xref: /linux/drivers/dma/imx-sdma.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/clk.h>
26 #include <linux/wait.h>
27 #include <linux/sched.h>
28 #include <linux/semaphore.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/firmware.h>
33 #include <linux/slab.h>
34 #include <linux/platform_device.h>
35 #include <linux/dmaengine.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/module.h>
39 
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44 
45 /* SDMA registers */
46 #define SDMA_H_C0PTR		0x000
47 #define SDMA_H_INTR		0x004
48 #define SDMA_H_STATSTOP		0x008
49 #define SDMA_H_START		0x00c
50 #define SDMA_H_EVTOVR		0x010
51 #define SDMA_H_DSPOVR		0x014
52 #define SDMA_H_HOSTOVR		0x018
53 #define SDMA_H_EVTPEND		0x01c
54 #define SDMA_H_DSPENBL		0x020
55 #define SDMA_H_RESET		0x024
56 #define SDMA_H_EVTERR		0x028
57 #define SDMA_H_INTRMSK		0x02c
58 #define SDMA_H_PSW		0x030
59 #define SDMA_H_EVTERRDBG	0x034
60 #define SDMA_H_CONFIG		0x038
61 #define SDMA_ONCE_ENB		0x040
62 #define SDMA_ONCE_DATA		0x044
63 #define SDMA_ONCE_INSTR		0x048
64 #define SDMA_ONCE_STAT		0x04c
65 #define SDMA_ONCE_CMD		0x050
66 #define SDMA_EVT_MIRROR		0x054
67 #define SDMA_ILLINSTADDR	0x058
68 #define SDMA_CHN0ADDR		0x05c
69 #define SDMA_ONCE_RTB		0x060
70 #define SDMA_XTRIG_CONF1	0x070
71 #define SDMA_XTRIG_CONF2	0x074
72 #define SDMA_CHNENBL0_IMX35	0x200
73 #define SDMA_CHNENBL0_IMX31	0x080
74 #define SDMA_CHNPRI_0		0x100
75 
76 /*
77  * Buffer descriptor status values.
78  */
79 #define BD_DONE  0x01
80 #define BD_WRAP  0x02
81 #define BD_CONT  0x04
82 #define BD_INTR  0x08
83 #define BD_RROR  0x10
84 #define BD_LAST  0x20
85 #define BD_EXTD  0x80
86 
87 /*
88  * Data Node descriptor status values.
89  */
90 #define DND_END_OF_FRAME  0x80
91 #define DND_END_OF_XFER   0x40
92 #define DND_DONE          0x20
93 #define DND_UNUSED        0x01
94 
95 /*
96  * IPCV2 descriptor status values.
97  */
98 #define BD_IPCV2_END_OF_FRAME  0x40
99 
100 #define IPCV2_MAX_NODES        50
101 /*
102  * Error bit set in the CCB status field by the SDMA,
103  * in setbd routine, in case of a transfer error
104  */
105 #define DATA_ERROR  0x10000000
106 
107 /*
108  * Buffer descriptor commands.
109  */
110 #define C0_ADDR             0x01
111 #define C0_LOAD             0x02
112 #define C0_DUMP             0x03
113 #define C0_SETCTX           0x07
114 #define C0_GETCTX           0x03
115 #define C0_SETDM            0x01
116 #define C0_SETPM            0x04
117 #define C0_GETDM            0x02
118 #define C0_GETPM            0x08
119 /*
120  * Change endianness indicator in the BD command field
121  */
122 #define CHANGE_ENDIANNESS   0x80
123 
124 /*
125  * Mode/Count of data node descriptors - IPCv2
126  */
127 struct sdma_mode_count {
128 	u32 count   : 16; /* size of the buffer pointed by this BD */
129 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
130 	u32 command :  8; /* command mostlky used for channel 0 */
131 };
132 
133 /*
134  * Buffer descriptor
135  */
136 struct sdma_buffer_descriptor {
137 	struct sdma_mode_count  mode;
138 	u32 buffer_addr;	/* address of the buffer described */
139 	u32 ext_buffer_addr;	/* extended buffer address */
140 } __attribute__ ((packed));
141 
142 /**
143  * struct sdma_channel_control - Channel control Block
144  *
145  * @current_bd_ptr	current buffer descriptor processed
146  * @base_bd_ptr		first element of buffer descriptor array
147  * @unused		padding. The SDMA engine expects an array of 128 byte
148  *			control blocks
149  */
150 struct sdma_channel_control {
151 	u32 current_bd_ptr;
152 	u32 base_bd_ptr;
153 	u32 unused[2];
154 } __attribute__ ((packed));
155 
156 /**
157  * struct sdma_state_registers - SDMA context for a channel
158  *
159  * @pc:		program counter
160  * @t:		test bit: status of arithmetic & test instruction
161  * @rpc:	return program counter
162  * @sf:		source fault while loading data
163  * @spc:	loop start program counter
164  * @df:		destination fault while storing data
165  * @epc:	loop end program counter
166  * @lm:		loop mode
167  */
168 struct sdma_state_registers {
169 	u32 pc     :14;
170 	u32 unused1: 1;
171 	u32 t      : 1;
172 	u32 rpc    :14;
173 	u32 unused0: 1;
174 	u32 sf     : 1;
175 	u32 spc    :14;
176 	u32 unused2: 1;
177 	u32 df     : 1;
178 	u32 epc    :14;
179 	u32 lm     : 2;
180 } __attribute__ ((packed));
181 
182 /**
183  * struct sdma_context_data - sdma context specific to a channel
184  *
185  * @channel_state:	channel state bits
186  * @gReg:		general registers
187  * @mda:		burst dma destination address register
188  * @msa:		burst dma source address register
189  * @ms:			burst dma status register
190  * @md:			burst dma data register
191  * @pda:		peripheral dma destination address register
192  * @psa:		peripheral dma source address register
193  * @ps:			peripheral dma status register
194  * @pd:			peripheral dma data register
195  * @ca:			CRC polynomial register
196  * @cs:			CRC accumulator register
197  * @dda:		dedicated core destination address register
198  * @dsa:		dedicated core source address register
199  * @ds:			dedicated core status register
200  * @dd:			dedicated core data register
201  */
202 struct sdma_context_data {
203 	struct sdma_state_registers  channel_state;
204 	u32  gReg[8];
205 	u32  mda;
206 	u32  msa;
207 	u32  ms;
208 	u32  md;
209 	u32  pda;
210 	u32  psa;
211 	u32  ps;
212 	u32  pd;
213 	u32  ca;
214 	u32  cs;
215 	u32  dda;
216 	u32  dsa;
217 	u32  ds;
218 	u32  dd;
219 	u32  scratch0;
220 	u32  scratch1;
221 	u32  scratch2;
222 	u32  scratch3;
223 	u32  scratch4;
224 	u32  scratch5;
225 	u32  scratch6;
226 	u32  scratch7;
227 } __attribute__ ((packed));
228 
229 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
230 
231 struct sdma_engine;
232 
233 /**
234  * struct sdma_channel - housekeeping for a SDMA channel
235  *
236  * @sdma		pointer to the SDMA engine for this channel
237  * @channel		the channel number, matches dmaengine chan_id + 1
238  * @direction		transfer type. Needed for setting SDMA script
239  * @peripheral_type	Peripheral type. Needed for setting SDMA script
240  * @event_id0		aka dma request line
241  * @event_id1		for channels that use 2 events
242  * @word_size		peripheral access size
243  * @buf_tail		ID of the buffer that was processed
244  * @done		channel completion
245  * @num_bd		max NUM_BD. number of descriptors currently handling
246  */
247 struct sdma_channel {
248 	struct sdma_engine		*sdma;
249 	unsigned int			channel;
250 	enum dma_data_direction		direction;
251 	enum sdma_peripheral_type	peripheral_type;
252 	unsigned int			event_id0;
253 	unsigned int			event_id1;
254 	enum dma_slave_buswidth		word_size;
255 	unsigned int			buf_tail;
256 	struct completion		done;
257 	unsigned int			num_bd;
258 	struct sdma_buffer_descriptor	*bd;
259 	dma_addr_t			bd_phys;
260 	unsigned int			pc_from_device, pc_to_device;
261 	unsigned long			flags;
262 	dma_addr_t			per_address;
263 	u32				event_mask0, event_mask1;
264 	u32				watermark_level;
265 	u32				shp_addr, per_addr;
266 	struct dma_chan			chan;
267 	spinlock_t			lock;
268 	struct dma_async_tx_descriptor	desc;
269 	dma_cookie_t			last_completed;
270 	enum dma_status			status;
271 };
272 
273 #define IMX_DMA_SG_LOOP		(1 << 0)
274 
275 #define MAX_DMA_CHANNELS 32
276 #define MXC_SDMA_DEFAULT_PRIORITY 1
277 #define MXC_SDMA_MIN_PRIORITY 1
278 #define MXC_SDMA_MAX_PRIORITY 7
279 
280 #define SDMA_FIRMWARE_MAGIC 0x414d4453
281 
282 /**
283  * struct sdma_firmware_header - Layout of the firmware image
284  *
285  * @magic		"SDMA"
286  * @version_major	increased whenever layout of struct sdma_script_start_addrs
287  *			changes.
288  * @version_minor	firmware minor version (for binary compatible changes)
289  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
290  * @num_script_addrs	Number of script addresses in this image
291  * @ram_code_start	offset of SDMA ram image in this firmware image
292  * @ram_code_size	size of SDMA ram image
293  * @script_addrs	Stores the start address of the SDMA scripts
294  *			(in SDMA memory space)
295  */
296 struct sdma_firmware_header {
297 	u32	magic;
298 	u32	version_major;
299 	u32	version_minor;
300 	u32	script_addrs_start;
301 	u32	num_script_addrs;
302 	u32	ram_code_start;
303 	u32	ram_code_size;
304 };
305 
306 enum sdma_devtype {
307 	IMX31_SDMA,	/* runs on i.mx31 */
308 	IMX35_SDMA,	/* runs on i.mx35 and later */
309 };
310 
311 struct sdma_engine {
312 	struct device			*dev;
313 	struct device_dma_parameters	dma_parms;
314 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
315 	struct sdma_channel_control	*channel_control;
316 	void __iomem			*regs;
317 	enum sdma_devtype		devtype;
318 	unsigned int			num_events;
319 	struct sdma_context_data	*context;
320 	dma_addr_t			context_phys;
321 	struct dma_device		dma_device;
322 	struct clk			*clk;
323 	struct mutex			channel_0_lock;
324 	struct sdma_script_start_addrs	*script_addrs;
325 };
326 
327 static struct platform_device_id sdma_devtypes[] = {
328 	{
329 		.name = "imx31-sdma",
330 		.driver_data = IMX31_SDMA,
331 	}, {
332 		.name = "imx35-sdma",
333 		.driver_data = IMX35_SDMA,
334 	}, {
335 		/* sentinel */
336 	}
337 };
338 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
339 
340 static const struct of_device_id sdma_dt_ids[] = {
341 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
342 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
343 	{ /* sentinel */ }
344 };
345 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
346 
347 #define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
348 #define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
349 #define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
350 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
351 
352 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
353 {
354 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
355 						      SDMA_CHNENBL0_IMX35);
356 	return chnenbl0 + event * 4;
357 }
358 
359 static int sdma_config_ownership(struct sdma_channel *sdmac,
360 		bool event_override, bool mcu_override, bool dsp_override)
361 {
362 	struct sdma_engine *sdma = sdmac->sdma;
363 	int channel = sdmac->channel;
364 	u32 evt, mcu, dsp;
365 
366 	if (event_override && mcu_override && dsp_override)
367 		return -EINVAL;
368 
369 	evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
370 	mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
371 	dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
372 
373 	if (dsp_override)
374 		dsp &= ~(1 << channel);
375 	else
376 		dsp |= (1 << channel);
377 
378 	if (event_override)
379 		evt &= ~(1 << channel);
380 	else
381 		evt |= (1 << channel);
382 
383 	if (mcu_override)
384 		mcu &= ~(1 << channel);
385 	else
386 		mcu |= (1 << channel);
387 
388 	__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
389 	__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
390 	__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
391 
392 	return 0;
393 }
394 
395 /*
396  * sdma_run_channel - run a channel and wait till it's done
397  */
398 static int sdma_run_channel(struct sdma_channel *sdmac)
399 {
400 	struct sdma_engine *sdma = sdmac->sdma;
401 	int channel = sdmac->channel;
402 	int ret;
403 
404 	init_completion(&sdmac->done);
405 
406 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
407 
408 	ret = wait_for_completion_timeout(&sdmac->done, HZ);
409 
410 	return ret ? 0 : -ETIMEDOUT;
411 }
412 
413 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
414 		u32 address)
415 {
416 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
417 	void *buf_virt;
418 	dma_addr_t buf_phys;
419 	int ret;
420 
421 	mutex_lock(&sdma->channel_0_lock);
422 
423 	buf_virt = dma_alloc_coherent(NULL,
424 			size,
425 			&buf_phys, GFP_KERNEL);
426 	if (!buf_virt) {
427 		ret = -ENOMEM;
428 		goto err_out;
429 	}
430 
431 	bd0->mode.command = C0_SETPM;
432 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
433 	bd0->mode.count = size / 2;
434 	bd0->buffer_addr = buf_phys;
435 	bd0->ext_buffer_addr = address;
436 
437 	memcpy(buf_virt, buf, size);
438 
439 	ret = sdma_run_channel(&sdma->channel[0]);
440 
441 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
442 
443 err_out:
444 	mutex_unlock(&sdma->channel_0_lock);
445 
446 	return ret;
447 }
448 
449 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
450 {
451 	struct sdma_engine *sdma = sdmac->sdma;
452 	int channel = sdmac->channel;
453 	u32 val;
454 	u32 chnenbl = chnenbl_ofs(sdma, event);
455 
456 	val = __raw_readl(sdma->regs + chnenbl);
457 	val |= (1 << channel);
458 	__raw_writel(val, sdma->regs + chnenbl);
459 }
460 
461 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
462 {
463 	struct sdma_engine *sdma = sdmac->sdma;
464 	int channel = sdmac->channel;
465 	u32 chnenbl = chnenbl_ofs(sdma, event);
466 	u32 val;
467 
468 	val = __raw_readl(sdma->regs + chnenbl);
469 	val &= ~(1 << channel);
470 	__raw_writel(val, sdma->regs + chnenbl);
471 }
472 
473 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
474 {
475 	struct sdma_buffer_descriptor *bd;
476 
477 	/*
478 	 * loop mode. Iterate over descriptors, re-setup them and
479 	 * call callback function.
480 	 */
481 	while (1) {
482 		bd = &sdmac->bd[sdmac->buf_tail];
483 
484 		if (bd->mode.status & BD_DONE)
485 			break;
486 
487 		if (bd->mode.status & BD_RROR)
488 			sdmac->status = DMA_ERROR;
489 		else
490 			sdmac->status = DMA_IN_PROGRESS;
491 
492 		bd->mode.status |= BD_DONE;
493 		sdmac->buf_tail++;
494 		sdmac->buf_tail %= sdmac->num_bd;
495 
496 		if (sdmac->desc.callback)
497 			sdmac->desc.callback(sdmac->desc.callback_param);
498 	}
499 }
500 
501 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
502 {
503 	struct sdma_buffer_descriptor *bd;
504 	int i, error = 0;
505 
506 	/*
507 	 * non loop mode. Iterate over all descriptors, collect
508 	 * errors and call callback function
509 	 */
510 	for (i = 0; i < sdmac->num_bd; i++) {
511 		bd = &sdmac->bd[i];
512 
513 		 if (bd->mode.status & (BD_DONE | BD_RROR))
514 			error = -EIO;
515 	}
516 
517 	if (error)
518 		sdmac->status = DMA_ERROR;
519 	else
520 		sdmac->status = DMA_SUCCESS;
521 
522 	if (sdmac->desc.callback)
523 		sdmac->desc.callback(sdmac->desc.callback_param);
524 	sdmac->last_completed = sdmac->desc.cookie;
525 }
526 
527 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
528 {
529 	complete(&sdmac->done);
530 
531 	/* not interested in channel 0 interrupts */
532 	if (sdmac->channel == 0)
533 		return;
534 
535 	if (sdmac->flags & IMX_DMA_SG_LOOP)
536 		sdma_handle_channel_loop(sdmac);
537 	else
538 		mxc_sdma_handle_channel_normal(sdmac);
539 }
540 
541 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
542 {
543 	struct sdma_engine *sdma = dev_id;
544 	u32 stat;
545 
546 	stat = __raw_readl(sdma->regs + SDMA_H_INTR);
547 	__raw_writel(stat, sdma->regs + SDMA_H_INTR);
548 
549 	while (stat) {
550 		int channel = fls(stat) - 1;
551 		struct sdma_channel *sdmac = &sdma->channel[channel];
552 
553 		mxc_sdma_handle_channel(sdmac);
554 
555 		stat &= ~(1 << channel);
556 	}
557 
558 	return IRQ_HANDLED;
559 }
560 
561 /*
562  * sets the pc of SDMA script according to the peripheral type
563  */
564 static void sdma_get_pc(struct sdma_channel *sdmac,
565 		enum sdma_peripheral_type peripheral_type)
566 {
567 	struct sdma_engine *sdma = sdmac->sdma;
568 	int per_2_emi = 0, emi_2_per = 0;
569 	/*
570 	 * These are needed once we start to support transfers between
571 	 * two peripherals or memory-to-memory transfers
572 	 */
573 	int per_2_per = 0, emi_2_emi = 0;
574 
575 	sdmac->pc_from_device = 0;
576 	sdmac->pc_to_device = 0;
577 
578 	switch (peripheral_type) {
579 	case IMX_DMATYPE_MEMORY:
580 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
581 		break;
582 	case IMX_DMATYPE_DSP:
583 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
584 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
585 		break;
586 	case IMX_DMATYPE_FIRI:
587 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
588 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
589 		break;
590 	case IMX_DMATYPE_UART:
591 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
592 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
593 		break;
594 	case IMX_DMATYPE_UART_SP:
595 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
596 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
597 		break;
598 	case IMX_DMATYPE_ATA:
599 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
600 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
601 		break;
602 	case IMX_DMATYPE_CSPI:
603 	case IMX_DMATYPE_EXT:
604 	case IMX_DMATYPE_SSI:
605 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
606 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
607 		break;
608 	case IMX_DMATYPE_SSI_SP:
609 	case IMX_DMATYPE_MMC:
610 	case IMX_DMATYPE_SDHC:
611 	case IMX_DMATYPE_CSPI_SP:
612 	case IMX_DMATYPE_ESAI:
613 	case IMX_DMATYPE_MSHC_SP:
614 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
615 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
616 		break;
617 	case IMX_DMATYPE_ASRC:
618 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
619 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
620 		per_2_per = sdma->script_addrs->per_2_per_addr;
621 		break;
622 	case IMX_DMATYPE_MSHC:
623 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
624 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
625 		break;
626 	case IMX_DMATYPE_CCM:
627 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
628 		break;
629 	case IMX_DMATYPE_SPDIF:
630 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
631 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
632 		break;
633 	case IMX_DMATYPE_IPU_MEMORY:
634 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
635 		break;
636 	default:
637 		break;
638 	}
639 
640 	sdmac->pc_from_device = per_2_emi;
641 	sdmac->pc_to_device = emi_2_per;
642 }
643 
644 static int sdma_load_context(struct sdma_channel *sdmac)
645 {
646 	struct sdma_engine *sdma = sdmac->sdma;
647 	int channel = sdmac->channel;
648 	int load_address;
649 	struct sdma_context_data *context = sdma->context;
650 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
651 	int ret;
652 
653 	if (sdmac->direction == DMA_FROM_DEVICE) {
654 		load_address = sdmac->pc_from_device;
655 	} else {
656 		load_address = sdmac->pc_to_device;
657 	}
658 
659 	if (load_address < 0)
660 		return load_address;
661 
662 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
663 	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
664 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
665 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
666 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
667 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
668 
669 	mutex_lock(&sdma->channel_0_lock);
670 
671 	memset(context, 0, sizeof(*context));
672 	context->channel_state.pc = load_address;
673 
674 	/* Send by context the event mask,base address for peripheral
675 	 * and watermark level
676 	 */
677 	context->gReg[0] = sdmac->event_mask1;
678 	context->gReg[1] = sdmac->event_mask0;
679 	context->gReg[2] = sdmac->per_addr;
680 	context->gReg[6] = sdmac->shp_addr;
681 	context->gReg[7] = sdmac->watermark_level;
682 
683 	bd0->mode.command = C0_SETDM;
684 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
685 	bd0->mode.count = sizeof(*context) / 4;
686 	bd0->buffer_addr = sdma->context_phys;
687 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
688 
689 	ret = sdma_run_channel(&sdma->channel[0]);
690 
691 	mutex_unlock(&sdma->channel_0_lock);
692 
693 	return ret;
694 }
695 
696 static void sdma_disable_channel(struct sdma_channel *sdmac)
697 {
698 	struct sdma_engine *sdma = sdmac->sdma;
699 	int channel = sdmac->channel;
700 
701 	__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
702 	sdmac->status = DMA_ERROR;
703 }
704 
705 static int sdma_config_channel(struct sdma_channel *sdmac)
706 {
707 	int ret;
708 
709 	sdma_disable_channel(sdmac);
710 
711 	sdmac->event_mask0 = 0;
712 	sdmac->event_mask1 = 0;
713 	sdmac->shp_addr = 0;
714 	sdmac->per_addr = 0;
715 
716 	if (sdmac->event_id0) {
717 		if (sdmac->event_id0 > 32)
718 			return -EINVAL;
719 		sdma_event_enable(sdmac, sdmac->event_id0);
720 	}
721 
722 	switch (sdmac->peripheral_type) {
723 	case IMX_DMATYPE_DSP:
724 		sdma_config_ownership(sdmac, false, true, true);
725 		break;
726 	case IMX_DMATYPE_MEMORY:
727 		sdma_config_ownership(sdmac, false, true, false);
728 		break;
729 	default:
730 		sdma_config_ownership(sdmac, true, true, false);
731 		break;
732 	}
733 
734 	sdma_get_pc(sdmac, sdmac->peripheral_type);
735 
736 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
737 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
738 		/* Handle multiple event channels differently */
739 		if (sdmac->event_id1) {
740 			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
741 			if (sdmac->event_id1 > 31)
742 				sdmac->watermark_level |= 1 << 31;
743 			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
744 			if (sdmac->event_id0 > 31)
745 				sdmac->watermark_level |= 1 << 30;
746 		} else {
747 			sdmac->event_mask0 = 1 << sdmac->event_id0;
748 			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
749 		}
750 		/* Watermark Level */
751 		sdmac->watermark_level |= sdmac->watermark_level;
752 		/* Address */
753 		sdmac->shp_addr = sdmac->per_address;
754 	} else {
755 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
756 	}
757 
758 	ret = sdma_load_context(sdmac);
759 
760 	return ret;
761 }
762 
763 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
764 		unsigned int priority)
765 {
766 	struct sdma_engine *sdma = sdmac->sdma;
767 	int channel = sdmac->channel;
768 
769 	if (priority < MXC_SDMA_MIN_PRIORITY
770 	    || priority > MXC_SDMA_MAX_PRIORITY) {
771 		return -EINVAL;
772 	}
773 
774 	__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
775 
776 	return 0;
777 }
778 
779 static int sdma_request_channel(struct sdma_channel *sdmac)
780 {
781 	struct sdma_engine *sdma = sdmac->sdma;
782 	int channel = sdmac->channel;
783 	int ret = -EBUSY;
784 
785 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
786 	if (!sdmac->bd) {
787 		ret = -ENOMEM;
788 		goto out;
789 	}
790 
791 	memset(sdmac->bd, 0, PAGE_SIZE);
792 
793 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
794 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
795 
796 	clk_enable(sdma->clk);
797 
798 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
799 
800 	init_completion(&sdmac->done);
801 
802 	sdmac->buf_tail = 0;
803 
804 	return 0;
805 out:
806 
807 	return ret;
808 }
809 
810 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
811 {
812 	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
813 }
814 
815 static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
816 {
817 	dma_cookie_t cookie = sdmac->chan.cookie;
818 
819 	if (++cookie < 0)
820 		cookie = 1;
821 
822 	sdmac->chan.cookie = cookie;
823 	sdmac->desc.cookie = cookie;
824 
825 	return cookie;
826 }
827 
828 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
829 {
830 	return container_of(chan, struct sdma_channel, chan);
831 }
832 
833 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
834 {
835 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
836 	struct sdma_engine *sdma = sdmac->sdma;
837 	dma_cookie_t cookie;
838 
839 	spin_lock_irq(&sdmac->lock);
840 
841 	cookie = sdma_assign_cookie(sdmac);
842 
843 	sdma_enable_channel(sdma, sdmac->channel);
844 
845 	spin_unlock_irq(&sdmac->lock);
846 
847 	return cookie;
848 }
849 
850 static int sdma_alloc_chan_resources(struct dma_chan *chan)
851 {
852 	struct sdma_channel *sdmac = to_sdma_chan(chan);
853 	struct imx_dma_data *data = chan->private;
854 	int prio, ret;
855 
856 	if (!data)
857 		return -EINVAL;
858 
859 	switch (data->priority) {
860 	case DMA_PRIO_HIGH:
861 		prio = 3;
862 		break;
863 	case DMA_PRIO_MEDIUM:
864 		prio = 2;
865 		break;
866 	case DMA_PRIO_LOW:
867 	default:
868 		prio = 1;
869 		break;
870 	}
871 
872 	sdmac->peripheral_type = data->peripheral_type;
873 	sdmac->event_id0 = data->dma_request;
874 	ret = sdma_set_channel_priority(sdmac, prio);
875 	if (ret)
876 		return ret;
877 
878 	ret = sdma_request_channel(sdmac);
879 	if (ret)
880 		return ret;
881 
882 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
883 	sdmac->desc.tx_submit = sdma_tx_submit;
884 	/* txd.flags will be overwritten in prep funcs */
885 	sdmac->desc.flags = DMA_CTRL_ACK;
886 
887 	return 0;
888 }
889 
890 static void sdma_free_chan_resources(struct dma_chan *chan)
891 {
892 	struct sdma_channel *sdmac = to_sdma_chan(chan);
893 	struct sdma_engine *sdma = sdmac->sdma;
894 
895 	sdma_disable_channel(sdmac);
896 
897 	if (sdmac->event_id0)
898 		sdma_event_disable(sdmac, sdmac->event_id0);
899 	if (sdmac->event_id1)
900 		sdma_event_disable(sdmac, sdmac->event_id1);
901 
902 	sdmac->event_id0 = 0;
903 	sdmac->event_id1 = 0;
904 
905 	sdma_set_channel_priority(sdmac, 0);
906 
907 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
908 
909 	clk_disable(sdma->clk);
910 }
911 
912 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
913 		struct dma_chan *chan, struct scatterlist *sgl,
914 		unsigned int sg_len, enum dma_data_direction direction,
915 		unsigned long flags)
916 {
917 	struct sdma_channel *sdmac = to_sdma_chan(chan);
918 	struct sdma_engine *sdma = sdmac->sdma;
919 	int ret, i, count;
920 	int channel = sdmac->channel;
921 	struct scatterlist *sg;
922 
923 	if (sdmac->status == DMA_IN_PROGRESS)
924 		return NULL;
925 	sdmac->status = DMA_IN_PROGRESS;
926 
927 	sdmac->flags = 0;
928 
929 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
930 			sg_len, channel);
931 
932 	sdmac->direction = direction;
933 	ret = sdma_load_context(sdmac);
934 	if (ret)
935 		goto err_out;
936 
937 	if (sg_len > NUM_BD) {
938 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
939 				channel, sg_len, NUM_BD);
940 		ret = -EINVAL;
941 		goto err_out;
942 	}
943 
944 	for_each_sg(sgl, sg, sg_len, i) {
945 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
946 		int param;
947 
948 		bd->buffer_addr = sg->dma_address;
949 
950 		count = sg->length;
951 
952 		if (count > 0xffff) {
953 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
954 					channel, count, 0xffff);
955 			ret = -EINVAL;
956 			goto err_out;
957 		}
958 
959 		bd->mode.count = count;
960 
961 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
962 			ret =  -EINVAL;
963 			goto err_out;
964 		}
965 
966 		switch (sdmac->word_size) {
967 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
968 			bd->mode.command = 0;
969 			if (count & 3 || sg->dma_address & 3)
970 				return NULL;
971 			break;
972 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
973 			bd->mode.command = 2;
974 			if (count & 1 || sg->dma_address & 1)
975 				return NULL;
976 			break;
977 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
978 			bd->mode.command = 1;
979 			break;
980 		default:
981 			return NULL;
982 		}
983 
984 		param = BD_DONE | BD_EXTD | BD_CONT;
985 
986 		if (i + 1 == sg_len) {
987 			param |= BD_INTR;
988 			param |= BD_LAST;
989 			param &= ~BD_CONT;
990 		}
991 
992 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
993 				i, count, sg->dma_address,
994 				param & BD_WRAP ? "wrap" : "",
995 				param & BD_INTR ? " intr" : "");
996 
997 		bd->mode.status = param;
998 	}
999 
1000 	sdmac->num_bd = sg_len;
1001 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1002 
1003 	return &sdmac->desc;
1004 err_out:
1005 	sdmac->status = DMA_ERROR;
1006 	return NULL;
1007 }
1008 
1009 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1010 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1011 		size_t period_len, enum dma_data_direction direction)
1012 {
1013 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1014 	struct sdma_engine *sdma = sdmac->sdma;
1015 	int num_periods = buf_len / period_len;
1016 	int channel = sdmac->channel;
1017 	int ret, i = 0, buf = 0;
1018 
1019 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1020 
1021 	if (sdmac->status == DMA_IN_PROGRESS)
1022 		return NULL;
1023 
1024 	sdmac->status = DMA_IN_PROGRESS;
1025 
1026 	sdmac->flags |= IMX_DMA_SG_LOOP;
1027 	sdmac->direction = direction;
1028 	ret = sdma_load_context(sdmac);
1029 	if (ret)
1030 		goto err_out;
1031 
1032 	if (num_periods > NUM_BD) {
1033 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1034 				channel, num_periods, NUM_BD);
1035 		goto err_out;
1036 	}
1037 
1038 	if (period_len > 0xffff) {
1039 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1040 				channel, period_len, 0xffff);
1041 		goto err_out;
1042 	}
1043 
1044 	while (buf < buf_len) {
1045 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1046 		int param;
1047 
1048 		bd->buffer_addr = dma_addr;
1049 
1050 		bd->mode.count = period_len;
1051 
1052 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1053 			goto err_out;
1054 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1055 			bd->mode.command = 0;
1056 		else
1057 			bd->mode.command = sdmac->word_size;
1058 
1059 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1060 		if (i + 1 == num_periods)
1061 			param |= BD_WRAP;
1062 
1063 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1064 				i, period_len, dma_addr,
1065 				param & BD_WRAP ? "wrap" : "",
1066 				param & BD_INTR ? " intr" : "");
1067 
1068 		bd->mode.status = param;
1069 
1070 		dma_addr += period_len;
1071 		buf += period_len;
1072 
1073 		i++;
1074 	}
1075 
1076 	sdmac->num_bd = num_periods;
1077 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1078 
1079 	return &sdmac->desc;
1080 err_out:
1081 	sdmac->status = DMA_ERROR;
1082 	return NULL;
1083 }
1084 
1085 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1086 		unsigned long arg)
1087 {
1088 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1089 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1090 
1091 	switch (cmd) {
1092 	case DMA_TERMINATE_ALL:
1093 		sdma_disable_channel(sdmac);
1094 		return 0;
1095 	case DMA_SLAVE_CONFIG:
1096 		if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1097 			sdmac->per_address = dmaengine_cfg->src_addr;
1098 			sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1099 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1100 		} else {
1101 			sdmac->per_address = dmaengine_cfg->dst_addr;
1102 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1103 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1104 		}
1105 		return sdma_config_channel(sdmac);
1106 	default:
1107 		return -ENOSYS;
1108 	}
1109 
1110 	return -EINVAL;
1111 }
1112 
1113 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1114 					    dma_cookie_t cookie,
1115 					    struct dma_tx_state *txstate)
1116 {
1117 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1118 	dma_cookie_t last_used;
1119 
1120 	last_used = chan->cookie;
1121 
1122 	dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
1123 
1124 	return sdmac->status;
1125 }
1126 
1127 static void sdma_issue_pending(struct dma_chan *chan)
1128 {
1129 	/*
1130 	 * Nothing to do. We only have a single descriptor
1131 	 */
1132 }
1133 
1134 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1135 
1136 static void sdma_add_scripts(struct sdma_engine *sdma,
1137 		const struct sdma_script_start_addrs *addr)
1138 {
1139 	s32 *addr_arr = (u32 *)addr;
1140 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1141 	int i;
1142 
1143 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1144 		if (addr_arr[i] > 0)
1145 			saddr_arr[i] = addr_arr[i];
1146 }
1147 
1148 static void sdma_load_firmware(const struct firmware *fw, void *context)
1149 {
1150 	struct sdma_engine *sdma = context;
1151 	const struct sdma_firmware_header *header;
1152 	const struct sdma_script_start_addrs *addr;
1153 	unsigned short *ram_code;
1154 
1155 	if (!fw) {
1156 		dev_err(sdma->dev, "firmware not found\n");
1157 		return;
1158 	}
1159 
1160 	if (fw->size < sizeof(*header))
1161 		goto err_firmware;
1162 
1163 	header = (struct sdma_firmware_header *)fw->data;
1164 
1165 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1166 		goto err_firmware;
1167 	if (header->ram_code_start + header->ram_code_size > fw->size)
1168 		goto err_firmware;
1169 
1170 	addr = (void *)header + header->script_addrs_start;
1171 	ram_code = (void *)header + header->ram_code_start;
1172 
1173 	clk_enable(sdma->clk);
1174 	/* download the RAM image for SDMA */
1175 	sdma_load_script(sdma, ram_code,
1176 			header->ram_code_size,
1177 			addr->ram_code_start_addr);
1178 	clk_disable(sdma->clk);
1179 
1180 	sdma_add_scripts(sdma, addr);
1181 
1182 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1183 			header->version_major,
1184 			header->version_minor);
1185 
1186 err_firmware:
1187 	release_firmware(fw);
1188 }
1189 
1190 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1191 		const char *fw_name)
1192 {
1193 	int ret;
1194 
1195 	ret = request_firmware_nowait(THIS_MODULE,
1196 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1197 			GFP_KERNEL, sdma, sdma_load_firmware);
1198 
1199 	return ret;
1200 }
1201 
1202 static int __init sdma_init(struct sdma_engine *sdma)
1203 {
1204 	int i, ret;
1205 	dma_addr_t ccb_phys;
1206 
1207 	switch (sdma->devtype) {
1208 	case IMX31_SDMA:
1209 		sdma->num_events = 32;
1210 		break;
1211 	case IMX35_SDMA:
1212 		sdma->num_events = 48;
1213 		break;
1214 	default:
1215 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1216 			sdma->devtype);
1217 		return -ENODEV;
1218 	}
1219 
1220 	clk_enable(sdma->clk);
1221 
1222 	/* Be sure SDMA has not started yet */
1223 	__raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1224 
1225 	sdma->channel_control = dma_alloc_coherent(NULL,
1226 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1227 			sizeof(struct sdma_context_data),
1228 			&ccb_phys, GFP_KERNEL);
1229 
1230 	if (!sdma->channel_control) {
1231 		ret = -ENOMEM;
1232 		goto err_dma_alloc;
1233 	}
1234 
1235 	sdma->context = (void *)sdma->channel_control +
1236 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1237 	sdma->context_phys = ccb_phys +
1238 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1239 
1240 	/* Zero-out the CCB structures array just allocated */
1241 	memset(sdma->channel_control, 0,
1242 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1243 
1244 	/* disable all channels */
1245 	for (i = 0; i < sdma->num_events; i++)
1246 		__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1247 
1248 	/* All channels have priority 0 */
1249 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1250 		__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1251 
1252 	ret = sdma_request_channel(&sdma->channel[0]);
1253 	if (ret)
1254 		goto err_dma_alloc;
1255 
1256 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1257 
1258 	/* Set Command Channel (Channel Zero) */
1259 	__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1260 
1261 	/* Set bits of CONFIG register but with static context switching */
1262 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1263 	__raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1264 
1265 	__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1266 
1267 	/* Set bits of CONFIG register with given context switching mode */
1268 	__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1269 
1270 	/* Initializes channel's priorities */
1271 	sdma_set_channel_priority(&sdma->channel[0], 7);
1272 
1273 	clk_disable(sdma->clk);
1274 
1275 	return 0;
1276 
1277 err_dma_alloc:
1278 	clk_disable(sdma->clk);
1279 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1280 	return ret;
1281 }
1282 
1283 static int __init sdma_probe(struct platform_device *pdev)
1284 {
1285 	const struct of_device_id *of_id =
1286 			of_match_device(sdma_dt_ids, &pdev->dev);
1287 	struct device_node *np = pdev->dev.of_node;
1288 	const char *fw_name;
1289 	int ret;
1290 	int irq;
1291 	struct resource *iores;
1292 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1293 	int i;
1294 	struct sdma_engine *sdma;
1295 	s32 *saddr_arr;
1296 
1297 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1298 	if (!sdma)
1299 		return -ENOMEM;
1300 
1301 	mutex_init(&sdma->channel_0_lock);
1302 
1303 	sdma->dev = &pdev->dev;
1304 
1305 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1306 	irq = platform_get_irq(pdev, 0);
1307 	if (!iores || irq < 0) {
1308 		ret = -EINVAL;
1309 		goto err_irq;
1310 	}
1311 
1312 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1313 		ret = -EBUSY;
1314 		goto err_request_region;
1315 	}
1316 
1317 	sdma->clk = clk_get(&pdev->dev, NULL);
1318 	if (IS_ERR(sdma->clk)) {
1319 		ret = PTR_ERR(sdma->clk);
1320 		goto err_clk;
1321 	}
1322 
1323 	sdma->regs = ioremap(iores->start, resource_size(iores));
1324 	if (!sdma->regs) {
1325 		ret = -ENOMEM;
1326 		goto err_ioremap;
1327 	}
1328 
1329 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1330 	if (ret)
1331 		goto err_request_irq;
1332 
1333 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1334 	if (!sdma->script_addrs) {
1335 		ret = -ENOMEM;
1336 		goto err_alloc;
1337 	}
1338 
1339 	/* initially no scripts available */
1340 	saddr_arr = (s32 *)sdma->script_addrs;
1341 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1342 		saddr_arr[i] = -EINVAL;
1343 
1344 	if (of_id)
1345 		pdev->id_entry = of_id->data;
1346 	sdma->devtype = pdev->id_entry->driver_data;
1347 
1348 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1349 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1350 
1351 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1352 	/* Initialize channel parameters */
1353 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1354 		struct sdma_channel *sdmac = &sdma->channel[i];
1355 
1356 		sdmac->sdma = sdma;
1357 		spin_lock_init(&sdmac->lock);
1358 
1359 		sdmac->chan.device = &sdma->dma_device;
1360 		sdmac->channel = i;
1361 
1362 		/*
1363 		 * Add the channel to the DMAC list. Do not add channel 0 though
1364 		 * because we need it internally in the SDMA driver. This also means
1365 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1366 		 */
1367 		if (i)
1368 			list_add_tail(&sdmac->chan.device_node,
1369 					&sdma->dma_device.channels);
1370 	}
1371 
1372 	ret = sdma_init(sdma);
1373 	if (ret)
1374 		goto err_init;
1375 
1376 	if (pdata && pdata->script_addrs)
1377 		sdma_add_scripts(sdma, pdata->script_addrs);
1378 
1379 	if (pdata) {
1380 		sdma_get_firmware(sdma, pdata->fw_name);
1381 	} else {
1382 		/*
1383 		 * Because that device tree does not encode ROM script address,
1384 		 * the RAM script in firmware is mandatory for device tree
1385 		 * probe, otherwise it fails.
1386 		 */
1387 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1388 					      &fw_name);
1389 		if (ret) {
1390 			dev_err(&pdev->dev, "failed to get firmware name\n");
1391 			goto err_init;
1392 		}
1393 
1394 		ret = sdma_get_firmware(sdma, fw_name);
1395 		if (ret) {
1396 			dev_err(&pdev->dev, "failed to get firmware\n");
1397 			goto err_init;
1398 		}
1399 	}
1400 
1401 	sdma->dma_device.dev = &pdev->dev;
1402 
1403 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1404 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1405 	sdma->dma_device.device_tx_status = sdma_tx_status;
1406 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1407 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1408 	sdma->dma_device.device_control = sdma_control;
1409 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1410 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1411 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1412 
1413 	ret = dma_async_device_register(&sdma->dma_device);
1414 	if (ret) {
1415 		dev_err(&pdev->dev, "unable to register\n");
1416 		goto err_init;
1417 	}
1418 
1419 	dev_info(sdma->dev, "initialized\n");
1420 
1421 	return 0;
1422 
1423 err_init:
1424 	kfree(sdma->script_addrs);
1425 err_alloc:
1426 	free_irq(irq, sdma);
1427 err_request_irq:
1428 	iounmap(sdma->regs);
1429 err_ioremap:
1430 	clk_put(sdma->clk);
1431 err_clk:
1432 	release_mem_region(iores->start, resource_size(iores));
1433 err_request_region:
1434 err_irq:
1435 	kfree(sdma);
1436 	return ret;
1437 }
1438 
1439 static int __exit sdma_remove(struct platform_device *pdev)
1440 {
1441 	return -EBUSY;
1442 }
1443 
1444 static struct platform_driver sdma_driver = {
1445 	.driver		= {
1446 		.name	= "imx-sdma",
1447 		.of_match_table = sdma_dt_ids,
1448 	},
1449 	.id_table	= sdma_devtypes,
1450 	.remove		= __exit_p(sdma_remove),
1451 };
1452 
1453 static int __init sdma_module_init(void)
1454 {
1455 	return platform_driver_probe(&sdma_driver, sdma_probe);
1456 }
1457 module_init(sdma_module_init);
1458 
1459 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1460 MODULE_DESCRIPTION("i.MX SDMA driver");
1461 MODULE_LICENSE("GPL");
1462