xref: /linux/drivers/dma/imx-sdma.c (revision d2f5a7311bcaed681a41cb3419b8fe92a7b68bf5)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 
50 #include "dmaengine.h"
51 
52 /* SDMA registers */
53 #define SDMA_H_C0PTR		0x000
54 #define SDMA_H_INTR		0x004
55 #define SDMA_H_STATSTOP		0x008
56 #define SDMA_H_START		0x00c
57 #define SDMA_H_EVTOVR		0x010
58 #define SDMA_H_DSPOVR		0x014
59 #define SDMA_H_HOSTOVR		0x018
60 #define SDMA_H_EVTPEND		0x01c
61 #define SDMA_H_DSPENBL		0x020
62 #define SDMA_H_RESET		0x024
63 #define SDMA_H_EVTERR		0x028
64 #define SDMA_H_INTRMSK		0x02c
65 #define SDMA_H_PSW		0x030
66 #define SDMA_H_EVTERRDBG	0x034
67 #define SDMA_H_CONFIG		0x038
68 #define SDMA_ONCE_ENB		0x040
69 #define SDMA_ONCE_DATA		0x044
70 #define SDMA_ONCE_INSTR		0x048
71 #define SDMA_ONCE_STAT		0x04c
72 #define SDMA_ONCE_CMD		0x050
73 #define SDMA_EVT_MIRROR		0x054
74 #define SDMA_ILLINSTADDR	0x058
75 #define SDMA_CHN0ADDR		0x05c
76 #define SDMA_ONCE_RTB		0x060
77 #define SDMA_XTRIG_CONF1	0x070
78 #define SDMA_XTRIG_CONF2	0x074
79 #define SDMA_CHNENBL0_IMX35	0x200
80 #define SDMA_CHNENBL0_IMX31	0x080
81 #define SDMA_CHNPRI_0		0x100
82 
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93 
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101 
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106 
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113 
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130 
131 /*
132  *  p_2_p watermark_level description
133  *	Bits		Name			Description
134  *	0-7		Lower WML		Lower watermark level
135  *	8		PS			1: Pad Swallowing
136  *						0: No Pad Swallowing
137  *	9		PA			1: Pad Adding
138  *						0: No Pad Adding
139  *	10		SPDIF			If this bit is set both source
140  *						and destination are on SPBA
141  *	11		Source Bit(SP)		1: Source on SPBA
142  *						0: Source on AIPS
143  *	12		Destination Bit(DP)	1: Destination on SPBA
144  *						0: Destination on AIPS
145  *	13-15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
180 
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185 	u32 count   : 16; /* size of the buffer pointed by this BD */
186 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187 	u32 command :  8; /* command mostlky used for channel 0 */
188 };
189 
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194 	struct sdma_mode_count  mode;
195 	u32 buffer_addr;	/* address of the buffer described */
196 	u32 ext_buffer_addr;	/* extended buffer address */
197 } __attribute__ ((packed));
198 
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr	current buffer descriptor processed
203  * @base_bd_ptr		first element of buffer descriptor array
204  * @unused		padding. The SDMA engine expects an array of 128 byte
205  *			control blocks
206  */
207 struct sdma_channel_control {
208 	u32 current_bd_ptr;
209 	u32 base_bd_ptr;
210 	u32 unused[2];
211 } __attribute__ ((packed));
212 
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:		program counter
217  * @t:		test bit: status of arithmetic & test instruction
218  * @rpc:	return program counter
219  * @sf:		source fault while loading data
220  * @spc:	loop start program counter
221  * @df:		destination fault while storing data
222  * @epc:	loop end program counter
223  * @lm:		loop mode
224  */
225 struct sdma_state_registers {
226 	u32 pc     :14;
227 	u32 unused1: 1;
228 	u32 t      : 1;
229 	u32 rpc    :14;
230 	u32 unused0: 1;
231 	u32 sf     : 1;
232 	u32 spc    :14;
233 	u32 unused2: 1;
234 	u32 df     : 1;
235 	u32 epc    :14;
236 	u32 lm     : 2;
237 } __attribute__ ((packed));
238 
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:	channel state bits
243  * @gReg:		general registers
244  * @mda:		burst dma destination address register
245  * @msa:		burst dma source address register
246  * @ms:			burst dma status register
247  * @md:			burst dma data register
248  * @pda:		peripheral dma destination address register
249  * @psa:		peripheral dma source address register
250  * @ps:			peripheral dma status register
251  * @pd:			peripheral dma data register
252  * @ca:			CRC polynomial register
253  * @cs:			CRC accumulator register
254  * @dda:		dedicated core destination address register
255  * @dsa:		dedicated core source address register
256  * @ds:			dedicated core status register
257  * @dd:			dedicated core data register
258  */
259 struct sdma_context_data {
260 	struct sdma_state_registers  channel_state;
261 	u32  gReg[8];
262 	u32  mda;
263 	u32  msa;
264 	u32  ms;
265 	u32  md;
266 	u32  pda;
267 	u32  psa;
268 	u32  ps;
269 	u32  pd;
270 	u32  ca;
271 	u32  cs;
272 	u32  dda;
273 	u32  dsa;
274 	u32  ds;
275 	u32  dd;
276 	u32  scratch0;
277 	u32  scratch1;
278 	u32  scratch2;
279 	u32  scratch3;
280 	u32  scratch4;
281 	u32  scratch5;
282 	u32  scratch6;
283 	u32  scratch7;
284 } __attribute__ ((packed));
285 
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287 
288 struct sdma_engine;
289 
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma		pointer to the SDMA engine for this channel
294  * @channel		the channel number, matches dmaengine chan_id + 1
295  * @direction		transfer type. Needed for setting SDMA script
296  * @peripheral_type	Peripheral type. Needed for setting SDMA script
297  * @event_id0		aka dma request line
298  * @event_id1		for channels that use 2 events
299  * @word_size		peripheral access size
300  * @buf_tail		ID of the buffer that was processed
301  * @num_bd		max NUM_BD. number of descriptors currently handling
302  */
303 struct sdma_channel {
304 	struct sdma_engine		*sdma;
305 	unsigned int			channel;
306 	enum dma_transfer_direction		direction;
307 	enum sdma_peripheral_type	peripheral_type;
308 	unsigned int			event_id0;
309 	unsigned int			event_id1;
310 	enum dma_slave_buswidth		word_size;
311 	unsigned int			buf_tail;
312 	unsigned int			num_bd;
313 	unsigned int			period_len;
314 	struct sdma_buffer_descriptor	*bd;
315 	dma_addr_t			bd_phys;
316 	unsigned int			pc_from_device, pc_to_device;
317 	unsigned int			device_to_device;
318 	unsigned long			flags;
319 	dma_addr_t			per_address, per_address2;
320 	unsigned long			event_mask[2];
321 	unsigned long			watermark_level;
322 	u32				shp_addr, per_addr;
323 	struct dma_chan			chan;
324 	spinlock_t			lock;
325 	struct dma_async_tx_descriptor	desc;
326 	enum dma_status			status;
327 	unsigned int			chn_count;
328 	unsigned int			chn_real_count;
329 	struct tasklet_struct		tasklet;
330 	struct imx_dma_data		data;
331 };
332 
333 #define IMX_DMA_SG_LOOP		BIT(0)
334 
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339 
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341 
342 /**
343  * struct sdma_firmware_header - Layout of the firmware image
344  *
345  * @magic		"SDMA"
346  * @version_major	increased whenever layout of struct sdma_script_start_addrs
347  *			changes.
348  * @version_minor	firmware minor version (for binary compatible changes)
349  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
350  * @num_script_addrs	Number of script addresses in this image
351  * @ram_code_start	offset of SDMA ram image in this firmware image
352  * @ram_code_size	size of SDMA ram image
353  * @script_addrs	Stores the start address of the SDMA scripts
354  *			(in SDMA memory space)
355  */
356 struct sdma_firmware_header {
357 	u32	magic;
358 	u32	version_major;
359 	u32	version_minor;
360 	u32	script_addrs_start;
361 	u32	num_script_addrs;
362 	u32	ram_code_start;
363 	u32	ram_code_size;
364 };
365 
366 struct sdma_driver_data {
367 	int chnenbl0;
368 	int num_events;
369 	struct sdma_script_start_addrs	*script_addrs;
370 };
371 
372 struct sdma_engine {
373 	struct device			*dev;
374 	struct device_dma_parameters	dma_parms;
375 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
376 	struct sdma_channel_control	*channel_control;
377 	void __iomem			*regs;
378 	struct sdma_context_data	*context;
379 	dma_addr_t			context_phys;
380 	struct dma_device		dma_device;
381 	struct clk			*clk_ipg;
382 	struct clk			*clk_ahb;
383 	spinlock_t			channel_0_lock;
384 	u32				script_number;
385 	struct sdma_script_start_addrs	*script_addrs;
386 	const struct sdma_driver_data	*drvdata;
387 	u32				spba_start_addr;
388 	u32				spba_end_addr;
389 	unsigned int			irq;
390 };
391 
392 static struct sdma_driver_data sdma_imx31 = {
393 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
394 	.num_events = 32,
395 };
396 
397 static struct sdma_script_start_addrs sdma_script_imx25 = {
398 	.ap_2_ap_addr = 729,
399 	.uart_2_mcu_addr = 904,
400 	.per_2_app_addr = 1255,
401 	.mcu_2_app_addr = 834,
402 	.uartsh_2_mcu_addr = 1120,
403 	.per_2_shp_addr = 1329,
404 	.mcu_2_shp_addr = 1048,
405 	.ata_2_mcu_addr = 1560,
406 	.mcu_2_ata_addr = 1479,
407 	.app_2_per_addr = 1189,
408 	.app_2_mcu_addr = 770,
409 	.shp_2_per_addr = 1407,
410 	.shp_2_mcu_addr = 979,
411 };
412 
413 static struct sdma_driver_data sdma_imx25 = {
414 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
415 	.num_events = 48,
416 	.script_addrs = &sdma_script_imx25,
417 };
418 
419 static struct sdma_driver_data sdma_imx35 = {
420 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
421 	.num_events = 48,
422 };
423 
424 static struct sdma_script_start_addrs sdma_script_imx51 = {
425 	.ap_2_ap_addr = 642,
426 	.uart_2_mcu_addr = 817,
427 	.mcu_2_app_addr = 747,
428 	.mcu_2_shp_addr = 961,
429 	.ata_2_mcu_addr = 1473,
430 	.mcu_2_ata_addr = 1392,
431 	.app_2_per_addr = 1033,
432 	.app_2_mcu_addr = 683,
433 	.shp_2_per_addr = 1251,
434 	.shp_2_mcu_addr = 892,
435 };
436 
437 static struct sdma_driver_data sdma_imx51 = {
438 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
439 	.num_events = 48,
440 	.script_addrs = &sdma_script_imx51,
441 };
442 
443 static struct sdma_script_start_addrs sdma_script_imx53 = {
444 	.ap_2_ap_addr = 642,
445 	.app_2_mcu_addr = 683,
446 	.mcu_2_app_addr = 747,
447 	.uart_2_mcu_addr = 817,
448 	.shp_2_mcu_addr = 891,
449 	.mcu_2_shp_addr = 960,
450 	.uartsh_2_mcu_addr = 1032,
451 	.spdif_2_mcu_addr = 1100,
452 	.mcu_2_spdif_addr = 1134,
453 	.firi_2_mcu_addr = 1193,
454 	.mcu_2_firi_addr = 1290,
455 };
456 
457 static struct sdma_driver_data sdma_imx53 = {
458 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
459 	.num_events = 48,
460 	.script_addrs = &sdma_script_imx53,
461 };
462 
463 static struct sdma_script_start_addrs sdma_script_imx6q = {
464 	.ap_2_ap_addr = 642,
465 	.uart_2_mcu_addr = 817,
466 	.mcu_2_app_addr = 747,
467 	.per_2_per_addr = 6331,
468 	.uartsh_2_mcu_addr = 1032,
469 	.mcu_2_shp_addr = 960,
470 	.app_2_mcu_addr = 683,
471 	.shp_2_mcu_addr = 891,
472 	.spdif_2_mcu_addr = 1100,
473 	.mcu_2_spdif_addr = 1134,
474 };
475 
476 static struct sdma_driver_data sdma_imx6q = {
477 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
478 	.num_events = 48,
479 	.script_addrs = &sdma_script_imx6q,
480 };
481 
482 static const struct platform_device_id sdma_devtypes[] = {
483 	{
484 		.name = "imx25-sdma",
485 		.driver_data = (unsigned long)&sdma_imx25,
486 	}, {
487 		.name = "imx31-sdma",
488 		.driver_data = (unsigned long)&sdma_imx31,
489 	}, {
490 		.name = "imx35-sdma",
491 		.driver_data = (unsigned long)&sdma_imx35,
492 	}, {
493 		.name = "imx51-sdma",
494 		.driver_data = (unsigned long)&sdma_imx51,
495 	}, {
496 		.name = "imx53-sdma",
497 		.driver_data = (unsigned long)&sdma_imx53,
498 	}, {
499 		.name = "imx6q-sdma",
500 		.driver_data = (unsigned long)&sdma_imx6q,
501 	}, {
502 		/* sentinel */
503 	}
504 };
505 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
506 
507 static const struct of_device_id sdma_dt_ids[] = {
508 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
509 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
510 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
511 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
512 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
513 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
514 	{ /* sentinel */ }
515 };
516 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
517 
518 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
519 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
520 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
521 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
522 
523 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
524 {
525 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
526 	return chnenbl0 + event * 4;
527 }
528 
529 static int sdma_config_ownership(struct sdma_channel *sdmac,
530 		bool event_override, bool mcu_override, bool dsp_override)
531 {
532 	struct sdma_engine *sdma = sdmac->sdma;
533 	int channel = sdmac->channel;
534 	unsigned long evt, mcu, dsp;
535 
536 	if (event_override && mcu_override && dsp_override)
537 		return -EINVAL;
538 
539 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
540 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
541 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
542 
543 	if (dsp_override)
544 		__clear_bit(channel, &dsp);
545 	else
546 		__set_bit(channel, &dsp);
547 
548 	if (event_override)
549 		__clear_bit(channel, &evt);
550 	else
551 		__set_bit(channel, &evt);
552 
553 	if (mcu_override)
554 		__clear_bit(channel, &mcu);
555 	else
556 		__set_bit(channel, &mcu);
557 
558 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
559 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
560 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
561 
562 	return 0;
563 }
564 
565 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
566 {
567 	writel(BIT(channel), sdma->regs + SDMA_H_START);
568 }
569 
570 /*
571  * sdma_run_channel0 - run a channel and wait till it's done
572  */
573 static int sdma_run_channel0(struct sdma_engine *sdma)
574 {
575 	int ret;
576 	u32 reg;
577 
578 	sdma_enable_channel(sdma, 0);
579 
580 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
581 						reg, !(reg & 1), 1, 500);
582 	if (ret)
583 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
584 
585 	/* Set bits of CONFIG register with dynamic context switching */
586 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
587 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
588 
589 	return ret;
590 }
591 
592 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
593 		u32 address)
594 {
595 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
596 	void *buf_virt;
597 	dma_addr_t buf_phys;
598 	int ret;
599 	unsigned long flags;
600 
601 	buf_virt = dma_alloc_coherent(NULL,
602 			size,
603 			&buf_phys, GFP_KERNEL);
604 	if (!buf_virt) {
605 		return -ENOMEM;
606 	}
607 
608 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
609 
610 	bd0->mode.command = C0_SETPM;
611 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
612 	bd0->mode.count = size / 2;
613 	bd0->buffer_addr = buf_phys;
614 	bd0->ext_buffer_addr = address;
615 
616 	memcpy(buf_virt, buf, size);
617 
618 	ret = sdma_run_channel0(sdma);
619 
620 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
621 
622 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
623 
624 	return ret;
625 }
626 
627 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
628 {
629 	struct sdma_engine *sdma = sdmac->sdma;
630 	int channel = sdmac->channel;
631 	unsigned long val;
632 	u32 chnenbl = chnenbl_ofs(sdma, event);
633 
634 	val = readl_relaxed(sdma->regs + chnenbl);
635 	__set_bit(channel, &val);
636 	writel_relaxed(val, sdma->regs + chnenbl);
637 }
638 
639 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
640 {
641 	struct sdma_engine *sdma = sdmac->sdma;
642 	int channel = sdmac->channel;
643 	u32 chnenbl = chnenbl_ofs(sdma, event);
644 	unsigned long val;
645 
646 	val = readl_relaxed(sdma->regs + chnenbl);
647 	__clear_bit(channel, &val);
648 	writel_relaxed(val, sdma->regs + chnenbl);
649 }
650 
651 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
652 {
653 	struct sdma_buffer_descriptor *bd;
654 	int error = 0;
655 	enum dma_status	old_status = sdmac->status;
656 
657 	/*
658 	 * loop mode. Iterate over descriptors, re-setup them and
659 	 * call callback function.
660 	 */
661 	while (1) {
662 		bd = &sdmac->bd[sdmac->buf_tail];
663 
664 		if (bd->mode.status & BD_DONE)
665 			break;
666 
667 		if (bd->mode.status & BD_RROR) {
668 			bd->mode.status &= ~BD_RROR;
669 			sdmac->status = DMA_ERROR;
670 			error = -EIO;
671 		}
672 
673 	       /*
674 		* We use bd->mode.count to calculate the residue, since contains
675 		* the number of bytes present in the current buffer descriptor.
676 		*/
677 
678 		sdmac->chn_real_count = bd->mode.count;
679 		bd->mode.status |= BD_DONE;
680 		bd->mode.count = sdmac->period_len;
681 
682 		/*
683 		 * The callback is called from the interrupt context in order
684 		 * to reduce latency and to avoid the risk of altering the
685 		 * SDMA transaction status by the time the client tasklet is
686 		 * executed.
687 		 */
688 
689 		if (sdmac->desc.callback)
690 			sdmac->desc.callback(sdmac->desc.callback_param);
691 
692 		sdmac->buf_tail++;
693 		sdmac->buf_tail %= sdmac->num_bd;
694 
695 		if (error)
696 			sdmac->status = old_status;
697 	}
698 }
699 
700 static void mxc_sdma_handle_channel_normal(unsigned long data)
701 {
702 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
703 	struct sdma_buffer_descriptor *bd;
704 	int i, error = 0;
705 
706 	sdmac->chn_real_count = 0;
707 	/*
708 	 * non loop mode. Iterate over all descriptors, collect
709 	 * errors and call callback function
710 	 */
711 	for (i = 0; i < sdmac->num_bd; i++) {
712 		bd = &sdmac->bd[i];
713 
714 		 if (bd->mode.status & (BD_DONE | BD_RROR))
715 			error = -EIO;
716 		 sdmac->chn_real_count += bd->mode.count;
717 	}
718 
719 	if (error)
720 		sdmac->status = DMA_ERROR;
721 	else
722 		sdmac->status = DMA_COMPLETE;
723 
724 	dma_cookie_complete(&sdmac->desc);
725 	if (sdmac->desc.callback)
726 		sdmac->desc.callback(sdmac->desc.callback_param);
727 }
728 
729 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
730 {
731 	struct sdma_engine *sdma = dev_id;
732 	unsigned long stat;
733 
734 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
735 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
736 	/* channel 0 is special and not handled here, see run_channel0() */
737 	stat &= ~1;
738 
739 	while (stat) {
740 		int channel = fls(stat) - 1;
741 		struct sdma_channel *sdmac = &sdma->channel[channel];
742 
743 		if (sdmac->flags & IMX_DMA_SG_LOOP)
744 			sdma_update_channel_loop(sdmac);
745 		else
746 			tasklet_schedule(&sdmac->tasklet);
747 
748 		__clear_bit(channel, &stat);
749 	}
750 
751 	return IRQ_HANDLED;
752 }
753 
754 /*
755  * sets the pc of SDMA script according to the peripheral type
756  */
757 static void sdma_get_pc(struct sdma_channel *sdmac,
758 		enum sdma_peripheral_type peripheral_type)
759 {
760 	struct sdma_engine *sdma = sdmac->sdma;
761 	int per_2_emi = 0, emi_2_per = 0;
762 	/*
763 	 * These are needed once we start to support transfers between
764 	 * two peripherals or memory-to-memory transfers
765 	 */
766 	int per_2_per = 0;
767 
768 	sdmac->pc_from_device = 0;
769 	sdmac->pc_to_device = 0;
770 	sdmac->device_to_device = 0;
771 
772 	switch (peripheral_type) {
773 	case IMX_DMATYPE_MEMORY:
774 		break;
775 	case IMX_DMATYPE_DSP:
776 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
777 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
778 		break;
779 	case IMX_DMATYPE_FIRI:
780 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
781 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
782 		break;
783 	case IMX_DMATYPE_UART:
784 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
785 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
786 		break;
787 	case IMX_DMATYPE_UART_SP:
788 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
789 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
790 		break;
791 	case IMX_DMATYPE_ATA:
792 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
793 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
794 		break;
795 	case IMX_DMATYPE_CSPI:
796 	case IMX_DMATYPE_EXT:
797 	case IMX_DMATYPE_SSI:
798 	case IMX_DMATYPE_SAI:
799 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
800 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
801 		break;
802 	case IMX_DMATYPE_SSI_DUAL:
803 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
804 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
805 		break;
806 	case IMX_DMATYPE_SSI_SP:
807 	case IMX_DMATYPE_MMC:
808 	case IMX_DMATYPE_SDHC:
809 	case IMX_DMATYPE_CSPI_SP:
810 	case IMX_DMATYPE_ESAI:
811 	case IMX_DMATYPE_MSHC_SP:
812 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
813 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
814 		break;
815 	case IMX_DMATYPE_ASRC:
816 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
817 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
818 		per_2_per = sdma->script_addrs->per_2_per_addr;
819 		break;
820 	case IMX_DMATYPE_ASRC_SP:
821 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
822 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
823 		per_2_per = sdma->script_addrs->per_2_per_addr;
824 		break;
825 	case IMX_DMATYPE_MSHC:
826 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
827 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
828 		break;
829 	case IMX_DMATYPE_CCM:
830 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
831 		break;
832 	case IMX_DMATYPE_SPDIF:
833 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
834 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
835 		break;
836 	case IMX_DMATYPE_IPU_MEMORY:
837 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
838 		break;
839 	default:
840 		break;
841 	}
842 
843 	sdmac->pc_from_device = per_2_emi;
844 	sdmac->pc_to_device = emi_2_per;
845 	sdmac->device_to_device = per_2_per;
846 }
847 
848 static int sdma_load_context(struct sdma_channel *sdmac)
849 {
850 	struct sdma_engine *sdma = sdmac->sdma;
851 	int channel = sdmac->channel;
852 	int load_address;
853 	struct sdma_context_data *context = sdma->context;
854 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
855 	int ret;
856 	unsigned long flags;
857 
858 	if (sdmac->direction == DMA_DEV_TO_MEM)
859 		load_address = sdmac->pc_from_device;
860 	else if (sdmac->direction == DMA_DEV_TO_DEV)
861 		load_address = sdmac->device_to_device;
862 	else
863 		load_address = sdmac->pc_to_device;
864 
865 	if (load_address < 0)
866 		return load_address;
867 
868 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
869 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
870 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
871 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
872 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
873 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
874 
875 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
876 
877 	memset(context, 0, sizeof(*context));
878 	context->channel_state.pc = load_address;
879 
880 	/* Send by context the event mask,base address for peripheral
881 	 * and watermark level
882 	 */
883 	context->gReg[0] = sdmac->event_mask[1];
884 	context->gReg[1] = sdmac->event_mask[0];
885 	context->gReg[2] = sdmac->per_addr;
886 	context->gReg[6] = sdmac->shp_addr;
887 	context->gReg[7] = sdmac->watermark_level;
888 
889 	bd0->mode.command = C0_SETDM;
890 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
891 	bd0->mode.count = sizeof(*context) / 4;
892 	bd0->buffer_addr = sdma->context_phys;
893 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
894 	ret = sdma_run_channel0(sdma);
895 
896 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
897 
898 	return ret;
899 }
900 
901 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
902 {
903 	return container_of(chan, struct sdma_channel, chan);
904 }
905 
906 static int sdma_disable_channel(struct dma_chan *chan)
907 {
908 	struct sdma_channel *sdmac = to_sdma_chan(chan);
909 	struct sdma_engine *sdma = sdmac->sdma;
910 	int channel = sdmac->channel;
911 
912 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
913 	sdmac->status = DMA_ERROR;
914 
915 	return 0;
916 }
917 
918 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
919 {
920 	struct sdma_engine *sdma = sdmac->sdma;
921 
922 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
923 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
924 
925 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
926 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
927 
928 	if (sdmac->event_id0 > 31)
929 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
930 
931 	if (sdmac->event_id1 > 31)
932 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
933 
934 	/*
935 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
936 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
937 	 * r0(event_mask[1]) and r1(event_mask[0]).
938 	 */
939 	if (lwml > hwml) {
940 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
941 						SDMA_WATERMARK_LEVEL_HWML);
942 		sdmac->watermark_level |= hwml;
943 		sdmac->watermark_level |= lwml << 16;
944 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
945 	}
946 
947 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
948 			sdmac->per_address2 <= sdma->spba_end_addr)
949 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
950 
951 	if (sdmac->per_address >= sdma->spba_start_addr &&
952 			sdmac->per_address <= sdma->spba_end_addr)
953 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
954 
955 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
956 }
957 
958 static int sdma_config_channel(struct dma_chan *chan)
959 {
960 	struct sdma_channel *sdmac = to_sdma_chan(chan);
961 	int ret;
962 
963 	sdma_disable_channel(chan);
964 
965 	sdmac->event_mask[0] = 0;
966 	sdmac->event_mask[1] = 0;
967 	sdmac->shp_addr = 0;
968 	sdmac->per_addr = 0;
969 
970 	if (sdmac->event_id0) {
971 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
972 			return -EINVAL;
973 		sdma_event_enable(sdmac, sdmac->event_id0);
974 	}
975 
976 	if (sdmac->event_id1) {
977 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
978 			return -EINVAL;
979 		sdma_event_enable(sdmac, sdmac->event_id1);
980 	}
981 
982 	switch (sdmac->peripheral_type) {
983 	case IMX_DMATYPE_DSP:
984 		sdma_config_ownership(sdmac, false, true, true);
985 		break;
986 	case IMX_DMATYPE_MEMORY:
987 		sdma_config_ownership(sdmac, false, true, false);
988 		break;
989 	default:
990 		sdma_config_ownership(sdmac, true, true, false);
991 		break;
992 	}
993 
994 	sdma_get_pc(sdmac, sdmac->peripheral_type);
995 
996 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
997 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
998 		/* Handle multiple event channels differently */
999 		if (sdmac->event_id1) {
1000 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1001 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1002 				sdma_set_watermarklevel_for_p2p(sdmac);
1003 		} else
1004 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1005 
1006 		/* Address */
1007 		sdmac->shp_addr = sdmac->per_address;
1008 		sdmac->per_addr = sdmac->per_address2;
1009 	} else {
1010 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1011 	}
1012 
1013 	ret = sdma_load_context(sdmac);
1014 
1015 	return ret;
1016 }
1017 
1018 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1019 		unsigned int priority)
1020 {
1021 	struct sdma_engine *sdma = sdmac->sdma;
1022 	int channel = sdmac->channel;
1023 
1024 	if (priority < MXC_SDMA_MIN_PRIORITY
1025 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1026 		return -EINVAL;
1027 	}
1028 
1029 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1030 
1031 	return 0;
1032 }
1033 
1034 static int sdma_request_channel(struct sdma_channel *sdmac)
1035 {
1036 	struct sdma_engine *sdma = sdmac->sdma;
1037 	int channel = sdmac->channel;
1038 	int ret = -EBUSY;
1039 
1040 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1041 					GFP_KERNEL);
1042 	if (!sdmac->bd) {
1043 		ret = -ENOMEM;
1044 		goto out;
1045 	}
1046 
1047 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1048 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1049 
1050 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1051 	return 0;
1052 out:
1053 
1054 	return ret;
1055 }
1056 
1057 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1058 {
1059 	unsigned long flags;
1060 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1061 	dma_cookie_t cookie;
1062 
1063 	spin_lock_irqsave(&sdmac->lock, flags);
1064 
1065 	cookie = dma_cookie_assign(tx);
1066 
1067 	spin_unlock_irqrestore(&sdmac->lock, flags);
1068 
1069 	return cookie;
1070 }
1071 
1072 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1073 {
1074 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1075 	struct imx_dma_data *data = chan->private;
1076 	int prio, ret;
1077 
1078 	if (!data)
1079 		return -EINVAL;
1080 
1081 	switch (data->priority) {
1082 	case DMA_PRIO_HIGH:
1083 		prio = 3;
1084 		break;
1085 	case DMA_PRIO_MEDIUM:
1086 		prio = 2;
1087 		break;
1088 	case DMA_PRIO_LOW:
1089 	default:
1090 		prio = 1;
1091 		break;
1092 	}
1093 
1094 	sdmac->peripheral_type = data->peripheral_type;
1095 	sdmac->event_id0 = data->dma_request;
1096 	sdmac->event_id1 = data->dma_request2;
1097 
1098 	ret = clk_enable(sdmac->sdma->clk_ipg);
1099 	if (ret)
1100 		return ret;
1101 	ret = clk_enable(sdmac->sdma->clk_ahb);
1102 	if (ret)
1103 		goto disable_clk_ipg;
1104 
1105 	ret = sdma_request_channel(sdmac);
1106 	if (ret)
1107 		goto disable_clk_ahb;
1108 
1109 	ret = sdma_set_channel_priority(sdmac, prio);
1110 	if (ret)
1111 		goto disable_clk_ahb;
1112 
1113 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1114 	sdmac->desc.tx_submit = sdma_tx_submit;
1115 	/* txd.flags will be overwritten in prep funcs */
1116 	sdmac->desc.flags = DMA_CTRL_ACK;
1117 
1118 	return 0;
1119 
1120 disable_clk_ahb:
1121 	clk_disable(sdmac->sdma->clk_ahb);
1122 disable_clk_ipg:
1123 	clk_disable(sdmac->sdma->clk_ipg);
1124 	return ret;
1125 }
1126 
1127 static void sdma_free_chan_resources(struct dma_chan *chan)
1128 {
1129 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1130 	struct sdma_engine *sdma = sdmac->sdma;
1131 
1132 	sdma_disable_channel(chan);
1133 
1134 	if (sdmac->event_id0)
1135 		sdma_event_disable(sdmac, sdmac->event_id0);
1136 	if (sdmac->event_id1)
1137 		sdma_event_disable(sdmac, sdmac->event_id1);
1138 
1139 	sdmac->event_id0 = 0;
1140 	sdmac->event_id1 = 0;
1141 
1142 	sdma_set_channel_priority(sdmac, 0);
1143 
1144 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1145 
1146 	clk_disable(sdma->clk_ipg);
1147 	clk_disable(sdma->clk_ahb);
1148 }
1149 
1150 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1151 		struct dma_chan *chan, struct scatterlist *sgl,
1152 		unsigned int sg_len, enum dma_transfer_direction direction,
1153 		unsigned long flags, void *context)
1154 {
1155 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1156 	struct sdma_engine *sdma = sdmac->sdma;
1157 	int ret, i, count;
1158 	int channel = sdmac->channel;
1159 	struct scatterlist *sg;
1160 
1161 	if (sdmac->status == DMA_IN_PROGRESS)
1162 		return NULL;
1163 	sdmac->status = DMA_IN_PROGRESS;
1164 
1165 	sdmac->flags = 0;
1166 
1167 	sdmac->buf_tail = 0;
1168 
1169 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1170 			sg_len, channel);
1171 
1172 	sdmac->direction = direction;
1173 	ret = sdma_load_context(sdmac);
1174 	if (ret)
1175 		goto err_out;
1176 
1177 	if (sg_len > NUM_BD) {
1178 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1179 				channel, sg_len, NUM_BD);
1180 		ret = -EINVAL;
1181 		goto err_out;
1182 	}
1183 
1184 	sdmac->chn_count = 0;
1185 	for_each_sg(sgl, sg, sg_len, i) {
1186 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1187 		int param;
1188 
1189 		bd->buffer_addr = sg->dma_address;
1190 
1191 		count = sg_dma_len(sg);
1192 
1193 		if (count > 0xffff) {
1194 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1195 					channel, count, 0xffff);
1196 			ret = -EINVAL;
1197 			goto err_out;
1198 		}
1199 
1200 		bd->mode.count = count;
1201 		sdmac->chn_count += count;
1202 
1203 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1204 			ret =  -EINVAL;
1205 			goto err_out;
1206 		}
1207 
1208 		switch (sdmac->word_size) {
1209 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1210 			bd->mode.command = 0;
1211 			if (count & 3 || sg->dma_address & 3)
1212 				return NULL;
1213 			break;
1214 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1215 			bd->mode.command = 2;
1216 			if (count & 1 || sg->dma_address & 1)
1217 				return NULL;
1218 			break;
1219 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1220 			bd->mode.command = 1;
1221 			break;
1222 		default:
1223 			return NULL;
1224 		}
1225 
1226 		param = BD_DONE | BD_EXTD | BD_CONT;
1227 
1228 		if (i + 1 == sg_len) {
1229 			param |= BD_INTR;
1230 			param |= BD_LAST;
1231 			param &= ~BD_CONT;
1232 		}
1233 
1234 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1235 				i, count, (u64)sg->dma_address,
1236 				param & BD_WRAP ? "wrap" : "",
1237 				param & BD_INTR ? " intr" : "");
1238 
1239 		bd->mode.status = param;
1240 	}
1241 
1242 	sdmac->num_bd = sg_len;
1243 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1244 
1245 	return &sdmac->desc;
1246 err_out:
1247 	sdmac->status = DMA_ERROR;
1248 	return NULL;
1249 }
1250 
1251 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1252 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1253 		size_t period_len, enum dma_transfer_direction direction,
1254 		unsigned long flags)
1255 {
1256 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1257 	struct sdma_engine *sdma = sdmac->sdma;
1258 	int num_periods = buf_len / period_len;
1259 	int channel = sdmac->channel;
1260 	int ret, i = 0, buf = 0;
1261 
1262 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1263 
1264 	if (sdmac->status == DMA_IN_PROGRESS)
1265 		return NULL;
1266 
1267 	sdmac->status = DMA_IN_PROGRESS;
1268 
1269 	sdmac->buf_tail = 0;
1270 	sdmac->period_len = period_len;
1271 
1272 	sdmac->flags |= IMX_DMA_SG_LOOP;
1273 	sdmac->direction = direction;
1274 	ret = sdma_load_context(sdmac);
1275 	if (ret)
1276 		goto err_out;
1277 
1278 	if (num_periods > NUM_BD) {
1279 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1280 				channel, num_periods, NUM_BD);
1281 		goto err_out;
1282 	}
1283 
1284 	if (period_len > 0xffff) {
1285 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1286 				channel, period_len, 0xffff);
1287 		goto err_out;
1288 	}
1289 
1290 	while (buf < buf_len) {
1291 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1292 		int param;
1293 
1294 		bd->buffer_addr = dma_addr;
1295 
1296 		bd->mode.count = period_len;
1297 
1298 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1299 			goto err_out;
1300 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1301 			bd->mode.command = 0;
1302 		else
1303 			bd->mode.command = sdmac->word_size;
1304 
1305 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1306 		if (i + 1 == num_periods)
1307 			param |= BD_WRAP;
1308 
1309 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1310 				i, period_len, (u64)dma_addr,
1311 				param & BD_WRAP ? "wrap" : "",
1312 				param & BD_INTR ? " intr" : "");
1313 
1314 		bd->mode.status = param;
1315 
1316 		dma_addr += period_len;
1317 		buf += period_len;
1318 
1319 		i++;
1320 	}
1321 
1322 	sdmac->num_bd = num_periods;
1323 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1324 
1325 	return &sdmac->desc;
1326 err_out:
1327 	sdmac->status = DMA_ERROR;
1328 	return NULL;
1329 }
1330 
1331 static int sdma_config(struct dma_chan *chan,
1332 		       struct dma_slave_config *dmaengine_cfg)
1333 {
1334 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1335 
1336 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1337 		sdmac->per_address = dmaengine_cfg->src_addr;
1338 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1339 			dmaengine_cfg->src_addr_width;
1340 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1341 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1342 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1343 		sdmac->per_address = dmaengine_cfg->dst_addr;
1344 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1345 			SDMA_WATERMARK_LEVEL_LWML;
1346 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1347 			SDMA_WATERMARK_LEVEL_HWML;
1348 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1349 	} else {
1350 		sdmac->per_address = dmaengine_cfg->dst_addr;
1351 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1352 			dmaengine_cfg->dst_addr_width;
1353 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1354 	}
1355 	sdmac->direction = dmaengine_cfg->direction;
1356 	return sdma_config_channel(chan);
1357 }
1358 
1359 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1360 				      dma_cookie_t cookie,
1361 				      struct dma_tx_state *txstate)
1362 {
1363 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1364 	u32 residue;
1365 
1366 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1367 		residue = (sdmac->num_bd - sdmac->buf_tail) *
1368 			   sdmac->period_len - sdmac->chn_real_count;
1369 	else
1370 		residue = sdmac->chn_count - sdmac->chn_real_count;
1371 
1372 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1373 			 residue);
1374 
1375 	return sdmac->status;
1376 }
1377 
1378 static void sdma_issue_pending(struct dma_chan *chan)
1379 {
1380 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1381 	struct sdma_engine *sdma = sdmac->sdma;
1382 
1383 	if (sdmac->status == DMA_IN_PROGRESS)
1384 		sdma_enable_channel(sdma, sdmac->channel);
1385 }
1386 
1387 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1388 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1389 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1390 
1391 static void sdma_add_scripts(struct sdma_engine *sdma,
1392 		const struct sdma_script_start_addrs *addr)
1393 {
1394 	s32 *addr_arr = (u32 *)addr;
1395 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1396 	int i;
1397 
1398 	/* use the default firmware in ROM if missing external firmware */
1399 	if (!sdma->script_number)
1400 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1401 
1402 	for (i = 0; i < sdma->script_number; i++)
1403 		if (addr_arr[i] > 0)
1404 			saddr_arr[i] = addr_arr[i];
1405 }
1406 
1407 static void sdma_load_firmware(const struct firmware *fw, void *context)
1408 {
1409 	struct sdma_engine *sdma = context;
1410 	const struct sdma_firmware_header *header;
1411 	const struct sdma_script_start_addrs *addr;
1412 	unsigned short *ram_code;
1413 
1414 	if (!fw) {
1415 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1416 		/* In this case we just use the ROM firmware. */
1417 		return;
1418 	}
1419 
1420 	if (fw->size < sizeof(*header))
1421 		goto err_firmware;
1422 
1423 	header = (struct sdma_firmware_header *)fw->data;
1424 
1425 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1426 		goto err_firmware;
1427 	if (header->ram_code_start + header->ram_code_size > fw->size)
1428 		goto err_firmware;
1429 	switch (header->version_major) {
1430 	case 1:
1431 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1432 		break;
1433 	case 2:
1434 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1435 		break;
1436 	case 3:
1437 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1438 		break;
1439 	default:
1440 		dev_err(sdma->dev, "unknown firmware version\n");
1441 		goto err_firmware;
1442 	}
1443 
1444 	addr = (void *)header + header->script_addrs_start;
1445 	ram_code = (void *)header + header->ram_code_start;
1446 
1447 	clk_enable(sdma->clk_ipg);
1448 	clk_enable(sdma->clk_ahb);
1449 	/* download the RAM image for SDMA */
1450 	sdma_load_script(sdma, ram_code,
1451 			header->ram_code_size,
1452 			addr->ram_code_start_addr);
1453 	clk_disable(sdma->clk_ipg);
1454 	clk_disable(sdma->clk_ahb);
1455 
1456 	sdma_add_scripts(sdma, addr);
1457 
1458 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1459 			header->version_major,
1460 			header->version_minor);
1461 
1462 err_firmware:
1463 	release_firmware(fw);
1464 }
1465 
1466 #define EVENT_REMAP_CELLS 3
1467 
1468 static int sdma_event_remap(struct sdma_engine *sdma)
1469 {
1470 	struct device_node *np = sdma->dev->of_node;
1471 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1472 	struct property *event_remap;
1473 	struct regmap *gpr;
1474 	char propname[] = "fsl,sdma-event-remap";
1475 	u32 reg, val, shift, num_map, i;
1476 	int ret = 0;
1477 
1478 	if (IS_ERR(np) || IS_ERR(gpr_np))
1479 		goto out;
1480 
1481 	event_remap = of_find_property(np, propname, NULL);
1482 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1483 	if (!num_map) {
1484 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1485 		goto out;
1486 	} else if (num_map % EVENT_REMAP_CELLS) {
1487 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1488 				propname, EVENT_REMAP_CELLS);
1489 		ret = -EINVAL;
1490 		goto out;
1491 	}
1492 
1493 	gpr = syscon_node_to_regmap(gpr_np);
1494 	if (IS_ERR(gpr)) {
1495 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1496 		ret = PTR_ERR(gpr);
1497 		goto out;
1498 	}
1499 
1500 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1501 		ret = of_property_read_u32_index(np, propname, i, &reg);
1502 		if (ret) {
1503 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1504 					propname, i);
1505 			goto out;
1506 		}
1507 
1508 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1509 		if (ret) {
1510 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1511 					propname, i + 1);
1512 			goto out;
1513 		}
1514 
1515 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1516 		if (ret) {
1517 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1518 					propname, i + 2);
1519 			goto out;
1520 		}
1521 
1522 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1523 	}
1524 
1525 out:
1526 	if (!IS_ERR(gpr_np))
1527 		of_node_put(gpr_np);
1528 
1529 	return ret;
1530 }
1531 
1532 static int sdma_get_firmware(struct sdma_engine *sdma,
1533 		const char *fw_name)
1534 {
1535 	int ret;
1536 
1537 	ret = request_firmware_nowait(THIS_MODULE,
1538 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1539 			GFP_KERNEL, sdma, sdma_load_firmware);
1540 
1541 	return ret;
1542 }
1543 
1544 static int sdma_init(struct sdma_engine *sdma)
1545 {
1546 	int i, ret;
1547 	dma_addr_t ccb_phys;
1548 
1549 	ret = clk_enable(sdma->clk_ipg);
1550 	if (ret)
1551 		return ret;
1552 	ret = clk_enable(sdma->clk_ahb);
1553 	if (ret)
1554 		goto disable_clk_ipg;
1555 
1556 	/* Be sure SDMA has not started yet */
1557 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1558 
1559 	sdma->channel_control = dma_alloc_coherent(NULL,
1560 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1561 			sizeof(struct sdma_context_data),
1562 			&ccb_phys, GFP_KERNEL);
1563 
1564 	if (!sdma->channel_control) {
1565 		ret = -ENOMEM;
1566 		goto err_dma_alloc;
1567 	}
1568 
1569 	sdma->context = (void *)sdma->channel_control +
1570 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1571 	sdma->context_phys = ccb_phys +
1572 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1573 
1574 	/* Zero-out the CCB structures array just allocated */
1575 	memset(sdma->channel_control, 0,
1576 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1577 
1578 	/* disable all channels */
1579 	for (i = 0; i < sdma->drvdata->num_events; i++)
1580 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1581 
1582 	/* All channels have priority 0 */
1583 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1584 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1585 
1586 	ret = sdma_request_channel(&sdma->channel[0]);
1587 	if (ret)
1588 		goto err_dma_alloc;
1589 
1590 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1591 
1592 	/* Set Command Channel (Channel Zero) */
1593 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1594 
1595 	/* Set bits of CONFIG register but with static context switching */
1596 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1597 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1598 
1599 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1600 
1601 	/* Initializes channel's priorities */
1602 	sdma_set_channel_priority(&sdma->channel[0], 7);
1603 
1604 	clk_disable(sdma->clk_ipg);
1605 	clk_disable(sdma->clk_ahb);
1606 
1607 	return 0;
1608 
1609 err_dma_alloc:
1610 	clk_disable(sdma->clk_ahb);
1611 disable_clk_ipg:
1612 	clk_disable(sdma->clk_ipg);
1613 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1614 	return ret;
1615 }
1616 
1617 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1618 {
1619 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1620 	struct imx_dma_data *data = fn_param;
1621 
1622 	if (!imx_dma_is_general_purpose(chan))
1623 		return false;
1624 
1625 	sdmac->data = *data;
1626 	chan->private = &sdmac->data;
1627 
1628 	return true;
1629 }
1630 
1631 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1632 				   struct of_dma *ofdma)
1633 {
1634 	struct sdma_engine *sdma = ofdma->of_dma_data;
1635 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1636 	struct imx_dma_data data;
1637 
1638 	if (dma_spec->args_count != 3)
1639 		return NULL;
1640 
1641 	data.dma_request = dma_spec->args[0];
1642 	data.peripheral_type = dma_spec->args[1];
1643 	data.priority = dma_spec->args[2];
1644 	/*
1645 	 * init dma_request2 to zero, which is not used by the dts.
1646 	 * For P2P, dma_request2 is init from dma_request_channel(),
1647 	 * chan->private will point to the imx_dma_data, and in
1648 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1649 	 * be set to sdmac->event_id1.
1650 	 */
1651 	data.dma_request2 = 0;
1652 
1653 	return dma_request_channel(mask, sdma_filter_fn, &data);
1654 }
1655 
1656 static int sdma_probe(struct platform_device *pdev)
1657 {
1658 	const struct of_device_id *of_id =
1659 			of_match_device(sdma_dt_ids, &pdev->dev);
1660 	struct device_node *np = pdev->dev.of_node;
1661 	struct device_node *spba_bus;
1662 	const char *fw_name;
1663 	int ret;
1664 	int irq;
1665 	struct resource *iores;
1666 	struct resource spba_res;
1667 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1668 	int i;
1669 	struct sdma_engine *sdma;
1670 	s32 *saddr_arr;
1671 	const struct sdma_driver_data *drvdata = NULL;
1672 
1673 	if (of_id)
1674 		drvdata = of_id->data;
1675 	else if (pdev->id_entry)
1676 		drvdata = (void *)pdev->id_entry->driver_data;
1677 
1678 	if (!drvdata) {
1679 		dev_err(&pdev->dev, "unable to find driver data\n");
1680 		return -EINVAL;
1681 	}
1682 
1683 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1684 	if (ret)
1685 		return ret;
1686 
1687 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1688 	if (!sdma)
1689 		return -ENOMEM;
1690 
1691 	spin_lock_init(&sdma->channel_0_lock);
1692 
1693 	sdma->dev = &pdev->dev;
1694 	sdma->drvdata = drvdata;
1695 
1696 	irq = platform_get_irq(pdev, 0);
1697 	if (irq < 0)
1698 		return irq;
1699 
1700 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1701 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1702 	if (IS_ERR(sdma->regs))
1703 		return PTR_ERR(sdma->regs);
1704 
1705 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1706 	if (IS_ERR(sdma->clk_ipg))
1707 		return PTR_ERR(sdma->clk_ipg);
1708 
1709 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1710 	if (IS_ERR(sdma->clk_ahb))
1711 		return PTR_ERR(sdma->clk_ahb);
1712 
1713 	clk_prepare(sdma->clk_ipg);
1714 	clk_prepare(sdma->clk_ahb);
1715 
1716 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1717 			       sdma);
1718 	if (ret)
1719 		return ret;
1720 
1721 	sdma->irq = irq;
1722 
1723 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1724 	if (!sdma->script_addrs)
1725 		return -ENOMEM;
1726 
1727 	/* initially no scripts available */
1728 	saddr_arr = (s32 *)sdma->script_addrs;
1729 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1730 		saddr_arr[i] = -EINVAL;
1731 
1732 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1733 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1734 
1735 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1736 	/* Initialize channel parameters */
1737 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1738 		struct sdma_channel *sdmac = &sdma->channel[i];
1739 
1740 		sdmac->sdma = sdma;
1741 		spin_lock_init(&sdmac->lock);
1742 
1743 		sdmac->chan.device = &sdma->dma_device;
1744 		dma_cookie_init(&sdmac->chan);
1745 		sdmac->channel = i;
1746 
1747 		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1748 			     (unsigned long) sdmac);
1749 		/*
1750 		 * Add the channel to the DMAC list. Do not add channel 0 though
1751 		 * because we need it internally in the SDMA driver. This also means
1752 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1753 		 */
1754 		if (i)
1755 			list_add_tail(&sdmac->chan.device_node,
1756 					&sdma->dma_device.channels);
1757 	}
1758 
1759 	ret = sdma_init(sdma);
1760 	if (ret)
1761 		goto err_init;
1762 
1763 	ret = sdma_event_remap(sdma);
1764 	if (ret)
1765 		goto err_init;
1766 
1767 	if (sdma->drvdata->script_addrs)
1768 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1769 	if (pdata && pdata->script_addrs)
1770 		sdma_add_scripts(sdma, pdata->script_addrs);
1771 
1772 	if (pdata) {
1773 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1774 		if (ret)
1775 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1776 	} else {
1777 		/*
1778 		 * Because that device tree does not encode ROM script address,
1779 		 * the RAM script in firmware is mandatory for device tree
1780 		 * probe, otherwise it fails.
1781 		 */
1782 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1783 					      &fw_name);
1784 		if (ret)
1785 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1786 		else {
1787 			ret = sdma_get_firmware(sdma, fw_name);
1788 			if (ret)
1789 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1790 		}
1791 	}
1792 
1793 	sdma->dma_device.dev = &pdev->dev;
1794 
1795 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1796 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1797 	sdma->dma_device.device_tx_status = sdma_tx_status;
1798 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1799 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1800 	sdma->dma_device.device_config = sdma_config;
1801 	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1802 	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1803 	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1804 	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1805 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1806 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1807 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1808 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1809 
1810 	platform_set_drvdata(pdev, sdma);
1811 
1812 	ret = dma_async_device_register(&sdma->dma_device);
1813 	if (ret) {
1814 		dev_err(&pdev->dev, "unable to register\n");
1815 		goto err_init;
1816 	}
1817 
1818 	if (np) {
1819 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1820 		if (ret) {
1821 			dev_err(&pdev->dev, "failed to register controller\n");
1822 			goto err_register;
1823 		}
1824 
1825 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1826 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1827 		if (!ret) {
1828 			sdma->spba_start_addr = spba_res.start;
1829 			sdma->spba_end_addr = spba_res.end;
1830 		}
1831 		of_node_put(spba_bus);
1832 	}
1833 
1834 	return 0;
1835 
1836 err_register:
1837 	dma_async_device_unregister(&sdma->dma_device);
1838 err_init:
1839 	kfree(sdma->script_addrs);
1840 	return ret;
1841 }
1842 
1843 static int sdma_remove(struct platform_device *pdev)
1844 {
1845 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1846 	int i;
1847 
1848 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1849 	dma_async_device_unregister(&sdma->dma_device);
1850 	kfree(sdma->script_addrs);
1851 	/* Kill the tasklet */
1852 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1853 		struct sdma_channel *sdmac = &sdma->channel[i];
1854 
1855 		tasklet_kill(&sdmac->tasklet);
1856 	}
1857 
1858 	platform_set_drvdata(pdev, NULL);
1859 	return 0;
1860 }
1861 
1862 static struct platform_driver sdma_driver = {
1863 	.driver		= {
1864 		.name	= "imx-sdma",
1865 		.of_match_table = sdma_dt_ids,
1866 	},
1867 	.id_table	= sdma_devtypes,
1868 	.remove		= sdma_remove,
1869 	.probe		= sdma_probe,
1870 };
1871 
1872 module_platform_driver(sdma_driver);
1873 
1874 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1875 MODULE_DESCRIPTION("i.MX SDMA driver");
1876 MODULE_LICENSE("GPL");
1877