xref: /linux/drivers/dma/mediatek/mtk-hsdma.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2017-2018 MediaTek Inc.
3 
4 /*
5  * Driver for MediaTek High-Speed DMA Controller
6  *
7  * Author: Sean Wang <sean.wang@mediatek.com>
8  *
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/iopoll.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/refcount.h>
24 #include <linux/slab.h>
25 
26 #include "../virt-dma.h"
27 
28 #define MTK_HSDMA_USEC_POLL		20
29 #define MTK_HSDMA_TIMEOUT_POLL		200000
30 #define MTK_HSDMA_DMA_BUSWIDTHS		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
31 
32 /* The default number of virtual channel */
33 #define MTK_HSDMA_NR_VCHANS		3
34 
35 /* Only one physical channel supported */
36 #define MTK_HSDMA_NR_MAX_PCHANS		1
37 
38 /* Macro for physical descriptor (PD) manipulation */
39 /* The number of PD which must be 2 of power */
40 #define MTK_DMA_SIZE			64
41 #define MTK_HSDMA_NEXT_DESP_IDX(x, y)	(((x) + 1) & ((y) - 1))
42 #define MTK_HSDMA_LAST_DESP_IDX(x, y)	(((x) - 1) & ((y) - 1))
43 #define MTK_HSDMA_MAX_LEN		0x3f80
44 #define MTK_HSDMA_ALIGN_SIZE		4
45 #define MTK_HSDMA_PLEN_MASK		0x3fff
46 #define MTK_HSDMA_DESC_PLEN(x)		(((x) & MTK_HSDMA_PLEN_MASK) << 16)
47 #define MTK_HSDMA_DESC_PLEN_GET(x)	(((x) >> 16) & MTK_HSDMA_PLEN_MASK)
48 
49 /* Registers for underlying ring manipulation */
50 #define MTK_HSDMA_TX_BASE		0x0
51 #define MTK_HSDMA_TX_CNT		0x4
52 #define MTK_HSDMA_TX_CPU		0x8
53 #define MTK_HSDMA_TX_DMA		0xc
54 #define MTK_HSDMA_RX_BASE		0x100
55 #define MTK_HSDMA_RX_CNT		0x104
56 #define MTK_HSDMA_RX_CPU		0x108
57 #define MTK_HSDMA_RX_DMA		0x10c
58 
59 /* Registers for global setup */
60 #define MTK_HSDMA_GLO			0x204
61 #define MTK_HSDMA_GLO_MULTI_DMA		BIT(10)
62 #define MTK_HSDMA_TX_WB_DDONE		BIT(6)
63 #define MTK_HSDMA_BURST_64BYTES		(0x2 << 4)
64 #define MTK_HSDMA_GLO_RX_BUSY		BIT(3)
65 #define MTK_HSDMA_GLO_RX_DMA		BIT(2)
66 #define MTK_HSDMA_GLO_TX_BUSY		BIT(1)
67 #define MTK_HSDMA_GLO_TX_DMA		BIT(0)
68 #define MTK_HSDMA_GLO_DMA		(MTK_HSDMA_GLO_TX_DMA |	\
69 					 MTK_HSDMA_GLO_RX_DMA)
70 #define MTK_HSDMA_GLO_BUSY		(MTK_HSDMA_GLO_RX_BUSY | \
71 					 MTK_HSDMA_GLO_TX_BUSY)
72 #define MTK_HSDMA_GLO_DEFAULT		(MTK_HSDMA_GLO_TX_DMA | \
73 					 MTK_HSDMA_GLO_RX_DMA | \
74 					 MTK_HSDMA_TX_WB_DDONE | \
75 					 MTK_HSDMA_BURST_64BYTES | \
76 					 MTK_HSDMA_GLO_MULTI_DMA)
77 
78 /* Registers for reset */
79 #define MTK_HSDMA_RESET			0x208
80 #define MTK_HSDMA_RST_TX		BIT(0)
81 #define MTK_HSDMA_RST_RX		BIT(16)
82 
83 /* Registers for interrupt control */
84 #define MTK_HSDMA_DLYINT		0x20c
85 #define MTK_HSDMA_RXDLY_INT_EN		BIT(15)
86 
87 /* Interrupt fires when the pending number's more than the specified */
88 #define MTK_HSDMA_RXMAX_PINT(x)		(((x) & 0x7f) << 8)
89 
90 /* Interrupt fires when the pending time's more than the specified in 20 us */
91 #define MTK_HSDMA_RXMAX_PTIME(x)	((x) & 0x7f)
92 #define MTK_HSDMA_DLYINT_DEFAULT	(MTK_HSDMA_RXDLY_INT_EN | \
93 					 MTK_HSDMA_RXMAX_PINT(20) | \
94 					 MTK_HSDMA_RXMAX_PTIME(20))
95 #define MTK_HSDMA_INT_STATUS		0x220
96 #define MTK_HSDMA_INT_ENABLE		0x228
97 #define MTK_HSDMA_INT_RXDONE		BIT(16)
98 
99 enum mtk_hsdma_vdesc_flag {
100 	MTK_HSDMA_VDESC_FINISHED	= 0x01,
101 };
102 
103 #define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
104 
105 /**
106  * struct mtk_hsdma_pdesc - This is the struct holding info describing physical
107  *			    descriptor (PD) and its placement must be kept at
108  *			    4-bytes alignment in little endian order.
109  * @desc1:		    | The control pad used to indicate hardware how to
110  * @desc2:		    | deal with the descriptor such as source and
111  * @desc3:		    | destination address and data length. The maximum
112  * @desc4:		    | data length each pdesc can handle is 0x3f80 bytes
113  */
114 struct mtk_hsdma_pdesc {
115 	__le32 desc1;
116 	__le32 desc2;
117 	__le32 desc3;
118 	__le32 desc4;
119 } __packed __aligned(4);
120 
121 /**
122  * struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
123  *			    descriptor (VD)
124  * @vd:			    An instance for struct virt_dma_desc
125  * @len:		    The total data size device wants to move
126  * @residue:		    The remaining data size device will move
127  * @dest:		    The destination address device wants to move to
128  * @src:		    The source address device wants to move from
129  */
130 struct mtk_hsdma_vdesc {
131 	struct virt_dma_desc vd;
132 	size_t len;
133 	size_t residue;
134 	dma_addr_t dest;
135 	dma_addr_t src;
136 };
137 
138 /**
139  * struct mtk_hsdma_cb - This is the struct holding extra info required for RX
140  *			 ring to know what relevant VD the PD is being
141  *			 mapped to.
142  * @vd:			 Pointer to the relevant VD.
143  * @flag:		 Flag indicating what action should be taken when VD
144  *			 is completed.
145  */
146 struct mtk_hsdma_cb {
147 	struct virt_dma_desc *vd;
148 	enum mtk_hsdma_vdesc_flag flag;
149 };
150 
151 /**
152  * struct mtk_hsdma_ring - This struct holds info describing underlying ring
153  *			   space
154  * @txd:		   The descriptor TX ring which describes DMA source
155  *			   information
156  * @rxd:		   The descriptor RX ring which describes DMA
157  *			   destination information
158  * @cb:			   The extra information pointed at by RX ring
159  * @tphys:		   The physical addr of TX ring
160  * @rphys:		   The physical addr of RX ring
161  * @cur_tptr:		   Pointer to the next free descriptor used by the host
162  * @cur_rptr:		   Pointer to the last done descriptor by the device
163  */
164 struct mtk_hsdma_ring {
165 	struct mtk_hsdma_pdesc *txd;
166 	struct mtk_hsdma_pdesc *rxd;
167 	struct mtk_hsdma_cb *cb;
168 	dma_addr_t tphys;
169 	dma_addr_t rphys;
170 	u16 cur_tptr;
171 	u16 cur_rptr;
172 };
173 
174 /**
175  * struct mtk_hsdma_pchan - This is the struct holding info describing physical
176  *			   channel (PC)
177  * @ring:		   An instance for the underlying ring
178  * @sz_ring:		   Total size allocated for the ring
179  * @nr_free:		   Total number of free rooms in the ring. It would
180  *			   be accessed and updated frequently between IRQ
181  *			   context and user context to reflect whether ring
182  *			   can accept requests from VD.
183  */
184 struct mtk_hsdma_pchan {
185 	struct mtk_hsdma_ring ring;
186 	size_t sz_ring;
187 	atomic_t nr_free;
188 };
189 
190 /**
191  * struct mtk_hsdma_vchan - This is the struct holding info describing virtual
192  *			   channel (VC)
193  * @vc:			   An instance for struct virt_dma_chan
194  * @issue_completion:	   The wait for all issued descriptors completited
195  * @issue_synchronize:	   Bool indicating channel synchronization starts
196  * @desc_hw_processing:	   List those descriptors the hardware is processing,
197  *			   which is protected by vc.lock
198  */
199 struct mtk_hsdma_vchan {
200 	struct virt_dma_chan vc;
201 	struct completion issue_completion;
202 	bool issue_synchronize;
203 	struct list_head desc_hw_processing;
204 };
205 
206 /**
207  * struct mtk_hsdma_soc - This is the struct holding differences among SoCs
208  * @ddone:		  Bit mask for DDONE
209  * @ls0:		  Bit mask for LS0
210  */
211 struct mtk_hsdma_soc {
212 	__le32 ddone;
213 	__le32 ls0;
214 };
215 
216 /**
217  * struct mtk_hsdma_device - This is the struct holding info describing HSDMA
218  *			     device
219  * @ddev:		     An instance for struct dma_device
220  * @base:		     The mapped register I/O base
221  * @clk:		     The clock that device internal is using
222  * @irq:		     The IRQ that device are using
223  * @dma_requests:	     The number of VCs the device supports to
224  * @vc:			     The pointer to all available VCs
225  * @pc:			     The pointer to the underlying PC
226  * @pc_refcnt:		     Track how many VCs are using the PC
227  * @lock:		     Lock protect agaisting multiple VCs access PC
228  * @soc:		     The pointer to area holding differences among
229  *			     various platform
230  */
231 struct mtk_hsdma_device {
232 	struct dma_device ddev;
233 	void __iomem *base;
234 	struct clk *clk;
235 	u32 irq;
236 
237 	u32 dma_requests;
238 	struct mtk_hsdma_vchan *vc;
239 	struct mtk_hsdma_pchan *pc;
240 	refcount_t pc_refcnt;
241 
242 	/* Lock used to protect against multiple VCs access PC */
243 	spinlock_t lock;
244 
245 	const struct mtk_hsdma_soc *soc;
246 };
247 
248 static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
249 {
250 	return container_of(chan->device, struct mtk_hsdma_device, ddev);
251 }
252 
253 static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
254 {
255 	return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
256 }
257 
258 static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
259 {
260 	return container_of(vd, struct mtk_hsdma_vdesc, vd);
261 }
262 
263 static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
264 {
265 	return hsdma->ddev.dev;
266 }
267 
268 static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
269 {
270 	return readl(hsdma->base + reg);
271 }
272 
273 static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
274 {
275 	writel(val, hsdma->base + reg);
276 }
277 
278 static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
279 			u32 mask, u32 set)
280 {
281 	u32 val;
282 
283 	val = mtk_dma_read(hsdma, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mtk_dma_write(hsdma, reg, val);
287 }
288 
289 static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
290 {
291 	mtk_dma_rmw(hsdma, reg, 0, val);
292 }
293 
294 static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
295 {
296 	mtk_dma_rmw(hsdma, reg, val, 0);
297 }
298 
299 static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
300 {
301 	kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
302 }
303 
304 static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
305 {
306 	u32 status = 0;
307 
308 	return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
309 				  !(status & MTK_HSDMA_GLO_BUSY),
310 				  MTK_HSDMA_USEC_POLL,
311 				  MTK_HSDMA_TIMEOUT_POLL);
312 }
313 
314 static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
315 				 struct mtk_hsdma_pchan *pc)
316 {
317 	struct mtk_hsdma_ring *ring = &pc->ring;
318 	int err;
319 
320 	memset(pc, 0, sizeof(*pc));
321 
322 	/*
323 	 * Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
324 	 * and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
325 	 */
326 	pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
327 	ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
328 				       &ring->tphys, GFP_NOWAIT);
329 	if (!ring->txd)
330 		return -ENOMEM;
331 
332 	ring->rxd = &ring->txd[MTK_DMA_SIZE];
333 	ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
334 	ring->cur_tptr = 0;
335 	ring->cur_rptr = MTK_DMA_SIZE - 1;
336 
337 	ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
338 	if (!ring->cb) {
339 		err = -ENOMEM;
340 		goto err_free_dma;
341 	}
342 
343 	atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
344 
345 	/* Disable HSDMA and wait for the completion */
346 	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
347 	err = mtk_hsdma_busy_wait(hsdma);
348 	if (err)
349 		goto err_free_cb;
350 
351 	/* Reset */
352 	mtk_dma_set(hsdma, MTK_HSDMA_RESET,
353 		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
354 	mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
355 		    MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
356 
357 	/* Setup HSDMA initial pointer in the ring */
358 	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
359 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
360 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
361 	mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
362 	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
363 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
364 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
365 	mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
366 
367 	/* Enable HSDMA */
368 	mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
369 
370 	/* Setup delayed interrupt */
371 	mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
372 
373 	/* Enable interrupt */
374 	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
375 
376 	return 0;
377 
378 err_free_cb:
379 	kfree(ring->cb);
380 
381 err_free_dma:
382 	dma_free_coherent(hsdma2dev(hsdma),
383 			  pc->sz_ring, ring->txd, ring->tphys);
384 	return err;
385 }
386 
387 static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
388 				 struct mtk_hsdma_pchan *pc)
389 {
390 	struct mtk_hsdma_ring *ring = &pc->ring;
391 
392 	/* Disable HSDMA and then wait for the completion */
393 	mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
394 	mtk_hsdma_busy_wait(hsdma);
395 
396 	/* Reset pointer in the ring */
397 	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
398 	mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
399 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
400 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
401 	mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
402 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
403 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
404 
405 	kfree(ring->cb);
406 
407 	dma_free_coherent(hsdma2dev(hsdma),
408 			  pc->sz_ring, ring->txd, ring->tphys);
409 }
410 
411 static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
412 					 struct mtk_hsdma_pchan *pc,
413 					 struct mtk_hsdma_vdesc *hvd)
414 {
415 	struct mtk_hsdma_ring *ring = &pc->ring;
416 	struct mtk_hsdma_pdesc *txd, *rxd;
417 	u16 reserved, prev, tlen, num_sgs;
418 	unsigned long flags;
419 
420 	/* Protect against PC is accessed by multiple VCs simultaneously */
421 	spin_lock_irqsave(&hsdma->lock, flags);
422 
423 	/*
424 	 * Reserve rooms, where pc->nr_free is used to track how many free
425 	 * rooms in the ring being updated in user and IRQ context.
426 	 */
427 	num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
428 	reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
429 
430 	if (!reserved) {
431 		spin_unlock_irqrestore(&hsdma->lock, flags);
432 		return -ENOSPC;
433 	}
434 
435 	atomic_sub(reserved, &pc->nr_free);
436 
437 	while (reserved--) {
438 		/* Limit size by PD capability for valid data moving */
439 		tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
440 		       MTK_HSDMA_MAX_LEN : hvd->len;
441 
442 		/*
443 		 * Setup PDs using the remaining VD info mapped on those
444 		 * reserved rooms. And since RXD is shared memory between the
445 		 * host and the device allocated by dma_alloc_coherent call,
446 		 * the helper macro WRITE_ONCE can ensure the data written to
447 		 * RAM would really happens.
448 		 */
449 		txd = &ring->txd[ring->cur_tptr];
450 		WRITE_ONCE(txd->desc1, hvd->src);
451 		WRITE_ONCE(txd->desc2,
452 			   hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
453 
454 		rxd = &ring->rxd[ring->cur_tptr];
455 		WRITE_ONCE(rxd->desc1, hvd->dest);
456 		WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
457 
458 		/* Associate VD, the PD belonged to */
459 		ring->cb[ring->cur_tptr].vd = &hvd->vd;
460 
461 		/* Move forward the pointer of TX ring */
462 		ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
463 							 MTK_DMA_SIZE);
464 
465 		/* Update VD with remaining data */
466 		hvd->src  += tlen;
467 		hvd->dest += tlen;
468 		hvd->len  -= tlen;
469 	}
470 
471 	/*
472 	 * Tagging flag for the last PD for VD will be responsible for
473 	 * completing VD.
474 	 */
475 	if (!hvd->len) {
476 		prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
477 		ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
478 	}
479 
480 	/* Ensure all changes indeed done before we're going on */
481 	wmb();
482 
483 	/*
484 	 * Updating into hardware the pointer of TX ring lets HSDMA to take
485 	 * action for those pending PDs.
486 	 */
487 	mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
488 
489 	spin_unlock_irqrestore(&hsdma->lock, flags);
490 
491 	return 0;
492 }
493 
494 static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
495 					  struct mtk_hsdma_vchan *hvc)
496 {
497 	struct virt_dma_desc *vd, *vd2;
498 	int err;
499 
500 	lockdep_assert_held(&hvc->vc.lock);
501 
502 	list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
503 		struct mtk_hsdma_vdesc *hvd;
504 
505 		hvd = to_hsdma_vdesc(vd);
506 
507 		/* Map VD into PC and all VCs shares a single PC */
508 		err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
509 
510 		/*
511 		 * Move VD from desc_issued to desc_hw_processing when entire
512 		 * VD is fit into available PDs. Otherwise, the uncompleted
513 		 * VDs would stay in list desc_issued and then restart the
514 		 * processing as soon as possible once underlying ring space
515 		 * got freed.
516 		 */
517 		if (err == -ENOSPC || hvd->len > 0)
518 			break;
519 
520 		/*
521 		 * The extra list desc_hw_processing is used because
522 		 * hardware can't provide sufficient information allowing us
523 		 * to know what VDs are still working on the underlying ring.
524 		 * Through the additional list, it can help us to implement
525 		 * terminate_all, residue calculation and such thing needed
526 		 * to know detail descriptor status on the hardware.
527 		 */
528 		list_move_tail(&vd->node, &hvc->desc_hw_processing);
529 	}
530 }
531 
532 static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
533 {
534 	struct mtk_hsdma_vchan *hvc;
535 	struct mtk_hsdma_pdesc *rxd;
536 	struct mtk_hsdma_vdesc *hvd;
537 	struct mtk_hsdma_pchan *pc;
538 	struct mtk_hsdma_cb *cb;
539 	int i = MTK_DMA_SIZE;
540 	__le32 desc2;
541 	u32 status;
542 	u16 next;
543 
544 	/* Read IRQ status */
545 	status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
546 	if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
547 		goto rx_done;
548 
549 	pc = hsdma->pc;
550 
551 	/*
552 	 * Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
553 	 * reclaim these finished descriptors: The most number of PDs the ISR
554 	 * can handle at one time shouldn't be more than MTK_DMA_SIZE so we
555 	 * take it as limited count instead of just using a dangerous infinite
556 	 * poll.
557 	 */
558 	while (i--) {
559 		next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
560 					       MTK_DMA_SIZE);
561 		rxd = &pc->ring.rxd[next];
562 
563 		/*
564 		 * If MTK_HSDMA_DESC_DDONE is no specified, that means data
565 		 * moving for the PD is still under going.
566 		 */
567 		desc2 = READ_ONCE(rxd->desc2);
568 		if (!(desc2 & hsdma->soc->ddone))
569 			break;
570 
571 		cb = &pc->ring.cb[next];
572 		if (unlikely(!cb->vd)) {
573 			dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
574 			break;
575 		}
576 
577 		/* Update residue of VD the associated PD belonged to */
578 		hvd = to_hsdma_vdesc(cb->vd);
579 		hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
580 
581 		/* Complete VD until the relevant last PD is finished */
582 		if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
583 			hvc = to_hsdma_vchan(cb->vd->tx.chan);
584 
585 			spin_lock(&hvc->vc.lock);
586 
587 			/* Remove VD from list desc_hw_processing */
588 			list_del(&cb->vd->node);
589 
590 			/* Add VD into list desc_completed */
591 			vchan_cookie_complete(cb->vd);
592 
593 			if (hvc->issue_synchronize &&
594 			    list_empty(&hvc->desc_hw_processing)) {
595 				complete(&hvc->issue_completion);
596 				hvc->issue_synchronize = false;
597 			}
598 			spin_unlock(&hvc->vc.lock);
599 
600 			cb->flag = 0;
601 		}
602 
603 		cb->vd = NULL;
604 
605 		/*
606 		 * Recycle the RXD with the helper WRITE_ONCE that can ensure
607 		 * data written into RAM would really happens.
608 		 */
609 		WRITE_ONCE(rxd->desc1, 0);
610 		WRITE_ONCE(rxd->desc2, 0);
611 		pc->ring.cur_rptr = next;
612 
613 		/* Release rooms */
614 		atomic_inc(&pc->nr_free);
615 	}
616 
617 	/* Ensure all changes indeed done before we're going on */
618 	wmb();
619 
620 	/* Update CPU pointer for those completed PDs */
621 	mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
622 
623 	/*
624 	 * Acking the pending IRQ allows hardware no longer to keep the used
625 	 * IRQ line in certain trigger state when software has completed all
626 	 * the finished physical descriptors.
627 	 */
628 	if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
629 		mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
630 
631 	/* ASAP handles pending VDs in all VCs after freeing some rooms */
632 	for (i = 0; i < hsdma->dma_requests; i++) {
633 		hvc = &hsdma->vc[i];
634 		spin_lock(&hvc->vc.lock);
635 		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
636 		spin_unlock(&hvc->vc.lock);
637 	}
638 
639 rx_done:
640 	/* All completed PDs are cleaned up, so enable interrupt again */
641 	mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
642 }
643 
644 static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
645 {
646 	struct mtk_hsdma_device *hsdma = devid;
647 
648 	/*
649 	 * Disable interrupt until all completed PDs are cleaned up in
650 	 * mtk_hsdma_free_rooms call.
651 	 */
652 	mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
653 
654 	mtk_hsdma_free_rooms_in_ring(hsdma);
655 
656 	return IRQ_HANDLED;
657 }
658 
659 static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
660 							dma_cookie_t cookie)
661 {
662 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
663 	struct virt_dma_desc *vd;
664 
665 	list_for_each_entry(vd, &hvc->desc_hw_processing, node)
666 		if (vd->tx.cookie == cookie)
667 			return vd;
668 
669 	list_for_each_entry(vd, &hvc->vc.desc_issued, node)
670 		if (vd->tx.cookie == cookie)
671 			return vd;
672 
673 	return NULL;
674 }
675 
676 static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
677 					   dma_cookie_t cookie,
678 					   struct dma_tx_state *txstate)
679 {
680 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
681 	struct mtk_hsdma_vdesc *hvd;
682 	struct virt_dma_desc *vd;
683 	enum dma_status ret;
684 	unsigned long flags;
685 	size_t bytes = 0;
686 
687 	ret = dma_cookie_status(c, cookie, txstate);
688 	if (ret == DMA_COMPLETE || !txstate)
689 		return ret;
690 
691 	spin_lock_irqsave(&hvc->vc.lock, flags);
692 	vd = mtk_hsdma_find_active_desc(c, cookie);
693 	spin_unlock_irqrestore(&hvc->vc.lock, flags);
694 
695 	if (vd) {
696 		hvd = to_hsdma_vdesc(vd);
697 		bytes = hvd->residue;
698 	}
699 
700 	dma_set_residue(txstate, bytes);
701 
702 	return ret;
703 }
704 
705 static void mtk_hsdma_issue_pending(struct dma_chan *c)
706 {
707 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
708 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&hvc->vc.lock, flags);
712 
713 	if (vchan_issue_pending(&hvc->vc))
714 		mtk_hsdma_issue_vchan_pending(hsdma, hvc);
715 
716 	spin_unlock_irqrestore(&hvc->vc.lock, flags);
717 }
718 
719 static struct dma_async_tx_descriptor *
720 mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
721 			  dma_addr_t src, size_t len, unsigned long flags)
722 {
723 	struct mtk_hsdma_vdesc *hvd;
724 
725 	hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
726 	if (!hvd)
727 		return NULL;
728 
729 	hvd->len = len;
730 	hvd->residue = len;
731 	hvd->src = src;
732 	hvd->dest = dest;
733 
734 	return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
735 }
736 
737 static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
738 {
739 	struct virt_dma_chan *vc = to_virt_chan(c);
740 	unsigned long flags;
741 	LIST_HEAD(head);
742 
743 	spin_lock_irqsave(&vc->lock, flags);
744 	list_splice_tail_init(&vc->desc_allocated, &head);
745 	list_splice_tail_init(&vc->desc_submitted, &head);
746 	list_splice_tail_init(&vc->desc_issued, &head);
747 	spin_unlock_irqrestore(&vc->lock, flags);
748 
749 	/* At the point, we don't expect users put descriptor into VC again */
750 	vchan_dma_desc_free_list(vc, &head);
751 
752 	return 0;
753 }
754 
755 static void mtk_hsdma_free_active_desc(struct dma_chan *c)
756 {
757 	struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
758 	bool sync_needed = false;
759 
760 	/*
761 	 * Once issue_synchronize is being set, which means once the hardware
762 	 * consumes all descriptors for the channel in the ring, the
763 	 * synchronization must be notified immediately it is completed.
764 	 */
765 	spin_lock(&hvc->vc.lock);
766 	if (!list_empty(&hvc->desc_hw_processing)) {
767 		hvc->issue_synchronize = true;
768 		sync_needed = true;
769 	}
770 	spin_unlock(&hvc->vc.lock);
771 
772 	if (sync_needed)
773 		wait_for_completion(&hvc->issue_completion);
774 	/*
775 	 * At the point, we expect that all remaining descriptors in the ring
776 	 * for the channel should be all processing done.
777 	 */
778 	WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
779 		  "Desc pending still in list desc_hw_processing\n");
780 
781 	/* Free all descriptors in list desc_completed */
782 	vchan_synchronize(&hvc->vc);
783 
784 	WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
785 		  "Desc pending still in list desc_completed\n");
786 }
787 
788 static int mtk_hsdma_terminate_all(struct dma_chan *c)
789 {
790 	/*
791 	 * Free pending descriptors not processed yet by hardware that have
792 	 * previously been submitted to the channel.
793 	 */
794 	mtk_hsdma_free_inactive_desc(c);
795 
796 	/*
797 	 * However, the DMA engine doesn't provide any way to stop these
798 	 * descriptors being processed currently by hardware. The only way is
799 	 * to just waiting until these descriptors are all processed completely
800 	 * through mtk_hsdma_free_active_desc call.
801 	 */
802 	mtk_hsdma_free_active_desc(c);
803 
804 	return 0;
805 }
806 
807 static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
808 {
809 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
810 	int err;
811 
812 	/*
813 	 * Since HSDMA has only one PC, the resource for PC is being allocated
814 	 * when the first VC is being created and the other VCs would run on
815 	 * the same PC.
816 	 */
817 	if (!refcount_read(&hsdma->pc_refcnt)) {
818 		err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
819 		if (err)
820 			return err;
821 		/*
822 		 * refcount_inc would complain increment on 0; use-after-free.
823 		 * Thus, we need to explicitly set it as 1 initially.
824 		 */
825 		refcount_set(&hsdma->pc_refcnt, 1);
826 	} else {
827 		refcount_inc(&hsdma->pc_refcnt);
828 	}
829 
830 	return 0;
831 }
832 
833 static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
834 {
835 	struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
836 
837 	/* Free all descriptors in all lists on the VC */
838 	mtk_hsdma_terminate_all(c);
839 
840 	/* The resource for PC is not freed until all the VCs are destroyed */
841 	if (!refcount_dec_and_test(&hsdma->pc_refcnt))
842 		return;
843 
844 	mtk_hsdma_free_pchan(hsdma, hsdma->pc);
845 }
846 
847 static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
848 {
849 	int err;
850 
851 	pm_runtime_enable(hsdma2dev(hsdma));
852 	pm_runtime_get_sync(hsdma2dev(hsdma));
853 
854 	err = clk_prepare_enable(hsdma->clk);
855 	if (err)
856 		return err;
857 
858 	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
859 	mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
860 
861 	return 0;
862 }
863 
864 static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
865 {
866 	mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
867 
868 	clk_disable_unprepare(hsdma->clk);
869 
870 	pm_runtime_put_sync(hsdma2dev(hsdma));
871 	pm_runtime_disable(hsdma2dev(hsdma));
872 
873 	return 0;
874 }
875 
876 static const struct mtk_hsdma_soc mt7623_soc = {
877 	.ddone = BIT(31),
878 	.ls0 = BIT(30),
879 };
880 
881 static const struct mtk_hsdma_soc mt7622_soc = {
882 	.ddone = BIT(15),
883 	.ls0 = BIT(14),
884 };
885 
886 static const struct of_device_id mtk_hsdma_match[] = {
887 	{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
888 	{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
889 	{ /* sentinel */ }
890 };
891 MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
892 
893 static int mtk_hsdma_probe(struct platform_device *pdev)
894 {
895 	struct mtk_hsdma_device *hsdma;
896 	struct mtk_hsdma_vchan *vc;
897 	struct dma_device *dd;
898 	int i, err;
899 
900 	hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
901 	if (!hsdma)
902 		return -ENOMEM;
903 
904 	dd = &hsdma->ddev;
905 
906 	hsdma->base = devm_platform_ioremap_resource(pdev, 0);
907 	if (IS_ERR(hsdma->base))
908 		return PTR_ERR(hsdma->base);
909 
910 	hsdma->soc = of_device_get_match_data(&pdev->dev);
911 	if (!hsdma->soc) {
912 		dev_err(&pdev->dev, "No device match found\n");
913 		return -ENODEV;
914 	}
915 
916 	hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
917 	if (IS_ERR(hsdma->clk)) {
918 		dev_err(&pdev->dev, "No clock for %s\n",
919 			dev_name(&pdev->dev));
920 		return PTR_ERR(hsdma->clk);
921 	}
922 
923 	err = platform_get_irq(pdev, 0);
924 	if (err < 0)
925 		return err;
926 	hsdma->irq = err;
927 
928 	refcount_set(&hsdma->pc_refcnt, 0);
929 	spin_lock_init(&hsdma->lock);
930 
931 	dma_cap_set(DMA_MEMCPY, dd->cap_mask);
932 
933 	dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
934 	dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
935 	dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
936 	dd->device_tx_status = mtk_hsdma_tx_status;
937 	dd->device_issue_pending = mtk_hsdma_issue_pending;
938 	dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
939 	dd->device_terminate_all = mtk_hsdma_terminate_all;
940 	dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
941 	dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
942 	dd->directions = BIT(DMA_MEM_TO_MEM);
943 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
944 	dd->dev = &pdev->dev;
945 	INIT_LIST_HEAD(&dd->channels);
946 
947 	hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
948 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
949 						      "dma-requests",
950 						      &hsdma->dma_requests)) {
951 		dev_info(&pdev->dev,
952 			 "Using %u as missing dma-requests property\n",
953 			 MTK_HSDMA_NR_VCHANS);
954 	}
955 
956 	hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
957 				 sizeof(*hsdma->pc), GFP_KERNEL);
958 	if (!hsdma->pc)
959 		return -ENOMEM;
960 
961 	hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
962 				 sizeof(*hsdma->vc), GFP_KERNEL);
963 	if (!hsdma->vc)
964 		return -ENOMEM;
965 
966 	for (i = 0; i < hsdma->dma_requests; i++) {
967 		vc = &hsdma->vc[i];
968 		vc->vc.desc_free = mtk_hsdma_vdesc_free;
969 		vchan_init(&vc->vc, dd);
970 		init_completion(&vc->issue_completion);
971 		INIT_LIST_HEAD(&vc->desc_hw_processing);
972 	}
973 
974 	err = dma_async_device_register(dd);
975 	if (err)
976 		return err;
977 
978 	err = of_dma_controller_register(pdev->dev.of_node,
979 					 of_dma_xlate_by_chan_id, hsdma);
980 	if (err) {
981 		dev_err(&pdev->dev,
982 			"MediaTek HSDMA OF registration failed %d\n", err);
983 		goto err_unregister;
984 	}
985 
986 	mtk_hsdma_hw_init(hsdma);
987 
988 	err = devm_request_irq(&pdev->dev, hsdma->irq,
989 			       mtk_hsdma_irq, 0,
990 			       dev_name(&pdev->dev), hsdma);
991 	if (err) {
992 		dev_err(&pdev->dev,
993 			"request_irq failed with err %d\n", err);
994 		goto err_free;
995 	}
996 
997 	platform_set_drvdata(pdev, hsdma);
998 
999 	dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
1000 
1001 	return 0;
1002 
1003 err_free:
1004 	mtk_hsdma_hw_deinit(hsdma);
1005 	of_dma_controller_free(pdev->dev.of_node);
1006 err_unregister:
1007 	dma_async_device_unregister(dd);
1008 
1009 	return err;
1010 }
1011 
1012 static void mtk_hsdma_remove(struct platform_device *pdev)
1013 {
1014 	struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
1015 	struct mtk_hsdma_vchan *vc;
1016 	int i;
1017 
1018 	/* Kill VC task */
1019 	for (i = 0; i < hsdma->dma_requests; i++) {
1020 		vc = &hsdma->vc[i];
1021 
1022 		list_del(&vc->vc.chan.device_node);
1023 		tasklet_kill(&vc->vc.task);
1024 	}
1025 
1026 	/* Disable DMA interrupt */
1027 	mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
1028 
1029 	/* Waits for any pending IRQ handlers to complete */
1030 	synchronize_irq(hsdma->irq);
1031 
1032 	/* Disable hardware */
1033 	mtk_hsdma_hw_deinit(hsdma);
1034 
1035 	dma_async_device_unregister(&hsdma->ddev);
1036 	of_dma_controller_free(pdev->dev.of_node);
1037 }
1038 
1039 static struct platform_driver mtk_hsdma_driver = {
1040 	.probe		= mtk_hsdma_probe,
1041 	.remove_new	= mtk_hsdma_remove,
1042 	.driver = {
1043 		.name		= KBUILD_MODNAME,
1044 		.of_match_table	= mtk_hsdma_match,
1045 	},
1046 };
1047 module_platform_driver(mtk_hsdma_driver);
1048 
1049 MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
1050 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1051 MODULE_LICENSE("GPL v2");
1052