1 // SPDX-License-Identifier: GPL-2.0+ 2 // 3 // drivers/dma/imx-sdma.c 4 // 5 // This file contains a driver for the Freescale Smart DMA engine 6 // 7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 8 // 9 // Based on code from Freescale: 10 // 11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 12 13 #include <linux/init.h> 14 #include <linux/iopoll.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/bitfield.h> 18 #include <linux/bitops.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/sched.h> 24 #include <linux/semaphore.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/firmware.h> 29 #include <linux/slab.h> 30 #include <linux/platform_device.h> 31 #include <linux/dmaengine.h> 32 #include <linux/of.h> 33 #include <linux/of_address.h> 34 #include <linux/of_device.h> 35 #include <linux/of_dma.h> 36 #include <linux/workqueue.h> 37 38 #include <asm/irq.h> 39 #include <linux/dma/imx-dma.h> 40 #include <linux/regmap.h> 41 #include <linux/mfd/syscon.h> 42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h> 43 44 #include "dmaengine.h" 45 #include "virt-dma.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 #define SDMA_DONE0_CONFIG 0x1000 78 79 /* 80 * Buffer descriptor status values. 81 */ 82 #define BD_DONE 0x01 83 #define BD_WRAP 0x02 84 #define BD_CONT 0x04 85 #define BD_INTR 0x08 86 #define BD_RROR 0x10 87 #define BD_LAST 0x20 88 #define BD_EXTD 0x80 89 90 /* 91 * Data Node descriptor status values. 92 */ 93 #define DND_END_OF_FRAME 0x80 94 #define DND_END_OF_XFER 0x40 95 #define DND_DONE 0x20 96 #define DND_UNUSED 0x01 97 98 /* 99 * IPCV2 descriptor status values. 100 */ 101 #define BD_IPCV2_END_OF_FRAME 0x40 102 103 #define IPCV2_MAX_NODES 50 104 /* 105 * Error bit set in the CCB status field by the SDMA, 106 * in setbd routine, in case of a transfer error 107 */ 108 #define DATA_ERROR 0x10000000 109 110 /* 111 * Buffer descriptor commands. 112 */ 113 #define C0_ADDR 0x01 114 #define C0_LOAD 0x02 115 #define C0_DUMP 0x03 116 #define C0_SETCTX 0x07 117 #define C0_GETCTX 0x03 118 #define C0_SETDM 0x01 119 #define C0_SETPM 0x04 120 #define C0_GETDM 0x02 121 #define C0_GETPM 0x08 122 /* 123 * Change endianness indicator in the BD command field 124 */ 125 #define CHANGE_ENDIANNESS 0x80 126 127 /* 128 * p_2_p watermark_level description 129 * Bits Name Description 130 * 0-7 Lower WML Lower watermark level 131 * 8 PS 1: Pad Swallowing 132 * 0: No Pad Swallowing 133 * 9 PA 1: Pad Adding 134 * 0: No Pad Adding 135 * 10 SPDIF If this bit is set both source 136 * and destination are on SPBA 137 * 11 Source Bit(SP) 1: Source on SPBA 138 * 0: Source on AIPS 139 * 12 Destination Bit(DP) 1: Destination on SPBA 140 * 0: Destination on AIPS 141 * 13-15 --------- MUST BE 0 142 * 16-23 Higher WML HWML 143 * 24-27 N Total number of samples after 144 * which Pad adding/Swallowing 145 * must be done. It must be odd. 146 * 28 Lower WML Event(LWE) SDMA events reg to check for 147 * LWML event mask 148 * 0: LWE in EVENTS register 149 * 1: LWE in EVENTS2 register 150 * 29 Higher WML Event(HWE) SDMA events reg to check for 151 * HWML event mask 152 * 0: HWE in EVENTS register 153 * 1: HWE in EVENTS2 register 154 * 30 --------- MUST BE 0 155 * 31 CONT 1: Amount of samples to be 156 * transferred is unknown and 157 * script will keep on 158 * transferring samples as long as 159 * both events are detected and 160 * script must be manually stopped 161 * by the application 162 * 0: The amount of samples to be 163 * transferred is equal to the 164 * count field of mode word 165 */ 166 #define SDMA_WATERMARK_LEVEL_LWML 0xFF 167 #define SDMA_WATERMARK_LEVEL_PS BIT(8) 168 #define SDMA_WATERMARK_LEVEL_PA BIT(9) 169 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10) 170 #define SDMA_WATERMARK_LEVEL_SP BIT(11) 171 #define SDMA_WATERMARK_LEVEL_DP BIT(12) 172 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16) 173 #define SDMA_WATERMARK_LEVEL_LWE BIT(28) 174 #define SDMA_WATERMARK_LEVEL_HWE BIT(29) 175 #define SDMA_WATERMARK_LEVEL_CONT BIT(31) 176 177 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 178 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 179 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 180 181 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \ 182 BIT(DMA_MEM_TO_DEV) | \ 183 BIT(DMA_DEV_TO_DEV)) 184 185 #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12) 186 #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23) 187 188 #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7) 189 #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6) 190 191 /** 192 * struct sdma_script_start_addrs - SDMA script start pointers 193 * 194 * start addresses of the different functions in the physical 195 * address space of the SDMA engine. 196 */ 197 struct sdma_script_start_addrs { 198 s32 ap_2_ap_addr; 199 s32 ap_2_bp_addr; 200 s32 ap_2_ap_fixed_addr; 201 s32 bp_2_ap_addr; 202 s32 loopback_on_dsp_side_addr; 203 s32 mcu_interrupt_only_addr; 204 s32 firi_2_per_addr; 205 s32 firi_2_mcu_addr; 206 s32 per_2_firi_addr; 207 s32 mcu_2_firi_addr; 208 s32 uart_2_per_addr; 209 s32 uart_2_mcu_addr; 210 s32 per_2_app_addr; 211 s32 mcu_2_app_addr; 212 s32 per_2_per_addr; 213 s32 uartsh_2_per_addr; 214 s32 uartsh_2_mcu_addr; 215 s32 per_2_shp_addr; 216 s32 mcu_2_shp_addr; 217 s32 ata_2_mcu_addr; 218 s32 mcu_2_ata_addr; 219 s32 app_2_per_addr; 220 s32 app_2_mcu_addr; 221 s32 shp_2_per_addr; 222 s32 shp_2_mcu_addr; 223 s32 mshc_2_mcu_addr; 224 s32 mcu_2_mshc_addr; 225 s32 spdif_2_mcu_addr; 226 s32 mcu_2_spdif_addr; 227 s32 asrc_2_mcu_addr; 228 s32 ext_mem_2_ipu_addr; 229 s32 descrambler_addr; 230 s32 dptc_dvfs_addr; 231 s32 utra_addr; 232 s32 ram_code_start_addr; 233 /* End of v1 array */ 234 s32 mcu_2_ssish_addr; 235 s32 ssish_2_mcu_addr; 236 s32 hdmi_dma_addr; 237 /* End of v2 array */ 238 s32 zcanfd_2_mcu_addr; 239 s32 zqspi_2_mcu_addr; 240 s32 mcu_2_ecspi_addr; 241 s32 mcu_2_sai_addr; 242 s32 sai_2_mcu_addr; 243 s32 uart_2_mcu_rom_addr; 244 s32 uartsh_2_mcu_rom_addr; 245 /* End of v3 array */ 246 s32 mcu_2_zqspi_addr; 247 /* End of v4 array */ 248 }; 249 250 /* 251 * Mode/Count of data node descriptors - IPCv2 252 */ 253 struct sdma_mode_count { 254 #define SDMA_BD_MAX_CNT 0xffff 255 u32 count : 16; /* size of the buffer pointed by this BD */ 256 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 257 u32 command : 8; /* command mostly used for channel 0 */ 258 }; 259 260 /* 261 * Buffer descriptor 262 */ 263 struct sdma_buffer_descriptor { 264 struct sdma_mode_count mode; 265 u32 buffer_addr; /* address of the buffer described */ 266 u32 ext_buffer_addr; /* extended buffer address */ 267 } __attribute__ ((packed)); 268 269 /** 270 * struct sdma_channel_control - Channel control Block 271 * 272 * @current_bd_ptr: current buffer descriptor processed 273 * @base_bd_ptr: first element of buffer descriptor array 274 * @unused: padding. The SDMA engine expects an array of 128 byte 275 * control blocks 276 */ 277 struct sdma_channel_control { 278 u32 current_bd_ptr; 279 u32 base_bd_ptr; 280 u32 unused[2]; 281 } __attribute__ ((packed)); 282 283 /** 284 * struct sdma_state_registers - SDMA context for a channel 285 * 286 * @pc: program counter 287 * @unused1: unused 288 * @t: test bit: status of arithmetic & test instruction 289 * @rpc: return program counter 290 * @unused0: unused 291 * @sf: source fault while loading data 292 * @spc: loop start program counter 293 * @unused2: unused 294 * @df: destination fault while storing data 295 * @epc: loop end program counter 296 * @lm: loop mode 297 */ 298 struct sdma_state_registers { 299 u32 pc :14; 300 u32 unused1: 1; 301 u32 t : 1; 302 u32 rpc :14; 303 u32 unused0: 1; 304 u32 sf : 1; 305 u32 spc :14; 306 u32 unused2: 1; 307 u32 df : 1; 308 u32 epc :14; 309 u32 lm : 2; 310 } __attribute__ ((packed)); 311 312 /** 313 * struct sdma_context_data - sdma context specific to a channel 314 * 315 * @channel_state: channel state bits 316 * @gReg: general registers 317 * @mda: burst dma destination address register 318 * @msa: burst dma source address register 319 * @ms: burst dma status register 320 * @md: burst dma data register 321 * @pda: peripheral dma destination address register 322 * @psa: peripheral dma source address register 323 * @ps: peripheral dma status register 324 * @pd: peripheral dma data register 325 * @ca: CRC polynomial register 326 * @cs: CRC accumulator register 327 * @dda: dedicated core destination address register 328 * @dsa: dedicated core source address register 329 * @ds: dedicated core status register 330 * @dd: dedicated core data register 331 * @scratch0: 1st word of dedicated ram for context switch 332 * @scratch1: 2nd word of dedicated ram for context switch 333 * @scratch2: 3rd word of dedicated ram for context switch 334 * @scratch3: 4th word of dedicated ram for context switch 335 * @scratch4: 5th word of dedicated ram for context switch 336 * @scratch5: 6th word of dedicated ram for context switch 337 * @scratch6: 7th word of dedicated ram for context switch 338 * @scratch7: 8th word of dedicated ram for context switch 339 */ 340 struct sdma_context_data { 341 struct sdma_state_registers channel_state; 342 u32 gReg[8]; 343 u32 mda; 344 u32 msa; 345 u32 ms; 346 u32 md; 347 u32 pda; 348 u32 psa; 349 u32 ps; 350 u32 pd; 351 u32 ca; 352 u32 cs; 353 u32 dda; 354 u32 dsa; 355 u32 ds; 356 u32 dd; 357 u32 scratch0; 358 u32 scratch1; 359 u32 scratch2; 360 u32 scratch3; 361 u32 scratch4; 362 u32 scratch5; 363 u32 scratch6; 364 u32 scratch7; 365 } __attribute__ ((packed)); 366 367 368 struct sdma_engine; 369 370 /** 371 * struct sdma_desc - descriptor structor for one transfer 372 * @vd: descriptor for virt dma 373 * @num_bd: number of descriptors currently handling 374 * @bd_phys: physical address of bd 375 * @buf_tail: ID of the buffer that was processed 376 * @buf_ptail: ID of the previous buffer that was processed 377 * @period_len: period length, used in cyclic. 378 * @chn_real_count: the real count updated from bd->mode.count 379 * @chn_count: the transfer count set 380 * @sdmac: sdma_channel pointer 381 * @bd: pointer of allocate bd 382 */ 383 struct sdma_desc { 384 struct virt_dma_desc vd; 385 unsigned int num_bd; 386 dma_addr_t bd_phys; 387 unsigned int buf_tail; 388 unsigned int buf_ptail; 389 unsigned int period_len; 390 unsigned int chn_real_count; 391 unsigned int chn_count; 392 struct sdma_channel *sdmac; 393 struct sdma_buffer_descriptor *bd; 394 }; 395 396 /** 397 * struct sdma_channel - housekeeping for a SDMA channel 398 * 399 * @vc: virt_dma base structure 400 * @desc: sdma description including vd and other special member 401 * @sdma: pointer to the SDMA engine for this channel 402 * @channel: the channel number, matches dmaengine chan_id + 1 403 * @direction: transfer type. Needed for setting SDMA script 404 * @slave_config: Slave configuration 405 * @peripheral_type: Peripheral type. Needed for setting SDMA script 406 * @event_id0: aka dma request line 407 * @event_id1: for channels that use 2 events 408 * @word_size: peripheral access size 409 * @pc_from_device: script address for those device_2_memory 410 * @pc_to_device: script address for those memory_2_device 411 * @device_to_device: script address for those device_2_device 412 * @pc_to_pc: script address for those memory_2_memory 413 * @flags: loop mode or not 414 * @per_address: peripheral source or destination address in common case 415 * destination address in p_2_p case 416 * @per_address2: peripheral source address in p_2_p case 417 * @event_mask: event mask used in p_2_p script 418 * @watermark_level: value for gReg[7], some script will extend it from 419 * basic watermark such as p_2_p 420 * @shp_addr: value for gReg[6] 421 * @per_addr: value for gReg[2] 422 * @status: status of dma channel 423 * @context_loaded: ensure context is only loaded once 424 * @data: specific sdma interface structure 425 * @bd_pool: dma_pool for bd 426 * @terminate_worker: used to call back into terminate work function 427 */ 428 struct sdma_channel { 429 struct virt_dma_chan vc; 430 struct sdma_desc *desc; 431 struct sdma_engine *sdma; 432 unsigned int channel; 433 enum dma_transfer_direction direction; 434 struct dma_slave_config slave_config; 435 enum sdma_peripheral_type peripheral_type; 436 unsigned int event_id0; 437 unsigned int event_id1; 438 enum dma_slave_buswidth word_size; 439 unsigned int pc_from_device, pc_to_device; 440 unsigned int device_to_device; 441 unsigned int pc_to_pc; 442 unsigned long flags; 443 dma_addr_t per_address, per_address2; 444 unsigned long event_mask[2]; 445 unsigned long watermark_level; 446 u32 shp_addr, per_addr; 447 enum dma_status status; 448 struct imx_dma_data data; 449 struct work_struct terminate_worker; 450 struct list_head terminated; 451 bool is_ram_script; 452 unsigned int n_fifos_src; 453 unsigned int n_fifos_dst; 454 bool sw_done; 455 }; 456 457 #define IMX_DMA_SG_LOOP BIT(0) 458 459 #define MAX_DMA_CHANNELS 32 460 #define MXC_SDMA_DEFAULT_PRIORITY 1 461 #define MXC_SDMA_MIN_PRIORITY 1 462 #define MXC_SDMA_MAX_PRIORITY 7 463 464 #define SDMA_FIRMWARE_MAGIC 0x414d4453 465 466 /** 467 * struct sdma_firmware_header - Layout of the firmware image 468 * 469 * @magic: "SDMA" 470 * @version_major: increased whenever layout of struct 471 * sdma_script_start_addrs changes. 472 * @version_minor: firmware minor version (for binary compatible changes) 473 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image 474 * @num_script_addrs: Number of script addresses in this image 475 * @ram_code_start: offset of SDMA ram image in this firmware image 476 * @ram_code_size: size of SDMA ram image 477 * @script_addrs: Stores the start address of the SDMA scripts 478 * (in SDMA memory space) 479 */ 480 struct sdma_firmware_header { 481 u32 magic; 482 u32 version_major; 483 u32 version_minor; 484 u32 script_addrs_start; 485 u32 num_script_addrs; 486 u32 ram_code_start; 487 u32 ram_code_size; 488 }; 489 490 struct sdma_driver_data { 491 int chnenbl0; 492 int num_events; 493 struct sdma_script_start_addrs *script_addrs; 494 bool check_ratio; 495 /* 496 * ecspi ERR009165 fixed should be done in sdma script 497 * and it has been fixed in soc from i.mx6ul. 498 * please get more information from the below link: 499 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf 500 */ 501 bool ecspi_fixed; 502 }; 503 504 struct sdma_engine { 505 struct device *dev; 506 struct sdma_channel channel[MAX_DMA_CHANNELS]; 507 struct sdma_channel_control *channel_control; 508 void __iomem *regs; 509 struct sdma_context_data *context; 510 dma_addr_t context_phys; 511 struct dma_device dma_device; 512 struct clk *clk_ipg; 513 struct clk *clk_ahb; 514 spinlock_t channel_0_lock; 515 u32 script_number; 516 struct sdma_script_start_addrs *script_addrs; 517 const struct sdma_driver_data *drvdata; 518 u32 spba_start_addr; 519 u32 spba_end_addr; 520 unsigned int irq; 521 dma_addr_t bd0_phys; 522 struct sdma_buffer_descriptor *bd0; 523 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/ 524 bool clk_ratio; 525 bool fw_loaded; 526 }; 527 528 static int sdma_config_write(struct dma_chan *chan, 529 struct dma_slave_config *dmaengine_cfg, 530 enum dma_transfer_direction direction); 531 532 static struct sdma_driver_data sdma_imx31 = { 533 .chnenbl0 = SDMA_CHNENBL0_IMX31, 534 .num_events = 32, 535 }; 536 537 static struct sdma_script_start_addrs sdma_script_imx25 = { 538 .ap_2_ap_addr = 729, 539 .uart_2_mcu_addr = 904, 540 .per_2_app_addr = 1255, 541 .mcu_2_app_addr = 834, 542 .uartsh_2_mcu_addr = 1120, 543 .per_2_shp_addr = 1329, 544 .mcu_2_shp_addr = 1048, 545 .ata_2_mcu_addr = 1560, 546 .mcu_2_ata_addr = 1479, 547 .app_2_per_addr = 1189, 548 .app_2_mcu_addr = 770, 549 .shp_2_per_addr = 1407, 550 .shp_2_mcu_addr = 979, 551 }; 552 553 static struct sdma_driver_data sdma_imx25 = { 554 .chnenbl0 = SDMA_CHNENBL0_IMX35, 555 .num_events = 48, 556 .script_addrs = &sdma_script_imx25, 557 }; 558 559 static struct sdma_driver_data sdma_imx35 = { 560 .chnenbl0 = SDMA_CHNENBL0_IMX35, 561 .num_events = 48, 562 }; 563 564 static struct sdma_script_start_addrs sdma_script_imx51 = { 565 .ap_2_ap_addr = 642, 566 .uart_2_mcu_addr = 817, 567 .mcu_2_app_addr = 747, 568 .mcu_2_shp_addr = 961, 569 .ata_2_mcu_addr = 1473, 570 .mcu_2_ata_addr = 1392, 571 .app_2_per_addr = 1033, 572 .app_2_mcu_addr = 683, 573 .shp_2_per_addr = 1251, 574 .shp_2_mcu_addr = 892, 575 }; 576 577 static struct sdma_driver_data sdma_imx51 = { 578 .chnenbl0 = SDMA_CHNENBL0_IMX35, 579 .num_events = 48, 580 .script_addrs = &sdma_script_imx51, 581 }; 582 583 static struct sdma_script_start_addrs sdma_script_imx53 = { 584 .ap_2_ap_addr = 642, 585 .app_2_mcu_addr = 683, 586 .mcu_2_app_addr = 747, 587 .uart_2_mcu_addr = 817, 588 .shp_2_mcu_addr = 891, 589 .mcu_2_shp_addr = 960, 590 .uartsh_2_mcu_addr = 1032, 591 .spdif_2_mcu_addr = 1100, 592 .mcu_2_spdif_addr = 1134, 593 .firi_2_mcu_addr = 1193, 594 .mcu_2_firi_addr = 1290, 595 }; 596 597 static struct sdma_driver_data sdma_imx53 = { 598 .chnenbl0 = SDMA_CHNENBL0_IMX35, 599 .num_events = 48, 600 .script_addrs = &sdma_script_imx53, 601 }; 602 603 static struct sdma_script_start_addrs sdma_script_imx6q = { 604 .ap_2_ap_addr = 642, 605 .uart_2_mcu_addr = 817, 606 .mcu_2_app_addr = 747, 607 .per_2_per_addr = 6331, 608 .uartsh_2_mcu_addr = 1032, 609 .mcu_2_shp_addr = 960, 610 .app_2_mcu_addr = 683, 611 .shp_2_mcu_addr = 891, 612 .spdif_2_mcu_addr = 1100, 613 .mcu_2_spdif_addr = 1134, 614 }; 615 616 static struct sdma_driver_data sdma_imx6q = { 617 .chnenbl0 = SDMA_CHNENBL0_IMX35, 618 .num_events = 48, 619 .script_addrs = &sdma_script_imx6q, 620 }; 621 622 static struct sdma_driver_data sdma_imx6ul = { 623 .chnenbl0 = SDMA_CHNENBL0_IMX35, 624 .num_events = 48, 625 .script_addrs = &sdma_script_imx6q, 626 .ecspi_fixed = true, 627 }; 628 629 static struct sdma_script_start_addrs sdma_script_imx7d = { 630 .ap_2_ap_addr = 644, 631 .uart_2_mcu_addr = 819, 632 .mcu_2_app_addr = 749, 633 .uartsh_2_mcu_addr = 1034, 634 .mcu_2_shp_addr = 962, 635 .app_2_mcu_addr = 685, 636 .shp_2_mcu_addr = 893, 637 .spdif_2_mcu_addr = 1102, 638 .mcu_2_spdif_addr = 1136, 639 }; 640 641 static struct sdma_driver_data sdma_imx7d = { 642 .chnenbl0 = SDMA_CHNENBL0_IMX35, 643 .num_events = 48, 644 .script_addrs = &sdma_script_imx7d, 645 }; 646 647 static struct sdma_driver_data sdma_imx8mq = { 648 .chnenbl0 = SDMA_CHNENBL0_IMX35, 649 .num_events = 48, 650 .script_addrs = &sdma_script_imx7d, 651 .check_ratio = 1, 652 }; 653 654 static const struct of_device_id sdma_dt_ids[] = { 655 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 656 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 657 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 658 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 659 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 660 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 661 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, }, 662 { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, }, 663 { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, }, 664 { /* sentinel */ } 665 }; 666 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 667 668 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 669 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 670 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 671 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 672 673 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 674 { 675 u32 chnenbl0 = sdma->drvdata->chnenbl0; 676 return chnenbl0 + event * 4; 677 } 678 679 static int sdma_config_ownership(struct sdma_channel *sdmac, 680 bool event_override, bool mcu_override, bool dsp_override) 681 { 682 struct sdma_engine *sdma = sdmac->sdma; 683 int channel = sdmac->channel; 684 unsigned long evt, mcu, dsp; 685 686 if (event_override && mcu_override && dsp_override) 687 return -EINVAL; 688 689 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 690 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 691 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 692 693 if (dsp_override) 694 __clear_bit(channel, &dsp); 695 else 696 __set_bit(channel, &dsp); 697 698 if (event_override) 699 __clear_bit(channel, &evt); 700 else 701 __set_bit(channel, &evt); 702 703 if (mcu_override) 704 __clear_bit(channel, &mcu); 705 else 706 __set_bit(channel, &mcu); 707 708 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 709 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 710 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 711 712 return 0; 713 } 714 715 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel) 716 { 717 return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel)); 718 } 719 720 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 721 { 722 writel(BIT(channel), sdma->regs + SDMA_H_START); 723 } 724 725 /* 726 * sdma_run_channel0 - run a channel and wait till it's done 727 */ 728 static int sdma_run_channel0(struct sdma_engine *sdma) 729 { 730 int ret; 731 u32 reg; 732 733 sdma_enable_channel(sdma, 0); 734 735 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP, 736 reg, !(reg & 1), 1, 500); 737 if (ret) 738 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 739 740 /* Set bits of CONFIG register with dynamic context switching */ 741 reg = readl(sdma->regs + SDMA_H_CONFIG); 742 if ((reg & SDMA_H_CONFIG_CSM) == 0) { 743 reg |= SDMA_H_CONFIG_CSM; 744 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG); 745 } 746 747 return ret; 748 } 749 750 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 751 u32 address) 752 { 753 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 754 void *buf_virt; 755 dma_addr_t buf_phys; 756 int ret; 757 unsigned long flags; 758 759 buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL); 760 if (!buf_virt) 761 return -ENOMEM; 762 763 spin_lock_irqsave(&sdma->channel_0_lock, flags); 764 765 bd0->mode.command = C0_SETPM; 766 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 767 bd0->mode.count = size / 2; 768 bd0->buffer_addr = buf_phys; 769 bd0->ext_buffer_addr = address; 770 771 memcpy(buf_virt, buf, size); 772 773 ret = sdma_run_channel0(sdma); 774 775 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 776 777 dma_free_coherent(sdma->dev, size, buf_virt, buf_phys); 778 779 return ret; 780 } 781 782 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 783 { 784 struct sdma_engine *sdma = sdmac->sdma; 785 int channel = sdmac->channel; 786 unsigned long val; 787 u32 chnenbl = chnenbl_ofs(sdma, event); 788 789 val = readl_relaxed(sdma->regs + chnenbl); 790 __set_bit(channel, &val); 791 writel_relaxed(val, sdma->regs + chnenbl); 792 793 /* Set SDMA_DONEx_CONFIG is sw_done enabled */ 794 if (sdmac->sw_done) { 795 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG); 796 val |= SDMA_DONE0_CONFIG_DONE_SEL; 797 val &= ~SDMA_DONE0_CONFIG_DONE_DIS; 798 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG); 799 } 800 } 801 802 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 803 { 804 struct sdma_engine *sdma = sdmac->sdma; 805 int channel = sdmac->channel; 806 u32 chnenbl = chnenbl_ofs(sdma, event); 807 unsigned long val; 808 809 val = readl_relaxed(sdma->regs + chnenbl); 810 __clear_bit(channel, &val); 811 writel_relaxed(val, sdma->regs + chnenbl); 812 } 813 814 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t) 815 { 816 return container_of(t, struct sdma_desc, vd.tx); 817 } 818 819 static void sdma_start_desc(struct sdma_channel *sdmac) 820 { 821 struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc); 822 struct sdma_desc *desc; 823 struct sdma_engine *sdma = sdmac->sdma; 824 int channel = sdmac->channel; 825 826 if (!vd) { 827 sdmac->desc = NULL; 828 return; 829 } 830 sdmac->desc = desc = to_sdma_desc(&vd->tx); 831 832 list_del(&vd->node); 833 834 sdma->channel_control[channel].base_bd_ptr = desc->bd_phys; 835 sdma->channel_control[channel].current_bd_ptr = desc->bd_phys; 836 sdma_enable_channel(sdma, sdmac->channel); 837 } 838 839 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 840 { 841 struct sdma_buffer_descriptor *bd; 842 int error = 0; 843 enum dma_status old_status = sdmac->status; 844 845 /* 846 * loop mode. Iterate over descriptors, re-setup them and 847 * call callback function. 848 */ 849 while (sdmac->desc) { 850 struct sdma_desc *desc = sdmac->desc; 851 852 bd = &desc->bd[desc->buf_tail]; 853 854 if (bd->mode.status & BD_DONE) 855 break; 856 857 if (bd->mode.status & BD_RROR) { 858 bd->mode.status &= ~BD_RROR; 859 sdmac->status = DMA_ERROR; 860 error = -EIO; 861 } 862 863 /* 864 * We use bd->mode.count to calculate the residue, since contains 865 * the number of bytes present in the current buffer descriptor. 866 */ 867 868 desc->chn_real_count = bd->mode.count; 869 bd->mode.count = desc->period_len; 870 desc->buf_ptail = desc->buf_tail; 871 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd; 872 873 /* 874 * The callback is called from the interrupt context in order 875 * to reduce latency and to avoid the risk of altering the 876 * SDMA transaction status by the time the client tasklet is 877 * executed. 878 */ 879 spin_unlock(&sdmac->vc.lock); 880 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL); 881 spin_lock(&sdmac->vc.lock); 882 883 /* Assign buffer ownership to SDMA */ 884 bd->mode.status |= BD_DONE; 885 886 if (error) 887 sdmac->status = old_status; 888 } 889 890 /* 891 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA 892 * owned buffer is available (i.e. BD_DONE was set too late). 893 */ 894 if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) { 895 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel); 896 sdma_enable_channel(sdmac->sdma, sdmac->channel); 897 } 898 } 899 900 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data) 901 { 902 struct sdma_channel *sdmac = (struct sdma_channel *) data; 903 struct sdma_buffer_descriptor *bd; 904 int i, error = 0; 905 906 sdmac->desc->chn_real_count = 0; 907 /* 908 * non loop mode. Iterate over all descriptors, collect 909 * errors and call callback function 910 */ 911 for (i = 0; i < sdmac->desc->num_bd; i++) { 912 bd = &sdmac->desc->bd[i]; 913 914 if (bd->mode.status & (BD_DONE | BD_RROR)) 915 error = -EIO; 916 sdmac->desc->chn_real_count += bd->mode.count; 917 } 918 919 if (error) 920 sdmac->status = DMA_ERROR; 921 else 922 sdmac->status = DMA_COMPLETE; 923 } 924 925 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 926 { 927 struct sdma_engine *sdma = dev_id; 928 unsigned long stat; 929 930 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 931 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 932 /* channel 0 is special and not handled here, see run_channel0() */ 933 stat &= ~1; 934 935 while (stat) { 936 int channel = fls(stat) - 1; 937 struct sdma_channel *sdmac = &sdma->channel[channel]; 938 struct sdma_desc *desc; 939 940 spin_lock(&sdmac->vc.lock); 941 desc = sdmac->desc; 942 if (desc) { 943 if (sdmac->flags & IMX_DMA_SG_LOOP) { 944 sdma_update_channel_loop(sdmac); 945 } else { 946 mxc_sdma_handle_channel_normal(sdmac); 947 vchan_cookie_complete(&desc->vd); 948 sdma_start_desc(sdmac); 949 } 950 } 951 952 spin_unlock(&sdmac->vc.lock); 953 __clear_bit(channel, &stat); 954 } 955 956 return IRQ_HANDLED; 957 } 958 959 /* 960 * sets the pc of SDMA script according to the peripheral type 961 */ 962 static int sdma_get_pc(struct sdma_channel *sdmac, 963 enum sdma_peripheral_type peripheral_type) 964 { 965 struct sdma_engine *sdma = sdmac->sdma; 966 int per_2_emi = 0, emi_2_per = 0; 967 /* 968 * These are needed once we start to support transfers between 969 * two peripherals or memory-to-memory transfers 970 */ 971 int per_2_per = 0, emi_2_emi = 0; 972 973 sdmac->pc_from_device = 0; 974 sdmac->pc_to_device = 0; 975 sdmac->device_to_device = 0; 976 sdmac->pc_to_pc = 0; 977 sdmac->is_ram_script = false; 978 979 switch (peripheral_type) { 980 case IMX_DMATYPE_MEMORY: 981 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 982 break; 983 case IMX_DMATYPE_DSP: 984 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 985 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 986 break; 987 case IMX_DMATYPE_FIRI: 988 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 989 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 990 break; 991 case IMX_DMATYPE_UART: 992 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 993 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 994 break; 995 case IMX_DMATYPE_UART_SP: 996 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 997 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 998 break; 999 case IMX_DMATYPE_ATA: 1000 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 1001 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 1002 break; 1003 case IMX_DMATYPE_CSPI: 1004 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1005 1006 /* Use rom script mcu_2_app if ERR009165 fixed */ 1007 if (sdmac->sdma->drvdata->ecspi_fixed) { 1008 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1009 } else { 1010 emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr; 1011 sdmac->is_ram_script = true; 1012 } 1013 1014 break; 1015 case IMX_DMATYPE_EXT: 1016 case IMX_DMATYPE_SSI: 1017 case IMX_DMATYPE_SAI: 1018 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 1019 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 1020 break; 1021 case IMX_DMATYPE_SSI_DUAL: 1022 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 1023 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 1024 sdmac->is_ram_script = true; 1025 break; 1026 case IMX_DMATYPE_SSI_SP: 1027 case IMX_DMATYPE_MMC: 1028 case IMX_DMATYPE_SDHC: 1029 case IMX_DMATYPE_CSPI_SP: 1030 case IMX_DMATYPE_ESAI: 1031 case IMX_DMATYPE_MSHC_SP: 1032 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1033 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1034 break; 1035 case IMX_DMATYPE_ASRC: 1036 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 1037 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 1038 per_2_per = sdma->script_addrs->per_2_per_addr; 1039 sdmac->is_ram_script = true; 1040 break; 1041 case IMX_DMATYPE_ASRC_SP: 1042 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 1043 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 1044 per_2_per = sdma->script_addrs->per_2_per_addr; 1045 break; 1046 case IMX_DMATYPE_MSHC: 1047 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 1048 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 1049 break; 1050 case IMX_DMATYPE_CCM: 1051 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 1052 break; 1053 case IMX_DMATYPE_SPDIF: 1054 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 1055 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 1056 break; 1057 case IMX_DMATYPE_IPU_MEMORY: 1058 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 1059 break; 1060 case IMX_DMATYPE_MULTI_SAI: 1061 per_2_emi = sdma->script_addrs->sai_2_mcu_addr; 1062 emi_2_per = sdma->script_addrs->mcu_2_sai_addr; 1063 break; 1064 default: 1065 dev_err(sdma->dev, "Unsupported transfer type %d\n", 1066 peripheral_type); 1067 return -EINVAL; 1068 } 1069 1070 sdmac->pc_from_device = per_2_emi; 1071 sdmac->pc_to_device = emi_2_per; 1072 sdmac->device_to_device = per_2_per; 1073 sdmac->pc_to_pc = emi_2_emi; 1074 1075 return 0; 1076 } 1077 1078 static int sdma_load_context(struct sdma_channel *sdmac) 1079 { 1080 struct sdma_engine *sdma = sdmac->sdma; 1081 int channel = sdmac->channel; 1082 int load_address; 1083 struct sdma_context_data *context = sdma->context; 1084 struct sdma_buffer_descriptor *bd0 = sdma->bd0; 1085 int ret; 1086 unsigned long flags; 1087 1088 if (sdmac->direction == DMA_DEV_TO_MEM) 1089 load_address = sdmac->pc_from_device; 1090 else if (sdmac->direction == DMA_DEV_TO_DEV) 1091 load_address = sdmac->device_to_device; 1092 else if (sdmac->direction == DMA_MEM_TO_MEM) 1093 load_address = sdmac->pc_to_pc; 1094 else 1095 load_address = sdmac->pc_to_device; 1096 1097 if (load_address < 0) 1098 return load_address; 1099 1100 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 1101 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 1102 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 1103 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 1104 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 1105 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 1106 1107 spin_lock_irqsave(&sdma->channel_0_lock, flags); 1108 1109 memset(context, 0, sizeof(*context)); 1110 context->channel_state.pc = load_address; 1111 1112 /* Send by context the event mask,base address for peripheral 1113 * and watermark level 1114 */ 1115 context->gReg[0] = sdmac->event_mask[1]; 1116 context->gReg[1] = sdmac->event_mask[0]; 1117 context->gReg[2] = sdmac->per_addr; 1118 context->gReg[6] = sdmac->shp_addr; 1119 context->gReg[7] = sdmac->watermark_level; 1120 1121 bd0->mode.command = C0_SETDM; 1122 bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD; 1123 bd0->mode.count = sizeof(*context) / 4; 1124 bd0->buffer_addr = sdma->context_phys; 1125 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 1126 ret = sdma_run_channel0(sdma); 1127 1128 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 1129 1130 return ret; 1131 } 1132 1133 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 1134 { 1135 return container_of(chan, struct sdma_channel, vc.chan); 1136 } 1137 1138 static int sdma_disable_channel(struct dma_chan *chan) 1139 { 1140 struct sdma_channel *sdmac = to_sdma_chan(chan); 1141 struct sdma_engine *sdma = sdmac->sdma; 1142 int channel = sdmac->channel; 1143 1144 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 1145 sdmac->status = DMA_ERROR; 1146 1147 return 0; 1148 } 1149 static void sdma_channel_terminate_work(struct work_struct *work) 1150 { 1151 struct sdma_channel *sdmac = container_of(work, struct sdma_channel, 1152 terminate_worker); 1153 /* 1154 * According to NXP R&D team a delay of one BD SDMA cost time 1155 * (maximum is 1ms) should be added after disable of the channel 1156 * bit, to ensure SDMA core has really been stopped after SDMA 1157 * clients call .device_terminate_all. 1158 */ 1159 usleep_range(1000, 2000); 1160 1161 vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated); 1162 } 1163 1164 static int sdma_terminate_all(struct dma_chan *chan) 1165 { 1166 struct sdma_channel *sdmac = to_sdma_chan(chan); 1167 unsigned long flags; 1168 1169 spin_lock_irqsave(&sdmac->vc.lock, flags); 1170 1171 sdma_disable_channel(chan); 1172 1173 if (sdmac->desc) { 1174 vchan_terminate_vdesc(&sdmac->desc->vd); 1175 /* 1176 * move out current descriptor into terminated list so that 1177 * it could be free in sdma_channel_terminate_work alone 1178 * later without potential involving next descriptor raised 1179 * up before the last descriptor terminated. 1180 */ 1181 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated); 1182 sdmac->desc = NULL; 1183 schedule_work(&sdmac->terminate_worker); 1184 } 1185 1186 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1187 1188 return 0; 1189 } 1190 1191 static void sdma_channel_synchronize(struct dma_chan *chan) 1192 { 1193 struct sdma_channel *sdmac = to_sdma_chan(chan); 1194 1195 vchan_synchronize(&sdmac->vc); 1196 1197 flush_work(&sdmac->terminate_worker); 1198 } 1199 1200 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac) 1201 { 1202 struct sdma_engine *sdma = sdmac->sdma; 1203 1204 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML; 1205 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16; 1206 1207 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]); 1208 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]); 1209 1210 if (sdmac->event_id0 > 31) 1211 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE; 1212 1213 if (sdmac->event_id1 > 31) 1214 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE; 1215 1216 /* 1217 * If LWML(src_maxburst) > HWML(dst_maxburst), we need 1218 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap 1219 * r0(event_mask[1]) and r1(event_mask[0]). 1220 */ 1221 if (lwml > hwml) { 1222 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML | 1223 SDMA_WATERMARK_LEVEL_HWML); 1224 sdmac->watermark_level |= hwml; 1225 sdmac->watermark_level |= lwml << 16; 1226 swap(sdmac->event_mask[0], sdmac->event_mask[1]); 1227 } 1228 1229 if (sdmac->per_address2 >= sdma->spba_start_addr && 1230 sdmac->per_address2 <= sdma->spba_end_addr) 1231 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP; 1232 1233 if (sdmac->per_address >= sdma->spba_start_addr && 1234 sdmac->per_address <= sdma->spba_end_addr) 1235 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP; 1236 1237 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT; 1238 } 1239 1240 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac) 1241 { 1242 unsigned int n_fifos; 1243 1244 if (sdmac->sw_done) 1245 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE; 1246 1247 if (sdmac->direction == DMA_DEV_TO_MEM) 1248 n_fifos = sdmac->n_fifos_src; 1249 else 1250 n_fifos = sdmac->n_fifos_dst; 1251 1252 sdmac->watermark_level |= 1253 FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos); 1254 } 1255 1256 static int sdma_config_channel(struct dma_chan *chan) 1257 { 1258 struct sdma_channel *sdmac = to_sdma_chan(chan); 1259 int ret; 1260 1261 sdma_disable_channel(chan); 1262 1263 sdmac->event_mask[0] = 0; 1264 sdmac->event_mask[1] = 0; 1265 sdmac->shp_addr = 0; 1266 sdmac->per_addr = 0; 1267 1268 switch (sdmac->peripheral_type) { 1269 case IMX_DMATYPE_DSP: 1270 sdma_config_ownership(sdmac, false, true, true); 1271 break; 1272 case IMX_DMATYPE_MEMORY: 1273 sdma_config_ownership(sdmac, false, true, false); 1274 break; 1275 default: 1276 sdma_config_ownership(sdmac, true, true, false); 1277 break; 1278 } 1279 1280 ret = sdma_get_pc(sdmac, sdmac->peripheral_type); 1281 if (ret) 1282 return ret; 1283 1284 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 1285 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 1286 /* Handle multiple event channels differently */ 1287 if (sdmac->event_id1) { 1288 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP || 1289 sdmac->peripheral_type == IMX_DMATYPE_ASRC) 1290 sdma_set_watermarklevel_for_p2p(sdmac); 1291 } else { 1292 if (sdmac->peripheral_type == 1293 IMX_DMATYPE_MULTI_SAI) 1294 sdma_set_watermarklevel_for_sais(sdmac); 1295 1296 __set_bit(sdmac->event_id0, sdmac->event_mask); 1297 } 1298 1299 /* Address */ 1300 sdmac->shp_addr = sdmac->per_address; 1301 sdmac->per_addr = sdmac->per_address2; 1302 } else { 1303 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 1304 } 1305 1306 return 0; 1307 } 1308 1309 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 1310 unsigned int priority) 1311 { 1312 struct sdma_engine *sdma = sdmac->sdma; 1313 int channel = sdmac->channel; 1314 1315 if (priority < MXC_SDMA_MIN_PRIORITY 1316 || priority > MXC_SDMA_MAX_PRIORITY) { 1317 return -EINVAL; 1318 } 1319 1320 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 1321 1322 return 0; 1323 } 1324 1325 static int sdma_request_channel0(struct sdma_engine *sdma) 1326 { 1327 int ret = -EBUSY; 1328 1329 sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys, 1330 GFP_NOWAIT); 1331 if (!sdma->bd0) { 1332 ret = -ENOMEM; 1333 goto out; 1334 } 1335 1336 sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys; 1337 sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys; 1338 1339 sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY); 1340 return 0; 1341 out: 1342 1343 return ret; 1344 } 1345 1346 1347 static int sdma_alloc_bd(struct sdma_desc *desc) 1348 { 1349 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1350 int ret = 0; 1351 1352 desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size, 1353 &desc->bd_phys, GFP_NOWAIT); 1354 if (!desc->bd) { 1355 ret = -ENOMEM; 1356 goto out; 1357 } 1358 out: 1359 return ret; 1360 } 1361 1362 static void sdma_free_bd(struct sdma_desc *desc) 1363 { 1364 u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor); 1365 1366 dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, 1367 desc->bd_phys); 1368 } 1369 1370 static void sdma_desc_free(struct virt_dma_desc *vd) 1371 { 1372 struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd); 1373 1374 sdma_free_bd(desc); 1375 kfree(desc); 1376 } 1377 1378 static int sdma_alloc_chan_resources(struct dma_chan *chan) 1379 { 1380 struct sdma_channel *sdmac = to_sdma_chan(chan); 1381 struct imx_dma_data *data = chan->private; 1382 struct imx_dma_data mem_data; 1383 int prio, ret; 1384 1385 /* 1386 * MEMCPY may never setup chan->private by filter function such as 1387 * dmatest, thus create 'struct imx_dma_data mem_data' for this case. 1388 * Please note in any other slave case, you have to setup chan->private 1389 * with 'struct imx_dma_data' in your own filter function if you want to 1390 * request dma channel by dma_request_channel() rather than 1391 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear 1392 * to warn you to correct your filter function. 1393 */ 1394 if (!data) { 1395 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n"); 1396 mem_data.priority = 2; 1397 mem_data.peripheral_type = IMX_DMATYPE_MEMORY; 1398 mem_data.dma_request = 0; 1399 mem_data.dma_request2 = 0; 1400 data = &mem_data; 1401 1402 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY); 1403 if (ret) 1404 return ret; 1405 } 1406 1407 switch (data->priority) { 1408 case DMA_PRIO_HIGH: 1409 prio = 3; 1410 break; 1411 case DMA_PRIO_MEDIUM: 1412 prio = 2; 1413 break; 1414 case DMA_PRIO_LOW: 1415 default: 1416 prio = 1; 1417 break; 1418 } 1419 1420 sdmac->peripheral_type = data->peripheral_type; 1421 sdmac->event_id0 = data->dma_request; 1422 sdmac->event_id1 = data->dma_request2; 1423 1424 ret = clk_enable(sdmac->sdma->clk_ipg); 1425 if (ret) 1426 return ret; 1427 ret = clk_enable(sdmac->sdma->clk_ahb); 1428 if (ret) 1429 goto disable_clk_ipg; 1430 1431 ret = sdma_set_channel_priority(sdmac, prio); 1432 if (ret) 1433 goto disable_clk_ahb; 1434 1435 return 0; 1436 1437 disable_clk_ahb: 1438 clk_disable(sdmac->sdma->clk_ahb); 1439 disable_clk_ipg: 1440 clk_disable(sdmac->sdma->clk_ipg); 1441 return ret; 1442 } 1443 1444 static void sdma_free_chan_resources(struct dma_chan *chan) 1445 { 1446 struct sdma_channel *sdmac = to_sdma_chan(chan); 1447 struct sdma_engine *sdma = sdmac->sdma; 1448 1449 sdma_terminate_all(chan); 1450 1451 sdma_channel_synchronize(chan); 1452 1453 sdma_event_disable(sdmac, sdmac->event_id0); 1454 if (sdmac->event_id1) 1455 sdma_event_disable(sdmac, sdmac->event_id1); 1456 1457 sdmac->event_id0 = 0; 1458 sdmac->event_id1 = 0; 1459 1460 sdma_set_channel_priority(sdmac, 0); 1461 1462 clk_disable(sdma->clk_ipg); 1463 clk_disable(sdma->clk_ahb); 1464 } 1465 1466 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac, 1467 enum dma_transfer_direction direction, u32 bds) 1468 { 1469 struct sdma_desc *desc; 1470 1471 if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) { 1472 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n"); 1473 goto err_out; 1474 } 1475 1476 desc = kzalloc((sizeof(*desc)), GFP_NOWAIT); 1477 if (!desc) 1478 goto err_out; 1479 1480 sdmac->status = DMA_IN_PROGRESS; 1481 sdmac->direction = direction; 1482 sdmac->flags = 0; 1483 1484 desc->chn_count = 0; 1485 desc->chn_real_count = 0; 1486 desc->buf_tail = 0; 1487 desc->buf_ptail = 0; 1488 desc->sdmac = sdmac; 1489 desc->num_bd = bds; 1490 1491 if (sdma_alloc_bd(desc)) 1492 goto err_desc_out; 1493 1494 /* No slave_config called in MEMCPY case, so do here */ 1495 if (direction == DMA_MEM_TO_MEM) 1496 sdma_config_ownership(sdmac, false, true, false); 1497 1498 if (sdma_load_context(sdmac)) 1499 goto err_desc_out; 1500 1501 return desc; 1502 1503 err_desc_out: 1504 kfree(desc); 1505 err_out: 1506 return NULL; 1507 } 1508 1509 static struct dma_async_tx_descriptor *sdma_prep_memcpy( 1510 struct dma_chan *chan, dma_addr_t dma_dst, 1511 dma_addr_t dma_src, size_t len, unsigned long flags) 1512 { 1513 struct sdma_channel *sdmac = to_sdma_chan(chan); 1514 struct sdma_engine *sdma = sdmac->sdma; 1515 int channel = sdmac->channel; 1516 size_t count; 1517 int i = 0, param; 1518 struct sdma_buffer_descriptor *bd; 1519 struct sdma_desc *desc; 1520 1521 if (!chan || !len) 1522 return NULL; 1523 1524 dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n", 1525 &dma_src, &dma_dst, len, channel); 1526 1527 desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM, 1528 len / SDMA_BD_MAX_CNT + 1); 1529 if (!desc) 1530 return NULL; 1531 1532 do { 1533 count = min_t(size_t, len, SDMA_BD_MAX_CNT); 1534 bd = &desc->bd[i]; 1535 bd->buffer_addr = dma_src; 1536 bd->ext_buffer_addr = dma_dst; 1537 bd->mode.count = count; 1538 desc->chn_count += count; 1539 bd->mode.command = 0; 1540 1541 dma_src += count; 1542 dma_dst += count; 1543 len -= count; 1544 i++; 1545 1546 param = BD_DONE | BD_EXTD | BD_CONT; 1547 /* last bd */ 1548 if (!len) { 1549 param |= BD_INTR; 1550 param |= BD_LAST; 1551 param &= ~BD_CONT; 1552 } 1553 1554 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n", 1555 i, count, bd->buffer_addr, 1556 param & BD_WRAP ? "wrap" : "", 1557 param & BD_INTR ? " intr" : ""); 1558 1559 bd->mode.status = param; 1560 } while (len); 1561 1562 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1563 } 1564 1565 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1566 struct dma_chan *chan, struct scatterlist *sgl, 1567 unsigned int sg_len, enum dma_transfer_direction direction, 1568 unsigned long flags, void *context) 1569 { 1570 struct sdma_channel *sdmac = to_sdma_chan(chan); 1571 struct sdma_engine *sdma = sdmac->sdma; 1572 int i, count; 1573 int channel = sdmac->channel; 1574 struct scatterlist *sg; 1575 struct sdma_desc *desc; 1576 1577 sdma_config_write(chan, &sdmac->slave_config, direction); 1578 1579 desc = sdma_transfer_init(sdmac, direction, sg_len); 1580 if (!desc) 1581 goto err_out; 1582 1583 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1584 sg_len, channel); 1585 1586 for_each_sg(sgl, sg, sg_len, i) { 1587 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1588 int param; 1589 1590 bd->buffer_addr = sg->dma_address; 1591 1592 count = sg_dma_len(sg); 1593 1594 if (count > SDMA_BD_MAX_CNT) { 1595 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1596 channel, count, SDMA_BD_MAX_CNT); 1597 goto err_bd_out; 1598 } 1599 1600 bd->mode.count = count; 1601 desc->chn_count += count; 1602 1603 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1604 goto err_bd_out; 1605 1606 switch (sdmac->word_size) { 1607 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1608 bd->mode.command = 0; 1609 if (count & 3 || sg->dma_address & 3) 1610 goto err_bd_out; 1611 break; 1612 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1613 bd->mode.command = 2; 1614 if (count & 1 || sg->dma_address & 1) 1615 goto err_bd_out; 1616 break; 1617 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1618 bd->mode.command = 1; 1619 break; 1620 default: 1621 goto err_bd_out; 1622 } 1623 1624 param = BD_DONE | BD_EXTD | BD_CONT; 1625 1626 if (i + 1 == sg_len) { 1627 param |= BD_INTR; 1628 param |= BD_LAST; 1629 param &= ~BD_CONT; 1630 } 1631 1632 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1633 i, count, (u64)sg->dma_address, 1634 param & BD_WRAP ? "wrap" : "", 1635 param & BD_INTR ? " intr" : ""); 1636 1637 bd->mode.status = param; 1638 } 1639 1640 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1641 err_bd_out: 1642 sdma_free_bd(desc); 1643 kfree(desc); 1644 err_out: 1645 sdmac->status = DMA_ERROR; 1646 return NULL; 1647 } 1648 1649 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1650 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1651 size_t period_len, enum dma_transfer_direction direction, 1652 unsigned long flags) 1653 { 1654 struct sdma_channel *sdmac = to_sdma_chan(chan); 1655 struct sdma_engine *sdma = sdmac->sdma; 1656 int num_periods = buf_len / period_len; 1657 int channel = sdmac->channel; 1658 int i = 0, buf = 0; 1659 struct sdma_desc *desc; 1660 1661 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1662 1663 sdma_config_write(chan, &sdmac->slave_config, direction); 1664 1665 desc = sdma_transfer_init(sdmac, direction, num_periods); 1666 if (!desc) 1667 goto err_out; 1668 1669 desc->period_len = period_len; 1670 1671 sdmac->flags |= IMX_DMA_SG_LOOP; 1672 1673 if (period_len > SDMA_BD_MAX_CNT) { 1674 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n", 1675 channel, period_len, SDMA_BD_MAX_CNT); 1676 goto err_bd_out; 1677 } 1678 1679 while (buf < buf_len) { 1680 struct sdma_buffer_descriptor *bd = &desc->bd[i]; 1681 int param; 1682 1683 bd->buffer_addr = dma_addr; 1684 1685 bd->mode.count = period_len; 1686 1687 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1688 goto err_bd_out; 1689 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1690 bd->mode.command = 0; 1691 else 1692 bd->mode.command = sdmac->word_size; 1693 1694 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1695 if (i + 1 == num_periods) 1696 param |= BD_WRAP; 1697 1698 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n", 1699 i, period_len, (u64)dma_addr, 1700 param & BD_WRAP ? "wrap" : "", 1701 param & BD_INTR ? " intr" : ""); 1702 1703 bd->mode.status = param; 1704 1705 dma_addr += period_len; 1706 buf += period_len; 1707 1708 i++; 1709 } 1710 1711 return vchan_tx_prep(&sdmac->vc, &desc->vd, flags); 1712 err_bd_out: 1713 sdma_free_bd(desc); 1714 kfree(desc); 1715 err_out: 1716 sdmac->status = DMA_ERROR; 1717 return NULL; 1718 } 1719 1720 static int sdma_config_write(struct dma_chan *chan, 1721 struct dma_slave_config *dmaengine_cfg, 1722 enum dma_transfer_direction direction) 1723 { 1724 struct sdma_channel *sdmac = to_sdma_chan(chan); 1725 1726 if (direction == DMA_DEV_TO_MEM) { 1727 sdmac->per_address = dmaengine_cfg->src_addr; 1728 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1729 dmaengine_cfg->src_addr_width; 1730 sdmac->word_size = dmaengine_cfg->src_addr_width; 1731 } else if (direction == DMA_DEV_TO_DEV) { 1732 sdmac->per_address2 = dmaengine_cfg->src_addr; 1733 sdmac->per_address = dmaengine_cfg->dst_addr; 1734 sdmac->watermark_level = dmaengine_cfg->src_maxburst & 1735 SDMA_WATERMARK_LEVEL_LWML; 1736 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) & 1737 SDMA_WATERMARK_LEVEL_HWML; 1738 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1739 } else { 1740 sdmac->per_address = dmaengine_cfg->dst_addr; 1741 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1742 dmaengine_cfg->dst_addr_width; 1743 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1744 } 1745 sdmac->direction = direction; 1746 return sdma_config_channel(chan); 1747 } 1748 1749 static int sdma_config(struct dma_chan *chan, 1750 struct dma_slave_config *dmaengine_cfg) 1751 { 1752 struct sdma_channel *sdmac = to_sdma_chan(chan); 1753 struct sdma_engine *sdma = sdmac->sdma; 1754 1755 memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg)); 1756 1757 if (dmaengine_cfg->peripheral_config) { 1758 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config; 1759 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) { 1760 dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n", 1761 dmaengine_cfg->peripheral_size, 1762 sizeof(struct sdma_peripheral_config)); 1763 return -EINVAL; 1764 } 1765 sdmac->n_fifos_src = sdmacfg->n_fifos_src; 1766 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst; 1767 sdmac->sw_done = sdmacfg->sw_done; 1768 } 1769 1770 /* Set ENBLn earlier to make sure dma request triggered after that */ 1771 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 1772 return -EINVAL; 1773 sdma_event_enable(sdmac, sdmac->event_id0); 1774 1775 if (sdmac->event_id1) { 1776 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events) 1777 return -EINVAL; 1778 sdma_event_enable(sdmac, sdmac->event_id1); 1779 } 1780 1781 return 0; 1782 } 1783 1784 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1785 dma_cookie_t cookie, 1786 struct dma_tx_state *txstate) 1787 { 1788 struct sdma_channel *sdmac = to_sdma_chan(chan); 1789 struct sdma_desc *desc = NULL; 1790 u32 residue; 1791 struct virt_dma_desc *vd; 1792 enum dma_status ret; 1793 unsigned long flags; 1794 1795 ret = dma_cookie_status(chan, cookie, txstate); 1796 if (ret == DMA_COMPLETE || !txstate) 1797 return ret; 1798 1799 spin_lock_irqsave(&sdmac->vc.lock, flags); 1800 1801 vd = vchan_find_desc(&sdmac->vc, cookie); 1802 if (vd) 1803 desc = to_sdma_desc(&vd->tx); 1804 else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) 1805 desc = sdmac->desc; 1806 1807 if (desc) { 1808 if (sdmac->flags & IMX_DMA_SG_LOOP) 1809 residue = (desc->num_bd - desc->buf_ptail) * 1810 desc->period_len - desc->chn_real_count; 1811 else 1812 residue = desc->chn_count - desc->chn_real_count; 1813 } else { 1814 residue = 0; 1815 } 1816 1817 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1818 1819 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1820 residue); 1821 1822 return sdmac->status; 1823 } 1824 1825 static void sdma_issue_pending(struct dma_chan *chan) 1826 { 1827 struct sdma_channel *sdmac = to_sdma_chan(chan); 1828 unsigned long flags; 1829 1830 spin_lock_irqsave(&sdmac->vc.lock, flags); 1831 if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc) 1832 sdma_start_desc(sdmac); 1833 spin_unlock_irqrestore(&sdmac->vc.lock, flags); 1834 } 1835 1836 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1837 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1838 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45 1839 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46 1840 1841 static void sdma_add_scripts(struct sdma_engine *sdma, 1842 const struct sdma_script_start_addrs *addr) 1843 { 1844 s32 *addr_arr = (u32 *)addr; 1845 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1846 int i; 1847 1848 /* use the default firmware in ROM if missing external firmware */ 1849 if (!sdma->script_number) 1850 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1851 1852 if (sdma->script_number > sizeof(struct sdma_script_start_addrs) 1853 / sizeof(s32)) { 1854 dev_err(sdma->dev, 1855 "SDMA script number %d not match with firmware.\n", 1856 sdma->script_number); 1857 return; 1858 } 1859 1860 for (i = 0; i < sdma->script_number; i++) 1861 if (addr_arr[i] > 0) 1862 saddr_arr[i] = addr_arr[i]; 1863 1864 /* 1865 * For compatibility with NXP internal legacy kernel before 4.19 which 1866 * is based on uart ram script and mainline kernel based on uart rom 1867 * script, both uart ram/rom scripts are present in newer sdma 1868 * firmware. Use the rom versions if they are present (V3 or newer). 1869 */ 1870 if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) { 1871 if (addr->uart_2_mcu_rom_addr) 1872 sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr; 1873 if (addr->uartsh_2_mcu_rom_addr) 1874 sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr; 1875 } 1876 } 1877 1878 static void sdma_load_firmware(const struct firmware *fw, void *context) 1879 { 1880 struct sdma_engine *sdma = context; 1881 const struct sdma_firmware_header *header; 1882 const struct sdma_script_start_addrs *addr; 1883 unsigned short *ram_code; 1884 1885 if (!fw) { 1886 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n"); 1887 /* In this case we just use the ROM firmware. */ 1888 return; 1889 } 1890 1891 if (fw->size < sizeof(*header)) 1892 goto err_firmware; 1893 1894 header = (struct sdma_firmware_header *)fw->data; 1895 1896 if (header->magic != SDMA_FIRMWARE_MAGIC) 1897 goto err_firmware; 1898 if (header->ram_code_start + header->ram_code_size > fw->size) 1899 goto err_firmware; 1900 switch (header->version_major) { 1901 case 1: 1902 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1903 break; 1904 case 2: 1905 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1906 break; 1907 case 3: 1908 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3; 1909 break; 1910 case 4: 1911 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4; 1912 break; 1913 default: 1914 dev_err(sdma->dev, "unknown firmware version\n"); 1915 goto err_firmware; 1916 } 1917 1918 addr = (void *)header + header->script_addrs_start; 1919 ram_code = (void *)header + header->ram_code_start; 1920 1921 clk_enable(sdma->clk_ipg); 1922 clk_enable(sdma->clk_ahb); 1923 /* download the RAM image for SDMA */ 1924 sdma_load_script(sdma, ram_code, 1925 header->ram_code_size, 1926 addr->ram_code_start_addr); 1927 clk_disable(sdma->clk_ipg); 1928 clk_disable(sdma->clk_ahb); 1929 1930 sdma_add_scripts(sdma, addr); 1931 1932 sdma->fw_loaded = true; 1933 1934 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1935 header->version_major, 1936 header->version_minor); 1937 1938 err_firmware: 1939 release_firmware(fw); 1940 } 1941 1942 #define EVENT_REMAP_CELLS 3 1943 1944 static int sdma_event_remap(struct sdma_engine *sdma) 1945 { 1946 struct device_node *np = sdma->dev->of_node; 1947 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0); 1948 struct property *event_remap; 1949 struct regmap *gpr; 1950 char propname[] = "fsl,sdma-event-remap"; 1951 u32 reg, val, shift, num_map, i; 1952 int ret = 0; 1953 1954 if (IS_ERR(np) || !gpr_np) 1955 goto out; 1956 1957 event_remap = of_find_property(np, propname, NULL); 1958 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0; 1959 if (!num_map) { 1960 dev_dbg(sdma->dev, "no event needs to be remapped\n"); 1961 goto out; 1962 } else if (num_map % EVENT_REMAP_CELLS) { 1963 dev_err(sdma->dev, "the property %s must modulo %d\n", 1964 propname, EVENT_REMAP_CELLS); 1965 ret = -EINVAL; 1966 goto out; 1967 } 1968 1969 gpr = syscon_node_to_regmap(gpr_np); 1970 if (IS_ERR(gpr)) { 1971 dev_err(sdma->dev, "failed to get gpr regmap\n"); 1972 ret = PTR_ERR(gpr); 1973 goto out; 1974 } 1975 1976 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) { 1977 ret = of_property_read_u32_index(np, propname, i, ®); 1978 if (ret) { 1979 dev_err(sdma->dev, "failed to read property %s index %d\n", 1980 propname, i); 1981 goto out; 1982 } 1983 1984 ret = of_property_read_u32_index(np, propname, i + 1, &shift); 1985 if (ret) { 1986 dev_err(sdma->dev, "failed to read property %s index %d\n", 1987 propname, i + 1); 1988 goto out; 1989 } 1990 1991 ret = of_property_read_u32_index(np, propname, i + 2, &val); 1992 if (ret) { 1993 dev_err(sdma->dev, "failed to read property %s index %d\n", 1994 propname, i + 2); 1995 goto out; 1996 } 1997 1998 regmap_update_bits(gpr, reg, BIT(shift), val << shift); 1999 } 2000 2001 out: 2002 if (gpr_np) 2003 of_node_put(gpr_np); 2004 2005 return ret; 2006 } 2007 2008 static int sdma_get_firmware(struct sdma_engine *sdma, 2009 const char *fw_name) 2010 { 2011 int ret; 2012 2013 ret = request_firmware_nowait(THIS_MODULE, 2014 FW_ACTION_UEVENT, fw_name, sdma->dev, 2015 GFP_KERNEL, sdma, sdma_load_firmware); 2016 2017 return ret; 2018 } 2019 2020 static int sdma_init(struct sdma_engine *sdma) 2021 { 2022 int i, ret; 2023 dma_addr_t ccb_phys; 2024 2025 ret = clk_enable(sdma->clk_ipg); 2026 if (ret) 2027 return ret; 2028 ret = clk_enable(sdma->clk_ahb); 2029 if (ret) 2030 goto disable_clk_ipg; 2031 2032 if (sdma->drvdata->check_ratio && 2033 (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg))) 2034 sdma->clk_ratio = 1; 2035 2036 /* Be sure SDMA has not started yet */ 2037 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 2038 2039 sdma->channel_control = dma_alloc_coherent(sdma->dev, 2040 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) + 2041 sizeof(struct sdma_context_data), 2042 &ccb_phys, GFP_KERNEL); 2043 2044 if (!sdma->channel_control) { 2045 ret = -ENOMEM; 2046 goto err_dma_alloc; 2047 } 2048 2049 sdma->context = (void *)sdma->channel_control + 2050 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2051 sdma->context_phys = ccb_phys + 2052 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control); 2053 2054 /* disable all channels */ 2055 for (i = 0; i < sdma->drvdata->num_events; i++) 2056 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 2057 2058 /* All channels have priority 0 */ 2059 for (i = 0; i < MAX_DMA_CHANNELS; i++) 2060 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 2061 2062 ret = sdma_request_channel0(sdma); 2063 if (ret) 2064 goto err_dma_alloc; 2065 2066 sdma_config_ownership(&sdma->channel[0], false, true, false); 2067 2068 /* Set Command Channel (Channel Zero) */ 2069 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 2070 2071 /* Set bits of CONFIG register but with static context switching */ 2072 if (sdma->clk_ratio) 2073 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG); 2074 else 2075 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 2076 2077 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 2078 2079 /* Initializes channel's priorities */ 2080 sdma_set_channel_priority(&sdma->channel[0], 7); 2081 2082 clk_disable(sdma->clk_ipg); 2083 clk_disable(sdma->clk_ahb); 2084 2085 return 0; 2086 2087 err_dma_alloc: 2088 clk_disable(sdma->clk_ahb); 2089 disable_clk_ipg: 2090 clk_disable(sdma->clk_ipg); 2091 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 2092 return ret; 2093 } 2094 2095 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 2096 { 2097 struct sdma_channel *sdmac = to_sdma_chan(chan); 2098 struct imx_dma_data *data = fn_param; 2099 2100 if (!imx_dma_is_general_purpose(chan)) 2101 return false; 2102 2103 sdmac->data = *data; 2104 chan->private = &sdmac->data; 2105 2106 return true; 2107 } 2108 2109 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 2110 struct of_dma *ofdma) 2111 { 2112 struct sdma_engine *sdma = ofdma->of_dma_data; 2113 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 2114 struct imx_dma_data data; 2115 2116 if (dma_spec->args_count != 3) 2117 return NULL; 2118 2119 data.dma_request = dma_spec->args[0]; 2120 data.peripheral_type = dma_spec->args[1]; 2121 data.priority = dma_spec->args[2]; 2122 /* 2123 * init dma_request2 to zero, which is not used by the dts. 2124 * For P2P, dma_request2 is init from dma_request_channel(), 2125 * chan->private will point to the imx_dma_data, and in 2126 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will 2127 * be set to sdmac->event_id1. 2128 */ 2129 data.dma_request2 = 0; 2130 2131 return __dma_request_channel(&mask, sdma_filter_fn, &data, 2132 ofdma->of_node); 2133 } 2134 2135 static int sdma_probe(struct platform_device *pdev) 2136 { 2137 struct device_node *np = pdev->dev.of_node; 2138 struct device_node *spba_bus; 2139 const char *fw_name; 2140 int ret; 2141 int irq; 2142 struct resource *iores; 2143 struct resource spba_res; 2144 int i; 2145 struct sdma_engine *sdma; 2146 s32 *saddr_arr; 2147 2148 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2149 if (ret) 2150 return ret; 2151 2152 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL); 2153 if (!sdma) 2154 return -ENOMEM; 2155 2156 spin_lock_init(&sdma->channel_0_lock); 2157 2158 sdma->dev = &pdev->dev; 2159 sdma->drvdata = of_device_get_match_data(sdma->dev); 2160 2161 irq = platform_get_irq(pdev, 0); 2162 if (irq < 0) 2163 return irq; 2164 2165 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2166 sdma->regs = devm_ioremap_resource(&pdev->dev, iores); 2167 if (IS_ERR(sdma->regs)) 2168 return PTR_ERR(sdma->regs); 2169 2170 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2171 if (IS_ERR(sdma->clk_ipg)) 2172 return PTR_ERR(sdma->clk_ipg); 2173 2174 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 2175 if (IS_ERR(sdma->clk_ahb)) 2176 return PTR_ERR(sdma->clk_ahb); 2177 2178 ret = clk_prepare(sdma->clk_ipg); 2179 if (ret) 2180 return ret; 2181 2182 ret = clk_prepare(sdma->clk_ahb); 2183 if (ret) 2184 goto err_clk; 2185 2186 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma", 2187 sdma); 2188 if (ret) 2189 goto err_irq; 2190 2191 sdma->irq = irq; 2192 2193 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 2194 if (!sdma->script_addrs) { 2195 ret = -ENOMEM; 2196 goto err_irq; 2197 } 2198 2199 /* initially no scripts available */ 2200 saddr_arr = (s32 *)sdma->script_addrs; 2201 for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++) 2202 saddr_arr[i] = -EINVAL; 2203 2204 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 2205 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 2206 dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask); 2207 2208 INIT_LIST_HEAD(&sdma->dma_device.channels); 2209 /* Initialize channel parameters */ 2210 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2211 struct sdma_channel *sdmac = &sdma->channel[i]; 2212 2213 sdmac->sdma = sdma; 2214 2215 sdmac->channel = i; 2216 sdmac->vc.desc_free = sdma_desc_free; 2217 INIT_LIST_HEAD(&sdmac->terminated); 2218 INIT_WORK(&sdmac->terminate_worker, 2219 sdma_channel_terminate_work); 2220 /* 2221 * Add the channel to the DMAC list. Do not add channel 0 though 2222 * because we need it internally in the SDMA driver. This also means 2223 * that channel 0 in dmaengine counting matches sdma channel 1. 2224 */ 2225 if (i) 2226 vchan_init(&sdmac->vc, &sdma->dma_device); 2227 } 2228 2229 ret = sdma_init(sdma); 2230 if (ret) 2231 goto err_init; 2232 2233 ret = sdma_event_remap(sdma); 2234 if (ret) 2235 goto err_init; 2236 2237 if (sdma->drvdata->script_addrs) 2238 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 2239 2240 sdma->dma_device.dev = &pdev->dev; 2241 2242 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 2243 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 2244 sdma->dma_device.device_tx_status = sdma_tx_status; 2245 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 2246 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 2247 sdma->dma_device.device_config = sdma_config; 2248 sdma->dma_device.device_terminate_all = sdma_terminate_all; 2249 sdma->dma_device.device_synchronize = sdma_channel_synchronize; 2250 sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS; 2251 sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS; 2252 sdma->dma_device.directions = SDMA_DMA_DIRECTIONS; 2253 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 2254 sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy; 2255 sdma->dma_device.device_issue_pending = sdma_issue_pending; 2256 sdma->dma_device.copy_align = 2; 2257 dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT); 2258 2259 platform_set_drvdata(pdev, sdma); 2260 2261 ret = dma_async_device_register(&sdma->dma_device); 2262 if (ret) { 2263 dev_err(&pdev->dev, "unable to register\n"); 2264 goto err_init; 2265 } 2266 2267 if (np) { 2268 ret = of_dma_controller_register(np, sdma_xlate, sdma); 2269 if (ret) { 2270 dev_err(&pdev->dev, "failed to register controller\n"); 2271 goto err_register; 2272 } 2273 2274 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus"); 2275 ret = of_address_to_resource(spba_bus, 0, &spba_res); 2276 if (!ret) { 2277 sdma->spba_start_addr = spba_res.start; 2278 sdma->spba_end_addr = spba_res.end; 2279 } 2280 of_node_put(spba_bus); 2281 } 2282 2283 /* 2284 * Because that device tree does not encode ROM script address, 2285 * the RAM script in firmware is mandatory for device tree 2286 * probe, otherwise it fails. 2287 */ 2288 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 2289 &fw_name); 2290 if (ret) { 2291 dev_warn(&pdev->dev, "failed to get firmware name\n"); 2292 } else { 2293 ret = sdma_get_firmware(sdma, fw_name); 2294 if (ret) 2295 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 2296 } 2297 2298 return 0; 2299 2300 err_register: 2301 dma_async_device_unregister(&sdma->dma_device); 2302 err_init: 2303 kfree(sdma->script_addrs); 2304 err_irq: 2305 clk_unprepare(sdma->clk_ahb); 2306 err_clk: 2307 clk_unprepare(sdma->clk_ipg); 2308 return ret; 2309 } 2310 2311 static int sdma_remove(struct platform_device *pdev) 2312 { 2313 struct sdma_engine *sdma = platform_get_drvdata(pdev); 2314 int i; 2315 2316 devm_free_irq(&pdev->dev, sdma->irq, sdma); 2317 dma_async_device_unregister(&sdma->dma_device); 2318 kfree(sdma->script_addrs); 2319 clk_unprepare(sdma->clk_ahb); 2320 clk_unprepare(sdma->clk_ipg); 2321 /* Kill the tasklet */ 2322 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 2323 struct sdma_channel *sdmac = &sdma->channel[i]; 2324 2325 tasklet_kill(&sdmac->vc.task); 2326 sdma_free_chan_resources(&sdmac->vc.chan); 2327 } 2328 2329 platform_set_drvdata(pdev, NULL); 2330 return 0; 2331 } 2332 2333 static struct platform_driver sdma_driver = { 2334 .driver = { 2335 .name = "imx-sdma", 2336 .of_match_table = sdma_dt_ids, 2337 }, 2338 .remove = sdma_remove, 2339 .probe = sdma_probe, 2340 }; 2341 2342 module_platform_driver(sdma_driver); 2343 2344 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 2345 MODULE_DESCRIPTION("i.MX SDMA driver"); 2346 #if IS_ENABLED(CONFIG_SOC_IMX6Q) 2347 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin"); 2348 #endif 2349 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M) 2350 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin"); 2351 #endif 2352 MODULE_LICENSE("GPL"); 2353