xref: /linux/drivers/dma/mmp_pdma.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * Copyright 2012 Marvell International Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/interrupt.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/slab.h>
16 #include <linux/dmaengine.h>
17 #include <linux/platform_device.h>
18 #include <linux/device.h>
19 #include <linux/platform_data/mmp_dma.h>
20 #include <linux/dmapool.h>
21 #include <linux/of_device.h>
22 #include <linux/of_dma.h>
23 #include <linux/of.h>
24 #include <linux/dma/mmp-pdma.h>
25 
26 #include "dmaengine.h"
27 
28 #define DCSR		0x0000
29 #define DALGN		0x00a0
30 #define DINT		0x00f0
31 #define DDADR		0x0200
32 #define DSADR(n)	(0x0204 + ((n) << 4))
33 #define DTADR(n)	(0x0208 + ((n) << 4))
34 #define DCMD		0x020c
35 
36 #define DCSR_RUN	BIT(31)	/* Run Bit (read / write) */
37 #define DCSR_NODESC	BIT(30)	/* No-Descriptor Fetch (read / write) */
38 #define DCSR_STOPIRQEN	BIT(29)	/* Stop Interrupt Enable (read / write) */
39 #define DCSR_REQPEND	BIT(8)	/* Request Pending (read-only) */
40 #define DCSR_STOPSTATE	BIT(3)	/* Stop State (read-only) */
41 #define DCSR_ENDINTR	BIT(2)	/* End Interrupt (read / write) */
42 #define DCSR_STARTINTR	BIT(1)	/* Start Interrupt (read / write) */
43 #define DCSR_BUSERR	BIT(0)	/* Bus Error Interrupt (read / write) */
44 
45 #define DCSR_EORIRQEN	BIT(28)	/* End of Receive Interrupt Enable (R/W) */
46 #define DCSR_EORJMPEN	BIT(27)	/* Jump to next descriptor on EOR */
47 #define DCSR_EORSTOPEN	BIT(26)	/* STOP on an EOR */
48 #define DCSR_SETCMPST	BIT(25)	/* Set Descriptor Compare Status */
49 #define DCSR_CLRCMPST	BIT(24)	/* Clear Descriptor Compare Status */
50 #define DCSR_CMPST	BIT(10)	/* The Descriptor Compare Status */
51 #define DCSR_EORINTR	BIT(9)	/* The end of Receive */
52 
53 #define DRCMR(n)	((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
54 #define DRCMR_MAPVLD	BIT(7)	/* Map Valid (read / write) */
55 #define DRCMR_CHLNUM	0x1f	/* mask for Channel Number (read / write) */
56 
57 #define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor (mask) */
58 #define DDADR_STOP	BIT(0)	/* Stop (read / write) */
59 
60 #define DCMD_INCSRCADDR	BIT(31)	/* Source Address Increment Setting. */
61 #define DCMD_INCTRGADDR	BIT(30)	/* Target Address Increment Setting. */
62 #define DCMD_FLOWSRC	BIT(29)	/* Flow Control by the source. */
63 #define DCMD_FLOWTRG	BIT(28)	/* Flow Control by the target. */
64 #define DCMD_STARTIRQEN	BIT(22)	/* Start Interrupt Enable */
65 #define DCMD_ENDIRQEN	BIT(21)	/* End Interrupt Enable */
66 #define DCMD_ENDIAN	BIT(18)	/* Device Endian-ness. */
67 #define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
68 #define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
69 #define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
70 #define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
71 #define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
72 #define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
73 #define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
74 
75 #define PDMA_ALIGNMENT		3
76 #define PDMA_MAX_DESC_BYTES	DCMD_LENGTH
77 
78 struct mmp_pdma_desc_hw {
79 	u32 ddadr;	/* Points to the next descriptor + flags */
80 	u32 dsadr;	/* DSADR value for the current transfer */
81 	u32 dtadr;	/* DTADR value for the current transfer */
82 	u32 dcmd;	/* DCMD value for the current transfer */
83 } __aligned(32);
84 
85 struct mmp_pdma_desc_sw {
86 	struct mmp_pdma_desc_hw desc;
87 	struct list_head node;
88 	struct list_head tx_list;
89 	struct dma_async_tx_descriptor async_tx;
90 };
91 
92 struct mmp_pdma_phy;
93 
94 struct mmp_pdma_chan {
95 	struct device *dev;
96 	struct dma_chan chan;
97 	struct dma_async_tx_descriptor desc;
98 	struct mmp_pdma_phy *phy;
99 	enum dma_transfer_direction dir;
100 
101 	struct mmp_pdma_desc_sw *cyclic_first;	/* first desc_sw if channel
102 						 * is in cyclic mode */
103 
104 	/* channel's basic info */
105 	struct tasklet_struct tasklet;
106 	u32 dcmd;
107 	u32 drcmr;
108 	u32 dev_addr;
109 
110 	/* list for desc */
111 	spinlock_t desc_lock;		/* Descriptor list lock */
112 	struct list_head chain_pending;	/* Link descriptors queue for pending */
113 	struct list_head chain_running;	/* Link descriptors queue for running */
114 	bool idle;			/* channel statue machine */
115 	bool byte_align;
116 
117 	struct dma_pool *desc_pool;	/* Descriptors pool */
118 };
119 
120 struct mmp_pdma_phy {
121 	int idx;
122 	void __iomem *base;
123 	struct mmp_pdma_chan *vchan;
124 };
125 
126 struct mmp_pdma_device {
127 	int				dma_channels;
128 	void __iomem			*base;
129 	struct device			*dev;
130 	struct dma_device		device;
131 	struct mmp_pdma_phy		*phy;
132 	spinlock_t phy_lock; /* protect alloc/free phy channels */
133 };
134 
135 #define tx_to_mmp_pdma_desc(tx)					\
136 	container_of(tx, struct mmp_pdma_desc_sw, async_tx)
137 #define to_mmp_pdma_desc(lh)					\
138 	container_of(lh, struct mmp_pdma_desc_sw, node)
139 #define to_mmp_pdma_chan(dchan)					\
140 	container_of(dchan, struct mmp_pdma_chan, chan)
141 #define to_mmp_pdma_dev(dmadev)					\
142 	container_of(dmadev, struct mmp_pdma_device, device)
143 
144 static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
145 {
146 	u32 reg = (phy->idx << 4) + DDADR;
147 
148 	writel(addr, phy->base + reg);
149 }
150 
151 static void enable_chan(struct mmp_pdma_phy *phy)
152 {
153 	u32 reg, dalgn;
154 
155 	if (!phy->vchan)
156 		return;
157 
158 	reg = DRCMR(phy->vchan->drcmr);
159 	writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
160 
161 	dalgn = readl(phy->base + DALGN);
162 	if (phy->vchan->byte_align)
163 		dalgn |= 1 << phy->idx;
164 	else
165 		dalgn &= ~(1 << phy->idx);
166 	writel(dalgn, phy->base + DALGN);
167 
168 	reg = (phy->idx << 2) + DCSR;
169 	writel(readl(phy->base + reg) | DCSR_RUN, phy->base + reg);
170 }
171 
172 static void disable_chan(struct mmp_pdma_phy *phy)
173 {
174 	u32 reg;
175 
176 	if (!phy)
177 		return;
178 
179 	reg = (phy->idx << 2) + DCSR;
180 	writel(readl(phy->base + reg) & ~DCSR_RUN, phy->base + reg);
181 }
182 
183 static int clear_chan_irq(struct mmp_pdma_phy *phy)
184 {
185 	u32 dcsr;
186 	u32 dint = readl(phy->base + DINT);
187 	u32 reg = (phy->idx << 2) + DCSR;
188 
189 	if (!(dint & BIT(phy->idx)))
190 		return -EAGAIN;
191 
192 	/* clear irq */
193 	dcsr = readl(phy->base + reg);
194 	writel(dcsr, phy->base + reg);
195 	if ((dcsr & DCSR_BUSERR) && (phy->vchan))
196 		dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
197 
198 	return 0;
199 }
200 
201 static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
202 {
203 	struct mmp_pdma_phy *phy = dev_id;
204 
205 	if (clear_chan_irq(phy) != 0)
206 		return IRQ_NONE;
207 
208 	tasklet_schedule(&phy->vchan->tasklet);
209 	return IRQ_HANDLED;
210 }
211 
212 static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
213 {
214 	struct mmp_pdma_device *pdev = dev_id;
215 	struct mmp_pdma_phy *phy;
216 	u32 dint = readl(pdev->base + DINT);
217 	int i, ret;
218 	int irq_num = 0;
219 
220 	while (dint) {
221 		i = __ffs(dint);
222 		/* only handle interrupts belonging to pdma driver*/
223 		if (i >= pdev->dma_channels)
224 			break;
225 		dint &= (dint - 1);
226 		phy = &pdev->phy[i];
227 		ret = mmp_pdma_chan_handler(irq, phy);
228 		if (ret == IRQ_HANDLED)
229 			irq_num++;
230 	}
231 
232 	if (irq_num)
233 		return IRQ_HANDLED;
234 
235 	return IRQ_NONE;
236 }
237 
238 /* lookup free phy channel as descending priority */
239 static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
240 {
241 	int prio, i;
242 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
243 	struct mmp_pdma_phy *phy, *found = NULL;
244 	unsigned long flags;
245 
246 	/*
247 	 * dma channel priorities
248 	 * ch 0 - 3,  16 - 19  <--> (0)
249 	 * ch 4 - 7,  20 - 23  <--> (1)
250 	 * ch 8 - 11, 24 - 27  <--> (2)
251 	 * ch 12 - 15, 28 - 31  <--> (3)
252 	 */
253 
254 	spin_lock_irqsave(&pdev->phy_lock, flags);
255 	for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
256 		for (i = 0; i < pdev->dma_channels; i++) {
257 			if (prio != (i & 0xf) >> 2)
258 				continue;
259 			phy = &pdev->phy[i];
260 			if (!phy->vchan) {
261 				phy->vchan = pchan;
262 				found = phy;
263 				goto out_unlock;
264 			}
265 		}
266 	}
267 
268 out_unlock:
269 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
270 	return found;
271 }
272 
273 static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
274 {
275 	struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
276 	unsigned long flags;
277 	u32 reg;
278 
279 	if (!pchan->phy)
280 		return;
281 
282 	/* clear the channel mapping in DRCMR */
283 	reg = DRCMR(pchan->drcmr);
284 	writel(0, pchan->phy->base + reg);
285 
286 	spin_lock_irqsave(&pdev->phy_lock, flags);
287 	pchan->phy->vchan = NULL;
288 	pchan->phy = NULL;
289 	spin_unlock_irqrestore(&pdev->phy_lock, flags);
290 }
291 
292 /**
293  * start_pending_queue - transfer any pending transactions
294  * pending list ==> running list
295  */
296 static void start_pending_queue(struct mmp_pdma_chan *chan)
297 {
298 	struct mmp_pdma_desc_sw *desc;
299 
300 	/* still in running, irq will start the pending list */
301 	if (!chan->idle) {
302 		dev_dbg(chan->dev, "DMA controller still busy\n");
303 		return;
304 	}
305 
306 	if (list_empty(&chan->chain_pending)) {
307 		/* chance to re-fetch phy channel with higher prio */
308 		mmp_pdma_free_phy(chan);
309 		dev_dbg(chan->dev, "no pending list\n");
310 		return;
311 	}
312 
313 	if (!chan->phy) {
314 		chan->phy = lookup_phy(chan);
315 		if (!chan->phy) {
316 			dev_dbg(chan->dev, "no free dma channel\n");
317 			return;
318 		}
319 	}
320 
321 	/*
322 	 * pending -> running
323 	 * reintilize pending list
324 	 */
325 	desc = list_first_entry(&chan->chain_pending,
326 				struct mmp_pdma_desc_sw, node);
327 	list_splice_tail_init(&chan->chain_pending, &chan->chain_running);
328 
329 	/*
330 	 * Program the descriptor's address into the DMA controller,
331 	 * then start the DMA transaction
332 	 */
333 	set_desc(chan->phy, desc->async_tx.phys);
334 	enable_chan(chan->phy);
335 	chan->idle = false;
336 }
337 
338 
339 /* desc->tx_list ==> pending list */
340 static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
341 {
342 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
343 	struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
344 	struct mmp_pdma_desc_sw *child;
345 	unsigned long flags;
346 	dma_cookie_t cookie = -EBUSY;
347 
348 	spin_lock_irqsave(&chan->desc_lock, flags);
349 
350 	list_for_each_entry(child, &desc->tx_list, node) {
351 		cookie = dma_cookie_assign(&child->async_tx);
352 	}
353 
354 	/* softly link to pending list - desc->tx_list ==> pending list */
355 	list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
356 
357 	spin_unlock_irqrestore(&chan->desc_lock, flags);
358 
359 	return cookie;
360 }
361 
362 static struct mmp_pdma_desc_sw *
363 mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
364 {
365 	struct mmp_pdma_desc_sw *desc;
366 	dma_addr_t pdesc;
367 
368 	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
369 	if (!desc) {
370 		dev_err(chan->dev, "out of memory for link descriptor\n");
371 		return NULL;
372 	}
373 
374 	memset(desc, 0, sizeof(*desc));
375 	INIT_LIST_HEAD(&desc->tx_list);
376 	dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
377 	/* each desc has submit */
378 	desc->async_tx.tx_submit = mmp_pdma_tx_submit;
379 	desc->async_tx.phys = pdesc;
380 
381 	return desc;
382 }
383 
384 /**
385  * mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
386  *
387  * This function will create a dma pool for descriptor allocation.
388  * Request irq only when channel is requested
389  * Return - The number of allocated descriptors.
390  */
391 
392 static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
393 {
394 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
395 
396 	if (chan->desc_pool)
397 		return 1;
398 
399 	chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
400 					  chan->dev,
401 					  sizeof(struct mmp_pdma_desc_sw),
402 					  __alignof__(struct mmp_pdma_desc_sw),
403 					  0);
404 	if (!chan->desc_pool) {
405 		dev_err(chan->dev, "unable to allocate descriptor pool\n");
406 		return -ENOMEM;
407 	}
408 
409 	mmp_pdma_free_phy(chan);
410 	chan->idle = true;
411 	chan->dev_addr = 0;
412 	return 1;
413 }
414 
415 static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
416 				    struct list_head *list)
417 {
418 	struct mmp_pdma_desc_sw *desc, *_desc;
419 
420 	list_for_each_entry_safe(desc, _desc, list, node) {
421 		list_del(&desc->node);
422 		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
423 	}
424 }
425 
426 static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
427 {
428 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(&chan->desc_lock, flags);
432 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
433 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
434 	spin_unlock_irqrestore(&chan->desc_lock, flags);
435 
436 	dma_pool_destroy(chan->desc_pool);
437 	chan->desc_pool = NULL;
438 	chan->idle = true;
439 	chan->dev_addr = 0;
440 	mmp_pdma_free_phy(chan);
441 	return;
442 }
443 
444 static struct dma_async_tx_descriptor *
445 mmp_pdma_prep_memcpy(struct dma_chan *dchan,
446 		     dma_addr_t dma_dst, dma_addr_t dma_src,
447 		     size_t len, unsigned long flags)
448 {
449 	struct mmp_pdma_chan *chan;
450 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
451 	size_t copy = 0;
452 
453 	if (!dchan)
454 		return NULL;
455 
456 	if (!len)
457 		return NULL;
458 
459 	chan = to_mmp_pdma_chan(dchan);
460 	chan->byte_align = false;
461 
462 	if (!chan->dir) {
463 		chan->dir = DMA_MEM_TO_MEM;
464 		chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
465 		chan->dcmd |= DCMD_BURST32;
466 	}
467 
468 	do {
469 		/* Allocate the link descriptor from DMA pool */
470 		new = mmp_pdma_alloc_descriptor(chan);
471 		if (!new) {
472 			dev_err(chan->dev, "no memory for desc\n");
473 			goto fail;
474 		}
475 
476 		copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
477 		if (dma_src & 0x7 || dma_dst & 0x7)
478 			chan->byte_align = true;
479 
480 		new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
481 		new->desc.dsadr = dma_src;
482 		new->desc.dtadr = dma_dst;
483 
484 		if (!first)
485 			first = new;
486 		else
487 			prev->desc.ddadr = new->async_tx.phys;
488 
489 		new->async_tx.cookie = 0;
490 		async_tx_ack(&new->async_tx);
491 
492 		prev = new;
493 		len -= copy;
494 
495 		if (chan->dir == DMA_MEM_TO_DEV) {
496 			dma_src += copy;
497 		} else if (chan->dir == DMA_DEV_TO_MEM) {
498 			dma_dst += copy;
499 		} else if (chan->dir == DMA_MEM_TO_MEM) {
500 			dma_src += copy;
501 			dma_dst += copy;
502 		}
503 
504 		/* Insert the link descriptor to the LD ring */
505 		list_add_tail(&new->node, &first->tx_list);
506 	} while (len);
507 
508 	first->async_tx.flags = flags; /* client is in control of this ack */
509 	first->async_tx.cookie = -EBUSY;
510 
511 	/* last desc and fire IRQ */
512 	new->desc.ddadr = DDADR_STOP;
513 	new->desc.dcmd |= DCMD_ENDIRQEN;
514 
515 	chan->cyclic_first = NULL;
516 
517 	return &first->async_tx;
518 
519 fail:
520 	if (first)
521 		mmp_pdma_free_desc_list(chan, &first->tx_list);
522 	return NULL;
523 }
524 
525 static struct dma_async_tx_descriptor *
526 mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
527 		       unsigned int sg_len, enum dma_transfer_direction dir,
528 		       unsigned long flags, void *context)
529 {
530 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
531 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
532 	size_t len, avail;
533 	struct scatterlist *sg;
534 	dma_addr_t addr;
535 	int i;
536 
537 	if ((sgl == NULL) || (sg_len == 0))
538 		return NULL;
539 
540 	chan->byte_align = false;
541 
542 	for_each_sg(sgl, sg, sg_len, i) {
543 		addr = sg_dma_address(sg);
544 		avail = sg_dma_len(sgl);
545 
546 		do {
547 			len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
548 			if (addr & 0x7)
549 				chan->byte_align = true;
550 
551 			/* allocate and populate the descriptor */
552 			new = mmp_pdma_alloc_descriptor(chan);
553 			if (!new) {
554 				dev_err(chan->dev, "no memory for desc\n");
555 				goto fail;
556 			}
557 
558 			new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
559 			if (dir == DMA_MEM_TO_DEV) {
560 				new->desc.dsadr = addr;
561 				new->desc.dtadr = chan->dev_addr;
562 			} else {
563 				new->desc.dsadr = chan->dev_addr;
564 				new->desc.dtadr = addr;
565 			}
566 
567 			if (!first)
568 				first = new;
569 			else
570 				prev->desc.ddadr = new->async_tx.phys;
571 
572 			new->async_tx.cookie = 0;
573 			async_tx_ack(&new->async_tx);
574 			prev = new;
575 
576 			/* Insert the link descriptor to the LD ring */
577 			list_add_tail(&new->node, &first->tx_list);
578 
579 			/* update metadata */
580 			addr += len;
581 			avail -= len;
582 		} while (avail);
583 	}
584 
585 	first->async_tx.cookie = -EBUSY;
586 	first->async_tx.flags = flags;
587 
588 	/* last desc and fire IRQ */
589 	new->desc.ddadr = DDADR_STOP;
590 	new->desc.dcmd |= DCMD_ENDIRQEN;
591 
592 	chan->dir = dir;
593 	chan->cyclic_first = NULL;
594 
595 	return &first->async_tx;
596 
597 fail:
598 	if (first)
599 		mmp_pdma_free_desc_list(chan, &first->tx_list);
600 	return NULL;
601 }
602 
603 static struct dma_async_tx_descriptor *
604 mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
605 			 dma_addr_t buf_addr, size_t len, size_t period_len,
606 			 enum dma_transfer_direction direction,
607 			 unsigned long flags)
608 {
609 	struct mmp_pdma_chan *chan;
610 	struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
611 	dma_addr_t dma_src, dma_dst;
612 
613 	if (!dchan || !len || !period_len)
614 		return NULL;
615 
616 	/* the buffer length must be a multiple of period_len */
617 	if (len % period_len != 0)
618 		return NULL;
619 
620 	if (period_len > PDMA_MAX_DESC_BYTES)
621 		return NULL;
622 
623 	chan = to_mmp_pdma_chan(dchan);
624 
625 	switch (direction) {
626 	case DMA_MEM_TO_DEV:
627 		dma_src = buf_addr;
628 		dma_dst = chan->dev_addr;
629 		break;
630 	case DMA_DEV_TO_MEM:
631 		dma_dst = buf_addr;
632 		dma_src = chan->dev_addr;
633 		break;
634 	default:
635 		dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
636 		return NULL;
637 	}
638 
639 	chan->dir = direction;
640 
641 	do {
642 		/* Allocate the link descriptor from DMA pool */
643 		new = mmp_pdma_alloc_descriptor(chan);
644 		if (!new) {
645 			dev_err(chan->dev, "no memory for desc\n");
646 			goto fail;
647 		}
648 
649 		new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
650 				  (DCMD_LENGTH & period_len));
651 		new->desc.dsadr = dma_src;
652 		new->desc.dtadr = dma_dst;
653 
654 		if (!first)
655 			first = new;
656 		else
657 			prev->desc.ddadr = new->async_tx.phys;
658 
659 		new->async_tx.cookie = 0;
660 		async_tx_ack(&new->async_tx);
661 
662 		prev = new;
663 		len -= period_len;
664 
665 		if (chan->dir == DMA_MEM_TO_DEV)
666 			dma_src += period_len;
667 		else
668 			dma_dst += period_len;
669 
670 		/* Insert the link descriptor to the LD ring */
671 		list_add_tail(&new->node, &first->tx_list);
672 	} while (len);
673 
674 	first->async_tx.flags = flags; /* client is in control of this ack */
675 	first->async_tx.cookie = -EBUSY;
676 
677 	/* make the cyclic link */
678 	new->desc.ddadr = first->async_tx.phys;
679 	chan->cyclic_first = first;
680 
681 	return &first->async_tx;
682 
683 fail:
684 	if (first)
685 		mmp_pdma_free_desc_list(chan, &first->tx_list);
686 	return NULL;
687 }
688 
689 static int mmp_pdma_config(struct dma_chan *dchan,
690 			   struct dma_slave_config *cfg)
691 {
692 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
693 	u32 maxburst = 0, addr = 0;
694 	enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
695 
696 	if (!dchan)
697 		return -EINVAL;
698 
699 	if (cfg->direction == DMA_DEV_TO_MEM) {
700 		chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
701 		maxburst = cfg->src_maxburst;
702 		width = cfg->src_addr_width;
703 		addr = cfg->src_addr;
704 	} else if (cfg->direction == DMA_MEM_TO_DEV) {
705 		chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
706 		maxburst = cfg->dst_maxburst;
707 		width = cfg->dst_addr_width;
708 		addr = cfg->dst_addr;
709 	}
710 
711 	if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
712 		chan->dcmd |= DCMD_WIDTH1;
713 	else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
714 		chan->dcmd |= DCMD_WIDTH2;
715 	else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
716 		chan->dcmd |= DCMD_WIDTH4;
717 
718 	if (maxburst == 8)
719 		chan->dcmd |= DCMD_BURST8;
720 	else if (maxburst == 16)
721 		chan->dcmd |= DCMD_BURST16;
722 	else if (maxburst == 32)
723 		chan->dcmd |= DCMD_BURST32;
724 
725 	chan->dir = cfg->direction;
726 	chan->dev_addr = addr;
727 	/* FIXME: drivers should be ported over to use the filter
728 	 * function. Once that's done, the following two lines can
729 	 * be removed.
730 	 */
731 	if (cfg->slave_id)
732 		chan->drcmr = cfg->slave_id;
733 
734 	return 0;
735 }
736 
737 static int mmp_pdma_terminate_all(struct dma_chan *dchan)
738 {
739 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
740 	unsigned long flags;
741 
742 	if (!dchan)
743 		return -EINVAL;
744 
745 	disable_chan(chan->phy);
746 	mmp_pdma_free_phy(chan);
747 	spin_lock_irqsave(&chan->desc_lock, flags);
748 	mmp_pdma_free_desc_list(chan, &chan->chain_pending);
749 	mmp_pdma_free_desc_list(chan, &chan->chain_running);
750 	spin_unlock_irqrestore(&chan->desc_lock, flags);
751 	chan->idle = true;
752 
753 	return 0;
754 }
755 
756 static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
757 				     dma_cookie_t cookie)
758 {
759 	struct mmp_pdma_desc_sw *sw;
760 	u32 curr, residue = 0;
761 	bool passed = false;
762 	bool cyclic = chan->cyclic_first != NULL;
763 
764 	/*
765 	 * If the channel does not have a phy pointer anymore, it has already
766 	 * been completed. Therefore, its residue is 0.
767 	 */
768 	if (!chan->phy)
769 		return 0;
770 
771 	if (chan->dir == DMA_DEV_TO_MEM)
772 		curr = readl(chan->phy->base + DTADR(chan->phy->idx));
773 	else
774 		curr = readl(chan->phy->base + DSADR(chan->phy->idx));
775 
776 	list_for_each_entry(sw, &chan->chain_running, node) {
777 		u32 start, end, len;
778 
779 		if (chan->dir == DMA_DEV_TO_MEM)
780 			start = sw->desc.dtadr;
781 		else
782 			start = sw->desc.dsadr;
783 
784 		len = sw->desc.dcmd & DCMD_LENGTH;
785 		end = start + len;
786 
787 		/*
788 		 * 'passed' will be latched once we found the descriptor which
789 		 * lies inside the boundaries of the curr pointer. All
790 		 * descriptors that occur in the list _after_ we found that
791 		 * partially handled descriptor are still to be processed and
792 		 * are hence added to the residual bytes counter.
793 		 */
794 
795 		if (passed) {
796 			residue += len;
797 		} else if (curr >= start && curr <= end) {
798 			residue += end - curr;
799 			passed = true;
800 		}
801 
802 		/*
803 		 * Descriptors that have the ENDIRQEN bit set mark the end of a
804 		 * transaction chain, and the cookie assigned with it has been
805 		 * returned previously from mmp_pdma_tx_submit().
806 		 *
807 		 * In case we have multiple transactions in the running chain,
808 		 * and the cookie does not match the one the user asked us
809 		 * about, reset the state variables and start over.
810 		 *
811 		 * This logic does not apply to cyclic transactions, where all
812 		 * descriptors have the ENDIRQEN bit set, and for which we
813 		 * can't have multiple transactions on one channel anyway.
814 		 */
815 		if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
816 			continue;
817 
818 		if (sw->async_tx.cookie == cookie) {
819 			return residue;
820 		} else {
821 			residue = 0;
822 			passed = false;
823 		}
824 	}
825 
826 	/* We should only get here in case of cyclic transactions */
827 	return residue;
828 }
829 
830 static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
831 					  dma_cookie_t cookie,
832 					  struct dma_tx_state *txstate)
833 {
834 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
835 	enum dma_status ret;
836 
837 	ret = dma_cookie_status(dchan, cookie, txstate);
838 	if (likely(ret != DMA_ERROR))
839 		dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
840 
841 	return ret;
842 }
843 
844 /**
845  * mmp_pdma_issue_pending - Issue the DMA start command
846  * pending list ==> running list
847  */
848 static void mmp_pdma_issue_pending(struct dma_chan *dchan)
849 {
850 	struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
851 	unsigned long flags;
852 
853 	spin_lock_irqsave(&chan->desc_lock, flags);
854 	start_pending_queue(chan);
855 	spin_unlock_irqrestore(&chan->desc_lock, flags);
856 }
857 
858 /*
859  * dma_do_tasklet
860  * Do call back
861  * Start pending list
862  */
863 static void dma_do_tasklet(unsigned long data)
864 {
865 	struct mmp_pdma_chan *chan = (struct mmp_pdma_chan *)data;
866 	struct mmp_pdma_desc_sw *desc, *_desc;
867 	LIST_HEAD(chain_cleanup);
868 	unsigned long flags;
869 
870 	if (chan->cyclic_first) {
871 		dma_async_tx_callback cb = NULL;
872 		void *cb_data = NULL;
873 
874 		spin_lock_irqsave(&chan->desc_lock, flags);
875 		desc = chan->cyclic_first;
876 		cb = desc->async_tx.callback;
877 		cb_data = desc->async_tx.callback_param;
878 		spin_unlock_irqrestore(&chan->desc_lock, flags);
879 
880 		if (cb)
881 			cb(cb_data);
882 
883 		return;
884 	}
885 
886 	/* submit pending list; callback for each desc; free desc */
887 	spin_lock_irqsave(&chan->desc_lock, flags);
888 
889 	list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
890 		/*
891 		 * move the descriptors to a temporary list so we can drop
892 		 * the lock during the entire cleanup operation
893 		 */
894 		list_move(&desc->node, &chain_cleanup);
895 
896 		/*
897 		 * Look for the first list entry which has the ENDIRQEN flag
898 		 * set. That is the descriptor we got an interrupt for, so
899 		 * complete that transaction and its cookie.
900 		 */
901 		if (desc->desc.dcmd & DCMD_ENDIRQEN) {
902 			dma_cookie_t cookie = desc->async_tx.cookie;
903 			dma_cookie_complete(&desc->async_tx);
904 			dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
905 			break;
906 		}
907 	}
908 
909 	/*
910 	 * The hardware is idle and ready for more when the
911 	 * chain_running list is empty.
912 	 */
913 	chan->idle = list_empty(&chan->chain_running);
914 
915 	/* Start any pending transactions automatically */
916 	start_pending_queue(chan);
917 	spin_unlock_irqrestore(&chan->desc_lock, flags);
918 
919 	/* Run the callback for each descriptor, in order */
920 	list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
921 		struct dma_async_tx_descriptor *txd = &desc->async_tx;
922 
923 		/* Remove from the list of transactions */
924 		list_del(&desc->node);
925 		/* Run the link descriptor callback function */
926 		if (txd->callback)
927 			txd->callback(txd->callback_param);
928 
929 		dma_pool_free(chan->desc_pool, desc, txd->phys);
930 	}
931 }
932 
933 static int mmp_pdma_remove(struct platform_device *op)
934 {
935 	struct mmp_pdma_device *pdev = platform_get_drvdata(op);
936 
937 	dma_async_device_unregister(&pdev->device);
938 	return 0;
939 }
940 
941 static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
942 {
943 	struct mmp_pdma_phy *phy  = &pdev->phy[idx];
944 	struct mmp_pdma_chan *chan;
945 	int ret;
946 
947 	chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
948 	if (chan == NULL)
949 		return -ENOMEM;
950 
951 	phy->idx = idx;
952 	phy->base = pdev->base;
953 
954 	if (irq) {
955 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
956 				       IRQF_SHARED, "pdma", phy);
957 		if (ret) {
958 			dev_err(pdev->dev, "channel request irq fail!\n");
959 			return ret;
960 		}
961 	}
962 
963 	spin_lock_init(&chan->desc_lock);
964 	chan->dev = pdev->dev;
965 	chan->chan.device = &pdev->device;
966 	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
967 	INIT_LIST_HEAD(&chan->chain_pending);
968 	INIT_LIST_HEAD(&chan->chain_running);
969 
970 	/* register virt channel to dma engine */
971 	list_add_tail(&chan->chan.device_node, &pdev->device.channels);
972 
973 	return 0;
974 }
975 
976 static const struct of_device_id mmp_pdma_dt_ids[] = {
977 	{ .compatible = "marvell,pdma-1.0", },
978 	{}
979 };
980 MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
981 
982 static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
983 					   struct of_dma *ofdma)
984 {
985 	struct mmp_pdma_device *d = ofdma->of_dma_data;
986 	struct dma_chan *chan;
987 
988 	chan = dma_get_any_slave_channel(&d->device);
989 	if (!chan)
990 		return NULL;
991 
992 	to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
993 
994 	return chan;
995 }
996 
997 static int mmp_pdma_probe(struct platform_device *op)
998 {
999 	struct mmp_pdma_device *pdev;
1000 	const struct of_device_id *of_id;
1001 	struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
1002 	struct resource *iores;
1003 	int i, ret, irq = 0;
1004 	int dma_channels = 0, irq_num = 0;
1005 	const enum dma_slave_buswidth widths =
1006 		DMA_SLAVE_BUSWIDTH_1_BYTE   | DMA_SLAVE_BUSWIDTH_2_BYTES |
1007 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1008 
1009 	pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
1010 	if (!pdev)
1011 		return -ENOMEM;
1012 
1013 	pdev->dev = &op->dev;
1014 
1015 	spin_lock_init(&pdev->phy_lock);
1016 
1017 	iores = platform_get_resource(op, IORESOURCE_MEM, 0);
1018 	pdev->base = devm_ioremap_resource(pdev->dev, iores);
1019 	if (IS_ERR(pdev->base))
1020 		return PTR_ERR(pdev->base);
1021 
1022 	of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
1023 	if (of_id)
1024 		of_property_read_u32(pdev->dev->of_node, "#dma-channels",
1025 				     &dma_channels);
1026 	else if (pdata && pdata->dma_channels)
1027 		dma_channels = pdata->dma_channels;
1028 	else
1029 		dma_channels = 32;	/* default 32 channel */
1030 	pdev->dma_channels = dma_channels;
1031 
1032 	for (i = 0; i < dma_channels; i++) {
1033 		if (platform_get_irq(op, i) > 0)
1034 			irq_num++;
1035 	}
1036 
1037 	pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
1038 				 GFP_KERNEL);
1039 	if (pdev->phy == NULL)
1040 		return -ENOMEM;
1041 
1042 	INIT_LIST_HEAD(&pdev->device.channels);
1043 
1044 	if (irq_num != dma_channels) {
1045 		/* all chan share one irq, demux inside */
1046 		irq = platform_get_irq(op, 0);
1047 		ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
1048 				       IRQF_SHARED, "pdma", pdev);
1049 		if (ret)
1050 			return ret;
1051 	}
1052 
1053 	for (i = 0; i < dma_channels; i++) {
1054 		irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
1055 		ret = mmp_pdma_chan_init(pdev, i, irq);
1056 		if (ret)
1057 			return ret;
1058 	}
1059 
1060 	dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
1061 	dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
1062 	dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
1063 	dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
1064 	pdev->device.dev = &op->dev;
1065 	pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
1066 	pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
1067 	pdev->device.device_tx_status = mmp_pdma_tx_status;
1068 	pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
1069 	pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
1070 	pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
1071 	pdev->device.device_issue_pending = mmp_pdma_issue_pending;
1072 	pdev->device.device_config = mmp_pdma_config;
1073 	pdev->device.device_terminate_all = mmp_pdma_terminate_all;
1074 	pdev->device.copy_align = PDMA_ALIGNMENT;
1075 	pdev->device.src_addr_widths = widths;
1076 	pdev->device.dst_addr_widths = widths;
1077 	pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1078 	pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1079 
1080 	if (pdev->dev->coherent_dma_mask)
1081 		dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
1082 	else
1083 		dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
1084 
1085 	ret = dma_async_device_register(&pdev->device);
1086 	if (ret) {
1087 		dev_err(pdev->device.dev, "unable to register\n");
1088 		return ret;
1089 	}
1090 
1091 	if (op->dev.of_node) {
1092 		/* Device-tree DMA controller registration */
1093 		ret = of_dma_controller_register(op->dev.of_node,
1094 						 mmp_pdma_dma_xlate, pdev);
1095 		if (ret < 0) {
1096 			dev_err(&op->dev, "of_dma_controller_register failed\n");
1097 			return ret;
1098 		}
1099 	}
1100 
1101 	platform_set_drvdata(op, pdev);
1102 	dev_info(pdev->device.dev, "initialized %d channels\n", dma_channels);
1103 	return 0;
1104 }
1105 
1106 static const struct platform_device_id mmp_pdma_id_table[] = {
1107 	{ "mmp-pdma", },
1108 	{ },
1109 };
1110 
1111 static struct platform_driver mmp_pdma_driver = {
1112 	.driver		= {
1113 		.name	= "mmp-pdma",
1114 		.of_match_table = mmp_pdma_dt_ids,
1115 	},
1116 	.id_table	= mmp_pdma_id_table,
1117 	.probe		= mmp_pdma_probe,
1118 	.remove		= mmp_pdma_remove,
1119 };
1120 
1121 bool mmp_pdma_filter_fn(struct dma_chan *chan, void *param)
1122 {
1123 	struct mmp_pdma_chan *c = to_mmp_pdma_chan(chan);
1124 
1125 	if (chan->device->dev->driver != &mmp_pdma_driver.driver)
1126 		return false;
1127 
1128 	c->drcmr = *(unsigned int *)param;
1129 
1130 	return true;
1131 }
1132 EXPORT_SYMBOL_GPL(mmp_pdma_filter_fn);
1133 
1134 module_platform_driver(mmp_pdma_driver);
1135 
1136 MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
1137 MODULE_AUTHOR("Marvell International Ltd.");
1138 MODULE_LICENSE("GPL v2");
1139