1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitfield.h> 18 #include <linux/bitops.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/sched.h> 24 #include <linux/semaphore.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/genalloc.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/firmware.h> 30 #include <linux/slab.h> 31 #include <linux/platform_device.h> 32 #include <linux/dmaengine.h> 33 #include <linux/of.h> 34 #include <linux/of_address.h> 35 #include <linux/of_dma.h> 36 #include <linux/workqueue.h> 37 38 #include <asm/irq.h> 39 #include <linux/dma/imx-dma.h> 40 #include <linux/regmap.h> 41 #include <linux/mfd/syscon.h> 42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 43 44 #include "dmaengine.h" 45 #include "virt-dma.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 #define SDMA_DONE0_CONFIG 0x1000 78 79 /* 80 * Buffer descriptor status values. 81 */ 82 #define BD_DONE 0x01 83 #define BD_WRAP 0x02 84 #define BD_CONT 0x04 85 #define BD_INTR 0x08 86 #define BD_RROR 0x10 87 #define BD_LAST 0x20 88 #define BD_EXTD 0x80 89 90 /* 91 * Data Node descriptor status values. 92 */ 93 #define DND_END_OF_FRAME 0x80 94 #define DND_END_OF_XFER 0x40 95 #define DND_DONE 0x20 96 #define DND_UNUSED 0x01 97 98 /* 99 * IPCV2 descriptor status values. 100 */ 101 #define BD_IPCV2_END_OF_FRAME 0x40 102 103 #define IPCV2_MAX_NODES 50 104 /* 105 * Error bit set in the CCB status field by the SDMA, 106 * in setbd routine, in case of a transfer error 107 */ 108 #define DATA_ERROR 0x10000000 109 110 /* 111 * Buffer descriptor commands. 112 */ 113 #define C0_ADDR 0x01 114 #define C0_LOAD 0x02 115 #define C0_DUMP 0x03 116 #define C0_SETCTX 0x07 117 #define C0_GETCTX 0x03 118 #define C0_SETDM 0x01 119 #define C0_SETPM 0x04 120 #define C0_GETDM 0x02 121 #define C0_GETPM 0x08 122 /* 123 * Change endianness indicator in the BD command field 124 */ 125 #define CHANGE_ENDIANNESS 0x80 126 127 /* 128 * p_2_p watermark_level description 129 * Bits Name Description 130 * 0-7 Lower WML Lower watermark level 131 * 8 PS 1: Pad Swallowing 132 * 0: No Pad Swallowing 133 * 9 PA 1: Pad Adding 134 * 0: No Pad Adding 135 * 10 SPDIF If this bit is set both source 136 * and destination are on SPBA 137 * 11 Source Bit(SP) 1: Source on SPBA 138 * 0: Source on AIPS 139 * 12 Destination Bit(DP) 1: Destination on SPBA 140 * 0: Destination on AIPS 141 * 13 Source FIFO 1: Source is dual FIFO 142 * 0: Source is single FIFO 143 * 14 Destination FIFO 1: Destination is dual FIFO 144 * 0: Destination is single FIFO 145 * 15 --------- MUST BE 0 146 * 16-23 Higher WML HWML 147 * 24-27 N Total number of samples after 148 * which Pad adding/Swallowing 149 * must be done. It must be odd. 150 * 28 Lower WML Event(LWE) SDMA events reg to check for 151 * LWML event mask 152 * 0: LWE in EVENTS register 153 * 1: LWE in EVENTS2 register 154 * 29 Higher WML Event(HWE) SDMA events reg to check for 155 * HWML event mask 156 * 0: HWE in EVENTS register 157 * 1: HWE in EVENTS2 register 158 * 30 --------- MUST BE 0 159 * 31 CONT 1: Amount of samples to be 160 * transferred is unknown and 161 * script will keep on 162 * transferring samples as long as 163 * both events are detected and 164 * script must be manually stopped 165 * by the application 166 * 0: The amount of samples to be 167 * transferred is equal to the 168 * count field of mode word 169 */ 170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 171 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 172 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 174 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 175 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 176 #define SDMA_WATERMARK_LEVEL_SD BIT(13) 177 #define SDMA_WATERMARK_LEVEL_DD BIT(14) 178 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 179 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 180 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 181 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 182 183 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 184 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 185 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 186 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 187 188 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 189 BIT(DMA_MEM_TO_DEV) | \ 190 BIT(DMA_DEV_TO_DEV)) 191 192 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12) 193 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16) 194 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28) 195 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23) 196 197 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7) 198 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6) 199 200 /* 201 * struct sdma_script_start_addrs - SDMA script start pointers 202 * 203 * start addresses of the different functions in the physical 204 * address space of the SDMA engine. 205 */ 206 struct sdma_script_start_addrs { 207 s32 ap_2_ap_addr; 208 s32 ap_2_bp_addr; 209 s32 ap_2_ap_fixed_addr; 210 s32 bp_2_ap_addr; 211 s32 loopback_on_dsp_side_addr; 212 s32 mcu_interrupt_only_addr; 213 s32 firi_2_per_addr; 214 s32 firi_2_mcu_addr; 215 s32 per_2_firi_addr; 216 s32 mcu_2_firi_addr; 217 s32 uart_2_per_addr; 218 s32 uart_2_mcu_addr; 219 s32 per_2_app_addr; 220 s32 mcu_2_app_addr; 221 s32 per_2_per_addr; 222 s32 uartsh_2_per_addr; 223 s32 uartsh_2_mcu_addr; 224 s32 per_2_shp_addr; 225 s32 mcu_2_shp_addr; 226 s32 ata_2_mcu_addr; 227 s32 mcu_2_ata_addr; 228 s32 app_2_per_addr; 229 s32 app_2_mcu_addr; 230 s32 shp_2_per_addr; 231 s32 shp_2_mcu_addr; 232 s32 mshc_2_mcu_addr; 233 s32 mcu_2_mshc_addr; 234 s32 spdif_2_mcu_addr; 235 s32 mcu_2_spdif_addr; 236 s32 asrc_2_mcu_addr; 237 s32 ext_mem_2_ipu_addr; 238 s32 descrambler_addr; 239 s32 dptc_dvfs_addr; 240 s32 utra_addr; 241 s32 ram_code_start_addr; 242 /* End of v1 array */ 243 union { s32 v1_end; s32 mcu_2_ssish_addr; }; 244 s32 ssish_2_mcu_addr; 245 s32 hdmi_dma_addr; 246 /* End of v2 array */ 247 union { s32 v2_end; s32 zcanfd_2_mcu_addr; }; 248 s32 zqspi_2_mcu_addr; 249 s32 mcu_2_ecspi_addr; 250 s32 mcu_2_sai_addr; 251 s32 sai_2_mcu_addr; 252 s32 uart_2_mcu_rom_addr; 253 s32 uartsh_2_mcu_rom_addr; 254 s32 i2c_2_mcu_addr; 255 s32 mcu_2_i2c_addr; 256 /* End of v3 array */ 257 union { s32 v3_end; s32 mcu_2_zqspi_addr; }; 258 /* End of v4 array */ 259 s32 v4_end[0]; 260 }; 261 262 /* 263 * Mode/Count of data node descriptors - IPCv2 264 */ 265 struct sdma_mode_count { 266 #define SDMA_BD_MAX_CNT 0xffff 267 u32 count : 16; /* size of the buffer pointed by this BD */ 268 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 269 u32 command : 8; /* command mostly used for channel 0 */ 270 }; 271 272 /* 273 * Buffer descriptor 274 */ 275 struct sdma_buffer_descriptor { 276 struct sdma_mode_count mode; 277 u32 buffer_addr; /* address of the buffer described */ 278 u32 ext_buffer_addr; /* extended buffer address */ 279 } __attribute__ ((packed)); 280 281 /** 282 * struct sdma_channel_control - Channel control Block 283 * 284 * @current_bd_ptr: current buffer descriptor processed 285 * @base_bd_ptr: first element of buffer descriptor array 286 * @unused: padding. The SDMA engine expects an array of 128 byte 287 * control blocks 288 */ 289 struct sdma_channel_control { 290 u32 current_bd_ptr; 291 u32 base_bd_ptr; 292 u32 unused[2]; 293 } __attribute__ ((packed)); 294 295 /** 296 * struct sdma_state_registers - SDMA context for a channel 297 * 298 * @pc: program counter 299 * @unused1: unused 300 * @t: test bit: status of arithmetic & test instruction 301 * @rpc: return program counter 302 * @unused0: unused 303 * @sf: source fault while loading data 304 * @spc: loop start program counter 305 * @unused2: unused 306 * @df: destination fault while storing data 307 * @epc: loop end program counter 308 * @lm: loop mode 309 */ 310 struct sdma_state_registers { 311 u32 pc :14; 312 u32 unused1: 1; 313 u32 t : 1; 314 u32 rpc :14; 315 u32 unused0: 1; 316 u32 sf : 1; 317 u32 spc :14; 318 u32 unused2: 1; 319 u32 df : 1; 320 u32 epc :14; 321 u32 lm : 2; 322 } __attribute__ ((packed)); 323 324 /** 325 * struct sdma_context_data - sdma context specific to a channel 326 * 327 * @channel_state: channel state bits 328 * @gReg: general registers 329 * @mda: burst dma destination address register 330 * @msa: burst dma source address register 331 * @ms: burst dma status register 332 * @md: burst dma data register 333 * @pda: peripheral dma destination address register 334 * @psa: peripheral dma source address register 335 * @ps: peripheral dma status register 336 * @pd: peripheral dma data register 337 * @ca: CRC polynomial register 338 * @cs: CRC accumulator register 339 * @dda: dedicated core destination address register 340 * @dsa: dedicated core source address register 341 * @ds: dedicated core status register 342 * @dd: dedicated core data register 343 * @scratch0: 1st word of dedicated ram for context switch 344 * @scratch1: 2nd word of dedicated ram for context switch 345 * @scratch2: 3rd word of dedicated ram for context switch 346 * @scratch3: 4th word of dedicated ram for context switch 347 * @scratch4: 5th word of dedicated ram for context switch 348 * @scratch5: 6th word of dedicated ram for context switch 349 * @scratch6: 7th word of dedicated ram for context switch 350 * @scratch7: 8th word of dedicated ram for context switch 351 */ 352 struct sdma_context_data { 353 struct sdma_state_registers channel_state; 354 u32 gReg[8]; 355 u32 mda; 356 u32 msa; 357 u32 ms; 358 u32 md; 359 u32 pda; 360 u32 psa; 361 u32 ps; 362 u32 pd; 363 u32 ca; 364 u32 cs; 365 u32 dda; 366 u32 dsa; 367 u32 ds; 368 u32 dd; 369 u32 scratch0; 370 u32 scratch1; 371 u32 scratch2; 372 u32 scratch3; 373 u32 scratch4; 374 u32 scratch5; 375 u32 scratch6; 376 u32 scratch7; 377 } __attribute__ ((packed)); 378 379 380 struct sdma_engine; 381 382 /** 383 * struct sdma_desc - descriptor structor for one transfer 384 * @vd: descriptor for virt dma 385 * @num_bd: number of descriptors currently handling 386 * @bd_phys: physical address of bd 387 * @buf_tail: ID of the buffer that was processed 388 * @buf_ptail: ID of the previous buffer that was processed 389 * @period_len: period length, used in cyclic. 390 * @chn_real_count: the real count updated from bd->mode.count 391 * @chn_count: the transfer count set 392 * @sdmac: sdma_channel pointer 393 * @bd: pointer of allocate bd 394 */ 395 struct sdma_desc { 396 struct virt_dma_desc vd; 397 unsigned int num_bd; 398 dma_addr_t bd_phys; 399 unsigned int buf_tail; 400 unsigned int buf_ptail; 401 unsigned int period_len; 402 unsigned int chn_real_count; 403 unsigned int chn_count; 404 struct sdma_channel *sdmac; 405 struct sdma_buffer_descriptor *bd; 406 }; 407 408 /** 409 * struct sdma_channel - housekeeping for a SDMA channel 410 * 411 * @vc: virt_dma base structure 412 * @desc: sdma description including vd and other special member 413 * @sdma: pointer to the SDMA engine for this channel 414 * @channel: the channel number, matches dmaengine chan_id + 1 415 * @direction: transfer type. Needed for setting SDMA script 416 * @slave_config: Slave configuration 417 * @peripheral_type: Peripheral type. Needed for setting SDMA script 418 * @event_id0: aka dma request line 419 * @event_id1: for channels that use 2 events 420 * @word_size: peripheral access size 421 * @pc_from_device: script address for those device_2_memory 422 * @pc_to_device: script address for those memory_2_device 423 * @device_to_device: script address for those device_2_device 424 * @pc_to_pc: script address for those memory_2_memory 425 * @flags: loop mode or not 426 * @per_address: peripheral source or destination address in common case 427 * destination address in p_2_p case 428 * @per_address2: peripheral source address in p_2_p case 429 * @event_mask: event mask used in p_2_p script 430 * @watermark_level: value for gReg[7], some script will extend it from 431 * basic watermark such as p_2_p 432 * @shp_addr: value for gReg[6] 433 * @per_addr: value for gReg[2] 434 * @status: status of dma channel 435 * @data: specific sdma interface structure 436 * @terminate_worker: used to call back into terminate work function 437 * @terminated: terminated list 438 * @is_ram_script: flag for script in ram 439 * @n_fifos_src: number of source device fifos 440 * @n_fifos_dst: number of destination device fifos 441 * @sw_done: software done flag 442 * @stride_fifos_src: stride for source device FIFOs 443 * @stride_fifos_dst: stride for destination device FIFOs 444 * @words_per_fifo: copy number of words one time for one FIFO 445 */ 446 struct sdma_channel { 447 struct virt_dma_chan vc; 448 struct sdma_desc *desc; 449 struct sdma_engine *sdma; 450 unsigned int channel; 451 enum dma_transfer_direction direction; 452 struct dma_slave_config slave_config; 453 enum sdma_peripheral_type peripheral_type; 454 unsigned int event_id0; 455 unsigned int event_id1; 456 enum dma_slave_buswidth word_size; 457 unsigned int pc_from_device, pc_to_device; 458 unsigned int device_to_device; 459 unsigned int pc_to_pc; 460 unsigned long flags; 461 dma_addr_t per_address, per_address2; 462 unsigned long event_mask[2]; 463 unsigned long watermark_level; 464 u32 shp_addr, per_addr; 465 enum dma_status status; 466 struct imx_dma_data data; 467 struct work_struct terminate_worker; 468 struct list_head terminated; 469 bool is_ram_script; 470 unsigned int n_fifos_src; 471 unsigned int n_fifos_dst; 472 unsigned int stride_fifos_src; 473 unsigned int stride_fifos_dst; 474 unsigned int words_per_fifo; 475 bool sw_done; 476 }; 477 478 #define IMX_DMA_SG_LOOP BIT(0) 479 480 #define MAX_DMA_CHANNELS 32 481 #define MXC_SDMA_DEFAULT_PRIORITY 1 482 #define MXC_SDMA_MIN_PRIORITY 1 483 #define MXC_SDMA_MAX_PRIORITY 7 484 485 #define SDMA_FIRMWARE_MAGIC 0x414d4453 486 487 /** 488 * struct sdma_firmware_header - Layout of the firmware image 489 * 490 * @magic: "SDMA" 491 * @version_major: increased whenever layout of struct 492 * sdma_script_start_addrs changes. 493 * @version_minor: firmware minor version (for binary compatible changes) 494 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 495 * @num_script_addrs: Number of script addresses in this image 496 * @ram_code_start: offset of SDMA ram image in this firmware image 497 * @ram_code_size: size of SDMA ram image 498 */ 499 struct sdma_firmware_header { 500 u32 magic; 501 u32 version_major; 502 u32 version_minor; 503 u32 script_addrs_start; 504 u32 num_script_addrs; 505 u32 ram_code_start; 506 u32 ram_code_size; 507 }; 508 509 struct sdma_driver_data { 510 int chnenbl0; 511 int num_events; 512 struct sdma_script_start_addrs *script_addrs; 513 bool check_ratio; 514 /* 515 * ecspi ERR009165 fixed should be done in sdma script 516 * and it has been fixed in soc from i.mx6ul. 517 * please get more information from the below link: 518 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 519 */ 520 bool ecspi_fixed; 521 }; 522 523 struct sdma_engine { 524 struct device *dev; 525 struct sdma_channel channel[MAX_DMA_CHANNELS]; 526 struct sdma_channel_control *channel_control; 527 void __iomem *regs; 528 struct sdma_context_data *context; 529 dma_addr_t context_phys; 530 struct dma_device dma_device; 531 struct clk *clk_ipg; 532 struct clk *clk_ahb; 533 spinlock_t channel_0_lock; 534 u32 script_number; 535 struct sdma_script_start_addrs *script_addrs; 536 const struct sdma_driver_data *drvdata; 537 u32 spba_start_addr; 538 u32 spba_end_addr; 539 unsigned int irq; 540 dma_addr_t bd0_phys; 541 struct sdma_buffer_descriptor *bd0; 542 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/ 543 bool clk_ratio; 544 bool fw_loaded; 545 struct gen_pool *iram_pool; 546 }; 547 548 static int sdma_config_write(struct dma_chan *chan, 549 struct dma_slave_config *dmaengine_cfg, 550 enum dma_transfer_direction direction); 551 552 static struct sdma_driver_data sdma_imx31 = { 553 .chnenbl0 = SDMA_CHNENBL0_IMX31, 554 .num_events = 32, 555 }; 556 557 static struct sdma_script_start_addrs sdma_script_imx25 = { 558 .ap_2_ap_addr = 729, 559 .uart_2_mcu_addr = 904, 560 .per_2_app_addr = 1255, 561 .mcu_2_app_addr = 834, 562 .uartsh_2_mcu_addr = 1120, 563 .per_2_shp_addr = 1329, 564 .mcu_2_shp_addr = 1048, 565 .ata_2_mcu_addr = 1560, 566 .mcu_2_ata_addr = 1479, 567 .app_2_per_addr = 1189, 568 .app_2_mcu_addr = 770, 569 .shp_2_per_addr = 1407, 570 .shp_2_mcu_addr = 979, 571 }; 572 573 static struct sdma_driver_data sdma_imx25 = { 574 .chnenbl0 = SDMA_CHNENBL0_IMX35, 575 .num_events = 48, 576 .script_addrs = &sdma_script_imx25, 577 }; 578 579 static struct sdma_driver_data sdma_imx35 = { 580 .chnenbl0 = SDMA_CHNENBL0_IMX35, 581 .num_events = 48, 582 }; 583 584 static struct sdma_script_start_addrs sdma_script_imx51 = { 585 .ap_2_ap_addr = 642, 586 .uart_2_mcu_addr = 817, 587 .mcu_2_app_addr = 747, 588 .mcu_2_shp_addr = 961, 589 .ata_2_mcu_addr = 1473, 590 .mcu_2_ata_addr = 1392, 591 .app_2_per_addr = 1033, 592 .app_2_mcu_addr = 683, 593 .shp_2_per_addr = 1251, 594 .shp_2_mcu_addr = 892, 595 }; 596 597 static struct sdma_driver_data sdma_imx51 = { 598 .chnenbl0 = SDMA_CHNENBL0_IMX35, 599 .num_events = 48, 600 .script_addrs = &sdma_script_imx51, 601 }; 602 603 static struct sdma_script_start_addrs sdma_script_imx53 = { 604 .ap_2_ap_addr = 642, 605 .app_2_mcu_addr = 683, 606 .mcu_2_app_addr = 747, 607 .uart_2_mcu_addr = 817, 608 .shp_2_mcu_addr = 891, 609 .mcu_2_shp_addr = 960, 610 .uartsh_2_mcu_addr = 1032, 611 .spdif_2_mcu_addr = 1100, 612 .mcu_2_spdif_addr = 1134, 613 .firi_2_mcu_addr = 1193, 614 .mcu_2_firi_addr = 1290, 615 }; 616 617 static struct sdma_driver_data sdma_imx53 = { 618 .chnenbl0 = SDMA_CHNENBL0_IMX35, 619 .num_events = 48, 620 .script_addrs = &sdma_script_imx53, 621 }; 622 623 static struct sdma_script_start_addrs sdma_script_imx6q = { 624 .ap_2_ap_addr = 642, 625 .uart_2_mcu_addr = 817, 626 .mcu_2_app_addr = 747, 627 .per_2_per_addr = 6331, 628 .uartsh_2_mcu_addr = 1032, 629 .mcu_2_shp_addr = 960, 630 .app_2_mcu_addr = 683, 631 .shp_2_mcu_addr = 891, 632 .spdif_2_mcu_addr = 1100, 633 .mcu_2_spdif_addr = 1134, 634 }; 635 636 static struct sdma_driver_data sdma_imx6q = { 637 .chnenbl0 = SDMA_CHNENBL0_IMX35, 638 .num_events = 48, 639 .script_addrs = &sdma_script_imx6q, 640 }; 641 642 static struct sdma_driver_data sdma_imx6ul = { 643 .chnenbl0 = SDMA_CHNENBL0_IMX35, 644 .num_events = 48, 645 .script_addrs = &sdma_script_imx6q, 646 .ecspi_fixed = true, 647 }; 648 649 static struct sdma_script_start_addrs sdma_script_imx7d = { 650 .ap_2_ap_addr = 644, 651 .uart_2_mcu_addr = 819, 652 .mcu_2_app_addr = 749, 653 .uartsh_2_mcu_addr = 1034, 654 .mcu_2_shp_addr = 962, 655 .app_2_mcu_addr = 685, 656 .shp_2_mcu_addr = 893, 657 .spdif_2_mcu_addr = 1102, 658 .mcu_2_spdif_addr = 1136, 659 }; 660 661 static struct sdma_driver_data sdma_imx7d = { 662 .chnenbl0 = SDMA_CHNENBL0_IMX35, 663 .num_events = 48, 664 .script_addrs = &sdma_script_imx7d, 665 }; 666 667 static struct sdma_driver_data sdma_imx8mq = { 668 .chnenbl0 = SDMA_CHNENBL0_IMX35, 669 .num_events = 48, 670 .script_addrs = &sdma_script_imx7d, 671 .check_ratio = 1, 672 }; 673 674 static const struct of_device_id sdma_dt_ids[] = { 675 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 676 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 677 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 678 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 679 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 680 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 681 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 682 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, }, 683 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, }, 684 { /* sentinel */ } 685 }; 686 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 687 688 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 689 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 690 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 691 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 692 693 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 694 { 695 u32 chnenbl0 = sdma->drvdata->chnenbl0; 696 return chnenbl0 + event * 4; 697 } 698 699 static int sdma_config_ownership(struct sdma_channel *sdmac, 700 bool event_override, bool mcu_override, bool dsp_override) 701 { 702 struct sdma_engine *sdma = sdmac->sdma; 703 int channel = sdmac->channel; 704 unsigned long evt, mcu, dsp; 705 706 if (event_override && mcu_override && dsp_override) 707 return -EINVAL; 708 709 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 710 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 711 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 712 713 if (dsp_override) 714 __clear_bit(channel, &dsp); 715 else 716 __set_bit(channel, &dsp); 717 718 if (event_override) 719 __clear_bit(channel, &evt); 720 else 721 __set_bit(channel, &evt); 722 723 if (mcu_override) 724 __clear_bit(channel, &mcu); 725 else 726 __set_bit(channel, &mcu); 727 728 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 729 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 730 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 731 732 return 0; 733 } 734 735 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel) 736 { 737 return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel)); 738 } 739 740 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 741 { 742 writel(BIT(channel), sdma->regs + SDMA_H_START); 743 } 744 745 /* 746 * sdma_run_channel0 - run a channel and wait till it's done 747 */ 748 static int sdma_run_channel0(struct sdma_engine *sdma) 749 { 750 int ret; 751 u32 reg; 752 753 sdma_enable_channel(sdma, 0); 754 755 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 756 reg, !(reg & 1), 1, 500); 757 if (ret) 758 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 759 760 /* Set bits of CONFIG register with dynamic context switching */ 761 reg = readl(sdma->regs + SDMA_H_CONFIG); 762 if ((reg & SDMA_H_CONFIG_CSM) == 0) { 763 reg |= SDMA_H_CONFIG_CSM; 764 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG); 765 } 766 767 return ret; 768 } 769 770 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 771 u32 address) 772 { 773 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 774 void *buf_virt; 775 dma_addr_t buf_phys; 776 int ret; 777 unsigned long flags; 778 779 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL); 780 if (!buf_virt) 781 return -ENOMEM; 782 783 spin_lock_irqsave(&sdma->channel_0_lock, flags); 784 785 bd0->mode.command = C0_SETPM; 786 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 787 bd0->mode.count = size / 2; 788 bd0->buffer_addr = buf_phys; 789 bd0->ext_buffer_addr = address; 790 791 memcpy(buf_virt, buf, size); 792 793 ret = sdma_run_channel0(sdma); 794 795 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 796 797 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys); 798 799 return ret; 800 } 801 802 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 803 { 804 struct sdma_engine *sdma = sdmac->sdma; 805 int channel = sdmac->channel; 806 unsigned long val; 807 u32 chnenbl = chnenbl_ofs(sdma, event); 808 809 val = readl_relaxed(sdma->regs + chnenbl); 810 __set_bit(channel, &val); 811 writel_relaxed(val, sdma->regs + chnenbl); 812 813 /* Set SDMA_DONEx_CONFIG is sw_done enabled */ 814 if (sdmac->sw_done) { 815 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG); 816 val |= SDMA_DONE0_CONFIG_DONE_SEL; 817 val &= ~SDMA_DONE0_CONFIG_DONE_DIS; 818 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG); 819 } 820 } 821 822 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 823 { 824 struct sdma_engine *sdma = sdmac->sdma; 825 int channel = sdmac->channel; 826 u32 chnenbl = chnenbl_ofs(sdma, event); 827 unsigned long val; 828 829 val = readl_relaxed(sdma->regs + chnenbl); 830 __clear_bit(channel, &val); 831 writel_relaxed(val, sdma->regs + chnenbl); 832 } 833 834 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 835 { 836 return container_of(t, struct sdma_desc, vd.tx); 837 } 838 839 static void sdma_start_desc(struct sdma_channel *sdmac) 840 { 841 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 842 struct sdma_desc *desc; 843 struct sdma_engine *sdma = sdmac->sdma; 844 int channel = sdmac->channel; 845 846 if (!vd) { 847 sdmac->desc = NULL; 848 return; 849 } 850 sdmac->desc = desc = to_sdma_desc(&vd->tx); 851 852 list_del(&vd->node); 853 854 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 855 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 856 sdma_enable_channel(sdma, sdmac->channel); 857 } 858 859 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 860 { 861 struct sdma_buffer_descriptor *bd; 862 int error = 0; 863 enum dma_status old_status = sdmac->status; 864 865 /* 866 * loop mode. Iterate over descriptors, re-setup them and 867 * call callback function. 868 */ 869 while (sdmac->desc) { 870 struct sdma_desc *desc = sdmac->desc; 871 872 bd = &desc->bd[desc->buf_tail]; 873 874 if (bd->mode.status & BD_DONE) 875 break; 876 877 if (bd->mode.status & BD_RROR) { 878 bd->mode.status &= ~BD_RROR; 879 sdmac->status = DMA_ERROR; 880 error = -EIO; 881 } 882 883 /* 884 * We use bd->mode.count to calculate the residue, since contains 885 * the number of bytes present in the current buffer descriptor. 886 */ 887 888 desc->chn_real_count = bd->mode.count; 889 bd->mode.count = desc->period_len; 890 desc->buf_ptail = desc->buf_tail; 891 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 892 893 /* 894 * The callback is called from the interrupt context in order 895 * to reduce latency and to avoid the risk of altering the 896 * SDMA transaction status by the time the client tasklet is 897 * executed. 898 */ 899 spin_unlock(&sdmac->vc.lock); 900 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 901 spin_lock(&sdmac->vc.lock); 902 903 /* Assign buffer ownership to SDMA */ 904 bd->mode.status |= BD_DONE; 905 906 if (error) 907 sdmac->status = old_status; 908 } 909 910 /* 911 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA 912 * owned buffer is available (i.e. BD_DONE was set too late). 913 */ 914 if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) { 915 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel); 916 sdma_enable_channel(sdmac->sdma, sdmac->channel); 917 } 918 } 919 920 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 921 { 922 struct sdma_channel *sdmac = (struct sdma_channel *) data; 923 struct sdma_buffer_descriptor *bd; 924 int i, error = 0; 925 926 sdmac->desc->chn_real_count = 0; 927 /* 928 * non loop mode. Iterate over all descriptors, collect 929 * errors and call callback function 930 */ 931 for (i = 0; i < sdmac->desc->num_bd; i++) { 932 bd = &sdmac->desc->bd[i]; 933 934 if (bd->mode.status & (BD_DONE | BD_RROR)) 935 error = -EIO; 936 sdmac->desc->chn_real_count += bd->mode.count; 937 } 938 939 if (error) 940 sdmac->status = DMA_ERROR; 941 else 942 sdmac->status = DMA_COMPLETE; 943 } 944 945 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 946 { 947 struct sdma_engine *sdma = dev_id; 948 unsigned long stat; 949 950 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 951 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 952 /* channel 0 is special and not handled here, see run_channel0() */ 953 stat &= ~1; 954 955 while (stat) { 956 int channel = fls(stat) - 1; 957 struct sdma_channel *sdmac = &sdma->channel[channel]; 958 struct sdma_desc *desc; 959 960 spin_lock(&sdmac->vc.lock); 961 desc = sdmac->desc; 962 if (desc) { 963 if (sdmac->flags & IMX_DMA_SG_LOOP) { 964 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI) 965 sdma_update_channel_loop(sdmac); 966 else 967 vchan_cyclic_callback(&desc->vd); 968 } else { 969 mxc_sdma_handle_channel_normal(sdmac); 970 vchan_cookie_complete(&desc->vd); 971 sdma_start_desc(sdmac); 972 } 973 } 974 975 spin_unlock(&sdmac->vc.lock); 976 __clear_bit(channel, &stat); 977 } 978 979 return IRQ_HANDLED; 980 } 981 982 /* 983 * sets the pc of SDMA script according to the peripheral type 984 */ 985 static int sdma_get_pc(struct sdma_channel *sdmac, 986 enum sdma_peripheral_type peripheral_type) 987 { 988 struct sdma_engine *sdma = sdmac->sdma; 989 int per_2_emi = 0, emi_2_per = 0; 990 /* 991 * These are needed once we start to support transfers between 992 * two peripherals or memory-to-memory transfers 993 */ 994 int per_2_per = 0, emi_2_emi = 0; 995 996 sdmac->pc_from_device = 0; 997 sdmac->pc_to_device = 0; 998 sdmac->device_to_device = 0; 999 sdmac->pc_to_pc = 0; 1000 sdmac->is_ram_script = false; 1001 1002 switch (peripheral_type) { 1003 case IMX_DMATYPE_MEMORY: 1004 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 1005 break; 1006 case IMX_DMATYPE_DSP: 1007 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 1008 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 1009 break; 1010 case IMX_DMATYPE_FIRI: 1011 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 1012 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 1013 break; 1014 case IMX_DMATYPE_UART: 1015 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 1016 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1017 break; 1018 case IMX_DMATYPE_UART_SP: 1019 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 1020 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1021 break; 1022 case IMX_DMATYPE_ATA: 1023 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 1024 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 1025 break; 1026 case IMX_DMATYPE_CSPI: 1027 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1028 1029 /* Use rom script mcu_2_app if ERR009165 fixed */ 1030 if (sdmac->sdma->drvdata->ecspi_fixed) { 1031 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1032 } else { 1033 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr; 1034 sdmac->is_ram_script = true; 1035 } 1036 1037 break; 1038 case IMX_DMATYPE_EXT: 1039 case IMX_DMATYPE_SSI: 1040 case IMX_DMATYPE_SAI: 1041 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1042 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1043 break; 1044 case IMX_DMATYPE_SSI_DUAL: 1045 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 1046 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 1047 sdmac->is_ram_script = true; 1048 break; 1049 case IMX_DMATYPE_SSI_SP: 1050 case IMX_DMATYPE_MMC: 1051 case IMX_DMATYPE_SDHC: 1052 case IMX_DMATYPE_CSPI_SP: 1053 case IMX_DMATYPE_ESAI: 1054 case IMX_DMATYPE_MSHC_SP: 1055 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1056 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1057 break; 1058 case IMX_DMATYPE_ASRC: 1059 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 1060 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 1061 per_2_per = sdma->script_addrs->per_2_per_addr; 1062 sdmac->is_ram_script = true; 1063 break; 1064 case IMX_DMATYPE_ASRC_SP: 1065 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1066 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1067 per_2_per = sdma->script_addrs->per_2_per_addr; 1068 break; 1069 case IMX_DMATYPE_MSHC: 1070 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 1071 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 1072 break; 1073 case IMX_DMATYPE_CCM: 1074 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 1075 break; 1076 case IMX_DMATYPE_SPDIF: 1077 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 1078 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 1079 break; 1080 case IMX_DMATYPE_IPU_MEMORY: 1081 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 1082 break; 1083 case IMX_DMATYPE_MULTI_SAI: 1084 per_2_emi = sdma->script_addrs->sai_2_mcu_addr; 1085 emi_2_per = sdma->script_addrs->mcu_2_sai_addr; 1086 break; 1087 case IMX_DMATYPE_I2C: 1088 per_2_emi = sdma->script_addrs->i2c_2_mcu_addr; 1089 emi_2_per = sdma->script_addrs->mcu_2_i2c_addr; 1090 sdmac->is_ram_script = true; 1091 break; 1092 case IMX_DMATYPE_HDMI: 1093 emi_2_per = sdma->script_addrs->hdmi_dma_addr; 1094 sdmac->is_ram_script = true; 1095 break; 1096 default: 1097 dev_err(sdma->dev, "Unsupported transfer type %d\n", 1098 peripheral_type); 1099 return -EINVAL; 1100 } 1101 1102 sdmac->pc_from_device = per_2_emi; 1103 sdmac->pc_to_device = emi_2_per; 1104 sdmac->device_to_device = per_2_per; 1105 sdmac->pc_to_pc = emi_2_emi; 1106 1107 return 0; 1108 } 1109 1110 static int sdma_load_context(struct sdma_channel *sdmac) 1111 { 1112 struct sdma_engine *sdma = sdmac->sdma; 1113 int channel = sdmac->channel; 1114 int load_address; 1115 struct sdma_context_data *context = sdma->context; 1116 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 1117 int ret; 1118 unsigned long flags; 1119 1120 if (sdmac->direction == DMA_DEV_TO_MEM) 1121 load_address = sdmac->pc_from_device; 1122 else if (sdmac->direction == DMA_DEV_TO_DEV) 1123 load_address = sdmac->device_to_device; 1124 else if (sdmac->direction == DMA_MEM_TO_MEM) 1125 load_address = sdmac->pc_to_pc; 1126 else 1127 load_address = sdmac->pc_to_device; 1128 1129 if (load_address < 0) 1130 return load_address; 1131 1132 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 1133 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 1134 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 1135 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 1136 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 1137 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 1138 1139 spin_lock_irqsave(&sdma->channel_0_lock, flags); 1140 1141 memset(context, 0, sizeof(*context)); 1142 context->channel_state.pc = load_address; 1143 1144 /* Send by context the event mask,base address for peripheral 1145 * and watermark level 1146 */ 1147 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) { 1148 context->gReg[4] = sdmac->per_addr; 1149 context->gReg[6] = sdmac->shp_addr; 1150 } else { 1151 context->gReg[0] = sdmac->event_mask[1]; 1152 context->gReg[1] = sdmac->event_mask[0]; 1153 context->gReg[2] = sdmac->per_addr; 1154 context->gReg[6] = sdmac->shp_addr; 1155 context->gReg[7] = sdmac->watermark_level; 1156 } 1157 1158 bd0->mode.command = C0_SETDM; 1159 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 1160 bd0->mode.count = sizeof(*context) / 4; 1161 bd0->buffer_addr = sdma->context_phys; 1162 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1163 ret = sdma_run_channel0(sdma); 1164 1165 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1166 1167 return ret; 1168 } 1169 1170 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1171 { 1172 return container_of(chan, struct sdma_channel, vc.chan); 1173 } 1174 1175 static int sdma_disable_channel(struct dma_chan *chan) 1176 { 1177 struct sdma_channel *sdmac = to_sdma_chan(chan); 1178 struct sdma_engine *sdma = sdmac->sdma; 1179 int channel = sdmac->channel; 1180 1181 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1182 sdmac->status = DMA_ERROR; 1183 1184 return 0; 1185 } 1186 static void sdma_channel_terminate_work(struct work_struct *work) 1187 { 1188 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1189 terminate_worker); 1190 /* 1191 * According to NXP R&D team a delay of one BD SDMA cost time 1192 * (maximum is 1ms) should be added after disable of the channel 1193 * bit, to ensure SDMA core has really been stopped after SDMA 1194 * clients call .device_terminate_all. 1195 */ 1196 usleep_range(1000, 2000); 1197 1198 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated); 1199 } 1200 1201 static int sdma_terminate_all(struct dma_chan *chan) 1202 { 1203 struct sdma_channel *sdmac = to_sdma_chan(chan); 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&sdmac->vc.lock, flags); 1207 1208 sdma_disable_channel(chan); 1209 1210 if (sdmac->desc) { 1211 vchan_terminate_vdesc(&sdmac->desc->vd); 1212 /* 1213 * move out current descriptor into terminated list so that 1214 * it could be free in sdma_channel_terminate_work alone 1215 * later without potential involving next descriptor raised 1216 * up before the last descriptor terminated. 1217 */ 1218 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated); 1219 sdmac->desc = NULL; 1220 schedule_work(&sdmac->terminate_worker); 1221 } 1222 1223 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1224 1225 return 0; 1226 } 1227 1228 static void sdma_channel_synchronize(struct dma_chan *chan) 1229 { 1230 struct sdma_channel *sdmac = to_sdma_chan(chan); 1231 1232 vchan_synchronize(&sdmac->vc); 1233 1234 flush_work(&sdmac->terminate_worker); 1235 } 1236 1237 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1238 { 1239 struct sdma_engine *sdma = sdmac->sdma; 1240 1241 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1242 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1243 1244 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1245 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1246 1247 if (sdmac->event_id0 > 31) 1248 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1249 1250 if (sdmac->event_id1 > 31) 1251 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1252 1253 /* 1254 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1255 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1256 * r0(event_mask[1]) and r1(event_mask[0]). 1257 */ 1258 if (lwml > hwml) { 1259 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1260 SDMA_WATERMARK_LEVEL_HWML); 1261 sdmac->watermark_level |= hwml; 1262 sdmac->watermark_level |= lwml << 16; 1263 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1264 } 1265 1266 if (sdmac->per_address2 >= sdma->spba_start_addr && 1267 sdmac->per_address2 <= sdma->spba_end_addr) 1268 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1269 1270 if (sdmac->per_address >= sdma->spba_start_addr && 1271 sdmac->per_address <= sdma->spba_end_addr) 1272 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1273 1274 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1275 1276 /* 1277 * Limitation: The p2p script support dual fifos in maximum, 1278 * So when fifo number is larger than 1, force enable dual 1279 * fifos. 1280 */ 1281 if (sdmac->n_fifos_src > 1) 1282 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD; 1283 if (sdmac->n_fifos_dst > 1) 1284 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD; 1285 } 1286 1287 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac) 1288 { 1289 unsigned int n_fifos; 1290 unsigned int stride_fifos; 1291 unsigned int words_per_fifo; 1292 1293 if (sdmac->sw_done) 1294 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE; 1295 1296 if (sdmac->direction == DMA_DEV_TO_MEM) { 1297 n_fifos = sdmac->n_fifos_src; 1298 stride_fifos = sdmac->stride_fifos_src; 1299 } else { 1300 n_fifos = sdmac->n_fifos_dst; 1301 stride_fifos = sdmac->stride_fifos_dst; 1302 } 1303 1304 words_per_fifo = sdmac->words_per_fifo; 1305 1306 sdmac->watermark_level |= 1307 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos); 1308 sdmac->watermark_level |= 1309 FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos); 1310 if (words_per_fifo) 1311 sdmac->watermark_level |= 1312 FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1)); 1313 } 1314 1315 static int sdma_config_channel(struct dma_chan *chan) 1316 { 1317 struct sdma_channel *sdmac = to_sdma_chan(chan); 1318 int ret; 1319 1320 sdma_disable_channel(chan); 1321 1322 sdmac->event_mask[0] = 0; 1323 sdmac->event_mask[1] = 0; 1324 sdmac->shp_addr = 0; 1325 sdmac->per_addr = 0; 1326 1327 switch (sdmac->peripheral_type) { 1328 case IMX_DMATYPE_DSP: 1329 sdma_config_ownership(sdmac, false, true, true); 1330 break; 1331 case IMX_DMATYPE_MEMORY: 1332 sdma_config_ownership(sdmac, false, true, false); 1333 break; 1334 default: 1335 sdma_config_ownership(sdmac, true, true, false); 1336 break; 1337 } 1338 1339 ret = sdma_get_pc(sdmac, sdmac->peripheral_type); 1340 if (ret) 1341 return ret; 1342 1343 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1344 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1345 /* Handle multiple event channels differently */ 1346 if (sdmac->event_id1) { 1347 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1348 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1349 sdma_set_watermarklevel_for_p2p(sdmac); 1350 } else { 1351 if (sdmac->peripheral_type == 1352 IMX_DMATYPE_MULTI_SAI) 1353 sdma_set_watermarklevel_for_sais(sdmac); 1354 1355 __set_bit(sdmac->event_id0, sdmac->event_mask); 1356 } 1357 1358 /* Address */ 1359 sdmac->shp_addr = sdmac->per_address; 1360 sdmac->per_addr = sdmac->per_address2; 1361 } else { 1362 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1369 unsigned int priority) 1370 { 1371 struct sdma_engine *sdma = sdmac->sdma; 1372 int channel = sdmac->channel; 1373 1374 if (priority < MXC_SDMA_MIN_PRIORITY 1375 || priority > MXC_SDMA_MAX_PRIORITY) { 1376 return -EINVAL; 1377 } 1378 1379 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1380 1381 return 0; 1382 } 1383 1384 static int sdma_request_channel0(struct sdma_engine *sdma) 1385 { 1386 int ret = -EBUSY; 1387 1388 if (sdma->iram_pool) 1389 sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool, 1390 sizeof(struct sdma_buffer_descriptor), 1391 &sdma->bd0_phys); 1392 else 1393 sdma->bd0 = dma_alloc_coherent(sdma->dev, 1394 sizeof(struct sdma_buffer_descriptor), 1395 &sdma->bd0_phys, GFP_NOWAIT); 1396 if (!sdma->bd0) { 1397 ret = -ENOMEM; 1398 goto out; 1399 } 1400 1401 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1402 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1403 1404 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1405 return 0; 1406 out: 1407 1408 return ret; 1409 } 1410 1411 1412 static int sdma_alloc_bd(struct sdma_desc *desc) 1413 { 1414 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1415 struct sdma_engine *sdma = desc->sdmac->sdma; 1416 int ret = 0; 1417 1418 if (sdma->iram_pool) 1419 desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys); 1420 else 1421 desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT); 1422 1423 if (!desc->bd) { 1424 ret = -ENOMEM; 1425 goto out; 1426 } 1427 out: 1428 return ret; 1429 } 1430 1431 static void sdma_free_bd(struct sdma_desc *desc) 1432 { 1433 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1434 struct sdma_engine *sdma = desc->sdmac->sdma; 1435 1436 if (sdma->iram_pool) 1437 gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size); 1438 else 1439 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys); 1440 } 1441 1442 static void sdma_desc_free(struct virt_dma_desc *vd) 1443 { 1444 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1445 1446 sdma_free_bd(desc); 1447 kfree(desc); 1448 } 1449 1450 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1451 { 1452 struct sdma_channel *sdmac = to_sdma_chan(chan); 1453 struct imx_dma_data *data = chan->private; 1454 struct imx_dma_data mem_data; 1455 int prio, ret; 1456 1457 /* 1458 * MEMCPY may never setup chan->private by filter function such as 1459 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1460 * Please note in any other slave case, you have to setup chan->private 1461 * with 'struct imx_dma_data' in your own filter function if you want to 1462 * request DMA channel by dma_request_channel(), otherwise, 'MEMCPY in 1463 * case?' will appear to warn you to correct your filter function. 1464 */ 1465 if (!data) { 1466 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1467 mem_data.priority = 2; 1468 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1469 mem_data.dma_request = 0; 1470 mem_data.dma_request2 = 0; 1471 data = &mem_data; 1472 1473 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1474 if (ret) 1475 return ret; 1476 } 1477 1478 switch (data->priority) { 1479 case DMA_PRIO_HIGH: 1480 prio = 3; 1481 break; 1482 case DMA_PRIO_MEDIUM: 1483 prio = 2; 1484 break; 1485 case DMA_PRIO_LOW: 1486 default: 1487 prio = 1; 1488 break; 1489 } 1490 1491 sdmac->peripheral_type = data->peripheral_type; 1492 sdmac->event_id0 = data->dma_request; 1493 sdmac->event_id1 = data->dma_request2; 1494 1495 ret = clk_enable(sdmac->sdma->clk_ipg); 1496 if (ret) 1497 return ret; 1498 ret = clk_enable(sdmac->sdma->clk_ahb); 1499 if (ret) 1500 goto disable_clk_ipg; 1501 1502 ret = sdma_set_channel_priority(sdmac, prio); 1503 if (ret) 1504 goto disable_clk_ahb; 1505 1506 return 0; 1507 1508 disable_clk_ahb: 1509 clk_disable(sdmac->sdma->clk_ahb); 1510 disable_clk_ipg: 1511 clk_disable(sdmac->sdma->clk_ipg); 1512 return ret; 1513 } 1514 1515 static void sdma_free_chan_resources(struct dma_chan *chan) 1516 { 1517 struct sdma_channel *sdmac = to_sdma_chan(chan); 1518 struct sdma_engine *sdma = sdmac->sdma; 1519 1520 sdma_terminate_all(chan); 1521 1522 sdma_channel_synchronize(chan); 1523 1524 sdma_event_disable(sdmac, sdmac->event_id0); 1525 if (sdmac->event_id1) 1526 sdma_event_disable(sdmac, sdmac->event_id1); 1527 1528 sdmac->event_id0 = 0; 1529 sdmac->event_id1 = 0; 1530 1531 sdma_set_channel_priority(sdmac, 0); 1532 1533 clk_disable(sdma->clk_ipg); 1534 clk_disable(sdma->clk_ahb); 1535 } 1536 1537 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1538 enum dma_transfer_direction direction, u32 bds) 1539 { 1540 struct sdma_desc *desc; 1541 1542 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) { 1543 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n"); 1544 goto err_out; 1545 } 1546 1547 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1548 if (!desc) 1549 goto err_out; 1550 1551 sdmac->status = DMA_IN_PROGRESS; 1552 sdmac->direction = direction; 1553 sdmac->flags = 0; 1554 1555 desc->chn_count = 0; 1556 desc->chn_real_count = 0; 1557 desc->buf_tail = 0; 1558 desc->buf_ptail = 0; 1559 desc->sdmac = sdmac; 1560 desc->num_bd = bds; 1561 1562 if (bds && sdma_alloc_bd(desc)) 1563 goto err_desc_out; 1564 1565 /* No slave_config called in MEMCPY case, so do here */ 1566 if (direction == DMA_MEM_TO_MEM) 1567 sdma_config_ownership(sdmac, false, true, false); 1568 1569 if (sdma_load_context(sdmac)) 1570 goto err_bd_out; 1571 1572 return desc; 1573 1574 err_bd_out: 1575 sdma_free_bd(desc); 1576 err_desc_out: 1577 kfree(desc); 1578 err_out: 1579 return NULL; 1580 } 1581 1582 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1583 struct dma_chan *chan, dma_addr_t dma_dst, 1584 dma_addr_t dma_src, size_t len, unsigned long flags) 1585 { 1586 struct sdma_channel *sdmac = to_sdma_chan(chan); 1587 struct sdma_engine *sdma = sdmac->sdma; 1588 int channel = sdmac->channel; 1589 size_t count; 1590 int i = 0, param; 1591 struct sdma_buffer_descriptor *bd; 1592 struct sdma_desc *desc; 1593 1594 if (!chan || !len) 1595 return NULL; 1596 1597 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1598 &dma_src, &dma_dst, len, channel); 1599 1600 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1601 len / SDMA_BD_MAX_CNT + 1); 1602 if (!desc) 1603 return NULL; 1604 1605 do { 1606 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1607 bd = &desc->bd[i]; 1608 bd->buffer_addr = dma_src; 1609 bd->ext_buffer_addr = dma_dst; 1610 bd->mode.count = count; 1611 desc->chn_count += count; 1612 bd->mode.command = 0; 1613 1614 dma_src += count; 1615 dma_dst += count; 1616 len -= count; 1617 i++; 1618 1619 param = BD_DONE | BD_EXTD | BD_CONT; 1620 /* last bd */ 1621 if (!len) { 1622 param |= BD_INTR; 1623 param |= BD_LAST; 1624 param &= ~BD_CONT; 1625 } 1626 1627 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1628 i, count, bd->buffer_addr, 1629 param & BD_WRAP ? "wrap" : "", 1630 param & BD_INTR ? " intr" : ""); 1631 1632 bd->mode.status = param; 1633 } while (len); 1634 1635 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1636 } 1637 1638 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1639 struct dma_chan *chan, struct scatterlist *sgl, 1640 unsigned int sg_len, enum dma_transfer_direction direction, 1641 unsigned long flags, void *context) 1642 { 1643 struct sdma_channel *sdmac = to_sdma_chan(chan); 1644 struct sdma_engine *sdma = sdmac->sdma; 1645 int i, count; 1646 int channel = sdmac->channel; 1647 struct scatterlist *sg; 1648 struct sdma_desc *desc; 1649 1650 sdma_config_write(chan, &sdmac->slave_config, direction); 1651 1652 desc = sdma_transfer_init(sdmac, direction, sg_len); 1653 if (!desc) 1654 goto err_out; 1655 1656 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1657 sg_len, channel); 1658 1659 for_each_sg(sgl, sg, sg_len, i) { 1660 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1661 int param; 1662 1663 bd->buffer_addr = sg->dma_address; 1664 1665 count = sg_dma_len(sg); 1666 1667 if (count > SDMA_BD_MAX_CNT) { 1668 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1669 channel, count, SDMA_BD_MAX_CNT); 1670 goto err_bd_out; 1671 } 1672 1673 bd->mode.count = count; 1674 desc->chn_count += count; 1675 1676 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1677 goto err_bd_out; 1678 1679 switch (sdmac->word_size) { 1680 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1681 bd->mode.command = 0; 1682 if (count & 3 || sg->dma_address & 3) 1683 goto err_bd_out; 1684 break; 1685 case DMA_SLAVE_BUSWIDTH_3_BYTES: 1686 bd->mode.command = 3; 1687 break; 1688 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1689 bd->mode.command = 2; 1690 if (count & 1 || sg->dma_address & 1) 1691 goto err_bd_out; 1692 break; 1693 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1694 bd->mode.command = 1; 1695 break; 1696 default: 1697 goto err_bd_out; 1698 } 1699 1700 param = BD_DONE | BD_EXTD | BD_CONT; 1701 1702 if (i + 1 == sg_len) { 1703 param |= BD_INTR; 1704 param |= BD_LAST; 1705 param &= ~BD_CONT; 1706 } 1707 1708 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1709 i, count, (u64)sg->dma_address, 1710 param & BD_WRAP ? "wrap" : "", 1711 param & BD_INTR ? " intr" : ""); 1712 1713 bd->mode.status = param; 1714 } 1715 1716 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1717 err_bd_out: 1718 sdma_free_bd(desc); 1719 kfree(desc); 1720 err_out: 1721 sdmac->status = DMA_ERROR; 1722 return NULL; 1723 } 1724 1725 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1726 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1727 size_t period_len, enum dma_transfer_direction direction, 1728 unsigned long flags) 1729 { 1730 struct sdma_channel *sdmac = to_sdma_chan(chan); 1731 struct sdma_engine *sdma = sdmac->sdma; 1732 int num_periods = 0; 1733 int channel = sdmac->channel; 1734 int i = 0, buf = 0; 1735 struct sdma_desc *desc; 1736 1737 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1738 1739 if (sdmac->peripheral_type != IMX_DMATYPE_HDMI) 1740 num_periods = buf_len / period_len; 1741 1742 sdma_config_write(chan, &sdmac->slave_config, direction); 1743 1744 desc = sdma_transfer_init(sdmac, direction, num_periods); 1745 if (!desc) 1746 goto err_out; 1747 1748 desc->period_len = period_len; 1749 1750 sdmac->flags |= IMX_DMA_SG_LOOP; 1751 1752 if (period_len > SDMA_BD_MAX_CNT) { 1753 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1754 channel, period_len, SDMA_BD_MAX_CNT); 1755 goto err_bd_out; 1756 } 1757 1758 if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) 1759 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1760 1761 while (buf < buf_len) { 1762 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1763 int param; 1764 1765 bd->buffer_addr = dma_addr; 1766 1767 bd->mode.count = period_len; 1768 1769 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1770 goto err_bd_out; 1771 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1772 bd->mode.command = 0; 1773 else 1774 bd->mode.command = sdmac->word_size; 1775 1776 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1777 if (i + 1 == num_periods) 1778 param |= BD_WRAP; 1779 1780 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1781 i, period_len, (u64)dma_addr, 1782 param & BD_WRAP ? "wrap" : "", 1783 param & BD_INTR ? " intr" : ""); 1784 1785 bd->mode.status = param; 1786 1787 dma_addr += period_len; 1788 buf += period_len; 1789 1790 i++; 1791 } 1792 1793 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1794 err_bd_out: 1795 sdma_free_bd(desc); 1796 kfree(desc); 1797 err_out: 1798 sdmac->status = DMA_ERROR; 1799 return NULL; 1800 } 1801 1802 static int sdma_config_write(struct dma_chan *chan, 1803 struct dma_slave_config *dmaengine_cfg, 1804 enum dma_transfer_direction direction) 1805 { 1806 struct sdma_channel *sdmac = to_sdma_chan(chan); 1807 1808 if (direction == DMA_DEV_TO_MEM) { 1809 sdmac->per_address = dmaengine_cfg->src_addr; 1810 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1811 dmaengine_cfg->src_addr_width; 1812 sdmac->word_size = dmaengine_cfg->src_addr_width; 1813 } else if (direction == DMA_DEV_TO_DEV) { 1814 sdmac->per_address2 = dmaengine_cfg->src_addr; 1815 sdmac->per_address = dmaengine_cfg->dst_addr; 1816 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1817 SDMA_WATERMARK_LEVEL_LWML; 1818 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1819 SDMA_WATERMARK_LEVEL_HWML; 1820 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1821 } else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) { 1822 sdmac->per_address = dmaengine_cfg->dst_addr; 1823 sdmac->per_address2 = dmaengine_cfg->src_addr; 1824 sdmac->watermark_level = 0; 1825 } else { 1826 sdmac->per_address = dmaengine_cfg->dst_addr; 1827 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1828 dmaengine_cfg->dst_addr_width; 1829 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1830 } 1831 sdmac->direction = direction; 1832 return sdma_config_channel(chan); 1833 } 1834 1835 static int sdma_config(struct dma_chan *chan, 1836 struct dma_slave_config *dmaengine_cfg) 1837 { 1838 struct sdma_channel *sdmac = to_sdma_chan(chan); 1839 struct sdma_engine *sdma = sdmac->sdma; 1840 1841 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); 1842 1843 if (dmaengine_cfg->peripheral_config) { 1844 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config; 1845 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) { 1846 dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n", 1847 dmaengine_cfg->peripheral_size, 1848 sizeof(struct sdma_peripheral_config)); 1849 return -EINVAL; 1850 } 1851 sdmac->n_fifos_src = sdmacfg->n_fifos_src; 1852 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst; 1853 sdmac->stride_fifos_src = sdmacfg->stride_fifos_src; 1854 sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst; 1855 sdmac->words_per_fifo = sdmacfg->words_per_fifo; 1856 sdmac->sw_done = sdmacfg->sw_done; 1857 } 1858 1859 /* Set ENBLn earlier to make sure dma request triggered after that */ 1860 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1861 return -EINVAL; 1862 sdma_event_enable(sdmac, sdmac->event_id0); 1863 1864 if (sdmac->event_id1) { 1865 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1866 return -EINVAL; 1867 sdma_event_enable(sdmac, sdmac->event_id1); 1868 } 1869 1870 return 0; 1871 } 1872 1873 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1874 dma_cookie_t cookie, 1875 struct dma_tx_state *txstate) 1876 { 1877 struct sdma_channel *sdmac = to_sdma_chan(chan); 1878 struct sdma_desc *desc = NULL; 1879 u32 residue; 1880 struct virt_dma_desc *vd; 1881 enum dma_status ret; 1882 unsigned long flags; 1883 1884 ret = dma_cookie_status(chan, cookie, txstate); 1885 if (ret == DMA_COMPLETE || !txstate) 1886 return ret; 1887 1888 spin_lock_irqsave(&sdmac->vc.lock, flags); 1889 1890 vd = vchan_find_desc(&sdmac->vc, cookie); 1891 if (vd) 1892 desc = to_sdma_desc(&vd->tx); 1893 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) 1894 desc = sdmac->desc; 1895 1896 if (desc) { 1897 if (sdmac->flags & IMX_DMA_SG_LOOP) 1898 residue = (desc->num_bd - desc->buf_ptail) * 1899 desc->period_len - desc->chn_real_count; 1900 else 1901 residue = desc->chn_count - desc->chn_real_count; 1902 } else { 1903 residue = 0; 1904 } 1905 1906 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1907 1908 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1909 residue); 1910 1911 return sdmac->status; 1912 } 1913 1914 static void sdma_issue_pending(struct dma_chan *chan) 1915 { 1916 struct sdma_channel *sdmac = to_sdma_chan(chan); 1917 unsigned long flags; 1918 1919 spin_lock_irqsave(&sdmac->vc.lock, flags); 1920 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1921 sdma_start_desc(sdmac); 1922 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1923 } 1924 1925 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 \ 1926 (offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32)) 1927 1928 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \ 1929 (offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32)) 1930 1931 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \ 1932 (offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32)) 1933 1934 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \ 1935 (offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32)) 1936 1937 static void sdma_add_scripts(struct sdma_engine *sdma, 1938 const struct sdma_script_start_addrs *addr) 1939 { 1940 s32 *addr_arr = (u32 *)addr; 1941 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1942 int i; 1943 1944 /* use the default firmware in ROM if missing external firmware */ 1945 if (!sdma->script_number) 1946 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1947 1948 if (sdma->script_number > sizeof(struct sdma_script_start_addrs) 1949 / sizeof(s32)) { 1950 dev_err(sdma->dev, 1951 "SDMA script number %d not match with firmware.\n", 1952 sdma->script_number); 1953 return; 1954 } 1955 1956 for (i = 0; i < sdma->script_number; i++) 1957 if (addr_arr[i] > 0) 1958 saddr_arr[i] = addr_arr[i]; 1959 1960 /* 1961 * For compatibility with NXP internal legacy kernel before 4.19 which 1962 * is based on uart ram script and mainline kernel based on uart rom 1963 * script, both uart ram/rom scripts are present in newer sdma 1964 * firmware. Use the rom versions if they are present (V3 or newer). 1965 */ 1966 if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) { 1967 if (addr->uart_2_mcu_rom_addr) 1968 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr; 1969 if (addr->uartsh_2_mcu_rom_addr) 1970 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr; 1971 } 1972 } 1973 1974 static void sdma_load_firmware(const struct firmware *fw, void *context) 1975 { 1976 struct sdma_engine *sdma = context; 1977 const struct sdma_firmware_header *header; 1978 const struct sdma_script_start_addrs *addr; 1979 unsigned short *ram_code; 1980 1981 if (!fw) { 1982 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1983 /* In this case we just use the ROM firmware. */ 1984 return; 1985 } 1986 1987 if (fw->size < sizeof(*header)) 1988 goto err_firmware; 1989 1990 header = (struct sdma_firmware_header *)fw->data; 1991 1992 if (header->magic != SDMA_FIRMWARE_MAGIC) 1993 goto err_firmware; 1994 if (header->ram_code_start + header->ram_code_size > fw->size) 1995 goto err_firmware; 1996 switch (header->version_major) { 1997 case 1: 1998 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1999 break; 2000 case 2: 2001 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 2002 break; 2003 case 3: 2004 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 2005 break; 2006 case 4: 2007 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 2008 break; 2009 default: 2010 dev_err(sdma->dev, "unknown firmware version\n"); 2011 goto err_firmware; 2012 } 2013 2014 addr = (void *)header + header->script_addrs_start; 2015 ram_code = (void *)header + header->ram_code_start; 2016 2017 clk_enable(sdma->clk_ipg); 2018 clk_enable(sdma->clk_ahb); 2019 /* download the RAM image for SDMA */ 2020 sdma_load_script(sdma, ram_code, 2021 header->ram_code_size, 2022 addr->ram_code_start_addr); 2023 clk_disable(sdma->clk_ipg); 2024 clk_disable(sdma->clk_ahb); 2025 2026 sdma_add_scripts(sdma, addr); 2027 2028 sdma->fw_loaded = true; 2029 2030 dev_info(sdma->dev, "loaded firmware %d.%d\n", 2031 header->version_major, 2032 header->version_minor); 2033 2034 err_firmware: 2035 release_firmware(fw); 2036 } 2037 2038 #define EVENT_REMAP_CELLS 3 2039 2040 static int sdma_event_remap(struct sdma_engine *sdma) 2041 { 2042 struct device_node *np = sdma->dev->of_node; 2043 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 2044 struct property *event_remap; 2045 struct regmap *gpr; 2046 char propname[] = "fsl,sdma-event-remap"; 2047 u32 reg, val, shift, num_map, i; 2048 int ret = 0; 2049 2050 if (IS_ERR(np) || !gpr_np) 2051 goto out; 2052 2053 event_remap = of_find_property(np, propname, NULL); 2054 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 2055 if (!num_map) { 2056 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 2057 goto out; 2058 } else if (num_map % EVENT_REMAP_CELLS) { 2059 dev_err(sdma->dev, "the property %s must modulo %d\n", 2060 propname, EVENT_REMAP_CELLS); 2061 ret = -EINVAL; 2062 goto out; 2063 } 2064 2065 gpr = syscon_node_to_regmap(gpr_np); 2066 if (IS_ERR(gpr)) { 2067 dev_err(sdma->dev, "failed to get gpr regmap\n"); 2068 ret = PTR_ERR(gpr); 2069 goto out; 2070 } 2071 2072 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 2073 ret = of_property_read_u32_index(np, propname, i, ®); 2074 if (ret) { 2075 dev_err(sdma->dev, "failed to read property %s index %d\n", 2076 propname, i); 2077 goto out; 2078 } 2079 2080 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 2081 if (ret) { 2082 dev_err(sdma->dev, "failed to read property %s index %d\n", 2083 propname, i + 1); 2084 goto out; 2085 } 2086 2087 ret = of_property_read_u32_index(np, propname, i + 2, &val); 2088 if (ret) { 2089 dev_err(sdma->dev, "failed to read property %s index %d\n", 2090 propname, i + 2); 2091 goto out; 2092 } 2093 2094 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 2095 } 2096 2097 out: 2098 if (gpr_np) 2099 of_node_put(gpr_np); 2100 2101 return ret; 2102 } 2103 2104 static int sdma_get_firmware(struct sdma_engine *sdma, 2105 const char *fw_name) 2106 { 2107 int ret; 2108 2109 ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev, 2110 GFP_KERNEL, sdma, sdma_load_firmware); 2111 2112 return ret; 2113 } 2114 2115 static int sdma_init(struct sdma_engine *sdma) 2116 { 2117 int i, ret; 2118 dma_addr_t ccb_phys; 2119 int ccbsize; 2120 2121 ret = clk_enable(sdma->clk_ipg); 2122 if (ret) 2123 return ret; 2124 ret = clk_enable(sdma->clk_ahb); 2125 if (ret) 2126 goto disable_clk_ipg; 2127 2128 if (sdma->drvdata->check_ratio && 2129 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))) 2130 sdma->clk_ratio = 1; 2131 2132 /* Be sure SDMA has not started yet */ 2133 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 2134 2135 ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control) 2136 + sizeof(struct sdma_context_data)); 2137 2138 if (sdma->iram_pool) 2139 sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys); 2140 else 2141 sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys, 2142 GFP_KERNEL); 2143 2144 if (!sdma->channel_control) { 2145 ret = -ENOMEM; 2146 goto err_dma_alloc; 2147 } 2148 2149 sdma->context = (void *)sdma->channel_control + 2150 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2151 sdma->context_phys = ccb_phys + 2152 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2153 2154 /* disable all channels */ 2155 for (i = 0; i < sdma->drvdata->num_events; i++) 2156 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 2157 2158 /* All channels have priority 0 */ 2159 for (i = 0; i < MAX_DMA_CHANNELS; i++) 2160 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 2161 2162 ret = sdma_request_channel0(sdma); 2163 if (ret) 2164 goto err_dma_alloc; 2165 2166 sdma_config_ownership(&sdma->channel[0], false, true, false); 2167 2168 /* Set Command Channel (Channel Zero) */ 2169 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 2170 2171 /* Set bits of CONFIG register but with static context switching */ 2172 if (sdma->clk_ratio) 2173 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG); 2174 else 2175 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 2176 2177 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 2178 2179 /* Initializes channel's priorities */ 2180 sdma_set_channel_priority(&sdma->channel[0], 7); 2181 2182 clk_disable(sdma->clk_ipg); 2183 clk_disable(sdma->clk_ahb); 2184 2185 return 0; 2186 2187 err_dma_alloc: 2188 clk_disable(sdma->clk_ahb); 2189 disable_clk_ipg: 2190 clk_disable(sdma->clk_ipg); 2191 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 2192 return ret; 2193 } 2194 2195 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 2196 { 2197 struct sdma_channel *sdmac = to_sdma_chan(chan); 2198 struct imx_dma_data *data = fn_param; 2199 2200 if (!imx_dma_is_general_purpose(chan)) 2201 return false; 2202 2203 sdmac->data = *data; 2204 chan->private = &sdmac->data; 2205 2206 return true; 2207 } 2208 2209 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 2210 struct of_dma *ofdma) 2211 { 2212 struct sdma_engine *sdma = ofdma->of_dma_data; 2213 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 2214 struct imx_dma_data data; 2215 2216 if (dma_spec->args_count != 3) 2217 return NULL; 2218 2219 data.dma_request = dma_spec->args[0]; 2220 data.peripheral_type = dma_spec->args[1]; 2221 data.priority = dma_spec->args[2]; 2222 /* 2223 * init dma_request2 to zero, which is not used by the dts. 2224 * For P2P, dma_request2 is init from dma_request_channel(), 2225 * chan->private will point to the imx_dma_data, and in 2226 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 2227 * be set to sdmac->event_id1. 2228 */ 2229 data.dma_request2 = 0; 2230 2231 return __dma_request_channel(&mask, sdma_filter_fn, &data, 2232 ofdma->of_node); 2233 } 2234 2235 static int sdma_probe(struct platform_device *pdev) 2236 { 2237 struct device_node *np = pdev->dev.of_node; 2238 struct device_node *spba_bus; 2239 const char *fw_name; 2240 int ret; 2241 int irq; 2242 struct resource spba_res; 2243 int i; 2244 struct sdma_engine *sdma; 2245 s32 *saddr_arr; 2246 2247 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2248 if (ret) 2249 return ret; 2250 2251 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 2252 if (!sdma) 2253 return -ENOMEM; 2254 2255 spin_lock_init(&sdma->channel_0_lock); 2256 2257 sdma->dev = &pdev->dev; 2258 sdma->drvdata = of_device_get_match_data(sdma->dev); 2259 2260 irq = platform_get_irq(pdev, 0); 2261 if (irq < 0) 2262 return irq; 2263 2264 sdma->regs = devm_platform_ioremap_resource(pdev, 0); 2265 if (IS_ERR(sdma->regs)) 2266 return PTR_ERR(sdma->regs); 2267 2268 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2269 if (IS_ERR(sdma->clk_ipg)) 2270 return PTR_ERR(sdma->clk_ipg); 2271 2272 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 2273 if (IS_ERR(sdma->clk_ahb)) 2274 return PTR_ERR(sdma->clk_ahb); 2275 2276 ret = clk_prepare(sdma->clk_ipg); 2277 if (ret) 2278 return ret; 2279 2280 ret = clk_prepare(sdma->clk_ahb); 2281 if (ret) 2282 goto err_clk; 2283 2284 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, 2285 dev_name(&pdev->dev), sdma); 2286 if (ret) 2287 goto err_irq; 2288 2289 sdma->irq = irq; 2290 2291 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 2292 if (!sdma->script_addrs) { 2293 ret = -ENOMEM; 2294 goto err_irq; 2295 } 2296 2297 /* initially no scripts available */ 2298 saddr_arr = (s32 *)sdma->script_addrs; 2299 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++) 2300 saddr_arr[i] = -EINVAL; 2301 2302 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2303 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2304 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2305 dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask); 2306 2307 INIT_LIST_HEAD(&sdma->dma_device.channels); 2308 /* Initialize channel parameters */ 2309 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2310 struct sdma_channel *sdmac = &sdma->channel[i]; 2311 2312 sdmac->sdma = sdma; 2313 2314 sdmac->channel = i; 2315 sdmac->vc.desc_free = sdma_desc_free; 2316 INIT_LIST_HEAD(&sdmac->terminated); 2317 INIT_WORK(&sdmac->terminate_worker, 2318 sdma_channel_terminate_work); 2319 /* 2320 * Add the channel to the DMAC list. Do not add channel 0 though 2321 * because we need it internally in the SDMA driver. This also means 2322 * that channel 0 in dmaengine counting matches sdma channel 1. 2323 */ 2324 if (i) 2325 vchan_init(&sdmac->vc, &sdma->dma_device); 2326 } 2327 2328 if (np) { 2329 sdma->iram_pool = of_gen_pool_get(np, "iram", 0); 2330 if (sdma->iram_pool) 2331 dev_info(&pdev->dev, "alloc bd from iram.\n"); 2332 } 2333 2334 ret = sdma_init(sdma); 2335 if (ret) 2336 goto err_init; 2337 2338 ret = sdma_event_remap(sdma); 2339 if (ret) 2340 goto err_init; 2341 2342 if (sdma->drvdata->script_addrs) 2343 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2344 2345 sdma->dma_device.dev = &pdev->dev; 2346 2347 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2348 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2349 sdma->dma_device.device_tx_status = sdma_tx_status; 2350 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2351 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2352 sdma->dma_device.device_config = sdma_config; 2353 sdma->dma_device.device_terminate_all = sdma_terminate_all; 2354 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2355 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2356 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2357 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2358 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2359 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2360 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2361 sdma->dma_device.copy_align = 2; 2362 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2363 2364 platform_set_drvdata(pdev, sdma); 2365 2366 ret = dma_async_device_register(&sdma->dma_device); 2367 if (ret) { 2368 dev_err(&pdev->dev, "unable to register\n"); 2369 goto err_init; 2370 } 2371 2372 if (np) { 2373 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2374 if (ret) { 2375 dev_err(&pdev->dev, "failed to register controller\n"); 2376 goto err_register; 2377 } 2378 2379 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2380 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2381 if (!ret) { 2382 sdma->spba_start_addr = spba_res.start; 2383 sdma->spba_end_addr = spba_res.end; 2384 } 2385 of_node_put(spba_bus); 2386 } 2387 2388 /* 2389 * Because that device tree does not encode ROM script address, 2390 * the RAM script in firmware is mandatory for device tree 2391 * probe, otherwise it fails. 2392 */ 2393 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2394 &fw_name); 2395 if (ret) { 2396 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2397 } else { 2398 ret = sdma_get_firmware(sdma, fw_name); 2399 if (ret) 2400 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2401 } 2402 2403 return 0; 2404 2405 err_register: 2406 dma_async_device_unregister(&sdma->dma_device); 2407 err_init: 2408 kfree(sdma->script_addrs); 2409 err_irq: 2410 clk_unprepare(sdma->clk_ahb); 2411 err_clk: 2412 clk_unprepare(sdma->clk_ipg); 2413 return ret; 2414 } 2415 2416 static void sdma_remove(struct platform_device *pdev) 2417 { 2418 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2419 int i; 2420 2421 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2422 dma_async_device_unregister(&sdma->dma_device); 2423 kfree(sdma->script_addrs); 2424 clk_unprepare(sdma->clk_ahb); 2425 clk_unprepare(sdma->clk_ipg); 2426 /* Kill the tasklet */ 2427 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2428 struct sdma_channel *sdmac = &sdma->channel[i]; 2429 2430 tasklet_kill(&sdmac->vc.task); 2431 sdma_free_chan_resources(&sdmac->vc.chan); 2432 } 2433 2434 platform_set_drvdata(pdev, NULL); 2435 } 2436 2437 static struct platform_driver sdma_driver = { 2438 .driver = { 2439 .name = "imx-sdma", 2440 .of_match_table = sdma_dt_ids, 2441 }, 2442 .remove = sdma_remove, 2443 .probe = sdma_probe, 2444 }; 2445 2446 module_platform_driver(sdma_driver); 2447 2448 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2449 MODULE_DESCRIPTION("i.MX SDMA driver"); 2450 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2451 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2452 #endif 2453 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M) 2454 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2455 #endif 2456 MODULE_LICENSE("GPL"); 2457