xref: /linux/drivers/dma/mediatek/mtk-uart-apdma.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MediaTek UART APDMA driver.
4  *
5  * Copyright (c) 2019 MediaTek Inc.
6  * Author: Long Cheng <long.cheng@mediatek.com>
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 #include "../virt-dma.h"
27 
28 /* The default number of virtual channel */
29 #define MTK_UART_APDMA_NR_VCHANS	8
30 
31 #define VFF_EN_B		BIT(0)
32 #define VFF_STOP_B		BIT(0)
33 #define VFF_FLUSH_B		BIT(0)
34 #define VFF_4G_EN_B		BIT(0)
35 /* rx valid size >=  vff thre */
36 #define VFF_RX_INT_EN_B		(BIT(0) | BIT(1))
37 /* tx left size >= vff thre */
38 #define VFF_TX_INT_EN_B		BIT(0)
39 #define VFF_WARM_RST_B		BIT(0)
40 #define VFF_RX_INT_CLR_B	(BIT(0) | BIT(1))
41 #define VFF_TX_INT_CLR_B	0
42 #define VFF_STOP_CLR_B		0
43 #define VFF_EN_CLR_B		0
44 #define VFF_INT_EN_CLR_B	0
45 #define VFF_4G_SUPPORT_CLR_B	0
46 
47 /*
48  * interrupt trigger level for tx
49  * if threshold is n, no polling is required to start tx.
50  * otherwise need polling VFF_FLUSH.
51  */
52 #define VFF_TX_THRE(n)		(n)
53 /* interrupt trigger level for rx */
54 #define VFF_RX_THRE(n)		((n) * 3 / 4)
55 
56 #define VFF_RING_SIZE	0xffff
57 /* invert this bit when wrap ring head again */
58 #define VFF_RING_WRAP	0x10000
59 
60 #define VFF_INT_FLAG		0x00
61 #define VFF_INT_EN		0x04
62 #define VFF_EN			0x08
63 #define VFF_RST			0x0c
64 #define VFF_STOP		0x10
65 #define VFF_FLUSH		0x14
66 #define VFF_ADDR		0x1c
67 #define VFF_LEN			0x24
68 #define VFF_THRE		0x28
69 #define VFF_WPT			0x2c
70 #define VFF_RPT			0x30
71 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */
72 #define VFF_VALID_SIZE		0x3c
73 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */
74 #define VFF_LEFT_SIZE		0x40
75 #define VFF_DEBUG_STATUS	0x50
76 #define VFF_4G_SUPPORT		0x54
77 
78 struct mtk_uart_apdmadev {
79 	struct dma_device ddev;
80 	struct clk *clk;
81 	bool support_33bits;
82 	unsigned int dma_requests;
83 };
84 
85 struct mtk_uart_apdma_desc {
86 	struct virt_dma_desc vd;
87 
88 	dma_addr_t addr;
89 	unsigned int avail_len;
90 };
91 
92 struct mtk_chan {
93 	struct virt_dma_chan vc;
94 	struct dma_slave_config	cfg;
95 	struct mtk_uart_apdma_desc *desc;
96 	enum dma_transfer_direction dir;
97 
98 	void __iomem *base;
99 	unsigned int irq;
100 
101 	unsigned int rx_status;
102 };
103 
104 static inline struct mtk_uart_apdmadev *
105 to_mtk_uart_apdma_dev(struct dma_device *d)
106 {
107 	return container_of(d, struct mtk_uart_apdmadev, ddev);
108 }
109 
110 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
111 {
112 	return container_of(c, struct mtk_chan, vc.chan);
113 }
114 
115 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
116 	(struct dma_async_tx_descriptor *t)
117 {
118 	return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
119 }
120 
121 static void mtk_uart_apdma_write(struct mtk_chan *c,
122 			       unsigned int reg, unsigned int val)
123 {
124 	writel(val, c->base + reg);
125 }
126 
127 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
128 {
129 	return readl(c->base + reg);
130 }
131 
132 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
133 {
134 	kfree(container_of(vd, struct mtk_uart_apdma_desc, vd));
135 }
136 
137 static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
138 {
139 	struct mtk_uart_apdmadev *mtkd =
140 				to_mtk_uart_apdma_dev(c->vc.chan.device);
141 	struct mtk_uart_apdma_desc *d = c->desc;
142 	unsigned int wpt, vff_sz;
143 
144 	vff_sz = c->cfg.dst_port_window_size;
145 	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
146 		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
147 		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
148 		mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
149 		mtk_uart_apdma_write(c, VFF_WPT, 0);
150 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
151 
152 		if (mtkd->support_33bits)
153 			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
154 	}
155 
156 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
157 	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
158 		dev_err(c->vc.chan.device->dev, "Enable TX fail\n");
159 
160 	if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
161 		mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
162 		return;
163 	}
164 
165 	wpt = mtk_uart_apdma_read(c, VFF_WPT);
166 
167 	wpt += c->desc->avail_len;
168 	if ((wpt & VFF_RING_SIZE) == vff_sz)
169 		wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;
170 
171 	/* Let DMA start moving data */
172 	mtk_uart_apdma_write(c, VFF_WPT, wpt);
173 
174 	/* HW auto set to 0 when left size >= threshold */
175 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
176 	if (!mtk_uart_apdma_read(c, VFF_FLUSH))
177 		mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
178 }
179 
180 static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
181 {
182 	struct mtk_uart_apdmadev *mtkd =
183 				to_mtk_uart_apdma_dev(c->vc.chan.device);
184 	struct mtk_uart_apdma_desc *d = c->desc;
185 	unsigned int vff_sz;
186 
187 	vff_sz = c->cfg.src_port_window_size;
188 	if (!mtk_uart_apdma_read(c, VFF_LEN)) {
189 		mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
190 		mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
191 		mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
192 		mtk_uart_apdma_write(c, VFF_RPT, 0);
193 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
194 
195 		if (mtkd->support_33bits)
196 			mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
197 	}
198 
199 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
200 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
201 	if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
202 		dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
203 }
204 
205 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
206 {
207 	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
208 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
209 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
210 }
211 
212 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
213 {
214 	struct mtk_uart_apdma_desc *d = c->desc;
215 	unsigned int len, wg, rg;
216 	int cnt;
217 
218 	mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
219 
220 	if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
221 		return;
222 
223 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
224 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
225 
226 	len = c->cfg.src_port_window_size;
227 	rg = mtk_uart_apdma_read(c, VFF_RPT);
228 	wg = mtk_uart_apdma_read(c, VFF_WPT);
229 	cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);
230 
231 	/*
232 	 * The buffer is ring buffer. If wrap bit different,
233 	 * represents the start of the next cycle for WPT
234 	 */
235 	if ((rg ^ wg) & VFF_RING_WRAP)
236 		cnt += len;
237 
238 	c->rx_status = d->avail_len - cnt;
239 	mtk_uart_apdma_write(c, VFF_RPT, wg);
240 }
241 
242 static void mtk_uart_apdma_chan_complete_handler(struct mtk_chan *c)
243 {
244 	struct mtk_uart_apdma_desc *d = c->desc;
245 
246 	if (d) {
247 		list_del(&d->vd.node);
248 		vchan_cookie_complete(&d->vd);
249 		c->desc = NULL;
250 	}
251 }
252 
253 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
254 {
255 	struct dma_chan *chan = (struct dma_chan *)dev_id;
256 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&c->vc.lock, flags);
260 	if (c->dir == DMA_DEV_TO_MEM)
261 		mtk_uart_apdma_rx_handler(c);
262 	else if (c->dir == DMA_MEM_TO_DEV)
263 		mtk_uart_apdma_tx_handler(c);
264 	mtk_uart_apdma_chan_complete_handler(c);
265 	spin_unlock_irqrestore(&c->vc.lock, flags);
266 
267 	return IRQ_HANDLED;
268 }
269 
270 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
271 {
272 	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
273 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
274 	unsigned int status;
275 	int ret;
276 
277 	ret = pm_runtime_resume_and_get(mtkd->ddev.dev);
278 	if (ret < 0) {
279 		pm_runtime_put_noidle(chan->device->dev);
280 		return ret;
281 	}
282 
283 	mtk_uart_apdma_write(c, VFF_ADDR, 0);
284 	mtk_uart_apdma_write(c, VFF_THRE, 0);
285 	mtk_uart_apdma_write(c, VFF_LEN, 0);
286 	mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);
287 
288 	ret = readx_poll_timeout(readl, c->base + VFF_EN,
289 			  status, !status, 10, 100);
290 	if (ret)
291 		goto err_pm;
292 
293 	ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
294 			  IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
295 	if (ret < 0) {
296 		dev_err(chan->device->dev, "Can't request dma IRQ\n");
297 		ret = -EINVAL;
298 		goto err_pm;
299 	}
300 
301 	if (mtkd->support_33bits)
302 		mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
303 
304 err_pm:
305 	pm_runtime_put_noidle(mtkd->ddev.dev);
306 	return ret;
307 }
308 
309 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
310 {
311 	struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
312 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
313 
314 	free_irq(c->irq, chan);
315 
316 	tasklet_kill(&c->vc.task);
317 
318 	vchan_free_chan_resources(&c->vc);
319 
320 	pm_runtime_put_sync(mtkd->ddev.dev);
321 }
322 
323 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
324 					 dma_cookie_t cookie,
325 					 struct dma_tx_state *txstate)
326 {
327 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
328 	enum dma_status ret;
329 
330 	ret = dma_cookie_status(chan, cookie, txstate);
331 	if (!txstate)
332 		return ret;
333 
334 	dma_set_residue(txstate, c->rx_status);
335 
336 	return ret;
337 }
338 
339 /*
340  * dmaengine_prep_slave_single will call the function. and sglen is 1.
341  * 8250 uart using one ring buffer, and deal with one sg.
342  */
343 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
344 	(struct dma_chan *chan, struct scatterlist *sgl,
345 	unsigned int sglen, enum dma_transfer_direction dir,
346 	unsigned long tx_flags, void *context)
347 {
348 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
349 	struct mtk_uart_apdma_desc *d;
350 
351 	if (!is_slave_direction(dir) || sglen != 1)
352 		return NULL;
353 
354 	/* Now allocate and setup the descriptor */
355 	d = kzalloc(sizeof(*d), GFP_NOWAIT);
356 	if (!d)
357 		return NULL;
358 
359 	d->avail_len = sg_dma_len(sgl);
360 	d->addr = sg_dma_address(sgl);
361 	c->dir = dir;
362 
363 	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
364 }
365 
366 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
367 {
368 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
369 	struct virt_dma_desc *vd;
370 	unsigned long flags;
371 
372 	spin_lock_irqsave(&c->vc.lock, flags);
373 	if (vchan_issue_pending(&c->vc) && !c->desc) {
374 		vd = vchan_next_desc(&c->vc);
375 		c->desc = to_mtk_uart_apdma_desc(&vd->tx);
376 
377 		if (c->dir == DMA_DEV_TO_MEM)
378 			mtk_uart_apdma_start_rx(c);
379 		else if (c->dir == DMA_MEM_TO_DEV)
380 			mtk_uart_apdma_start_tx(c);
381 	}
382 
383 	spin_unlock_irqrestore(&c->vc.lock, flags);
384 }
385 
386 static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
387 				   struct dma_slave_config *config)
388 {
389 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
390 
391 	memcpy(&c->cfg, config, sizeof(*config));
392 
393 	return 0;
394 }
395 
396 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
397 {
398 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
399 	unsigned long flags;
400 	unsigned int status;
401 	LIST_HEAD(head);
402 	int ret;
403 
404 	mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
405 
406 	ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
407 			  status, status != VFF_FLUSH_B, 10, 100);
408 	if (ret)
409 		dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
410 			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
411 
412 	/*
413 	 * Stop need 3 steps.
414 	 * 1. set stop to 1
415 	 * 2. wait en to 0
416 	 * 3. set stop as 0
417 	 */
418 	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
419 	ret = readx_poll_timeout(readl, c->base + VFF_EN,
420 			  status, !status, 10, 100);
421 	if (ret)
422 		dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
423 			mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
424 
425 	mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
426 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
427 
428 	if (c->dir == DMA_DEV_TO_MEM)
429 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
430 	else if (c->dir == DMA_MEM_TO_DEV)
431 		mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
432 
433 	synchronize_irq(c->irq);
434 
435 	spin_lock_irqsave(&c->vc.lock, flags);
436 	vchan_get_all_descriptors(&c->vc, &head);
437 	spin_unlock_irqrestore(&c->vc.lock, flags);
438 
439 	vchan_dma_desc_free_list(&c->vc, &head);
440 
441 	return 0;
442 }
443 
444 static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
445 {
446 	struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(&c->vc.lock, flags);
450 
451 	mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
452 	mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
453 
454 	synchronize_irq(c->irq);
455 
456 	spin_unlock_irqrestore(&c->vc.lock, flags);
457 
458 	return 0;
459 }
460 
461 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
462 {
463 	while (!list_empty(&mtkd->ddev.channels)) {
464 		struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
465 			struct mtk_chan, vc.chan.device_node);
466 
467 		list_del(&c->vc.chan.device_node);
468 		tasklet_kill(&c->vc.task);
469 	}
470 }
471 
472 static const struct of_device_id mtk_uart_apdma_match[] = {
473 	{ .compatible = "mediatek,mt6577-uart-dma", },
474 	{ /* sentinel */ },
475 };
476 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);
477 
478 static int mtk_uart_apdma_probe(struct platform_device *pdev)
479 {
480 	struct device_node *np = pdev->dev.of_node;
481 	struct mtk_uart_apdmadev *mtkd;
482 	int bit_mask = 32, rc;
483 	struct mtk_chan *c;
484 	unsigned int i;
485 
486 	mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
487 	if (!mtkd)
488 		return -ENOMEM;
489 
490 	mtkd->clk = devm_clk_get(&pdev->dev, NULL);
491 	if (IS_ERR(mtkd->clk)) {
492 		dev_err(&pdev->dev, "No clock specified\n");
493 		rc = PTR_ERR(mtkd->clk);
494 		return rc;
495 	}
496 
497 	if (of_property_read_bool(np, "mediatek,dma-33bits"))
498 		mtkd->support_33bits = true;
499 
500 	if (mtkd->support_33bits)
501 		bit_mask = 33;
502 
503 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask));
504 	if (rc)
505 		return rc;
506 
507 	dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
508 	mtkd->ddev.device_alloc_chan_resources =
509 				mtk_uart_apdma_alloc_chan_resources;
510 	mtkd->ddev.device_free_chan_resources =
511 				mtk_uart_apdma_free_chan_resources;
512 	mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
513 	mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
514 	mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
515 	mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
516 	mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
517 	mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
518 	mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
519 	mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
520 	mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
521 	mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
522 	mtkd->ddev.dev = &pdev->dev;
523 	INIT_LIST_HEAD(&mtkd->ddev.channels);
524 
525 	mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
526 	if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
527 		dev_info(&pdev->dev,
528 			 "Using %u as missing dma-requests property\n",
529 			 MTK_UART_APDMA_NR_VCHANS);
530 	}
531 
532 	for (i = 0; i < mtkd->dma_requests; i++) {
533 		c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
534 		if (!c) {
535 			rc = -ENODEV;
536 			goto err_no_dma;
537 		}
538 
539 		c->base = devm_platform_ioremap_resource(pdev, i);
540 		if (IS_ERR(c->base)) {
541 			rc = PTR_ERR(c->base);
542 			goto err_no_dma;
543 		}
544 		c->vc.desc_free = mtk_uart_apdma_desc_free;
545 		vchan_init(&c->vc, &mtkd->ddev);
546 
547 		rc = platform_get_irq(pdev, i);
548 		if (rc < 0)
549 			goto err_no_dma;
550 		c->irq = rc;
551 	}
552 
553 	pm_runtime_enable(&pdev->dev);
554 	pm_runtime_set_active(&pdev->dev);
555 
556 	rc = dma_async_device_register(&mtkd->ddev);
557 	if (rc)
558 		goto rpm_disable;
559 
560 	platform_set_drvdata(pdev, mtkd);
561 
562 	/* Device-tree DMA controller registration */
563 	rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
564 	if (rc)
565 		goto dma_remove;
566 
567 	return rc;
568 
569 dma_remove:
570 	dma_async_device_unregister(&mtkd->ddev);
571 rpm_disable:
572 	pm_runtime_disable(&pdev->dev);
573 err_no_dma:
574 	mtk_uart_apdma_free(mtkd);
575 	return rc;
576 }
577 
578 static int mtk_uart_apdma_remove(struct platform_device *pdev)
579 {
580 	struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);
581 
582 	of_dma_controller_free(pdev->dev.of_node);
583 
584 	mtk_uart_apdma_free(mtkd);
585 
586 	dma_async_device_unregister(&mtkd->ddev);
587 
588 	pm_runtime_disable(&pdev->dev);
589 
590 	return 0;
591 }
592 
593 #ifdef CONFIG_PM_SLEEP
594 static int mtk_uart_apdma_suspend(struct device *dev)
595 {
596 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
597 
598 	if (!pm_runtime_suspended(dev))
599 		clk_disable_unprepare(mtkd->clk);
600 
601 	return 0;
602 }
603 
604 static int mtk_uart_apdma_resume(struct device *dev)
605 {
606 	int ret;
607 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
608 
609 	if (!pm_runtime_suspended(dev)) {
610 		ret = clk_prepare_enable(mtkd->clk);
611 		if (ret)
612 			return ret;
613 	}
614 
615 	return 0;
616 }
617 #endif /* CONFIG_PM_SLEEP */
618 
619 #ifdef CONFIG_PM
620 static int mtk_uart_apdma_runtime_suspend(struct device *dev)
621 {
622 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
623 
624 	clk_disable_unprepare(mtkd->clk);
625 
626 	return 0;
627 }
628 
629 static int mtk_uart_apdma_runtime_resume(struct device *dev)
630 {
631 	struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
632 
633 	return clk_prepare_enable(mtkd->clk);
634 }
635 #endif /* CONFIG_PM */
636 
637 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
638 	SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
639 	SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
640 			   mtk_uart_apdma_runtime_resume, NULL)
641 };
642 
643 static struct platform_driver mtk_uart_apdma_driver = {
644 	.probe	= mtk_uart_apdma_probe,
645 	.remove	= mtk_uart_apdma_remove,
646 	.driver = {
647 		.name		= KBUILD_MODNAME,
648 		.pm		= &mtk_uart_apdma_pm_ops,
649 		.of_match_table = of_match_ptr(mtk_uart_apdma_match),
650 	},
651 };
652 
653 module_platform_driver(mtk_uart_apdma_driver);
654 
655 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
656 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
657 MODULE_LICENSE("GPL v2");
658