src = chan->dev_addr;
634 		break;
635 	default:
636 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
637 		return NULL;
638 	}
639 
640 	chan->dir = direction;
641 
642 	do {
643 		/* Allocate the link descriptor from DMA pool */
644 		new = mmp_pdma_alloc_descriptor(chan);
645 		if (!new) {
646 			dev_err(chan->dev, "no memory for desc\n");
647 			goto fail;
648 		}
649 
650 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
651 				  (DCMD_LENGTH & period_len));
652 		new->desc.dsadr = dma_src;
653 		new->desc.dtadr = dma_dst;
654 
655 		if (!first)
656 			first = new;
657 		else
658 			prev->desc.ddadr = new->async_tx.phys;
659 
660 		new->async_tx.cookie = 0;
661 		async_tx_ack(&new->async_tx);
662 
663 		prev = new;
664 		len -= period_len;
665 
666 		if (chan->dir == DMA_MEM_TO_DEV)
667 			dma_src += period_len;
668 		else
669 			dma_dst += period_len;
670 
671 		/* Insert the link descriptor to the LD ring */
672 		list_add_tail(&new->node, &first->tx_list);
673 	} while (len);
674 
675 	first->async_tx.flags = flags; /* client is in control of this ack */
676 	first->async_tx.cookie = -EBUSY;
677 
678 	/* make the cyclic link */
679 	new->desc.ddadr = first->async_tx.phys;
680 	chan->cyclic_first = first;
681 
682 	return &first->async_tx;
683 
684 fail:
685 	if (first)
686 		mmp_pdma_free_desc_list(chan, &first->tx_list);
687 	return NULL;
688 }
689 
690 static int mmp_pdma_config_write(struct dma_chan *dchan,
691 			   struct dma_slave_config *cfg,
692 			   enum dma_transfer_direction direction)
693 {
694 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
695 	u32 maxburst = 0, addr = 0;
696 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
697 
698 	if (!dchan)
699 		return -EINVAL;
700 
701 	if (direction == DMA_DEV_TO_MEM) {
702 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
703 		maxburst = cfg->src_maxburst;
704 		width = cfg->src_addr_width;
705 		addr = cfg->src_addr;
706 	} else if (direction == DMA_MEM_TO_DEV) {
707 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
708 		maxburst = cfg->dst_maxburst;
709 		width = cfg->dst_addr_width;
710 		addr = cfg->dst_addr;
711 	}
712 
713 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
714 		chan->dcmd |= DCMD_WIDTH1;
715 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
716 		chan->dcmd |= DCMD_WIDTH2;
717 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
718 		chan->dcmd |= DCMD_WIDTH4;
719 
720 	if (maxburst == 8)
721 		chan->dcmd |= DCMD_BURST8;
722 	else if (maxburst == 16)
723 		chan->dcmd |= DCMD_BURST16;
724 	else if (maxburst == 32)
725 		chan->dcmd |= DCMD_BURST32;
726 
727 	chan->dir = direction;
728 	chan->dev_addr = addr;
729 
730 	return 0;
731 }
732 
733 static int mmp_pdma_config(struct dma_chan *dchan,
734 			   struct dma_slave_config *cfg)
735 {
736 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
737 
738 	memcpy(&chan->slave_config, cfg, sizeof(*cfg));
739 	return 0;
740 }
741 
742 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
743 {
744 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
745 	unsigned long flags;
746 
747 	if (!dchan)
748 		return -EINVAL;
749 
750 	disable_chan(chan->phy);
751 	mmp_pdma_free_phy(chan);
752 	spin_lock_irqsave(&chan->desc_lock, flags);
753 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
754 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
755 	spin_unlock_irqrestore(&chan->desc_lock, flags);
756 	chan->idle = true;
757 
758 	return 0;
759 }
760 
761 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
762 				     dma_cookie_t cookie)
763 {
764 	struct mmp_pdma_desc_sw *sw;
765 	u32 curr, residue = 0;
766 	bool passed = false;
767 	bool cyclic = chan->cyclic_first != NULL;
768 
769 	/*
770 	 * If the channel does not have a phy pointer anymore, it has already
771 	 * been completed. Therefore, its residue is 0.
772 	 */
773 	if (!chan->phy)
774 		return 0;
775 
776 	if (chan->dir == DMA_DEV_TO_MEM)
777 		curr = readl(chan->phy->base + DTADR(chan->phy->idx));
778 	else
779 		curr = readl(chan->phy->base + DSADR(chan->phy->idx));
780 
781 	list_for_each_entry(sw, &chan->chain_running, node) {
782 		u32 start, end, len;
783 
784 		if (chan->dir == DMA_DEV_TO_MEM)
785 			start = sw->desc.dtadr;
786 		else
787 			start = sw->desc.dsadr;
788 
789 		len = sw->desc.dcmd & DCMD_LENGTH;
790 		end = start + len;
791 
792 		/*
793 		 * 'passed' will be latched once we found the descriptor which
794 		 * lies inside the boundaries of the curr pointer. All
795 		 * descriptors that occur in the list _after_ we found that
796 		 * partially handled descriptor are still to be processed and
797 		 * are hence added to the residual bytes counter.
798 		 */
799 
800 		if (passed) {
801 			residue += len;
802 		} else if (curr >= start && curr <= end) {
803 			residue += end - curr;
804 			passed = true;
805 		}
806 
807 		/*
808 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
809 		 * transaction chain, and the cookie assigned with it has been
810 		 * returned previously from mmp_pdma_tx_submit().
811 		 *
812 		 * In case we have multiple transactions in the running chain,
813 		 * and the cookie does not match the one the user asked us
814 		 * about, reset the state variables and start over.
815 		 *
816 		 * This logic does not apply to cyclic transactions, where all
817 		 * descriptors have the ENDIRQEN bit set, and for which we
818 		 * can't have multiple transactions on one channel anyway.
819 		 */
820 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
821 			continue;
822 
823 		if (sw->async_tx.cookie == cookie) {
824 			return residue;
825 		} else {
826 			residue = 0;
827 			passed = false;
828 		}
829 	}
830 
831 	/* We should only get here in case of cyclic transactions */
832 	return residue;
833 }
834 
835 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
836 					  dma_cookie_t cookie,
837 					  struct dma_tx_state *txstate)
838 {
839 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
840 	enum dma_status ret;
841 
842 	ret = dma_cookie_status(dchan, cookie, txstate);
843 	if (likely(ret != DMA_ERROR))
844 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
845 
846 	return ret;
847 }
848 
849 /*
850  * mmp_pdma_issue_pending - Issue the DMA start command
851  * pending list ==> running list
852  */
853 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
854 {
855 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
856 	unsigned long flags;
857 
858 	spin_lock_irqsave(&chan->desc_lock, flags);
859 	start_pending_queue(chan);
860 	spin_unlock_irqrestore(&chan->desc_lock, flags);
861 }
862 
863 /*
864  * dma_do_tasklet
865  * Do call back
866  * Start pending list
867  */
868 static void dma_do_tasklet(struct tasklet_struct *t)
869 {
870 	struct mmp_pdma_chan *chan = from_tasklet(chan, t, tasklet);
871 	struct mmp_pdma_desc_sw *desc, *_desc;
872 	LIST_HEAD(chain_cleanup);
873 	unsigned long flags;
874 	struct dmaengine_desc_callback cb;
875 
876 	if (chan->cyclic_first) {
877 		spin_lock_irqsave(&chan->desc_lock, flags);
878 		desc = chan->cyclic_first;
879 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
880 		spin_unlock_irqrestore(&chan->desc_lock, flags);
881 
882 		dmaengine_desc_callback_invoke(&cb, NULL);
883 
884 		return;
885 	}
886 
887 	/* submit pending list; callback for each desc; free desc */
888 	spin_lock_irqsave(&chan->desc_lock, flags);
889 
890 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
891 		/*
892 		 * move the descriptors to a temporary list so we can drop
893 		 * the lock during the entire cleanup operation
894 		 */
895 		list_move(&desc->node, &chain_cleanup);
896 
897 		/*
898 		 * Look for the first list entry which has the ENDIRQEN flag
899 		 * set. That is the descriptor we got an interrupt for, so
900 		 * complete that transaction and its cookie.
901 		 */
902 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
903 			dma_cookie_t cookie = desc->async_tx.cookie;
904 			dma_cookie_complete(&desc->async_tx);
905 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
906 			break;
907 		}
908 	}
909 
910 	/*
911 	 * The hardware is idle and ready for more when the
912 	 * chain_running list is empty.
913 	 */
914 	chan->idle = list_empty(&chan->chain_running);
915 
916 	/* Start any pending transactions automatically */
917 	start_pending_queue(chan);
918 	spin_unlock_irqrestore(&chan->desc_lock, flags);
919 
920 	/* Run the callback for each descriptor, in order */
921 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
922 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
923 
924 		/* Remove from the list of transactions */
925 		list_del(&desc->node);
926 		/* Run the link descriptor callback function */
927 		dmaengine_desc_get_callback(txd, &cb);
928 		dmaengine_desc_callback_invoke(&cb, NULL);
929 
930 		dma_pool_free(chan->desc_pool, desc, txd->phys);
931 	}
932 }
933 
934 static void mmp_pdma_remove(struct platform_device *op)
935 {
936 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
937 	struct mmp_pdma_phy *phy;
938 	int i, irq = 0, irq_num = 0;
939 
940 	if (op->dev.of_node)
941 		of_dma_controller_free(op->dev.of_node);
942 
943 	for (i = 0; i < pdev->dma_channels; i++) {
944 		if (platform_get_irq(op, i) > 0)
945 			irq_num++;
946 	}
947 
948 	if (irq_num != pdev->dma_channels) {
949 		irq = platform_get_irq(op, 0);
950 		devm_free_irq(&op->dev, irq, pdev);
951 	} else {
952 		for (i = 0; i < pdev->dma_channels; i++) {
953 			phy = &pdev->phy[i];
954 			irq = platform_get_irq(op, i);
955 			devm_free_irq(&op->dev, irq, phy);
956 		}
957 	}
958 
959 	dma_async_device_unregister(&pdev->device);
960 }
961 
962 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
963 {
964 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
965 	struct mmp_pdma_chan *chan;
966 	int ret;
967 
968 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
969 	if (chan == NULL)
970 		return -ENOMEM;
971 
972 	phy->idx = idx;
973 	phy->base = pdev->base;
974 
975 	if (irq) {
976 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
977 				       IRQF_SHARED, "pdma", phy);
978 		if (ret) {
979 			dev_err(pdev->dev, "channel request irq fail!\n");
980 			return ret;
981 		}
982 	}
983 
984 	spin_lock_init(&chan->desc_lock);
985 	chan->dev = pdev->dev;
986 	chan->chan.device = &pdev->device;
987 	tasklet_setup(&chan->tasklet, dma_do_tasklet);
988 	INIT_LIST_HEAD(&chan->chain_pending);
989 	INIT_LIST_HEAD(&chan->chain_running);
990 
991 	/* register virt channel to dma engine */
992 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
993 
994 	return 0;
995 }
996 
997 static const struct of_device_id mmp_pdma_dt_ids[] = {
998 	{ .compatible = "marvell,pdma-1.0", },
999 	{}
1000 };
1001 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
1002 
1003 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
1004 					   struct of_dma *ofdma)
1005 {
1006 	struct mmp_pdma_device *d = ofdma->of_dma_data;
1007 	struct dma_chan *chan;
1008 
1009 	chan = dma_get_any_slave_channel(&d->device);
1010 	if (!chan)
1011 		return NULL;
1012 
1013 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
1014 
1015 	return chan;
1016 }
1017 
1018 static int mmp_pdma_probe(struct platform_device *op)
1019 {
1020 	struct mmp_pdma_device *pdev;
1021 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1022 	int i, ret, irq = 0;
1023 	int dma_channels = 0, irq_num = 0;
1024 	const enum dma_slave_buswidth widths =
1025 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1026 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1027 
1028 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1029 	if (!pdev)
1030 		return -ENOMEM;
1031 
1032 	pdev->dev = &op->dev;
1033 
1034 	spin_lock_init(&pdev->phy_lock);
1035 
1036 	pdev->base = devm_platform_ioremap_resource(op, 0);
1037 	if (IS_ERR(pdev->base))
1038 		return PTR_ERR(pdev->base);
1039 
1040 	if (pdev->dev->of_node) {
1041 		/* Parse new and deprecated dma-channels properties */
1042 		if (of_property_read_u32(pdev->dev->of_node, "dma-channels",
1043 					 &dma_channels))
1044 			of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1045 					     &dma_channels);
1046 	} else if (pdata && pdata->dma_channels) {
1047 		dma_channels = pdata->dma_channels;
1048 	} else {
1049 		dma_channels = 32;	/* default 32 channel */
1050 	}
1051 	pdev->dma_channels = dma_channels;
1052 
1053 	for (i = 0; i < dma_channels; i++) {
1054 		if (platform_get_irq_optional(op, i) > 0)
1055 			irq_num++;
1056 	}
1057 
1058 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1059 				 GFP_KERNEL);
1060 	if (pdev->phy == NULL)
1061 		return -ENOMEM;
1062 
1063 	INIT_LIST_HEAD(&pdev->device.channels);
1064 
1065 	if (irq_num != dma_channels) {
1066 		/* all chan share one irq, demux inside */
1067 		irq = platform_get_irq(op, 0);
1068 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1069 				       IRQF_SHARED, "pdma", pdev);
1070 		if (ret)
1071 			return ret;
1072 	}
1073 
1074 	for (i = 0; i < dma_channels; i++) {
1075 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1076 		ret = mmp_pdma_chan_init(pdev, i, irq);
1077 		if (ret)
1078 			return ret;
1079 	}
1080 
1081 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1082 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1083 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1084 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1085 	pdev->device.dev = &op->dev;
1086 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1087 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1088 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1089 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1090 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1091 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1092 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1093 	pdev->device.device_config = mmp_pdma_config;
1094 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1095 	pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
1096 	pdev->device.src_addr_widths = widths;
1097 	pdev->device.dst_addr_widths = widths;
1098 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1099 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1100 
1101 	if (pdev->dev->coherent_dma_mask)
1102 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1103 	else
1104 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1105 
1106 	ret = dma_async_device_register(&pdev->device);
1107 	if (ret) {
1108 		dev_err(pdev->device.dev, "unable to register\n");
1109 		return ret;
1110 	}
1111 
1112 	if (op->dev.of_node) {
1113 		/* Device-tree DMA controller registration */
1114 		ret = of_dma_controller_register(op->dev.of_node,
1115 						 mmp_pdma_dma_xlate, pdev);
1116 		if (ret < 0) {
1117 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1118 			dma_async_device_unregister(&pdev->device);
1119 			return ret;
1120 		}
1121 	}
1122 
1123 	platform_set_drvdata(op, pdev);
1124 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1125 	return 0;
1126 }
1127 
1128 static const struct platform_device_id mmp_pdma_id_table[] = {
1129 	{ "mmp-pdma", },
1130 	{ },
1131 };
1132 
1133 static struct platform_driver mmp_pdma_driver = {
1134 	.driver		= {
1135 		.name	= "mmp-pdma",
1136 		.of_match_table = mmp_pdma_dt_ids,
1137 	},
1138 	.id_table	= mmp_pdma_id_table,
1139 	.probe		= mmp_pdma_probe,
1140 	.remove_new	= mmp_pdma_remove,
1141 };
1142 
1143 module_platform_driver(mmp_pdma_driver);
1144 
1145 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1146 MODULE_AUTHOR("Marvell International Ltd.");
1147 MODULE_LICENSE("GPL v2");
1148