xref: /linux/drivers/dma/mediatek/mtk-uart-apdma.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MediaTek UART APDMA driver.
4  *
5  * Copyright (c) 2019 MediaTek Inc.
6  * Author: Long Cheng <long.cheng@mediatek.com>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 #include "../virt-dma.h"
27 
28 /* The default number of virtual channel */
29 #define MTK_UART_APDMA_NR_VCHANS	8
30 
31 #define VFF_EN_B		BIT(0)
32 #define VFF_STOP_B		BIT(0)
33 #define VFF_FLUSH_B		BIT(0)
34 #define VFF_4G_EN_B		BIT(0)
35 /* rx valid size >=  vff thre */
36 #define VFF_RX_INT_EN_B		(BIT(0) | BIT(1))
37 /* tx left size >= vff thre */
38 #define VFF_TX_INT_EN_B		BIT(0)
39 #define VFF_WARM_RST_B		BIT(0)
40 #define VFF_RX_INT_CLR_B	(BIT(0) | BIT(1))
41 #define VFF_TX_INT_CLR_B	0
42 #define VFF_STOP_CLR_B		0
43 #define VFF_EN_CLR_B		0
44 #define VFF_INT_EN_CLR_B	0
45 #define VFF_4G_SUPPORT_CLR_B	0
46 
47 /*
48  * interrupt trigger level for tx
49  * if threshold is n, no polling is required to start tx.
50  * otherwise need polling VFF_FLUSH.
51  */
52 #define VFF_TX_THRE(n)		(n)
53 /* interrupt trigger level for rx */
54 #define VFF_RX_THRE(n)		((n) * 3 / 4)
55 
56 #define VFF_RING_SIZE	0xffff
57 /* invert this bit when wrap ring head again */
58 #define VFF_RING_WRAP	0x10000
59 
60 #define VFF_INT_FLAG		0x00
61 #define VFF_INT_EN		0x04
62 #define VFF_EN			0x08
63 #define VFF_RST			0x0c
64 #define VFF_STOP		0x10
65 #define VFF_FLUSH		0x14
66 #define VFF_ADDR		0x1c
67 #define VFF_LEN			0x24
68 #define VFF_THRE		0x28
69 #define VFF_WPT			0x2c
70 #define VFF_RPT			0x30
71 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */
72 #define VFF_VALID_SIZE		0x3c
73 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */
74 #define VFF_LEFT_SIZE		0x40
75 #define VFF_DEBUG_STATUS	0x50
76 #define VFF_4G_SUPPORT		0x54
77 
78 struct mtk_uart_apdmadev {
79 	struct dma_device ddev;
80 	struct clk *clk;
81 	bool support_33bits;
82 	unsigned int dma_requests;
83 };
84 
85 struct mtk_uart_apdma_desc {
86 	struct virt_dma_desc vd;
87 
88 	dma_addr_t addr;
89 	unsigned int avail_len;
90 };
91 
92 struct mtk_chan {
93 	struct virt_dma_chan vc;
94 	struct dma_slave_config	cfg;
95 	struct mtk_uart_apdma_desc *desc;
96 	enum dma_transfer_direction dir;
97 
98 	void __iomem *base;
99 	unsigned int irq;
100 
101 	unsigned int rx_status;
102 };
103 
104 static inline struct mtk_uart_apdmadev *
105 to_mtk_uart_apdma_dev(struct dma_device *d)
106 {
107 	return container_of(d, struct mtk_uart_apdmadev, ddev);
108 }
109 
110 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
111 {
112 	return container_of(c, struct mtk_chan, vc.chan);
113 }
114 
115 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
116 	(struct dma_async_tx_descriptor *t)
117 {
118 	return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
119 }
120 
121 static void mtk_uart_apdma_write(struct mtk_chan *c,
122 			       unsigned int reg, unsigned int val)
123 {
124 	writel(val, c->base + reg);
125 }
126 
127 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
128 {
129 	return readl(c->base + reg);
130 }
131 
132 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
133 {
134 	kfree(container_of(vd, struct mtk_uart_apdma_desc, vd));
135 }
136 
137 static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
138 {
139 	struct mtk_uart_apdmadev *mtkd =
140 				to_mtk_uart_apdma_dev(c->vc.chan.device);
141 	struct mtk_uart_apdma_desc *d = c->desc;
142 	unsigned int wpt, vff_sz;
143 
144 	vff_sz = c->cfg.dst_port_window_size;
145 	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
146 		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
147 		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
148 		mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
149 		mtk_uart_apdma_write(c, VFF_WPT, 0);
150 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
151 
152 		if (mtkd->support_33bits)
153 			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
154 	}
155 
156 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
157 	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
158 		dev_err(c->vc.chan.device->dev, "Enable TX fail\n");
159 
160 	if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
161 		mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
162 		return;
163 	}
164 
165 	wpt = mtk_uart_apdma_read(c, VFF_WPT);
166 
167 	wpt += c->desc->avail_len;
168 	if ((wpt & VFF_RING_SIZE) == vff_sz)
169 		wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;
170 
171 	/* Let DMA start moving data */
172 	mtk_uart_apdma_write(c, VFF_WPT, wpt);
173 
174 	/* HW auto set to 0 when left size >= threshold */
175 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
176 	if (!mtk_uart_apdma_read(c, VFF_FLUSH))
177 		mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
178 }
179 
180 static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
181 {
182 	struct mtk_uart_apdmadev *mtkd =
183 				to_mtk_uart_apdma_dev(c->vc.chan.device);
184 	struct mtk_uart_apdma_desc *d = c->desc;
185 	unsigned int vff_sz;
186 
187 	vff_sz = c->cfg.src_port_window_size;
188 	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
189 		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
190 		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
191 		mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
192 		mtk_uart_apdma_write(c, VFF_RPT, 0);
193 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
194 
195 		if (mtkd->support_33bits)
196 			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
197 	}
198 
199 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
200 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
201 	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
202 		dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
203 }
204 
205 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
206 {
207 	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
208 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
209 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
210 }
211 
212 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
213 {
214 	struct mtk_uart_apdma_desc *d = c->desc;
215 	unsigned int len, wg, rg;
216 	int cnt;
217 
218 	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
219 
220 	if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
221 		return;
222 
223 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
224 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
225 
226 	len = c->cfg.src_port_window_size;
227 	rg = mtk_uart_apdma_read(c, VFF_RPT);
228 	wg = mtk_uart_apdma_read(c, VFF_WPT);
229 	cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);
230 
231 	/*
232 	 * The buffer is ring buffer. If wrap bit different,
233 	 * represents the start of the next cycle for WPT
234 	 */
235 	if ((rg ^ wg) & VFF_RING_WRAP)
236 		cnt += len;
237 
238 	c->rx_status = d->avail_len - cnt;
239 	mtk_uart_apdma_write(c, VFF_RPT, wg);
240 }
241 
242 static void mtk_uart_apdma_chan_complete_handler(struct mtk_chan *c)
243 {
244 	struct mtk_uart_apdma_desc *d = c->desc;
245 
246 	if (d) {
247 		list_del(&d->vd.node);
248 		vchan_cookie_complete(&d->vd);
249 		c->desc = NULL;
250 	}
251 }
252 
253 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
254 {
255 	struct dma_chan *chan = (struct dma_chan *)dev_id;
256 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&c->vc.lock, flags);
260 	if (c->dir == DMA_DEV_TO_MEM)
261 		mtk_uart_apdma_rx_handler(c);
262 	else if (c->dir == DMA_MEM_TO_DEV)
263 		mtk_uart_apdma_tx_handler(c);
264 	mtk_uart_apdma_chan_complete_handler(c);
265 	spin_unlock_irqrestore(&c->vc.lock, flags);
266 
267 	return IRQ_HANDLED;
268 }
269 
270 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
271 {
272 	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
273 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
274 	unsigned int status;
275 	int ret;
276 
277 	ret = pm_runtime_get_sync(mtkd->ddev.dev);
278 	if (ret < 0) {
279 		pm_runtime_put_noidle(chan->device->dev);
280 		return ret;
281 	}
282 
283 	mtk_uart_apdma_write(c, VFF_ADDR, 0);
284 	mtk_uart_apdma_write(c, VFF_THRE, 0);
285 	mtk_uart_apdma_write(c, VFF_LEN, 0);
286 	mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);
287 
288 	ret = readx_poll_timeout(readl, c->base + VFF_EN,
289 			  status, !status, 10, 100);
290 	if (ret)
291 		return ret;
292 
293 	ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
294 			  IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
295 	if (ret < 0) {
296 		dev_err(chan->device->dev, "Can't request dma IRQ\n");
297 		return -EINVAL;
298 	}
299 
300 	if (mtkd->support_33bits)
301 		mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
302 
303 	return ret;
304 }
305 
306 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
307 {
308 	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
309 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
310 
311 	free_irq(c->irq, chan);
312 
313 	tasklet_kill(&c->vc.task);
314 
315 	vchan_free_chan_resources(&c->vc);
316 
317 	pm_runtime_put_sync(mtkd->ddev.dev);
318 }
319 
320 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
321 					 dma_cookie_t cookie,
322 					 struct dma_tx_state *txstate)
323 {
324 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
325 	enum dma_status ret;
326 
327 	ret = dma_cookie_status(chan, cookie, txstate);
328 	if (!txstate)
329 		return ret;
330 
331 	dma_set_residue(txstate, c->rx_status);
332 
333 	return ret;
334 }
335 
336 /*
337  * dmaengine_prep_slave_single will call the function. and sglen is 1.
338  * 8250 uart using one ring buffer, and deal with one sg.
339  */
340 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
341 	(struct dma_chan *chan, struct scatterlist *sgl,
342 	unsigned int sglen, enum dma_transfer_direction dir,
343 	unsigned long tx_flags, void *context)
344 {
345 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
346 	struct mtk_uart_apdma_desc *d;
347 
348 	if (!is_slave_direction(dir) || sglen != 1)
349 		return NULL;
350 
351 	/* Now allocate and setup the descriptor */
352 	d = kzalloc(sizeof(*d), GFP_NOWAIT);
353 	if (!d)
354 		return NULL;
355 
356 	d->avail_len = sg_dma_len(sgl);
357 	d->addr = sg_dma_address(sgl);
358 	c->dir = dir;
359 
360 	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
361 }
362 
363 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
364 {
365 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
366 	struct virt_dma_desc *vd;
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&c->vc.lock, flags);
370 	if (vchan_issue_pending(&c->vc) && !c->desc) {
371 		vd = vchan_next_desc(&c->vc);
372 		c->desc = to_mtk_uart_apdma_desc(&vd->tx);
373 
374 		if (c->dir == DMA_DEV_TO_MEM)
375 			mtk_uart_apdma_start_rx(c);
376 		else if (c->dir == DMA_MEM_TO_DEV)
377 			mtk_uart_apdma_start_tx(c);
378 	}
379 
380 	spin_unlock_irqrestore(&c->vc.lock, flags);
381 }
382 
383 static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
384 				   struct dma_slave_config *config)
385 {
386 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
387 
388 	memcpy(&c->cfg, config, sizeof(*config));
389 
390 	return 0;
391 }
392 
393 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
394 {
395 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
396 	unsigned long flags;
397 	unsigned int status;
398 	LIST_HEAD(head);
399 	int ret;
400 
401 	mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
402 
403 	ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
404 			  status, status != VFF_FLUSH_B, 10, 100);
405 	if (ret)
406 		dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
407 			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
408 
409 	/*
410 	 * Stop need 3 steps.
411 	 * 1. set stop to 1
412 	 * 2. wait en to 0
413 	 * 3. set stop as 0
414 	 */
415 	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
416 	ret = readx_poll_timeout(readl, c->base + VFF_EN,
417 			  status, !status, 10, 100);
418 	if (ret)
419 		dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
420 			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
421 
422 	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
423 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
424 
425 	if (c->dir == DMA_DEV_TO_MEM)
426 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
427 	else if (c->dir == DMA_MEM_TO_DEV)
428 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
429 
430 	synchronize_irq(c->irq);
431 
432 	spin_lock_irqsave(&c->vc.lock, flags);
433 	vchan_get_all_descriptors(&c->vc, &head);
434 	spin_unlock_irqrestore(&c->vc.lock, flags);
435 
436 	vchan_dma_desc_free_list(&c->vc, &head);
437 
438 	return 0;
439 }
440 
441 static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
442 {
443 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(&c->vc.lock, flags);
447 
448 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
449 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
450 
451 	synchronize_irq(c->irq);
452 
453 	spin_unlock_irqrestore(&c->vc.lock, flags);
454 
455 	return 0;
456 }
457 
458 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
459 {
460 	while (!list_empty(&mtkd->ddev.channels)) {
461 		struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
462 			struct mtk_chan, vc.chan.device_node);
463 
464 		list_del(&c->vc.chan.device_node);
465 		tasklet_kill(&c->vc.task);
466 	}
467 }
468 
469 static const struct of_device_id mtk_uart_apdma_match[] = {
470 	{ .compatible = "mediatek,mt6577-uart-dma", },
471 	{ /* sentinel */ },
472 };
473 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);
474 
475 static int mtk_uart_apdma_probe(struct platform_device *pdev)
476 {
477 	struct device_node *np = pdev->dev.of_node;
478 	struct mtk_uart_apdmadev *mtkd;
479 	int bit_mask = 32, rc;
480 	struct mtk_chan *c;
481 	unsigned int i;
482 
483 	mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
484 	if (!mtkd)
485 		return -ENOMEM;
486 
487 	mtkd->clk = devm_clk_get(&pdev->dev, NULL);
488 	if (IS_ERR(mtkd->clk)) {
489 		dev_err(&pdev->dev, "No clock specified\n");
490 		rc = PTR_ERR(mtkd->clk);
491 		return rc;
492 	}
493 
494 	if (of_property_read_bool(np, "mediatek,dma-33bits"))
495 		mtkd->support_33bits = true;
496 
497 	if (mtkd->support_33bits)
498 		bit_mask = 33;
499 
500 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask));
501 	if (rc)
502 		return rc;
503 
504 	dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
505 	mtkd->ddev.device_alloc_chan_resources =
506 				mtk_uart_apdma_alloc_chan_resources;
507 	mtkd->ddev.device_free_chan_resources =
508 				mtk_uart_apdma_free_chan_resources;
509 	mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
510 	mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
511 	mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
512 	mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
513 	mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
514 	mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
515 	mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
516 	mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
517 	mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
518 	mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
519 	mtkd->ddev.dev = &pdev->dev;
520 	INIT_LIST_HEAD(&mtkd->ddev.channels);
521 
522 	mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
523 	if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
524 		dev_info(&pdev->dev,
525 			 "Using %u as missing dma-requests property\n",
526 			 MTK_UART_APDMA_NR_VCHANS);
527 	}
528 
529 	for (i = 0; i < mtkd->dma_requests; i++) {
530 		c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
531 		if (!c) {
532 			rc = -ENODEV;
533 			goto err_no_dma;
534 		}
535 
536 		c->base = devm_platform_ioremap_resource(pdev, i);
537 		if (IS_ERR(c->base)) {
538 			rc = PTR_ERR(c->base);
539 			goto err_no_dma;
540 		}
541 		c->vc.desc_free = mtk_uart_apdma_desc_free;
542 		vchan_init(&c->vc, &mtkd->ddev);
543 
544 		rc = platform_get_irq(pdev, i);
545 		if (rc < 0)
546 			goto err_no_dma;
547 		c->irq = rc;
548 	}
549 
550 	pm_runtime_enable(&pdev->dev);
551 	pm_runtime_set_active(&pdev->dev);
552 
553 	rc = dma_async_device_register(&mtkd->ddev);
554 	if (rc)
555 		goto rpm_disable;
556 
557 	platform_set_drvdata(pdev, mtkd);
558 
559 	/* Device-tree DMA controller registration */
560 	rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
561 	if (rc)
562 		goto dma_remove;
563 
564 	return rc;
565 
566 dma_remove:
567 	dma_async_device_unregister(&mtkd->ddev);
568 rpm_disable:
569 	pm_runtime_disable(&pdev->dev);
570 err_no_dma:
571 	mtk_uart_apdma_free(mtkd);
572 	return rc;
573 }
574 
575 static int mtk_uart_apdma_remove(struct platform_device *pdev)
576 {
577 	struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);
578 
579 	of_dma_controller_free(pdev->dev.of_node);
580 
581 	mtk_uart_apdma_free(mtkd);
582 
583 	dma_async_device_unregister(&mtkd->ddev);
584 
585 	pm_runtime_disable(&pdev->dev);
586 
587 	return 0;
588 }
589 
590 #ifdef CONFIG_PM_SLEEP
591 static int mtk_uart_apdma_suspend(struct device *dev)
592 {
593 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
594 
595 	if (!pm_runtime_suspended(dev))
596 		clk_disable_unprepare(mtkd->clk);
597 
598 	return 0;
599 }
600 
601 static int mtk_uart_apdma_resume(struct device *dev)
602 {
603 	int ret;
604 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
605 
606 	if (!pm_runtime_suspended(dev)) {
607 		ret = clk_prepare_enable(mtkd->clk);
608 		if (ret)
609 			return ret;
610 	}
611 
612 	return 0;
613 }
614 #endif /* CONFIG_PM_SLEEP */
615 
616 #ifdef CONFIG_PM
617 static int mtk_uart_apdma_runtime_suspend(struct device *dev)
618 {
619 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
620 
621 	clk_disable_unprepare(mtkd->clk);
622 
623 	return 0;
624 }
625 
626 static int mtk_uart_apdma_runtime_resume(struct device *dev)
627 {
628 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
629 
630 	return clk_prepare_enable(mtkd->clk);
631 }
632 #endif /* CONFIG_PM */
633 
634 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
635 	SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
636 	SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
637 			   mtk_uart_apdma_runtime_resume, NULL)
638 };
639 
640 static struct platform_driver mtk_uart_apdma_driver = {
641 	.probe	= mtk_uart_apdma_probe,
642 	.remove	= mtk_uart_apdma_remove,
643 	.driver = {
644 		.name		= KBUILD_MODNAME,
645 		.pm		= &mtk_uart_apdma_pm_ops,
646 		.of_match_table = of_match_ptr(mtk_uart_apdma_match),
647 	},
648 };
649 
650 module_platform_driver(mtk_uart_apdma_driver);
651 
652 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
653 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
654 MODULE_LICENSE("GPL v2");
655