xref: /linux/drivers/dma/imx-sdma.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/dma/imx-dma.h>
39 #include <linux/regmap.h>
40 #include <linux/mfd/syscon.h>
41 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
42 
43 #include "dmaengine.h"
44 #include "virt-dma.h"
45 
46 /* SDMA registers */
47 #define SDMA_H_C0PTR		0x000
48 #define SDMA_H_INTR		0x004
49 #define SDMA_H_STATSTOP		0x008
50 #define SDMA_H_START		0x00c
51 #define SDMA_H_EVTOVR		0x010
52 #define SDMA_H_DSPOVR		0x014
53 #define SDMA_H_HOSTOVR		0x018
54 #define SDMA_H_EVTPEND		0x01c
55 #define SDMA_H_DSPENBL		0x020
56 #define SDMA_H_RESET		0x024
57 #define SDMA_H_EVTERR		0x028
58 #define SDMA_H_INTRMSK		0x02c
59 #define SDMA_H_PSW		0x030
60 #define SDMA_H_EVTERRDBG	0x034
61 #define SDMA_H_CONFIG		0x038
62 #define SDMA_ONCE_ENB		0x040
63 #define SDMA_ONCE_DATA		0x044
64 #define SDMA_ONCE_INSTR		0x048
65 #define SDMA_ONCE_STAT		0x04c
66 #define SDMA_ONCE_CMD		0x050
67 #define SDMA_EVT_MIRROR		0x054
68 #define SDMA_ILLINSTADDR	0x058
69 #define SDMA_CHN0ADDR		0x05c
70 #define SDMA_ONCE_RTB		0x060
71 #define SDMA_XTRIG_CONF1	0x070
72 #define SDMA_XTRIG_CONF2	0x074
73 #define SDMA_CHNENBL0_IMX35	0x200
74 #define SDMA_CHNENBL0_IMX31	0x080
75 #define SDMA_CHNPRI_0		0x100
76 #define SDMA_DONE0_CONFIG	0x1000
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 #define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
185 #define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
186 #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
187 #define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
188 
189 #define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
190 #define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
191 
192 /*
193  * struct sdma_script_start_addrs - SDMA script start pointers
194  *
195  * start addresses of the different functions in the physical
196  * address space of the SDMA engine.
197  */
198 struct sdma_script_start_addrs {
199 	s32 ap_2_ap_addr;
200 	s32 ap_2_bp_addr;
201 	s32 ap_2_ap_fixed_addr;
202 	s32 bp_2_ap_addr;
203 	s32 loopback_on_dsp_side_addr;
204 	s32 mcu_interrupt_only_addr;
205 	s32 firi_2_per_addr;
206 	s32 firi_2_mcu_addr;
207 	s32 per_2_firi_addr;
208 	s32 mcu_2_firi_addr;
209 	s32 uart_2_per_addr;
210 	s32 uart_2_mcu_addr;
211 	s32 per_2_app_addr;
212 	s32 mcu_2_app_addr;
213 	s32 per_2_per_addr;
214 	s32 uartsh_2_per_addr;
215 	s32 uartsh_2_mcu_addr;
216 	s32 per_2_shp_addr;
217 	s32 mcu_2_shp_addr;
218 	s32 ata_2_mcu_addr;
219 	s32 mcu_2_ata_addr;
220 	s32 app_2_per_addr;
221 	s32 app_2_mcu_addr;
222 	s32 shp_2_per_addr;
223 	s32 shp_2_mcu_addr;
224 	s32 mshc_2_mcu_addr;
225 	s32 mcu_2_mshc_addr;
226 	s32 spdif_2_mcu_addr;
227 	s32 mcu_2_spdif_addr;
228 	s32 asrc_2_mcu_addr;
229 	s32 ext_mem_2_ipu_addr;
230 	s32 descrambler_addr;
231 	s32 dptc_dvfs_addr;
232 	s32 utra_addr;
233 	s32 ram_code_start_addr;
234 	/* End of v1 array */
235 	s32 mcu_2_ssish_addr;
236 	s32 ssish_2_mcu_addr;
237 	s32 hdmi_dma_addr;
238 	/* End of v2 array */
239 	s32 zcanfd_2_mcu_addr;
240 	s32 zqspi_2_mcu_addr;
241 	s32 mcu_2_ecspi_addr;
242 	s32 mcu_2_sai_addr;
243 	s32 sai_2_mcu_addr;
244 	s32 uart_2_mcu_rom_addr;
245 	s32 uartsh_2_mcu_rom_addr;
246 	/* End of v3 array */
247 	s32 mcu_2_zqspi_addr;
248 	/* End of v4 array */
249 };
250 
251 /*
252  * Mode/Count of data node descriptors - IPCv2
253  */
254 struct sdma_mode_count {
255 #define SDMA_BD_MAX_CNT	0xffff
256 	u32 count   : 16; /* size of the buffer pointed by this BD */
257 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
258 	u32 command :  8; /* command mostly used for channel 0 */
259 };
260 
261 /*
262  * Buffer descriptor
263  */
264 struct sdma_buffer_descriptor {
265 	struct sdma_mode_count  mode;
266 	u32 buffer_addr;	/* address of the buffer described */
267 	u32 ext_buffer_addr;	/* extended buffer address */
268 } __attribute__ ((packed));
269 
270 /**
271  * struct sdma_channel_control - Channel control Block
272  *
273  * @current_bd_ptr:	current buffer descriptor processed
274  * @base_bd_ptr:	first element of buffer descriptor array
275  * @unused:		padding. The SDMA engine expects an array of 128 byte
276  *			control blocks
277  */
278 struct sdma_channel_control {
279 	u32 current_bd_ptr;
280 	u32 base_bd_ptr;
281 	u32 unused[2];
282 } __attribute__ ((packed));
283 
284 /**
285  * struct sdma_state_registers - SDMA context for a channel
286  *
287  * @pc:		program counter
288  * @unused1:	unused
289  * @t:		test bit: status of arithmetic & test instruction
290  * @rpc:	return program counter
291  * @unused0:	unused
292  * @sf:		source fault while loading data
293  * @spc:	loop start program counter
294  * @unused2:	unused
295  * @df:		destination fault while storing data
296  * @epc:	loop end program counter
297  * @lm:		loop mode
298  */
299 struct sdma_state_registers {
300 	u32 pc     :14;
301 	u32 unused1: 1;
302 	u32 t      : 1;
303 	u32 rpc    :14;
304 	u32 unused0: 1;
305 	u32 sf     : 1;
306 	u32 spc    :14;
307 	u32 unused2: 1;
308 	u32 df     : 1;
309 	u32 epc    :14;
310 	u32 lm     : 2;
311 } __attribute__ ((packed));
312 
313 /**
314  * struct sdma_context_data - sdma context specific to a channel
315  *
316  * @channel_state:	channel state bits
317  * @gReg:		general registers
318  * @mda:		burst dma destination address register
319  * @msa:		burst dma source address register
320  * @ms:			burst dma status register
321  * @md:			burst dma data register
322  * @pda:		peripheral dma destination address register
323  * @psa:		peripheral dma source address register
324  * @ps:			peripheral dma status register
325  * @pd:			peripheral dma data register
326  * @ca:			CRC polynomial register
327  * @cs:			CRC accumulator register
328  * @dda:		dedicated core destination address register
329  * @dsa:		dedicated core source address register
330  * @ds:			dedicated core status register
331  * @dd:			dedicated core data register
332  * @scratch0:		1st word of dedicated ram for context switch
333  * @scratch1:		2nd word of dedicated ram for context switch
334  * @scratch2:		3rd word of dedicated ram for context switch
335  * @scratch3:		4th word of dedicated ram for context switch
336  * @scratch4:		5th word of dedicated ram for context switch
337  * @scratch5:		6th word of dedicated ram for context switch
338  * @scratch6:		7th word of dedicated ram for context switch
339  * @scratch7:		8th word of dedicated ram for context switch
340  */
341 struct sdma_context_data {
342 	struct sdma_state_registers  channel_state;
343 	u32  gReg[8];
344 	u32  mda;
345 	u32  msa;
346 	u32  ms;
347 	u32  md;
348 	u32  pda;
349 	u32  psa;
350 	u32  ps;
351 	u32  pd;
352 	u32  ca;
353 	u32  cs;
354 	u32  dda;
355 	u32  dsa;
356 	u32  ds;
357 	u32  dd;
358 	u32  scratch0;
359 	u32  scratch1;
360 	u32  scratch2;
361 	u32  scratch3;
362 	u32  scratch4;
363 	u32  scratch5;
364 	u32  scratch6;
365 	u32  scratch7;
366 } __attribute__ ((packed));
367 
368 
369 struct sdma_engine;
370 
371 /**
372  * struct sdma_desc - descriptor structor for one transfer
373  * @vd:			descriptor for virt dma
374  * @num_bd:		number of descriptors currently handling
375  * @bd_phys:		physical address of bd
376  * @buf_tail:		ID of the buffer that was processed
377  * @buf_ptail:		ID of the previous buffer that was processed
378  * @period_len:		period length, used in cyclic.
379  * @chn_real_count:	the real count updated from bd->mode.count
380  * @chn_count:		the transfer count set
381  * @sdmac:		sdma_channel pointer
382  * @bd:			pointer of allocate bd
383  */
384 struct sdma_desc {
385 	struct virt_dma_desc	vd;
386 	unsigned int		num_bd;
387 	dma_addr_t		bd_phys;
388 	unsigned int		buf_tail;
389 	unsigned int		buf_ptail;
390 	unsigned int		period_len;
391 	unsigned int		chn_real_count;
392 	unsigned int		chn_count;
393 	struct sdma_channel	*sdmac;
394 	struct sdma_buffer_descriptor *bd;
395 };
396 
397 /**
398  * struct sdma_channel - housekeeping for a SDMA channel
399  *
400  * @vc:			virt_dma base structure
401  * @desc:		sdma description including vd and other special member
402  * @sdma:		pointer to the SDMA engine for this channel
403  * @channel:		the channel number, matches dmaengine chan_id + 1
404  * @direction:		transfer type. Needed for setting SDMA script
405  * @slave_config:	Slave configuration
406  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
407  * @event_id0:		aka dma request line
408  * @event_id1:		for channels that use 2 events
409  * @word_size:		peripheral access size
410  * @pc_from_device:	script address for those device_2_memory
411  * @pc_to_device:	script address for those memory_2_device
412  * @device_to_device:	script address for those device_2_device
413  * @pc_to_pc:		script address for those memory_2_memory
414  * @flags:		loop mode or not
415  * @per_address:	peripheral source or destination address in common case
416  *                      destination address in p_2_p case
417  * @per_address2:	peripheral source address in p_2_p case
418  * @event_mask:		event mask used in p_2_p script
419  * @watermark_level:	value for gReg[7], some script will extend it from
420  *			basic watermark such as p_2_p
421  * @shp_addr:		value for gReg[6]
422  * @per_addr:		value for gReg[2]
423  * @status:		status of dma channel
424  * @data:		specific sdma interface structure
425  * @terminate_worker:	used to call back into terminate work function
426  * @terminated:		terminated list
427  * @is_ram_script:	flag for script in ram
428  * @n_fifos_src:	number of source device fifos
429  * @n_fifos_dst:	number of destination device fifos
430  * @sw_done:		software done flag
431  * @stride_fifos_src:	stride for source device FIFOs
432  * @stride_fifos_dst:	stride for destination device FIFOs
433  * @words_per_fifo:	copy number of words one time for one FIFO
434  */
435 struct sdma_channel {
436 	struct virt_dma_chan		vc;
437 	struct sdma_desc		*desc;
438 	struct sdma_engine		*sdma;
439 	unsigned int			channel;
440 	enum dma_transfer_direction		direction;
441 	struct dma_slave_config		slave_config;
442 	enum sdma_peripheral_type	peripheral_type;
443 	unsigned int			event_id0;
444 	unsigned int			event_id1;
445 	enum dma_slave_buswidth		word_size;
446 	unsigned int			pc_from_device, pc_to_device;
447 	unsigned int			device_to_device;
448 	unsigned int                    pc_to_pc;
449 	unsigned long			flags;
450 	dma_addr_t			per_address, per_address2;
451 	unsigned long			event_mask[2];
452 	unsigned long			watermark_level;
453 	u32				shp_addr, per_addr;
454 	enum dma_status			status;
455 	struct imx_dma_data		data;
456 	struct work_struct		terminate_worker;
457 	struct list_head                terminated;
458 	bool				is_ram_script;
459 	unsigned int			n_fifos_src;
460 	unsigned int			n_fifos_dst;
461 	unsigned int			stride_fifos_src;
462 	unsigned int			stride_fifos_dst;
463 	unsigned int			words_per_fifo;
464 	bool				sw_done;
465 };
466 
467 #define IMX_DMA_SG_LOOP		BIT(0)
468 
469 #define MAX_DMA_CHANNELS 32
470 #define MXC_SDMA_DEFAULT_PRIORITY 1
471 #define MXC_SDMA_MIN_PRIORITY 1
472 #define MXC_SDMA_MAX_PRIORITY 7
473 
474 #define SDMA_FIRMWARE_MAGIC 0x414d4453
475 
476 /**
477  * struct sdma_firmware_header - Layout of the firmware image
478  *
479  * @magic:		"SDMA"
480  * @version_major:	increased whenever layout of struct
481  *			sdma_script_start_addrs changes.
482  * @version_minor:	firmware minor version (for binary compatible changes)
483  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
484  * @num_script_addrs:	Number of script addresses in this image
485  * @ram_code_start:	offset of SDMA ram image in this firmware image
486  * @ram_code_size:	size of SDMA ram image
487  */
488 struct sdma_firmware_header {
489 	u32	magic;
490 	u32	version_major;
491 	u32	version_minor;
492 	u32	script_addrs_start;
493 	u32	num_script_addrs;
494 	u32	ram_code_start;
495 	u32	ram_code_size;
496 };
497 
498 struct sdma_driver_data {
499 	int chnenbl0;
500 	int num_events;
501 	struct sdma_script_start_addrs	*script_addrs;
502 	bool check_ratio;
503 	/*
504 	 * ecspi ERR009165 fixed should be done in sdma script
505 	 * and it has been fixed in soc from i.mx6ul.
506 	 * please get more information from the below link:
507 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
508 	 */
509 	bool ecspi_fixed;
510 };
511 
512 struct sdma_engine {
513 	struct device			*dev;
514 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
515 	struct sdma_channel_control	*channel_control;
516 	void __iomem			*regs;
517 	struct sdma_context_data	*context;
518 	dma_addr_t			context_phys;
519 	struct dma_device		dma_device;
520 	struct clk			*clk_ipg;
521 	struct clk			*clk_ahb;
522 	spinlock_t			channel_0_lock;
523 	u32				script_number;
524 	struct sdma_script_start_addrs	*script_addrs;
525 	const struct sdma_driver_data	*drvdata;
526 	u32				spba_start_addr;
527 	u32				spba_end_addr;
528 	unsigned int			irq;
529 	dma_addr_t			bd0_phys;
530 	struct sdma_buffer_descriptor	*bd0;
531 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
532 	bool				clk_ratio;
533 	bool                            fw_loaded;
534 };
535 
536 static int sdma_config_write(struct dma_chan *chan,
537 		       struct dma_slave_config *dmaengine_cfg,
538 		       enum dma_transfer_direction direction);
539 
540 static struct sdma_driver_data sdma_imx31 = {
541 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
542 	.num_events = 32,
543 };
544 
545 static struct sdma_script_start_addrs sdma_script_imx25 = {
546 	.ap_2_ap_addr = 729,
547 	.uart_2_mcu_addr = 904,
548 	.per_2_app_addr = 1255,
549 	.mcu_2_app_addr = 834,
550 	.uartsh_2_mcu_addr = 1120,
551 	.per_2_shp_addr = 1329,
552 	.mcu_2_shp_addr = 1048,
553 	.ata_2_mcu_addr = 1560,
554 	.mcu_2_ata_addr = 1479,
555 	.app_2_per_addr = 1189,
556 	.app_2_mcu_addr = 770,
557 	.shp_2_per_addr = 1407,
558 	.shp_2_mcu_addr = 979,
559 };
560 
561 static struct sdma_driver_data sdma_imx25 = {
562 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
563 	.num_events = 48,
564 	.script_addrs = &sdma_script_imx25,
565 };
566 
567 static struct sdma_driver_data sdma_imx35 = {
568 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
569 	.num_events = 48,
570 };
571 
572 static struct sdma_script_start_addrs sdma_script_imx51 = {
573 	.ap_2_ap_addr = 642,
574 	.uart_2_mcu_addr = 817,
575 	.mcu_2_app_addr = 747,
576 	.mcu_2_shp_addr = 961,
577 	.ata_2_mcu_addr = 1473,
578 	.mcu_2_ata_addr = 1392,
579 	.app_2_per_addr = 1033,
580 	.app_2_mcu_addr = 683,
581 	.shp_2_per_addr = 1251,
582 	.shp_2_mcu_addr = 892,
583 };
584 
585 static struct sdma_driver_data sdma_imx51 = {
586 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
587 	.num_events = 48,
588 	.script_addrs = &sdma_script_imx51,
589 };
590 
591 static struct sdma_script_start_addrs sdma_script_imx53 = {
592 	.ap_2_ap_addr = 642,
593 	.app_2_mcu_addr = 683,
594 	.mcu_2_app_addr = 747,
595 	.uart_2_mcu_addr = 817,
596 	.shp_2_mcu_addr = 891,
597 	.mcu_2_shp_addr = 960,
598 	.uartsh_2_mcu_addr = 1032,
599 	.spdif_2_mcu_addr = 1100,
600 	.mcu_2_spdif_addr = 1134,
601 	.firi_2_mcu_addr = 1193,
602 	.mcu_2_firi_addr = 1290,
603 };
604 
605 static struct sdma_driver_data sdma_imx53 = {
606 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
607 	.num_events = 48,
608 	.script_addrs = &sdma_script_imx53,
609 };
610 
611 static struct sdma_script_start_addrs sdma_script_imx6q = {
612 	.ap_2_ap_addr = 642,
613 	.uart_2_mcu_addr = 817,
614 	.mcu_2_app_addr = 747,
615 	.per_2_per_addr = 6331,
616 	.uartsh_2_mcu_addr = 1032,
617 	.mcu_2_shp_addr = 960,
618 	.app_2_mcu_addr = 683,
619 	.shp_2_mcu_addr = 891,
620 	.spdif_2_mcu_addr = 1100,
621 	.mcu_2_spdif_addr = 1134,
622 };
623 
624 static struct sdma_driver_data sdma_imx6q = {
625 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
626 	.num_events = 48,
627 	.script_addrs = &sdma_script_imx6q,
628 };
629 
630 static struct sdma_driver_data sdma_imx6ul = {
631 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
632 	.num_events = 48,
633 	.script_addrs = &sdma_script_imx6q,
634 	.ecspi_fixed = true,
635 };
636 
637 static struct sdma_script_start_addrs sdma_script_imx7d = {
638 	.ap_2_ap_addr = 644,
639 	.uart_2_mcu_addr = 819,
640 	.mcu_2_app_addr = 749,
641 	.uartsh_2_mcu_addr = 1034,
642 	.mcu_2_shp_addr = 962,
643 	.app_2_mcu_addr = 685,
644 	.shp_2_mcu_addr = 893,
645 	.spdif_2_mcu_addr = 1102,
646 	.mcu_2_spdif_addr = 1136,
647 };
648 
649 static struct sdma_driver_data sdma_imx7d = {
650 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
651 	.num_events = 48,
652 	.script_addrs = &sdma_script_imx7d,
653 };
654 
655 static struct sdma_driver_data sdma_imx8mq = {
656 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
657 	.num_events = 48,
658 	.script_addrs = &sdma_script_imx7d,
659 	.check_ratio = 1,
660 };
661 
662 static const struct of_device_id sdma_dt_ids[] = {
663 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
664 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
665 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
666 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
667 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
668 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
669 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
670 	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
671 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
672 	{ /* sentinel */ }
673 };
674 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
675 
676 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
677 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
678 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
679 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
680 
681 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
682 {
683 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
684 	return chnenbl0 + event * 4;
685 }
686 
687 static int sdma_config_ownership(struct sdma_channel *sdmac,
688 		bool event_override, bool mcu_override, bool dsp_override)
689 {
690 	struct sdma_engine *sdma = sdmac->sdma;
691 	int channel = sdmac->channel;
692 	unsigned long evt, mcu, dsp;
693 
694 	if (event_override && mcu_override && dsp_override)
695 		return -EINVAL;
696 
697 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
698 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
699 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
700 
701 	if (dsp_override)
702 		__clear_bit(channel, &dsp);
703 	else
704 		__set_bit(channel, &dsp);
705 
706 	if (event_override)
707 		__clear_bit(channel, &evt);
708 	else
709 		__set_bit(channel, &evt);
710 
711 	if (mcu_override)
712 		__clear_bit(channel, &mcu);
713 	else
714 		__set_bit(channel, &mcu);
715 
716 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
717 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
718 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
719 
720 	return 0;
721 }
722 
723 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
724 {
725 	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
726 }
727 
728 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
729 {
730 	writel(BIT(channel), sdma->regs + SDMA_H_START);
731 }
732 
733 /*
734  * sdma_run_channel0 - run a channel and wait till it's done
735  */
736 static int sdma_run_channel0(struct sdma_engine *sdma)
737 {
738 	int ret;
739 	u32 reg;
740 
741 	sdma_enable_channel(sdma, 0);
742 
743 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
744 						reg, !(reg & 1), 1, 500);
745 	if (ret)
746 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
747 
748 	/* Set bits of CONFIG register with dynamic context switching */
749 	reg = readl(sdma->regs + SDMA_H_CONFIG);
750 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
751 		reg |= SDMA_H_CONFIG_CSM;
752 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
753 	}
754 
755 	return ret;
756 }
757 
758 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
759 		u32 address)
760 {
761 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
762 	void *buf_virt;
763 	dma_addr_t buf_phys;
764 	int ret;
765 	unsigned long flags;
766 
767 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
768 	if (!buf_virt)
769 		return -ENOMEM;
770 
771 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
772 
773 	bd0->mode.command = C0_SETPM;
774 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
775 	bd0->mode.count = size / 2;
776 	bd0->buffer_addr = buf_phys;
777 	bd0->ext_buffer_addr = address;
778 
779 	memcpy(buf_virt, buf, size);
780 
781 	ret = sdma_run_channel0(sdma);
782 
783 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
784 
785 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
786 
787 	return ret;
788 }
789 
790 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
791 {
792 	struct sdma_engine *sdma = sdmac->sdma;
793 	int channel = sdmac->channel;
794 	unsigned long val;
795 	u32 chnenbl = chnenbl_ofs(sdma, event);
796 
797 	val = readl_relaxed(sdma->regs + chnenbl);
798 	__set_bit(channel, &val);
799 	writel_relaxed(val, sdma->regs + chnenbl);
800 
801 	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
802 	if (sdmac->sw_done) {
803 		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
804 		val |= SDMA_DONE0_CONFIG_DONE_SEL;
805 		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
806 		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
807 	}
808 }
809 
810 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
811 {
812 	struct sdma_engine *sdma = sdmac->sdma;
813 	int channel = sdmac->channel;
814 	u32 chnenbl = chnenbl_ofs(sdma, event);
815 	unsigned long val;
816 
817 	val = readl_relaxed(sdma->regs + chnenbl);
818 	__clear_bit(channel, &val);
819 	writel_relaxed(val, sdma->regs + chnenbl);
820 }
821 
822 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
823 {
824 	return container_of(t, struct sdma_desc, vd.tx);
825 }
826 
827 static void sdma_start_desc(struct sdma_channel *sdmac)
828 {
829 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
830 	struct sdma_desc *desc;
831 	struct sdma_engine *sdma = sdmac->sdma;
832 	int channel = sdmac->channel;
833 
834 	if (!vd) {
835 		sdmac->desc = NULL;
836 		return;
837 	}
838 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
839 
840 	list_del(&vd->node);
841 
842 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
843 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
844 	sdma_enable_channel(sdma, sdmac->channel);
845 }
846 
847 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
848 {
849 	struct sdma_buffer_descriptor *bd;
850 	int error = 0;
851 	enum dma_status	old_status = sdmac->status;
852 
853 	/*
854 	 * loop mode. Iterate over descriptors, re-setup them and
855 	 * call callback function.
856 	 */
857 	while (sdmac->desc) {
858 		struct sdma_desc *desc = sdmac->desc;
859 
860 		bd = &desc->bd[desc->buf_tail];
861 
862 		if (bd->mode.status & BD_DONE)
863 			break;
864 
865 		if (bd->mode.status & BD_RROR) {
866 			bd->mode.status &= ~BD_RROR;
867 			sdmac->status = DMA_ERROR;
868 			error = -EIO;
869 		}
870 
871 	       /*
872 		* We use bd->mode.count to calculate the residue, since contains
873 		* the number of bytes present in the current buffer descriptor.
874 		*/
875 
876 		desc->chn_real_count = bd->mode.count;
877 		bd->mode.count = desc->period_len;
878 		desc->buf_ptail = desc->buf_tail;
879 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
880 
881 		/*
882 		 * The callback is called from the interrupt context in order
883 		 * to reduce latency and to avoid the risk of altering the
884 		 * SDMA transaction status by the time the client tasklet is
885 		 * executed.
886 		 */
887 		spin_unlock(&sdmac->vc.lock);
888 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
889 		spin_lock(&sdmac->vc.lock);
890 
891 		/* Assign buffer ownership to SDMA */
892 		bd->mode.status |= BD_DONE;
893 
894 		if (error)
895 			sdmac->status = old_status;
896 	}
897 
898 	/*
899 	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
900 	 * owned buffer is available (i.e. BD_DONE was set too late).
901 	 */
902 	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
903 		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
904 		sdma_enable_channel(sdmac->sdma, sdmac->channel);
905 	}
906 }
907 
908 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
909 {
910 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
911 	struct sdma_buffer_descriptor *bd;
912 	int i, error = 0;
913 
914 	sdmac->desc->chn_real_count = 0;
915 	/*
916 	 * non loop mode. Iterate over all descriptors, collect
917 	 * errors and call callback function
918 	 */
919 	for (i = 0; i < sdmac->desc->num_bd; i++) {
920 		bd = &sdmac->desc->bd[i];
921 
922 		if (bd->mode.status & (BD_DONE | BD_RROR))
923 			error = -EIO;
924 		sdmac->desc->chn_real_count += bd->mode.count;
925 	}
926 
927 	if (error)
928 		sdmac->status = DMA_ERROR;
929 	else
930 		sdmac->status = DMA_COMPLETE;
931 }
932 
933 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
934 {
935 	struct sdma_engine *sdma = dev_id;
936 	unsigned long stat;
937 
938 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
939 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
940 	/* channel 0 is special and not handled here, see run_channel0() */
941 	stat &= ~1;
942 
943 	while (stat) {
944 		int channel = fls(stat) - 1;
945 		struct sdma_channel *sdmac = &sdma->channel[channel];
946 		struct sdma_desc *desc;
947 
948 		spin_lock(&sdmac->vc.lock);
949 		desc = sdmac->desc;
950 		if (desc) {
951 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
952 				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
953 					sdma_update_channel_loop(sdmac);
954 				else
955 					vchan_cyclic_callback(&desc->vd);
956 			} else {
957 				mxc_sdma_handle_channel_normal(sdmac);
958 				vchan_cookie_complete(&desc->vd);
959 				sdma_start_desc(sdmac);
960 			}
961 		}
962 
963 		spin_unlock(&sdmac->vc.lock);
964 		__clear_bit(channel, &stat);
965 	}
966 
967 	return IRQ_HANDLED;
968 }
969 
970 /*
971  * sets the pc of SDMA script according to the peripheral type
972  */
973 static int sdma_get_pc(struct sdma_channel *sdmac,
974 		enum sdma_peripheral_type peripheral_type)
975 {
976 	struct sdma_engine *sdma = sdmac->sdma;
977 	int per_2_emi = 0, emi_2_per = 0;
978 	/*
979 	 * These are needed once we start to support transfers between
980 	 * two peripherals or memory-to-memory transfers
981 	 */
982 	int per_2_per = 0, emi_2_emi = 0;
983 
984 	sdmac->pc_from_device = 0;
985 	sdmac->pc_to_device = 0;
986 	sdmac->device_to_device = 0;
987 	sdmac->pc_to_pc = 0;
988 	sdmac->is_ram_script = false;
989 
990 	switch (peripheral_type) {
991 	case IMX_DMATYPE_MEMORY:
992 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
993 		break;
994 	case IMX_DMATYPE_DSP:
995 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
996 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
997 		break;
998 	case IMX_DMATYPE_FIRI:
999 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1000 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1001 		break;
1002 	case IMX_DMATYPE_UART:
1003 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1004 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1005 		break;
1006 	case IMX_DMATYPE_UART_SP:
1007 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1008 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1009 		break;
1010 	case IMX_DMATYPE_ATA:
1011 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1012 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1013 		break;
1014 	case IMX_DMATYPE_CSPI:
1015 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1016 
1017 		/* Use rom script mcu_2_app if ERR009165 fixed */
1018 		if (sdmac->sdma->drvdata->ecspi_fixed) {
1019 			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1020 		} else {
1021 			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1022 			sdmac->is_ram_script = true;
1023 		}
1024 
1025 		break;
1026 	case IMX_DMATYPE_EXT:
1027 	case IMX_DMATYPE_SSI:
1028 	case IMX_DMATYPE_SAI:
1029 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1030 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1031 		break;
1032 	case IMX_DMATYPE_SSI_DUAL:
1033 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1034 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1035 		sdmac->is_ram_script = true;
1036 		break;
1037 	case IMX_DMATYPE_SSI_SP:
1038 	case IMX_DMATYPE_MMC:
1039 	case IMX_DMATYPE_SDHC:
1040 	case IMX_DMATYPE_CSPI_SP:
1041 	case IMX_DMATYPE_ESAI:
1042 	case IMX_DMATYPE_MSHC_SP:
1043 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1044 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1045 		break;
1046 	case IMX_DMATYPE_ASRC:
1047 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1048 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1049 		per_2_per = sdma->script_addrs->per_2_per_addr;
1050 		sdmac->is_ram_script = true;
1051 		break;
1052 	case IMX_DMATYPE_ASRC_SP:
1053 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1054 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1055 		per_2_per = sdma->script_addrs->per_2_per_addr;
1056 		break;
1057 	case IMX_DMATYPE_MSHC:
1058 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1059 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1060 		break;
1061 	case IMX_DMATYPE_CCM:
1062 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1063 		break;
1064 	case IMX_DMATYPE_SPDIF:
1065 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1066 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1067 		break;
1068 	case IMX_DMATYPE_IPU_MEMORY:
1069 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1070 		break;
1071 	case IMX_DMATYPE_MULTI_SAI:
1072 		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1073 		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1074 		break;
1075 	case IMX_DMATYPE_HDMI:
1076 		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1077 		sdmac->is_ram_script = true;
1078 		break;
1079 	default:
1080 		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1081 			peripheral_type);
1082 		return -EINVAL;
1083 	}
1084 
1085 	sdmac->pc_from_device = per_2_emi;
1086 	sdmac->pc_to_device = emi_2_per;
1087 	sdmac->device_to_device = per_2_per;
1088 	sdmac->pc_to_pc = emi_2_emi;
1089 
1090 	return 0;
1091 }
1092 
1093 static int sdma_load_context(struct sdma_channel *sdmac)
1094 {
1095 	struct sdma_engine *sdma = sdmac->sdma;
1096 	int channel = sdmac->channel;
1097 	int load_address;
1098 	struct sdma_context_data *context = sdma->context;
1099 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1100 	int ret;
1101 	unsigned long flags;
1102 
1103 	if (sdmac->direction == DMA_DEV_TO_MEM)
1104 		load_address = sdmac->pc_from_device;
1105 	else if (sdmac->direction == DMA_DEV_TO_DEV)
1106 		load_address = sdmac->device_to_device;
1107 	else if (sdmac->direction == DMA_MEM_TO_MEM)
1108 		load_address = sdmac->pc_to_pc;
1109 	else
1110 		load_address = sdmac->pc_to_device;
1111 
1112 	if (load_address < 0)
1113 		return load_address;
1114 
1115 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1116 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1117 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1118 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1119 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1120 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1121 
1122 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1123 
1124 	memset(context, 0, sizeof(*context));
1125 	context->channel_state.pc = load_address;
1126 
1127 	/* Send by context the event mask,base address for peripheral
1128 	 * and watermark level
1129 	 */
1130 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1131 		context->gReg[4] = sdmac->per_addr;
1132 		context->gReg[6] = sdmac->shp_addr;
1133 	} else {
1134 		context->gReg[0] = sdmac->event_mask[1];
1135 		context->gReg[1] = sdmac->event_mask[0];
1136 		context->gReg[2] = sdmac->per_addr;
1137 		context->gReg[6] = sdmac->shp_addr;
1138 		context->gReg[7] = sdmac->watermark_level;
1139 	}
1140 
1141 	bd0->mode.command = C0_SETDM;
1142 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1143 	bd0->mode.count = sizeof(*context) / 4;
1144 	bd0->buffer_addr = sdma->context_phys;
1145 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1146 	ret = sdma_run_channel0(sdma);
1147 
1148 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1149 
1150 	return ret;
1151 }
1152 
1153 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1154 {
1155 	return container_of(chan, struct sdma_channel, vc.chan);
1156 }
1157 
1158 static int sdma_disable_channel(struct dma_chan *chan)
1159 {
1160 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1161 	struct sdma_engine *sdma = sdmac->sdma;
1162 	int channel = sdmac->channel;
1163 
1164 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1165 	sdmac->status = DMA_ERROR;
1166 
1167 	return 0;
1168 }
1169 static void sdma_channel_terminate_work(struct work_struct *work)
1170 {
1171 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1172 						  terminate_worker);
1173 	/*
1174 	 * According to NXP R&D team a delay of one BD SDMA cost time
1175 	 * (maximum is 1ms) should be added after disable of the channel
1176 	 * bit, to ensure SDMA core has really been stopped after SDMA
1177 	 * clients call .device_terminate_all.
1178 	 */
1179 	usleep_range(1000, 2000);
1180 
1181 	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1182 }
1183 
1184 static int sdma_terminate_all(struct dma_chan *chan)
1185 {
1186 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1187 	unsigned long flags;
1188 
1189 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1190 
1191 	sdma_disable_channel(chan);
1192 
1193 	if (sdmac->desc) {
1194 		vchan_terminate_vdesc(&sdmac->desc->vd);
1195 		/*
1196 		 * move out current descriptor into terminated list so that
1197 		 * it could be free in sdma_channel_terminate_work alone
1198 		 * later without potential involving next descriptor raised
1199 		 * up before the last descriptor terminated.
1200 		 */
1201 		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1202 		sdmac->desc = NULL;
1203 		schedule_work(&sdmac->terminate_worker);
1204 	}
1205 
1206 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1207 
1208 	return 0;
1209 }
1210 
1211 static void sdma_channel_synchronize(struct dma_chan *chan)
1212 {
1213 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1214 
1215 	vchan_synchronize(&sdmac->vc);
1216 
1217 	flush_work(&sdmac->terminate_worker);
1218 }
1219 
1220 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1221 {
1222 	struct sdma_engine *sdma = sdmac->sdma;
1223 
1224 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1225 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1226 
1227 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1228 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1229 
1230 	if (sdmac->event_id0 > 31)
1231 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1232 
1233 	if (sdmac->event_id1 > 31)
1234 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1235 
1236 	/*
1237 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1238 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1239 	 * r0(event_mask[1]) and r1(event_mask[0]).
1240 	 */
1241 	if (lwml > hwml) {
1242 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1243 						SDMA_WATERMARK_LEVEL_HWML);
1244 		sdmac->watermark_level |= hwml;
1245 		sdmac->watermark_level |= lwml << 16;
1246 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1247 	}
1248 
1249 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1250 			sdmac->per_address2 <= sdma->spba_end_addr)
1251 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1252 
1253 	if (sdmac->per_address >= sdma->spba_start_addr &&
1254 			sdmac->per_address <= sdma->spba_end_addr)
1255 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1256 
1257 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1258 }
1259 
1260 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1261 {
1262 	unsigned int n_fifos;
1263 	unsigned int stride_fifos;
1264 	unsigned int words_per_fifo;
1265 
1266 	if (sdmac->sw_done)
1267 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1268 
1269 	if (sdmac->direction == DMA_DEV_TO_MEM) {
1270 		n_fifos = sdmac->n_fifos_src;
1271 		stride_fifos = sdmac->stride_fifos_src;
1272 	} else {
1273 		n_fifos = sdmac->n_fifos_dst;
1274 		stride_fifos = sdmac->stride_fifos_dst;
1275 	}
1276 
1277 	words_per_fifo = sdmac->words_per_fifo;
1278 
1279 	sdmac->watermark_level |=
1280 			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1281 	sdmac->watermark_level |=
1282 			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1283 	if (words_per_fifo)
1284 		sdmac->watermark_level |=
1285 			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1286 }
1287 
1288 static int sdma_config_channel(struct dma_chan *chan)
1289 {
1290 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1291 	int ret;
1292 
1293 	sdma_disable_channel(chan);
1294 
1295 	sdmac->event_mask[0] = 0;
1296 	sdmac->event_mask[1] = 0;
1297 	sdmac->shp_addr = 0;
1298 	sdmac->per_addr = 0;
1299 
1300 	switch (sdmac->peripheral_type) {
1301 	case IMX_DMATYPE_DSP:
1302 		sdma_config_ownership(sdmac, false, true, true);
1303 		break;
1304 	case IMX_DMATYPE_MEMORY:
1305 		sdma_config_ownership(sdmac, false, true, false);
1306 		break;
1307 	default:
1308 		sdma_config_ownership(sdmac, true, true, false);
1309 		break;
1310 	}
1311 
1312 	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1313 	if (ret)
1314 		return ret;
1315 
1316 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1317 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1318 		/* Handle multiple event channels differently */
1319 		if (sdmac->event_id1) {
1320 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1321 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1322 				sdma_set_watermarklevel_for_p2p(sdmac);
1323 		} else {
1324 			if (sdmac->peripheral_type ==
1325 					IMX_DMATYPE_MULTI_SAI)
1326 				sdma_set_watermarklevel_for_sais(sdmac);
1327 
1328 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1329 		}
1330 
1331 		/* Address */
1332 		sdmac->shp_addr = sdmac->per_address;
1333 		sdmac->per_addr = sdmac->per_address2;
1334 	} else {
1335 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1342 				     unsigned int priority)
1343 {
1344 	struct sdma_engine *sdma = sdmac->sdma;
1345 	int channel = sdmac->channel;
1346 
1347 	if (priority < MXC_SDMA_MIN_PRIORITY
1348 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1349 		return -EINVAL;
1350 	}
1351 
1352 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1353 
1354 	return 0;
1355 }
1356 
1357 static int sdma_request_channel0(struct sdma_engine *sdma)
1358 {
1359 	int ret = -EBUSY;
1360 
1361 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1362 				       GFP_NOWAIT);
1363 	if (!sdma->bd0) {
1364 		ret = -ENOMEM;
1365 		goto out;
1366 	}
1367 
1368 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1369 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1370 
1371 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1372 	return 0;
1373 out:
1374 
1375 	return ret;
1376 }
1377 
1378 
1379 static int sdma_alloc_bd(struct sdma_desc *desc)
1380 {
1381 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1382 	int ret = 0;
1383 
1384 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1385 				      &desc->bd_phys, GFP_NOWAIT);
1386 	if (!desc->bd) {
1387 		ret = -ENOMEM;
1388 		goto out;
1389 	}
1390 out:
1391 	return ret;
1392 }
1393 
1394 static void sdma_free_bd(struct sdma_desc *desc)
1395 {
1396 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1397 
1398 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1399 			  desc->bd_phys);
1400 }
1401 
1402 static void sdma_desc_free(struct virt_dma_desc *vd)
1403 {
1404 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1405 
1406 	sdma_free_bd(desc);
1407 	kfree(desc);
1408 }
1409 
1410 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1411 {
1412 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1413 	struct imx_dma_data *data = chan->private;
1414 	struct imx_dma_data mem_data;
1415 	int prio, ret;
1416 
1417 	/*
1418 	 * MEMCPY may never setup chan->private by filter function such as
1419 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1420 	 * Please note in any other slave case, you have to setup chan->private
1421 	 * with 'struct imx_dma_data' in your own filter function if you want to
1422 	 * request dma channel by dma_request_channel() rather than
1423 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1424 	 * to warn you to correct your filter function.
1425 	 */
1426 	if (!data) {
1427 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1428 		mem_data.priority = 2;
1429 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1430 		mem_data.dma_request = 0;
1431 		mem_data.dma_request2 = 0;
1432 		data = &mem_data;
1433 
1434 		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1435 		if (ret)
1436 			return ret;
1437 	}
1438 
1439 	switch (data->priority) {
1440 	case DMA_PRIO_HIGH:
1441 		prio = 3;
1442 		break;
1443 	case DMA_PRIO_MEDIUM:
1444 		prio = 2;
1445 		break;
1446 	case DMA_PRIO_LOW:
1447 	default:
1448 		prio = 1;
1449 		break;
1450 	}
1451 
1452 	sdmac->peripheral_type = data->peripheral_type;
1453 	sdmac->event_id0 = data->dma_request;
1454 	sdmac->event_id1 = data->dma_request2;
1455 
1456 	ret = clk_enable(sdmac->sdma->clk_ipg);
1457 	if (ret)
1458 		return ret;
1459 	ret = clk_enable(sdmac->sdma->clk_ahb);
1460 	if (ret)
1461 		goto disable_clk_ipg;
1462 
1463 	ret = sdma_set_channel_priority(sdmac, prio);
1464 	if (ret)
1465 		goto disable_clk_ahb;
1466 
1467 	return 0;
1468 
1469 disable_clk_ahb:
1470 	clk_disable(sdmac->sdma->clk_ahb);
1471 disable_clk_ipg:
1472 	clk_disable(sdmac->sdma->clk_ipg);
1473 	return ret;
1474 }
1475 
1476 static void sdma_free_chan_resources(struct dma_chan *chan)
1477 {
1478 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1479 	struct sdma_engine *sdma = sdmac->sdma;
1480 
1481 	sdma_terminate_all(chan);
1482 
1483 	sdma_channel_synchronize(chan);
1484 
1485 	sdma_event_disable(sdmac, sdmac->event_id0);
1486 	if (sdmac->event_id1)
1487 		sdma_event_disable(sdmac, sdmac->event_id1);
1488 
1489 	sdmac->event_id0 = 0;
1490 	sdmac->event_id1 = 0;
1491 
1492 	sdma_set_channel_priority(sdmac, 0);
1493 
1494 	clk_disable(sdma->clk_ipg);
1495 	clk_disable(sdma->clk_ahb);
1496 }
1497 
1498 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1499 				enum dma_transfer_direction direction, u32 bds)
1500 {
1501 	struct sdma_desc *desc;
1502 
1503 	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1504 		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1505 		goto err_out;
1506 	}
1507 
1508 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1509 	if (!desc)
1510 		goto err_out;
1511 
1512 	sdmac->status = DMA_IN_PROGRESS;
1513 	sdmac->direction = direction;
1514 	sdmac->flags = 0;
1515 
1516 	desc->chn_count = 0;
1517 	desc->chn_real_count = 0;
1518 	desc->buf_tail = 0;
1519 	desc->buf_ptail = 0;
1520 	desc->sdmac = sdmac;
1521 	desc->num_bd = bds;
1522 
1523 	if (bds && sdma_alloc_bd(desc))
1524 		goto err_desc_out;
1525 
1526 	/* No slave_config called in MEMCPY case, so do here */
1527 	if (direction == DMA_MEM_TO_MEM)
1528 		sdma_config_ownership(sdmac, false, true, false);
1529 
1530 	if (sdma_load_context(sdmac))
1531 		goto err_bd_out;
1532 
1533 	return desc;
1534 
1535 err_bd_out:
1536 	sdma_free_bd(desc);
1537 err_desc_out:
1538 	kfree(desc);
1539 err_out:
1540 	return NULL;
1541 }
1542 
1543 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1544 		struct dma_chan *chan, dma_addr_t dma_dst,
1545 		dma_addr_t dma_src, size_t len, unsigned long flags)
1546 {
1547 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1548 	struct sdma_engine *sdma = sdmac->sdma;
1549 	int channel = sdmac->channel;
1550 	size_t count;
1551 	int i = 0, param;
1552 	struct sdma_buffer_descriptor *bd;
1553 	struct sdma_desc *desc;
1554 
1555 	if (!chan || !len)
1556 		return NULL;
1557 
1558 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1559 		&dma_src, &dma_dst, len, channel);
1560 
1561 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1562 					len / SDMA_BD_MAX_CNT + 1);
1563 	if (!desc)
1564 		return NULL;
1565 
1566 	do {
1567 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1568 		bd = &desc->bd[i];
1569 		bd->buffer_addr = dma_src;
1570 		bd->ext_buffer_addr = dma_dst;
1571 		bd->mode.count = count;
1572 		desc->chn_count += count;
1573 		bd->mode.command = 0;
1574 
1575 		dma_src += count;
1576 		dma_dst += count;
1577 		len -= count;
1578 		i++;
1579 
1580 		param = BD_DONE | BD_EXTD | BD_CONT;
1581 		/* last bd */
1582 		if (!len) {
1583 			param |= BD_INTR;
1584 			param |= BD_LAST;
1585 			param &= ~BD_CONT;
1586 		}
1587 
1588 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1589 				i, count, bd->buffer_addr,
1590 				param & BD_WRAP ? "wrap" : "",
1591 				param & BD_INTR ? " intr" : "");
1592 
1593 		bd->mode.status = param;
1594 	} while (len);
1595 
1596 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1597 }
1598 
1599 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1600 		struct dma_chan *chan, struct scatterlist *sgl,
1601 		unsigned int sg_len, enum dma_transfer_direction direction,
1602 		unsigned long flags, void *context)
1603 {
1604 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1605 	struct sdma_engine *sdma = sdmac->sdma;
1606 	int i, count;
1607 	int channel = sdmac->channel;
1608 	struct scatterlist *sg;
1609 	struct sdma_desc *desc;
1610 
1611 	sdma_config_write(chan, &sdmac->slave_config, direction);
1612 
1613 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1614 	if (!desc)
1615 		goto err_out;
1616 
1617 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1618 			sg_len, channel);
1619 
1620 	for_each_sg(sgl, sg, sg_len, i) {
1621 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1622 		int param;
1623 
1624 		bd->buffer_addr = sg->dma_address;
1625 
1626 		count = sg_dma_len(sg);
1627 
1628 		if (count > SDMA_BD_MAX_CNT) {
1629 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1630 					channel, count, SDMA_BD_MAX_CNT);
1631 			goto err_bd_out;
1632 		}
1633 
1634 		bd->mode.count = count;
1635 		desc->chn_count += count;
1636 
1637 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1638 			goto err_bd_out;
1639 
1640 		switch (sdmac->word_size) {
1641 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1642 			bd->mode.command = 0;
1643 			if (count & 3 || sg->dma_address & 3)
1644 				goto err_bd_out;
1645 			break;
1646 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1647 			bd->mode.command = 2;
1648 			if (count & 1 || sg->dma_address & 1)
1649 				goto err_bd_out;
1650 			break;
1651 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1652 			bd->mode.command = 1;
1653 			break;
1654 		default:
1655 			goto err_bd_out;
1656 		}
1657 
1658 		param = BD_DONE | BD_EXTD | BD_CONT;
1659 
1660 		if (i + 1 == sg_len) {
1661 			param |= BD_INTR;
1662 			param |= BD_LAST;
1663 			param &= ~BD_CONT;
1664 		}
1665 
1666 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1667 				i, count, (u64)sg->dma_address,
1668 				param & BD_WRAP ? "wrap" : "",
1669 				param & BD_INTR ? " intr" : "");
1670 
1671 		bd->mode.status = param;
1672 	}
1673 
1674 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1675 err_bd_out:
1676 	sdma_free_bd(desc);
1677 	kfree(desc);
1678 err_out:
1679 	sdmac->status = DMA_ERROR;
1680 	return NULL;
1681 }
1682 
1683 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1684 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1685 		size_t period_len, enum dma_transfer_direction direction,
1686 		unsigned long flags)
1687 {
1688 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1689 	struct sdma_engine *sdma = sdmac->sdma;
1690 	int num_periods = 0;
1691 	int channel = sdmac->channel;
1692 	int i = 0, buf = 0;
1693 	struct sdma_desc *desc;
1694 
1695 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1696 
1697 	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1698 		num_periods = buf_len / period_len;
1699 
1700 	sdma_config_write(chan, &sdmac->slave_config, direction);
1701 
1702 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1703 	if (!desc)
1704 		goto err_out;
1705 
1706 	desc->period_len = period_len;
1707 
1708 	sdmac->flags |= IMX_DMA_SG_LOOP;
1709 
1710 	if (period_len > SDMA_BD_MAX_CNT) {
1711 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1712 				channel, period_len, SDMA_BD_MAX_CNT);
1713 		goto err_bd_out;
1714 	}
1715 
1716 	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1717 		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718 
1719 	while (buf < buf_len) {
1720 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1721 		int param;
1722 
1723 		bd->buffer_addr = dma_addr;
1724 
1725 		bd->mode.count = period_len;
1726 
1727 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1728 			goto err_bd_out;
1729 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1730 			bd->mode.command = 0;
1731 		else
1732 			bd->mode.command = sdmac->word_size;
1733 
1734 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1735 		if (i + 1 == num_periods)
1736 			param |= BD_WRAP;
1737 
1738 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1739 				i, period_len, (u64)dma_addr,
1740 				param & BD_WRAP ? "wrap" : "",
1741 				param & BD_INTR ? " intr" : "");
1742 
1743 		bd->mode.status = param;
1744 
1745 		dma_addr += period_len;
1746 		buf += period_len;
1747 
1748 		i++;
1749 	}
1750 
1751 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1752 err_bd_out:
1753 	sdma_free_bd(desc);
1754 	kfree(desc);
1755 err_out:
1756 	sdmac->status = DMA_ERROR;
1757 	return NULL;
1758 }
1759 
1760 static int sdma_config_write(struct dma_chan *chan,
1761 		       struct dma_slave_config *dmaengine_cfg,
1762 		       enum dma_transfer_direction direction)
1763 {
1764 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1765 
1766 	if (direction == DMA_DEV_TO_MEM) {
1767 		sdmac->per_address = dmaengine_cfg->src_addr;
1768 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1769 			dmaengine_cfg->src_addr_width;
1770 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1771 	} else if (direction == DMA_DEV_TO_DEV) {
1772 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1773 		sdmac->per_address = dmaengine_cfg->dst_addr;
1774 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1775 			SDMA_WATERMARK_LEVEL_LWML;
1776 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1777 			SDMA_WATERMARK_LEVEL_HWML;
1778 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1779 	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1780 		sdmac->per_address = dmaengine_cfg->dst_addr;
1781 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1782 		sdmac->watermark_level = 0;
1783 	} else {
1784 		sdmac->per_address = dmaengine_cfg->dst_addr;
1785 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1786 			dmaengine_cfg->dst_addr_width;
1787 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1788 	}
1789 	sdmac->direction = direction;
1790 	return sdma_config_channel(chan);
1791 }
1792 
1793 static int sdma_config(struct dma_chan *chan,
1794 		       struct dma_slave_config *dmaengine_cfg)
1795 {
1796 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1797 	struct sdma_engine *sdma = sdmac->sdma;
1798 
1799 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1800 
1801 	if (dmaengine_cfg->peripheral_config) {
1802 		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1803 		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1804 			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1805 				dmaengine_cfg->peripheral_size,
1806 				sizeof(struct sdma_peripheral_config));
1807 			return -EINVAL;
1808 		}
1809 		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1810 		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1811 		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1812 		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1813 		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1814 		sdmac->sw_done = sdmacfg->sw_done;
1815 	}
1816 
1817 	/* Set ENBLn earlier to make sure dma request triggered after that */
1818 	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1819 		return -EINVAL;
1820 	sdma_event_enable(sdmac, sdmac->event_id0);
1821 
1822 	if (sdmac->event_id1) {
1823 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1824 			return -EINVAL;
1825 		sdma_event_enable(sdmac, sdmac->event_id1);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1832 				      dma_cookie_t cookie,
1833 				      struct dma_tx_state *txstate)
1834 {
1835 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1836 	struct sdma_desc *desc = NULL;
1837 	u32 residue;
1838 	struct virt_dma_desc *vd;
1839 	enum dma_status ret;
1840 	unsigned long flags;
1841 
1842 	ret = dma_cookie_status(chan, cookie, txstate);
1843 	if (ret == DMA_COMPLETE || !txstate)
1844 		return ret;
1845 
1846 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1847 
1848 	vd = vchan_find_desc(&sdmac->vc, cookie);
1849 	if (vd)
1850 		desc = to_sdma_desc(&vd->tx);
1851 	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1852 		desc = sdmac->desc;
1853 
1854 	if (desc) {
1855 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1856 			residue = (desc->num_bd - desc->buf_ptail) *
1857 				desc->period_len - desc->chn_real_count;
1858 		else
1859 			residue = desc->chn_count - desc->chn_real_count;
1860 	} else {
1861 		residue = 0;
1862 	}
1863 
1864 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1865 
1866 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1867 			 residue);
1868 
1869 	return sdmac->status;
1870 }
1871 
1872 static void sdma_issue_pending(struct dma_chan *chan)
1873 {
1874 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1875 	unsigned long flags;
1876 
1877 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1878 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1879 		sdma_start_desc(sdmac);
1880 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1881 }
1882 
1883 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1884 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1885 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	45
1886 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	46
1887 
1888 static void sdma_add_scripts(struct sdma_engine *sdma,
1889 			     const struct sdma_script_start_addrs *addr)
1890 {
1891 	s32 *addr_arr = (u32 *)addr;
1892 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1893 	int i;
1894 
1895 	/* use the default firmware in ROM if missing external firmware */
1896 	if (!sdma->script_number)
1897 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1898 
1899 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1900 				  / sizeof(s32)) {
1901 		dev_err(sdma->dev,
1902 			"SDMA script number %d not match with firmware.\n",
1903 			sdma->script_number);
1904 		return;
1905 	}
1906 
1907 	for (i = 0; i < sdma->script_number; i++)
1908 		if (addr_arr[i] > 0)
1909 			saddr_arr[i] = addr_arr[i];
1910 
1911 	/*
1912 	 * For compatibility with NXP internal legacy kernel before 4.19 which
1913 	 * is based on uart ram script and mainline kernel based on uart rom
1914 	 * script, both uart ram/rom scripts are present in newer sdma
1915 	 * firmware. Use the rom versions if they are present (V3 or newer).
1916 	 */
1917 	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1918 		if (addr->uart_2_mcu_rom_addr)
1919 			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1920 		if (addr->uartsh_2_mcu_rom_addr)
1921 			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1922 	}
1923 }
1924 
1925 static void sdma_load_firmware(const struct firmware *fw, void *context)
1926 {
1927 	struct sdma_engine *sdma = context;
1928 	const struct sdma_firmware_header *header;
1929 	const struct sdma_script_start_addrs *addr;
1930 	unsigned short *ram_code;
1931 
1932 	if (!fw) {
1933 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1934 		/* In this case we just use the ROM firmware. */
1935 		return;
1936 	}
1937 
1938 	if (fw->size < sizeof(*header))
1939 		goto err_firmware;
1940 
1941 	header = (struct sdma_firmware_header *)fw->data;
1942 
1943 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1944 		goto err_firmware;
1945 	if (header->ram_code_start + header->ram_code_size > fw->size)
1946 		goto err_firmware;
1947 	switch (header->version_major) {
1948 	case 1:
1949 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1950 		break;
1951 	case 2:
1952 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1953 		break;
1954 	case 3:
1955 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1956 		break;
1957 	case 4:
1958 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1959 		break;
1960 	default:
1961 		dev_err(sdma->dev, "unknown firmware version\n");
1962 		goto err_firmware;
1963 	}
1964 
1965 	addr = (void *)header + header->script_addrs_start;
1966 	ram_code = (void *)header + header->ram_code_start;
1967 
1968 	clk_enable(sdma->clk_ipg);
1969 	clk_enable(sdma->clk_ahb);
1970 	/* download the RAM image for SDMA */
1971 	sdma_load_script(sdma, ram_code,
1972 			 header->ram_code_size,
1973 			 addr->ram_code_start_addr);
1974 	clk_disable(sdma->clk_ipg);
1975 	clk_disable(sdma->clk_ahb);
1976 
1977 	sdma_add_scripts(sdma, addr);
1978 
1979 	sdma->fw_loaded = true;
1980 
1981 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1982 		 header->version_major,
1983 		 header->version_minor);
1984 
1985 err_firmware:
1986 	release_firmware(fw);
1987 }
1988 
1989 #define EVENT_REMAP_CELLS 3
1990 
1991 static int sdma_event_remap(struct sdma_engine *sdma)
1992 {
1993 	struct device_node *np = sdma->dev->of_node;
1994 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1995 	struct property *event_remap;
1996 	struct regmap *gpr;
1997 	char propname[] = "fsl,sdma-event-remap";
1998 	u32 reg, val, shift, num_map, i;
1999 	int ret = 0;
2000 
2001 	if (IS_ERR(np) || !gpr_np)
2002 		goto out;
2003 
2004 	event_remap = of_find_property(np, propname, NULL);
2005 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2006 	if (!num_map) {
2007 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2008 		goto out;
2009 	} else if (num_map % EVENT_REMAP_CELLS) {
2010 		dev_err(sdma->dev, "the property %s must modulo %d\n",
2011 				propname, EVENT_REMAP_CELLS);
2012 		ret = -EINVAL;
2013 		goto out;
2014 	}
2015 
2016 	gpr = syscon_node_to_regmap(gpr_np);
2017 	if (IS_ERR(gpr)) {
2018 		dev_err(sdma->dev, "failed to get gpr regmap\n");
2019 		ret = PTR_ERR(gpr);
2020 		goto out;
2021 	}
2022 
2023 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2024 		ret = of_property_read_u32_index(np, propname, i, &reg);
2025 		if (ret) {
2026 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2027 					propname, i);
2028 			goto out;
2029 		}
2030 
2031 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2032 		if (ret) {
2033 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2034 					propname, i + 1);
2035 			goto out;
2036 		}
2037 
2038 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2039 		if (ret) {
2040 			dev_err(sdma->dev, "failed to read property %s index %d\n",
2041 					propname, i + 2);
2042 			goto out;
2043 		}
2044 
2045 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2046 	}
2047 
2048 out:
2049 	if (gpr_np)
2050 		of_node_put(gpr_np);
2051 
2052 	return ret;
2053 }
2054 
2055 static int sdma_get_firmware(struct sdma_engine *sdma,
2056 		const char *fw_name)
2057 {
2058 	int ret;
2059 
2060 	ret = request_firmware_nowait(THIS_MODULE,
2061 			FW_ACTION_UEVENT, fw_name, sdma->dev,
2062 			GFP_KERNEL, sdma, sdma_load_firmware);
2063 
2064 	return ret;
2065 }
2066 
2067 static int sdma_init(struct sdma_engine *sdma)
2068 {
2069 	int i, ret;
2070 	dma_addr_t ccb_phys;
2071 
2072 	ret = clk_enable(sdma->clk_ipg);
2073 	if (ret)
2074 		return ret;
2075 	ret = clk_enable(sdma->clk_ahb);
2076 	if (ret)
2077 		goto disable_clk_ipg;
2078 
2079 	if (sdma->drvdata->check_ratio &&
2080 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2081 		sdma->clk_ratio = 1;
2082 
2083 	/* Be sure SDMA has not started yet */
2084 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2085 
2086 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
2087 			MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2088 			sizeof(struct sdma_context_data),
2089 			&ccb_phys, GFP_KERNEL);
2090 
2091 	if (!sdma->channel_control) {
2092 		ret = -ENOMEM;
2093 		goto err_dma_alloc;
2094 	}
2095 
2096 	sdma->context = (void *)sdma->channel_control +
2097 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2098 	sdma->context_phys = ccb_phys +
2099 		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2100 
2101 	/* disable all channels */
2102 	for (i = 0; i < sdma->drvdata->num_events; i++)
2103 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2104 
2105 	/* All channels have priority 0 */
2106 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2107 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2108 
2109 	ret = sdma_request_channel0(sdma);
2110 	if (ret)
2111 		goto err_dma_alloc;
2112 
2113 	sdma_config_ownership(&sdma->channel[0], false, true, false);
2114 
2115 	/* Set Command Channel (Channel Zero) */
2116 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2117 
2118 	/* Set bits of CONFIG register but with static context switching */
2119 	if (sdma->clk_ratio)
2120 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2121 	else
2122 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2123 
2124 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2125 
2126 	/* Initializes channel's priorities */
2127 	sdma_set_channel_priority(&sdma->channel[0], 7);
2128 
2129 	clk_disable(sdma->clk_ipg);
2130 	clk_disable(sdma->clk_ahb);
2131 
2132 	return 0;
2133 
2134 err_dma_alloc:
2135 	clk_disable(sdma->clk_ahb);
2136 disable_clk_ipg:
2137 	clk_disable(sdma->clk_ipg);
2138 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2139 	return ret;
2140 }
2141 
2142 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2143 {
2144 	struct sdma_channel *sdmac = to_sdma_chan(chan);
2145 	struct imx_dma_data *data = fn_param;
2146 
2147 	if (!imx_dma_is_general_purpose(chan))
2148 		return false;
2149 
2150 	sdmac->data = *data;
2151 	chan->private = &sdmac->data;
2152 
2153 	return true;
2154 }
2155 
2156 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2157 				   struct of_dma *ofdma)
2158 {
2159 	struct sdma_engine *sdma = ofdma->of_dma_data;
2160 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2161 	struct imx_dma_data data;
2162 
2163 	if (dma_spec->args_count != 3)
2164 		return NULL;
2165 
2166 	data.dma_request = dma_spec->args[0];
2167 	data.peripheral_type = dma_spec->args[1];
2168 	data.priority = dma_spec->args[2];
2169 	/*
2170 	 * init dma_request2 to zero, which is not used by the dts.
2171 	 * For P2P, dma_request2 is init from dma_request_channel(),
2172 	 * chan->private will point to the imx_dma_data, and in
2173 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2174 	 * be set to sdmac->event_id1.
2175 	 */
2176 	data.dma_request2 = 0;
2177 
2178 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2179 				     ofdma->of_node);
2180 }
2181 
2182 static int sdma_probe(struct platform_device *pdev)
2183 {
2184 	struct device_node *np = pdev->dev.of_node;
2185 	struct device_node *spba_bus;
2186 	const char *fw_name;
2187 	int ret;
2188 	int irq;
2189 	struct resource spba_res;
2190 	int i;
2191 	struct sdma_engine *sdma;
2192 	s32 *saddr_arr;
2193 
2194 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2195 	if (ret)
2196 		return ret;
2197 
2198 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2199 	if (!sdma)
2200 		return -ENOMEM;
2201 
2202 	spin_lock_init(&sdma->channel_0_lock);
2203 
2204 	sdma->dev = &pdev->dev;
2205 	sdma->drvdata = of_device_get_match_data(sdma->dev);
2206 
2207 	irq = platform_get_irq(pdev, 0);
2208 	if (irq < 0)
2209 		return irq;
2210 
2211 	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2212 	if (IS_ERR(sdma->regs))
2213 		return PTR_ERR(sdma->regs);
2214 
2215 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2216 	if (IS_ERR(sdma->clk_ipg))
2217 		return PTR_ERR(sdma->clk_ipg);
2218 
2219 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2220 	if (IS_ERR(sdma->clk_ahb))
2221 		return PTR_ERR(sdma->clk_ahb);
2222 
2223 	ret = clk_prepare(sdma->clk_ipg);
2224 	if (ret)
2225 		return ret;
2226 
2227 	ret = clk_prepare(sdma->clk_ahb);
2228 	if (ret)
2229 		goto err_clk;
2230 
2231 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2232 				dev_name(&pdev->dev), sdma);
2233 	if (ret)
2234 		goto err_irq;
2235 
2236 	sdma->irq = irq;
2237 
2238 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2239 	if (!sdma->script_addrs) {
2240 		ret = -ENOMEM;
2241 		goto err_irq;
2242 	}
2243 
2244 	/* initially no scripts available */
2245 	saddr_arr = (s32 *)sdma->script_addrs;
2246 	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2247 		saddr_arr[i] = -EINVAL;
2248 
2249 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2250 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2251 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2252 	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2253 
2254 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2255 	/* Initialize channel parameters */
2256 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2257 		struct sdma_channel *sdmac = &sdma->channel[i];
2258 
2259 		sdmac->sdma = sdma;
2260 
2261 		sdmac->channel = i;
2262 		sdmac->vc.desc_free = sdma_desc_free;
2263 		INIT_LIST_HEAD(&sdmac->terminated);
2264 		INIT_WORK(&sdmac->terminate_worker,
2265 				sdma_channel_terminate_work);
2266 		/*
2267 		 * Add the channel to the DMAC list. Do not add channel 0 though
2268 		 * because we need it internally in the SDMA driver. This also means
2269 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2270 		 */
2271 		if (i)
2272 			vchan_init(&sdmac->vc, &sdma->dma_device);
2273 	}
2274 
2275 	ret = sdma_init(sdma);
2276 	if (ret)
2277 		goto err_init;
2278 
2279 	ret = sdma_event_remap(sdma);
2280 	if (ret)
2281 		goto err_init;
2282 
2283 	if (sdma->drvdata->script_addrs)
2284 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2285 
2286 	sdma->dma_device.dev = &pdev->dev;
2287 
2288 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2289 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2290 	sdma->dma_device.device_tx_status = sdma_tx_status;
2291 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2292 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2293 	sdma->dma_device.device_config = sdma_config;
2294 	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2295 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2296 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2297 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2298 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2299 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2300 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2301 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2302 	sdma->dma_device.copy_align = 2;
2303 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2304 
2305 	platform_set_drvdata(pdev, sdma);
2306 
2307 	ret = dma_async_device_register(&sdma->dma_device);
2308 	if (ret) {
2309 		dev_err(&pdev->dev, "unable to register\n");
2310 		goto err_init;
2311 	}
2312 
2313 	if (np) {
2314 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2315 		if (ret) {
2316 			dev_err(&pdev->dev, "failed to register controller\n");
2317 			goto err_register;
2318 		}
2319 
2320 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2321 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2322 		if (!ret) {
2323 			sdma->spba_start_addr = spba_res.start;
2324 			sdma->spba_end_addr = spba_res.end;
2325 		}
2326 		of_node_put(spba_bus);
2327 	}
2328 
2329 	/*
2330 	 * Because that device tree does not encode ROM script address,
2331 	 * the RAM script in firmware is mandatory for device tree
2332 	 * probe, otherwise it fails.
2333 	 */
2334 	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2335 				      &fw_name);
2336 	if (ret) {
2337 		dev_warn(&pdev->dev, "failed to get firmware name\n");
2338 	} else {
2339 		ret = sdma_get_firmware(sdma, fw_name);
2340 		if (ret)
2341 			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2342 	}
2343 
2344 	return 0;
2345 
2346 err_register:
2347 	dma_async_device_unregister(&sdma->dma_device);
2348 err_init:
2349 	kfree(sdma->script_addrs);
2350 err_irq:
2351 	clk_unprepare(sdma->clk_ahb);
2352 err_clk:
2353 	clk_unprepare(sdma->clk_ipg);
2354 	return ret;
2355 }
2356 
2357 static void sdma_remove(struct platform_device *pdev)
2358 {
2359 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2360 	int i;
2361 
2362 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2363 	dma_async_device_unregister(&sdma->dma_device);
2364 	kfree(sdma->script_addrs);
2365 	clk_unprepare(sdma->clk_ahb);
2366 	clk_unprepare(sdma->clk_ipg);
2367 	/* Kill the tasklet */
2368 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2369 		struct sdma_channel *sdmac = &sdma->channel[i];
2370 
2371 		tasklet_kill(&sdmac->vc.task);
2372 		sdma_free_chan_resources(&sdmac->vc.chan);
2373 	}
2374 
2375 	platform_set_drvdata(pdev, NULL);
2376 }
2377 
2378 static struct platform_driver sdma_driver = {
2379 	.driver		= {
2380 		.name	= "imx-sdma",
2381 		.of_match_table = sdma_dt_ids,
2382 	},
2383 	.remove_new	= sdma_remove,
2384 	.probe		= sdma_probe,
2385 };
2386 
2387 module_platform_driver(sdma_driver);
2388 
2389 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2390 MODULE_DESCRIPTION("i.MX SDMA driver");
2391 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2392 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2393 #endif
2394 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2395 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2396 #endif
2397 MODULE_LICENSE("GPL");
2398