xref: /linux/drivers/dma/imx-sdma.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49 
50 #include "dmaengine.h"
51 
52 /* SDMA registers */
53 #define SDMA_H_C0PTR		0x000
54 #define SDMA_H_INTR		0x004
55 #define SDMA_H_STATSTOP		0x008
56 #define SDMA_H_START		0x00c
57 #define SDMA_H_EVTOVR		0x010
58 #define SDMA_H_DSPOVR		0x014
59 #define SDMA_H_HOSTOVR		0x018
60 #define SDMA_H_EVTPEND		0x01c
61 #define SDMA_H_DSPENBL		0x020
62 #define SDMA_H_RESET		0x024
63 #define SDMA_H_EVTERR		0x028
64 #define SDMA_H_INTRMSK		0x02c
65 #define SDMA_H_PSW		0x030
66 #define SDMA_H_EVTERRDBG	0x034
67 #define SDMA_H_CONFIG		0x038
68 #define SDMA_ONCE_ENB		0x040
69 #define SDMA_ONCE_DATA		0x044
70 #define SDMA_ONCE_INSTR		0x048
71 #define SDMA_ONCE_STAT		0x04c
72 #define SDMA_ONCE_CMD		0x050
73 #define SDMA_EVT_MIRROR		0x054
74 #define SDMA_ILLINSTADDR	0x058
75 #define SDMA_CHN0ADDR		0x05c
76 #define SDMA_ONCE_RTB		0x060
77 #define SDMA_XTRIG_CONF1	0x070
78 #define SDMA_XTRIG_CONF2	0x074
79 #define SDMA_CHNENBL0_IMX35	0x200
80 #define SDMA_CHNENBL0_IMX31	0x080
81 #define SDMA_CHNPRI_0		0x100
82 
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93 
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101 
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106 
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113 
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130 
131 /*
132  *  p_2_p watermark_level description
133  *	Bits		Name			Description
134  *	0-7		Lower WML		Lower watermark level
135  *	8		PS			1: Pad Swallowing
136  *						0: No Pad Swallowing
137  *	9		PA			1: Pad Adding
138  *						0: No Pad Adding
139  *	10		SPDIF			If this bit is set both source
140  *						and destination are on SPBA
141  *	11		Source Bit(SP)		1: Source on SPBA
142  *						0: Source on AIPS
143  *	12		Destination Bit(DP)	1: Destination on SPBA
144  *						0: Destination on AIPS
145  *	13-15		---------		MUST BE 0
146  *	16-23		Higher WML		HWML
147  *	24-27		N			Total number of samples after
148  *						which Pad adding/Swallowing
149  *						must be done. It must be odd.
150  *	28		Lower WML Event(LWE)	SDMA events reg to check for
151  *						LWML event mask
152  *						0: LWE in EVENTS register
153  *						1: LWE in EVENTS2 register
154  *	29		Higher WML Event(HWE)	SDMA events reg to check for
155  *						HWML event mask
156  *						0: HWE in EVENTS register
157  *						1: HWE in EVENTS2 register
158  *	30		---------		MUST BE 0
159  *	31		CONT			1: Amount of samples to be
160  *						transferred is unknown and
161  *						script will keep on
162  *						transferring samples as long as
163  *						both events are detected and
164  *						script must be manually stopped
165  *						by the application
166  *						0: The amount of samples to be
167  *						transferred is equal to the
168  *						count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
171 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
180 
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185 	u32 count   : 16; /* size of the buffer pointed by this BD */
186 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187 	u32 command :  8; /* command mostly used for channel 0 */
188 };
189 
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194 	struct sdma_mode_count  mode;
195 	u32 buffer_addr;	/* address of the buffer described */
196 	u32 ext_buffer_addr;	/* extended buffer address */
197 } __attribute__ ((packed));
198 
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr	current buffer descriptor processed
203  * @base_bd_ptr		first element of buffer descriptor array
204  * @unused		padding. The SDMA engine expects an array of 128 byte
205  *			control blocks
206  */
207 struct sdma_channel_control {
208 	u32 current_bd_ptr;
209 	u32 base_bd_ptr;
210 	u32 unused[2];
211 } __attribute__ ((packed));
212 
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:		program counter
217  * @t:		test bit: status of arithmetic & test instruction
218  * @rpc:	return program counter
219  * @sf:		source fault while loading data
220  * @spc:	loop start program counter
221  * @df:		destination fault while storing data
222  * @epc:	loop end program counter
223  * @lm:		loop mode
224  */
225 struct sdma_state_registers {
226 	u32 pc     :14;
227 	u32 unused1: 1;
228 	u32 t      : 1;
229 	u32 rpc    :14;
230 	u32 unused0: 1;
231 	u32 sf     : 1;
232 	u32 spc    :14;
233 	u32 unused2: 1;
234 	u32 df     : 1;
235 	u32 epc    :14;
236 	u32 lm     : 2;
237 } __attribute__ ((packed));
238 
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:	channel state bits
243  * @gReg:		general registers
244  * @mda:		burst dma destination address register
245  * @msa:		burst dma source address register
246  * @ms:			burst dma status register
247  * @md:			burst dma data register
248  * @pda:		peripheral dma destination address register
249  * @psa:		peripheral dma source address register
250  * @ps:			peripheral dma status register
251  * @pd:			peripheral dma data register
252  * @ca:			CRC polynomial register
253  * @cs:			CRC accumulator register
254  * @dda:		dedicated core destination address register
255  * @dsa:		dedicated core source address register
256  * @ds:			dedicated core status register
257  * @dd:			dedicated core data register
258  */
259 struct sdma_context_data {
260 	struct sdma_state_registers  channel_state;
261 	u32  gReg[8];
262 	u32  mda;
263 	u32  msa;
264 	u32  ms;
265 	u32  md;
266 	u32  pda;
267 	u32  psa;
268 	u32  ps;
269 	u32  pd;
270 	u32  ca;
271 	u32  cs;
272 	u32  dda;
273 	u32  dsa;
274 	u32  ds;
275 	u32  dd;
276 	u32  scratch0;
277 	u32  scratch1;
278 	u32  scratch2;
279 	u32  scratch3;
280 	u32  scratch4;
281 	u32  scratch5;
282 	u32  scratch6;
283 	u32  scratch7;
284 } __attribute__ ((packed));
285 
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287 
288 struct sdma_engine;
289 
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma		pointer to the SDMA engine for this channel
294  * @channel		the channel number, matches dmaengine chan_id + 1
295  * @direction		transfer type. Needed for setting SDMA script
296  * @peripheral_type	Peripheral type. Needed for setting SDMA script
297  * @event_id0		aka dma request line
298  * @event_id1		for channels that use 2 events
299  * @word_size		peripheral access size
300  * @buf_tail		ID of the buffer that was processed
301  * @buf_ptail		ID of the previous buffer that was processed
302  * @num_bd		max NUM_BD. number of descriptors currently handling
303  */
304 struct sdma_channel {
305 	struct sdma_engine		*sdma;
306 	unsigned int			channel;
307 	enum dma_transfer_direction		direction;
308 	enum sdma_peripheral_type	peripheral_type;
309 	unsigned int			event_id0;
310 	unsigned int			event_id1;
311 	enum dma_slave_buswidth		word_size;
312 	unsigned int			buf_tail;
313 	unsigned int			buf_ptail;
314 	unsigned int			num_bd;
315 	unsigned int			period_len;
316 	struct sdma_buffer_descriptor	*bd;
317 	dma_addr_t			bd_phys;
318 	unsigned int			pc_from_device, pc_to_device;
319 	unsigned int			device_to_device;
320 	unsigned long			flags;
321 	dma_addr_t			per_address, per_address2;
322 	unsigned long			event_mask[2];
323 	unsigned long			watermark_level;
324 	u32				shp_addr, per_addr;
325 	struct dma_chan			chan;
326 	spinlock_t			lock;
327 	struct dma_async_tx_descriptor	desc;
328 	enum dma_status			status;
329 	unsigned int			chn_count;
330 	unsigned int			chn_real_count;
331 	struct tasklet_struct		tasklet;
332 	struct imx_dma_data		data;
333 };
334 
335 #define IMX_DMA_SG_LOOP		BIT(0)
336 
337 #define MAX_DMA_CHANNELS 32
338 #define MXC_SDMA_DEFAULT_PRIORITY 1
339 #define MXC_SDMA_MIN_PRIORITY 1
340 #define MXC_SDMA_MAX_PRIORITY 7
341 
342 #define SDMA_FIRMWARE_MAGIC 0x414d4453
343 
344 /**
345  * struct sdma_firmware_header - Layout of the firmware image
346  *
347  * @magic		"SDMA"
348  * @version_major	increased whenever layout of struct sdma_script_start_addrs
349  *			changes.
350  * @version_minor	firmware minor version (for binary compatible changes)
351  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
352  * @num_script_addrs	Number of script addresses in this image
353  * @ram_code_start	offset of SDMA ram image in this firmware image
354  * @ram_code_size	size of SDMA ram image
355  * @script_addrs	Stores the start address of the SDMA scripts
356  *			(in SDMA memory space)
357  */
358 struct sdma_firmware_header {
359 	u32	magic;
360 	u32	version_major;
361 	u32	version_minor;
362 	u32	script_addrs_start;
363 	u32	num_script_addrs;
364 	u32	ram_code_start;
365 	u32	ram_code_size;
366 };
367 
368 struct sdma_driver_data {
369 	int chnenbl0;
370 	int num_events;
371 	struct sdma_script_start_addrs	*script_addrs;
372 };
373 
374 struct sdma_engine {
375 	struct device			*dev;
376 	struct device_dma_parameters	dma_parms;
377 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
378 	struct sdma_channel_control	*channel_control;
379 	void __iomem			*regs;
380 	struct sdma_context_data	*context;
381 	dma_addr_t			context_phys;
382 	struct dma_device		dma_device;
383 	struct clk			*clk_ipg;
384 	struct clk			*clk_ahb;
385 	spinlock_t			channel_0_lock;
386 	u32				script_number;
387 	struct sdma_script_start_addrs	*script_addrs;
388 	const struct sdma_driver_data	*drvdata;
389 	u32				spba_start_addr;
390 	u32				spba_end_addr;
391 	unsigned int			irq;
392 };
393 
394 static struct sdma_driver_data sdma_imx31 = {
395 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
396 	.num_events = 32,
397 };
398 
399 static struct sdma_script_start_addrs sdma_script_imx25 = {
400 	.ap_2_ap_addr = 729,
401 	.uart_2_mcu_addr = 904,
402 	.per_2_app_addr = 1255,
403 	.mcu_2_app_addr = 834,
404 	.uartsh_2_mcu_addr = 1120,
405 	.per_2_shp_addr = 1329,
406 	.mcu_2_shp_addr = 1048,
407 	.ata_2_mcu_addr = 1560,
408 	.mcu_2_ata_addr = 1479,
409 	.app_2_per_addr = 1189,
410 	.app_2_mcu_addr = 770,
411 	.shp_2_per_addr = 1407,
412 	.shp_2_mcu_addr = 979,
413 };
414 
415 static struct sdma_driver_data sdma_imx25 = {
416 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
417 	.num_events = 48,
418 	.script_addrs = &sdma_script_imx25,
419 };
420 
421 static struct sdma_driver_data sdma_imx35 = {
422 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
423 	.num_events = 48,
424 };
425 
426 static struct sdma_script_start_addrs sdma_script_imx51 = {
427 	.ap_2_ap_addr = 642,
428 	.uart_2_mcu_addr = 817,
429 	.mcu_2_app_addr = 747,
430 	.mcu_2_shp_addr = 961,
431 	.ata_2_mcu_addr = 1473,
432 	.mcu_2_ata_addr = 1392,
433 	.app_2_per_addr = 1033,
434 	.app_2_mcu_addr = 683,
435 	.shp_2_per_addr = 1251,
436 	.shp_2_mcu_addr = 892,
437 };
438 
439 static struct sdma_driver_data sdma_imx51 = {
440 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
441 	.num_events = 48,
442 	.script_addrs = &sdma_script_imx51,
443 };
444 
445 static struct sdma_script_start_addrs sdma_script_imx53 = {
446 	.ap_2_ap_addr = 642,
447 	.app_2_mcu_addr = 683,
448 	.mcu_2_app_addr = 747,
449 	.uart_2_mcu_addr = 817,
450 	.shp_2_mcu_addr = 891,
451 	.mcu_2_shp_addr = 960,
452 	.uartsh_2_mcu_addr = 1032,
453 	.spdif_2_mcu_addr = 1100,
454 	.mcu_2_spdif_addr = 1134,
455 	.firi_2_mcu_addr = 1193,
456 	.mcu_2_firi_addr = 1290,
457 };
458 
459 static struct sdma_driver_data sdma_imx53 = {
460 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
461 	.num_events = 48,
462 	.script_addrs = &sdma_script_imx53,
463 };
464 
465 static struct sdma_script_start_addrs sdma_script_imx6q = {
466 	.ap_2_ap_addr = 642,
467 	.uart_2_mcu_addr = 817,
468 	.mcu_2_app_addr = 747,
469 	.per_2_per_addr = 6331,
470 	.uartsh_2_mcu_addr = 1032,
471 	.mcu_2_shp_addr = 960,
472 	.app_2_mcu_addr = 683,
473 	.shp_2_mcu_addr = 891,
474 	.spdif_2_mcu_addr = 1100,
475 	.mcu_2_spdif_addr = 1134,
476 };
477 
478 static struct sdma_driver_data sdma_imx6q = {
479 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
480 	.num_events = 48,
481 	.script_addrs = &sdma_script_imx6q,
482 };
483 
484 static struct sdma_script_start_addrs sdma_script_imx7d = {
485 	.ap_2_ap_addr = 644,
486 	.uart_2_mcu_addr = 819,
487 	.mcu_2_app_addr = 749,
488 	.uartsh_2_mcu_addr = 1034,
489 	.mcu_2_shp_addr = 962,
490 	.app_2_mcu_addr = 685,
491 	.shp_2_mcu_addr = 893,
492 	.spdif_2_mcu_addr = 1102,
493 	.mcu_2_spdif_addr = 1136,
494 };
495 
496 static struct sdma_driver_data sdma_imx7d = {
497 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
498 	.num_events = 48,
499 	.script_addrs = &sdma_script_imx7d,
500 };
501 
502 static const struct platform_device_id sdma_devtypes[] = {
503 	{
504 		.name = "imx25-sdma",
505 		.driver_data = (unsigned long)&sdma_imx25,
506 	}, {
507 		.name = "imx31-sdma",
508 		.driver_data = (unsigned long)&sdma_imx31,
509 	}, {
510 		.name = "imx35-sdma",
511 		.driver_data = (unsigned long)&sdma_imx35,
512 	}, {
513 		.name = "imx51-sdma",
514 		.driver_data = (unsigned long)&sdma_imx51,
515 	}, {
516 		.name = "imx53-sdma",
517 		.driver_data = (unsigned long)&sdma_imx53,
518 	}, {
519 		.name = "imx6q-sdma",
520 		.driver_data = (unsigned long)&sdma_imx6q,
521 	}, {
522 		.name = "imx7d-sdma",
523 		.driver_data = (unsigned long)&sdma_imx7d,
524 	}, {
525 		/* sentinel */
526 	}
527 };
528 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
529 
530 static const struct of_device_id sdma_dt_ids[] = {
531 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
532 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
533 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
534 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
535 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
536 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
537 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
538 	{ /* sentinel */ }
539 };
540 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
541 
542 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
543 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
544 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
545 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
546 
547 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
548 {
549 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
550 	return chnenbl0 + event * 4;
551 }
552 
553 static int sdma_config_ownership(struct sdma_channel *sdmac,
554 		bool event_override, bool mcu_override, bool dsp_override)
555 {
556 	struct sdma_engine *sdma = sdmac->sdma;
557 	int channel = sdmac->channel;
558 	unsigned long evt, mcu, dsp;
559 
560 	if (event_override && mcu_override && dsp_override)
561 		return -EINVAL;
562 
563 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
564 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
565 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
566 
567 	if (dsp_override)
568 		__clear_bit(channel, &dsp);
569 	else
570 		__set_bit(channel, &dsp);
571 
572 	if (event_override)
573 		__clear_bit(channel, &evt);
574 	else
575 		__set_bit(channel, &evt);
576 
577 	if (mcu_override)
578 		__clear_bit(channel, &mcu);
579 	else
580 		__set_bit(channel, &mcu);
581 
582 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
583 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
584 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
585 
586 	return 0;
587 }
588 
589 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
590 {
591 	writel(BIT(channel), sdma->regs + SDMA_H_START);
592 }
593 
594 /*
595  * sdma_run_channel0 - run a channel and wait till it's done
596  */
597 static int sdma_run_channel0(struct sdma_engine *sdma)
598 {
599 	int ret;
600 	u32 reg;
601 
602 	sdma_enable_channel(sdma, 0);
603 
604 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
605 						reg, !(reg & 1), 1, 500);
606 	if (ret)
607 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
608 
609 	/* Set bits of CONFIG register with dynamic context switching */
610 	if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
611 		writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
612 
613 	return ret;
614 }
615 
616 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
617 		u32 address)
618 {
619 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
620 	void *buf_virt;
621 	dma_addr_t buf_phys;
622 	int ret;
623 	unsigned long flags;
624 
625 	buf_virt = dma_alloc_coherent(NULL,
626 			size,
627 			&buf_phys, GFP_KERNEL);
628 	if (!buf_virt) {
629 		return -ENOMEM;
630 	}
631 
632 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
633 
634 	bd0->mode.command = C0_SETPM;
635 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
636 	bd0->mode.count = size / 2;
637 	bd0->buffer_addr = buf_phys;
638 	bd0->ext_buffer_addr = address;
639 
640 	memcpy(buf_virt, buf, size);
641 
642 	ret = sdma_run_channel0(sdma);
643 
644 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
645 
646 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
647 
648 	return ret;
649 }
650 
651 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
652 {
653 	struct sdma_engine *sdma = sdmac->sdma;
654 	int channel = sdmac->channel;
655 	unsigned long val;
656 	u32 chnenbl = chnenbl_ofs(sdma, event);
657 
658 	val = readl_relaxed(sdma->regs + chnenbl);
659 	__set_bit(channel, &val);
660 	writel_relaxed(val, sdma->regs + chnenbl);
661 }
662 
663 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
664 {
665 	struct sdma_engine *sdma = sdmac->sdma;
666 	int channel = sdmac->channel;
667 	u32 chnenbl = chnenbl_ofs(sdma, event);
668 	unsigned long val;
669 
670 	val = readl_relaxed(sdma->regs + chnenbl);
671 	__clear_bit(channel, &val);
672 	writel_relaxed(val, sdma->regs + chnenbl);
673 }
674 
675 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
676 {
677 	struct sdma_buffer_descriptor *bd;
678 	int error = 0;
679 	enum dma_status	old_status = sdmac->status;
680 
681 	/*
682 	 * loop mode. Iterate over descriptors, re-setup them and
683 	 * call callback function.
684 	 */
685 	while (1) {
686 		bd = &sdmac->bd[sdmac->buf_tail];
687 
688 		if (bd->mode.status & BD_DONE)
689 			break;
690 
691 		if (bd->mode.status & BD_RROR) {
692 			bd->mode.status &= ~BD_RROR;
693 			sdmac->status = DMA_ERROR;
694 			error = -EIO;
695 		}
696 
697 	       /*
698 		* We use bd->mode.count to calculate the residue, since contains
699 		* the number of bytes present in the current buffer descriptor.
700 		*/
701 
702 		sdmac->chn_real_count = bd->mode.count;
703 		bd->mode.status |= BD_DONE;
704 		bd->mode.count = sdmac->period_len;
705 		sdmac->buf_ptail = sdmac->buf_tail;
706 		sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
707 
708 		/*
709 		 * The callback is called from the interrupt context in order
710 		 * to reduce latency and to avoid the risk of altering the
711 		 * SDMA transaction status by the time the client tasklet is
712 		 * executed.
713 		 */
714 
715 		dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
716 
717 		if (error)
718 			sdmac->status = old_status;
719 	}
720 }
721 
722 static void mxc_sdma_handle_channel_normal(unsigned long data)
723 {
724 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
725 	struct sdma_buffer_descriptor *bd;
726 	int i, error = 0;
727 
728 	sdmac->chn_real_count = 0;
729 	/*
730 	 * non loop mode. Iterate over all descriptors, collect
731 	 * errors and call callback function
732 	 */
733 	for (i = 0; i < sdmac->num_bd; i++) {
734 		bd = &sdmac->bd[i];
735 
736 		 if (bd->mode.status & (BD_DONE | BD_RROR))
737 			error = -EIO;
738 		 sdmac->chn_real_count += bd->mode.count;
739 	}
740 
741 	if (error)
742 		sdmac->status = DMA_ERROR;
743 	else
744 		sdmac->status = DMA_COMPLETE;
745 
746 	dma_cookie_complete(&sdmac->desc);
747 
748 	dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
749 }
750 
751 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
752 {
753 	struct sdma_engine *sdma = dev_id;
754 	unsigned long stat;
755 
756 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
757 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
758 	/* channel 0 is special and not handled here, see run_channel0() */
759 	stat &= ~1;
760 
761 	while (stat) {
762 		int channel = fls(stat) - 1;
763 		struct sdma_channel *sdmac = &sdma->channel[channel];
764 
765 		if (sdmac->flags & IMX_DMA_SG_LOOP)
766 			sdma_update_channel_loop(sdmac);
767 		else
768 			tasklet_schedule(&sdmac->tasklet);
769 
770 		__clear_bit(channel, &stat);
771 	}
772 
773 	return IRQ_HANDLED;
774 }
775 
776 /*
777  * sets the pc of SDMA script according to the peripheral type
778  */
779 static void sdma_get_pc(struct sdma_channel *sdmac,
780 		enum sdma_peripheral_type peripheral_type)
781 {
782 	struct sdma_engine *sdma = sdmac->sdma;
783 	int per_2_emi = 0, emi_2_per = 0;
784 	/*
785 	 * These are needed once we start to support transfers between
786 	 * two peripherals or memory-to-memory transfers
787 	 */
788 	int per_2_per = 0;
789 
790 	sdmac->pc_from_device = 0;
791 	sdmac->pc_to_device = 0;
792 	sdmac->device_to_device = 0;
793 
794 	switch (peripheral_type) {
795 	case IMX_DMATYPE_MEMORY:
796 		break;
797 	case IMX_DMATYPE_DSP:
798 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
799 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
800 		break;
801 	case IMX_DMATYPE_FIRI:
802 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
803 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
804 		break;
805 	case IMX_DMATYPE_UART:
806 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
807 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
808 		break;
809 	case IMX_DMATYPE_UART_SP:
810 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
811 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812 		break;
813 	case IMX_DMATYPE_ATA:
814 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
815 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
816 		break;
817 	case IMX_DMATYPE_CSPI:
818 	case IMX_DMATYPE_EXT:
819 	case IMX_DMATYPE_SSI:
820 	case IMX_DMATYPE_SAI:
821 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
822 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
823 		break;
824 	case IMX_DMATYPE_SSI_DUAL:
825 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
826 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
827 		break;
828 	case IMX_DMATYPE_SSI_SP:
829 	case IMX_DMATYPE_MMC:
830 	case IMX_DMATYPE_SDHC:
831 	case IMX_DMATYPE_CSPI_SP:
832 	case IMX_DMATYPE_ESAI:
833 	case IMX_DMATYPE_MSHC_SP:
834 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
835 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836 		break;
837 	case IMX_DMATYPE_ASRC:
838 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
839 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
840 		per_2_per = sdma->script_addrs->per_2_per_addr;
841 		break;
842 	case IMX_DMATYPE_ASRC_SP:
843 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
844 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
845 		per_2_per = sdma->script_addrs->per_2_per_addr;
846 		break;
847 	case IMX_DMATYPE_MSHC:
848 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
849 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
850 		break;
851 	case IMX_DMATYPE_CCM:
852 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
853 		break;
854 	case IMX_DMATYPE_SPDIF:
855 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
856 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
857 		break;
858 	case IMX_DMATYPE_IPU_MEMORY:
859 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
860 		break;
861 	default:
862 		break;
863 	}
864 
865 	sdmac->pc_from_device = per_2_emi;
866 	sdmac->pc_to_device = emi_2_per;
867 	sdmac->device_to_device = per_2_per;
868 }
869 
870 static int sdma_load_context(struct sdma_channel *sdmac)
871 {
872 	struct sdma_engine *sdma = sdmac->sdma;
873 	int channel = sdmac->channel;
874 	int load_address;
875 	struct sdma_context_data *context = sdma->context;
876 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
877 	int ret;
878 	unsigned long flags;
879 
880 	if (sdmac->direction == DMA_DEV_TO_MEM)
881 		load_address = sdmac->pc_from_device;
882 	else if (sdmac->direction == DMA_DEV_TO_DEV)
883 		load_address = sdmac->device_to_device;
884 	else
885 		load_address = sdmac->pc_to_device;
886 
887 	if (load_address < 0)
888 		return load_address;
889 
890 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
891 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
892 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
893 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
894 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
895 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
896 
897 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
898 
899 	memset(context, 0, sizeof(*context));
900 	context->channel_state.pc = load_address;
901 
902 	/* Send by context the event mask,base address for peripheral
903 	 * and watermark level
904 	 */
905 	context->gReg[0] = sdmac->event_mask[1];
906 	context->gReg[1] = sdmac->event_mask[0];
907 	context->gReg[2] = sdmac->per_addr;
908 	context->gReg[6] = sdmac->shp_addr;
909 	context->gReg[7] = sdmac->watermark_level;
910 
911 	bd0->mode.command = C0_SETDM;
912 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
913 	bd0->mode.count = sizeof(*context) / 4;
914 	bd0->buffer_addr = sdma->context_phys;
915 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
916 	ret = sdma_run_channel0(sdma);
917 
918 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
919 
920 	return ret;
921 }
922 
923 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
924 {
925 	return container_of(chan, struct sdma_channel, chan);
926 }
927 
928 static int sdma_disable_channel(struct dma_chan *chan)
929 {
930 	struct sdma_channel *sdmac = to_sdma_chan(chan);
931 	struct sdma_engine *sdma = sdmac->sdma;
932 	int channel = sdmac->channel;
933 
934 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
935 	sdmac->status = DMA_ERROR;
936 
937 	return 0;
938 }
939 
940 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
941 {
942 	struct sdma_engine *sdma = sdmac->sdma;
943 
944 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
945 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
946 
947 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
948 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
949 
950 	if (sdmac->event_id0 > 31)
951 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
952 
953 	if (sdmac->event_id1 > 31)
954 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
955 
956 	/*
957 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
958 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
959 	 * r0(event_mask[1]) and r1(event_mask[0]).
960 	 */
961 	if (lwml > hwml) {
962 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
963 						SDMA_WATERMARK_LEVEL_HWML);
964 		sdmac->watermark_level |= hwml;
965 		sdmac->watermark_level |= lwml << 16;
966 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
967 	}
968 
969 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
970 			sdmac->per_address2 <= sdma->spba_end_addr)
971 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
972 
973 	if (sdmac->per_address >= sdma->spba_start_addr &&
974 			sdmac->per_address <= sdma->spba_end_addr)
975 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
976 
977 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
978 }
979 
980 static int sdma_config_channel(struct dma_chan *chan)
981 {
982 	struct sdma_channel *sdmac = to_sdma_chan(chan);
983 	int ret;
984 
985 	sdma_disable_channel(chan);
986 
987 	sdmac->event_mask[0] = 0;
988 	sdmac->event_mask[1] = 0;
989 	sdmac->shp_addr = 0;
990 	sdmac->per_addr = 0;
991 
992 	if (sdmac->event_id0) {
993 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
994 			return -EINVAL;
995 		sdma_event_enable(sdmac, sdmac->event_id0);
996 	}
997 
998 	if (sdmac->event_id1) {
999 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1000 			return -EINVAL;
1001 		sdma_event_enable(sdmac, sdmac->event_id1);
1002 	}
1003 
1004 	switch (sdmac->peripheral_type) {
1005 	case IMX_DMATYPE_DSP:
1006 		sdma_config_ownership(sdmac, false, true, true);
1007 		break;
1008 	case IMX_DMATYPE_MEMORY:
1009 		sdma_config_ownership(sdmac, false, true, false);
1010 		break;
1011 	default:
1012 		sdma_config_ownership(sdmac, true, true, false);
1013 		break;
1014 	}
1015 
1016 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1017 
1018 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1019 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1020 		/* Handle multiple event channels differently */
1021 		if (sdmac->event_id1) {
1022 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1023 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1024 				sdma_set_watermarklevel_for_p2p(sdmac);
1025 		} else
1026 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1027 
1028 		/* Address */
1029 		sdmac->shp_addr = sdmac->per_address;
1030 		sdmac->per_addr = sdmac->per_address2;
1031 	} else {
1032 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1033 	}
1034 
1035 	ret = sdma_load_context(sdmac);
1036 
1037 	return ret;
1038 }
1039 
1040 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1041 		unsigned int priority)
1042 {
1043 	struct sdma_engine *sdma = sdmac->sdma;
1044 	int channel = sdmac->channel;
1045 
1046 	if (priority < MXC_SDMA_MIN_PRIORITY
1047 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1048 		return -EINVAL;
1049 	}
1050 
1051 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1052 
1053 	return 0;
1054 }
1055 
1056 static int sdma_request_channel(struct sdma_channel *sdmac)
1057 {
1058 	struct sdma_engine *sdma = sdmac->sdma;
1059 	int channel = sdmac->channel;
1060 	int ret = -EBUSY;
1061 
1062 	sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1063 					GFP_KERNEL);
1064 	if (!sdmac->bd) {
1065 		ret = -ENOMEM;
1066 		goto out;
1067 	}
1068 
1069 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1070 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1071 
1072 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1073 	return 0;
1074 out:
1075 
1076 	return ret;
1077 }
1078 
1079 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1080 {
1081 	unsigned long flags;
1082 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1083 	dma_cookie_t cookie;
1084 
1085 	spin_lock_irqsave(&sdmac->lock, flags);
1086 
1087 	cookie = dma_cookie_assign(tx);
1088 
1089 	spin_unlock_irqrestore(&sdmac->lock, flags);
1090 
1091 	return cookie;
1092 }
1093 
1094 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1095 {
1096 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1097 	struct imx_dma_data *data = chan->private;
1098 	int prio, ret;
1099 
1100 	if (!data)
1101 		return -EINVAL;
1102 
1103 	switch (data->priority) {
1104 	case DMA_PRIO_HIGH:
1105 		prio = 3;
1106 		break;
1107 	case DMA_PRIO_MEDIUM:
1108 		prio = 2;
1109 		break;
1110 	case DMA_PRIO_LOW:
1111 	default:
1112 		prio = 1;
1113 		break;
1114 	}
1115 
1116 	sdmac->peripheral_type = data->peripheral_type;
1117 	sdmac->event_id0 = data->dma_request;
1118 	sdmac->event_id1 = data->dma_request2;
1119 
1120 	ret = clk_enable(sdmac->sdma->clk_ipg);
1121 	if (ret)
1122 		return ret;
1123 	ret = clk_enable(sdmac->sdma->clk_ahb);
1124 	if (ret)
1125 		goto disable_clk_ipg;
1126 
1127 	ret = sdma_request_channel(sdmac);
1128 	if (ret)
1129 		goto disable_clk_ahb;
1130 
1131 	ret = sdma_set_channel_priority(sdmac, prio);
1132 	if (ret)
1133 		goto disable_clk_ahb;
1134 
1135 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
1136 	sdmac->desc.tx_submit = sdma_tx_submit;
1137 	/* txd.flags will be overwritten in prep funcs */
1138 	sdmac->desc.flags = DMA_CTRL_ACK;
1139 
1140 	return 0;
1141 
1142 disable_clk_ahb:
1143 	clk_disable(sdmac->sdma->clk_ahb);
1144 disable_clk_ipg:
1145 	clk_disable(sdmac->sdma->clk_ipg);
1146 	return ret;
1147 }
1148 
1149 static void sdma_free_chan_resources(struct dma_chan *chan)
1150 {
1151 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1152 	struct sdma_engine *sdma = sdmac->sdma;
1153 
1154 	sdma_disable_channel(chan);
1155 
1156 	if (sdmac->event_id0)
1157 		sdma_event_disable(sdmac, sdmac->event_id0);
1158 	if (sdmac->event_id1)
1159 		sdma_event_disable(sdmac, sdmac->event_id1);
1160 
1161 	sdmac->event_id0 = 0;
1162 	sdmac->event_id1 = 0;
1163 
1164 	sdma_set_channel_priority(sdmac, 0);
1165 
1166 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1167 
1168 	clk_disable(sdma->clk_ipg);
1169 	clk_disable(sdma->clk_ahb);
1170 }
1171 
1172 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1173 		struct dma_chan *chan, struct scatterlist *sgl,
1174 		unsigned int sg_len, enum dma_transfer_direction direction,
1175 		unsigned long flags, void *context)
1176 {
1177 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1178 	struct sdma_engine *sdma = sdmac->sdma;
1179 	int ret, i, count;
1180 	int channel = sdmac->channel;
1181 	struct scatterlist *sg;
1182 
1183 	if (sdmac->status == DMA_IN_PROGRESS)
1184 		return NULL;
1185 	sdmac->status = DMA_IN_PROGRESS;
1186 
1187 	sdmac->flags = 0;
1188 
1189 	sdmac->buf_tail = 0;
1190 	sdmac->buf_ptail = 0;
1191 	sdmac->chn_real_count = 0;
1192 
1193 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1194 			sg_len, channel);
1195 
1196 	sdmac->direction = direction;
1197 	ret = sdma_load_context(sdmac);
1198 	if (ret)
1199 		goto err_out;
1200 
1201 	if (sg_len > NUM_BD) {
1202 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1203 				channel, sg_len, NUM_BD);
1204 		ret = -EINVAL;
1205 		goto err_out;
1206 	}
1207 
1208 	sdmac->chn_count = 0;
1209 	for_each_sg(sgl, sg, sg_len, i) {
1210 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1211 		int param;
1212 
1213 		bd->buffer_addr = sg->dma_address;
1214 
1215 		count = sg_dma_len(sg);
1216 
1217 		if (count > 0xffff) {
1218 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1219 					channel, count, 0xffff);
1220 			ret = -EINVAL;
1221 			goto err_out;
1222 		}
1223 
1224 		bd->mode.count = count;
1225 		sdmac->chn_count += count;
1226 
1227 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1228 			ret =  -EINVAL;
1229 			goto err_out;
1230 		}
1231 
1232 		switch (sdmac->word_size) {
1233 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1234 			bd->mode.command = 0;
1235 			if (count & 3 || sg->dma_address & 3)
1236 				return NULL;
1237 			break;
1238 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1239 			bd->mode.command = 2;
1240 			if (count & 1 || sg->dma_address & 1)
1241 				return NULL;
1242 			break;
1243 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1244 			bd->mode.command = 1;
1245 			break;
1246 		default:
1247 			return NULL;
1248 		}
1249 
1250 		param = BD_DONE | BD_EXTD | BD_CONT;
1251 
1252 		if (i + 1 == sg_len) {
1253 			param |= BD_INTR;
1254 			param |= BD_LAST;
1255 			param &= ~BD_CONT;
1256 		}
1257 
1258 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1259 				i, count, (u64)sg->dma_address,
1260 				param & BD_WRAP ? "wrap" : "",
1261 				param & BD_INTR ? " intr" : "");
1262 
1263 		bd->mode.status = param;
1264 	}
1265 
1266 	sdmac->num_bd = sg_len;
1267 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1268 
1269 	return &sdmac->desc;
1270 err_out:
1271 	sdmac->status = DMA_ERROR;
1272 	return NULL;
1273 }
1274 
1275 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1276 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1277 		size_t period_len, enum dma_transfer_direction direction,
1278 		unsigned long flags)
1279 {
1280 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1281 	struct sdma_engine *sdma = sdmac->sdma;
1282 	int num_periods = buf_len / period_len;
1283 	int channel = sdmac->channel;
1284 	int ret, i = 0, buf = 0;
1285 
1286 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1287 
1288 	if (sdmac->status == DMA_IN_PROGRESS)
1289 		return NULL;
1290 
1291 	sdmac->status = DMA_IN_PROGRESS;
1292 
1293 	sdmac->buf_tail = 0;
1294 	sdmac->buf_ptail = 0;
1295 	sdmac->chn_real_count = 0;
1296 	sdmac->period_len = period_len;
1297 
1298 	sdmac->flags |= IMX_DMA_SG_LOOP;
1299 	sdmac->direction = direction;
1300 	ret = sdma_load_context(sdmac);
1301 	if (ret)
1302 		goto err_out;
1303 
1304 	if (num_periods > NUM_BD) {
1305 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1306 				channel, num_periods, NUM_BD);
1307 		goto err_out;
1308 	}
1309 
1310 	if (period_len > 0xffff) {
1311 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1312 				channel, period_len, 0xffff);
1313 		goto err_out;
1314 	}
1315 
1316 	while (buf < buf_len) {
1317 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1318 		int param;
1319 
1320 		bd->buffer_addr = dma_addr;
1321 
1322 		bd->mode.count = period_len;
1323 
1324 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1325 			goto err_out;
1326 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1327 			bd->mode.command = 0;
1328 		else
1329 			bd->mode.command = sdmac->word_size;
1330 
1331 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1332 		if (i + 1 == num_periods)
1333 			param |= BD_WRAP;
1334 
1335 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1336 				i, period_len, (u64)dma_addr,
1337 				param & BD_WRAP ? "wrap" : "",
1338 				param & BD_INTR ? " intr" : "");
1339 
1340 		bd->mode.status = param;
1341 
1342 		dma_addr += period_len;
1343 		buf += period_len;
1344 
1345 		i++;
1346 	}
1347 
1348 	sdmac->num_bd = num_periods;
1349 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1350 
1351 	return &sdmac->desc;
1352 err_out:
1353 	sdmac->status = DMA_ERROR;
1354 	return NULL;
1355 }
1356 
1357 static int sdma_config(struct dma_chan *chan,
1358 		       struct dma_slave_config *dmaengine_cfg)
1359 {
1360 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1361 
1362 	if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1363 		sdmac->per_address = dmaengine_cfg->src_addr;
1364 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1365 			dmaengine_cfg->src_addr_width;
1366 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1367 	} else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1368 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1369 		sdmac->per_address = dmaengine_cfg->dst_addr;
1370 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1371 			SDMA_WATERMARK_LEVEL_LWML;
1372 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1373 			SDMA_WATERMARK_LEVEL_HWML;
1374 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1375 	} else {
1376 		sdmac->per_address = dmaengine_cfg->dst_addr;
1377 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1378 			dmaengine_cfg->dst_addr_width;
1379 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1380 	}
1381 	sdmac->direction = dmaengine_cfg->direction;
1382 	return sdma_config_channel(chan);
1383 }
1384 
1385 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1386 				      dma_cookie_t cookie,
1387 				      struct dma_tx_state *txstate)
1388 {
1389 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1390 	u32 residue;
1391 
1392 	if (sdmac->flags & IMX_DMA_SG_LOOP)
1393 		residue = (sdmac->num_bd - sdmac->buf_ptail) *
1394 			   sdmac->period_len - sdmac->chn_real_count;
1395 	else
1396 		residue = sdmac->chn_count - sdmac->chn_real_count;
1397 
1398 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1399 			 residue);
1400 
1401 	return sdmac->status;
1402 }
1403 
1404 static void sdma_issue_pending(struct dma_chan *chan)
1405 {
1406 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1407 	struct sdma_engine *sdma = sdmac->sdma;
1408 
1409 	if (sdmac->status == DMA_IN_PROGRESS)
1410 		sdma_enable_channel(sdma, sdmac->channel);
1411 }
1412 
1413 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1414 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1415 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1416 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1417 
1418 static void sdma_add_scripts(struct sdma_engine *sdma,
1419 		const struct sdma_script_start_addrs *addr)
1420 {
1421 	s32 *addr_arr = (u32 *)addr;
1422 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1423 	int i;
1424 
1425 	/* use the default firmware in ROM if missing external firmware */
1426 	if (!sdma->script_number)
1427 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1428 
1429 	for (i = 0; i < sdma->script_number; i++)
1430 		if (addr_arr[i] > 0)
1431 			saddr_arr[i] = addr_arr[i];
1432 }
1433 
1434 static void sdma_load_firmware(const struct firmware *fw, void *context)
1435 {
1436 	struct sdma_engine *sdma = context;
1437 	const struct sdma_firmware_header *header;
1438 	const struct sdma_script_start_addrs *addr;
1439 	unsigned short *ram_code;
1440 
1441 	if (!fw) {
1442 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1443 		/* In this case we just use the ROM firmware. */
1444 		return;
1445 	}
1446 
1447 	if (fw->size < sizeof(*header))
1448 		goto err_firmware;
1449 
1450 	header = (struct sdma_firmware_header *)fw->data;
1451 
1452 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1453 		goto err_firmware;
1454 	if (header->ram_code_start + header->ram_code_size > fw->size)
1455 		goto err_firmware;
1456 	switch (header->version_major) {
1457 	case 1:
1458 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1459 		break;
1460 	case 2:
1461 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1462 		break;
1463 	case 3:
1464 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1465 		break;
1466 	case 4:
1467 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1468 		break;
1469 	default:
1470 		dev_err(sdma->dev, "unknown firmware version\n");
1471 		goto err_firmware;
1472 	}
1473 
1474 	addr = (void *)header + header->script_addrs_start;
1475 	ram_code = (void *)header + header->ram_code_start;
1476 
1477 	clk_enable(sdma->clk_ipg);
1478 	clk_enable(sdma->clk_ahb);
1479 	/* download the RAM image for SDMA */
1480 	sdma_load_script(sdma, ram_code,
1481 			header->ram_code_size,
1482 			addr->ram_code_start_addr);
1483 	clk_disable(sdma->clk_ipg);
1484 	clk_disable(sdma->clk_ahb);
1485 
1486 	sdma_add_scripts(sdma, addr);
1487 
1488 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1489 			header->version_major,
1490 			header->version_minor);
1491 
1492 err_firmware:
1493 	release_firmware(fw);
1494 }
1495 
1496 #define EVENT_REMAP_CELLS 3
1497 
1498 static int sdma_event_remap(struct sdma_engine *sdma)
1499 {
1500 	struct device_node *np = sdma->dev->of_node;
1501 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1502 	struct property *event_remap;
1503 	struct regmap *gpr;
1504 	char propname[] = "fsl,sdma-event-remap";
1505 	u32 reg, val, shift, num_map, i;
1506 	int ret = 0;
1507 
1508 	if (IS_ERR(np) || IS_ERR(gpr_np))
1509 		goto out;
1510 
1511 	event_remap = of_find_property(np, propname, NULL);
1512 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1513 	if (!num_map) {
1514 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1515 		goto out;
1516 	} else if (num_map % EVENT_REMAP_CELLS) {
1517 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1518 				propname, EVENT_REMAP_CELLS);
1519 		ret = -EINVAL;
1520 		goto out;
1521 	}
1522 
1523 	gpr = syscon_node_to_regmap(gpr_np);
1524 	if (IS_ERR(gpr)) {
1525 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1526 		ret = PTR_ERR(gpr);
1527 		goto out;
1528 	}
1529 
1530 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1531 		ret = of_property_read_u32_index(np, propname, i, &reg);
1532 		if (ret) {
1533 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1534 					propname, i);
1535 			goto out;
1536 		}
1537 
1538 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1539 		if (ret) {
1540 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1541 					propname, i + 1);
1542 			goto out;
1543 		}
1544 
1545 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1546 		if (ret) {
1547 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1548 					propname, i + 2);
1549 			goto out;
1550 		}
1551 
1552 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1553 	}
1554 
1555 out:
1556 	if (!IS_ERR(gpr_np))
1557 		of_node_put(gpr_np);
1558 
1559 	return ret;
1560 }
1561 
1562 static int sdma_get_firmware(struct sdma_engine *sdma,
1563 		const char *fw_name)
1564 {
1565 	int ret;
1566 
1567 	ret = request_firmware_nowait(THIS_MODULE,
1568 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1569 			GFP_KERNEL, sdma, sdma_load_firmware);
1570 
1571 	return ret;
1572 }
1573 
1574 static int sdma_init(struct sdma_engine *sdma)
1575 {
1576 	int i, ret;
1577 	dma_addr_t ccb_phys;
1578 
1579 	ret = clk_enable(sdma->clk_ipg);
1580 	if (ret)
1581 		return ret;
1582 	ret = clk_enable(sdma->clk_ahb);
1583 	if (ret)
1584 		goto disable_clk_ipg;
1585 
1586 	/* Be sure SDMA has not started yet */
1587 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1588 
1589 	sdma->channel_control = dma_alloc_coherent(NULL,
1590 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1591 			sizeof(struct sdma_context_data),
1592 			&ccb_phys, GFP_KERNEL);
1593 
1594 	if (!sdma->channel_control) {
1595 		ret = -ENOMEM;
1596 		goto err_dma_alloc;
1597 	}
1598 
1599 	sdma->context = (void *)sdma->channel_control +
1600 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1601 	sdma->context_phys = ccb_phys +
1602 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1603 
1604 	/* Zero-out the CCB structures array just allocated */
1605 	memset(sdma->channel_control, 0,
1606 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1607 
1608 	/* disable all channels */
1609 	for (i = 0; i < sdma->drvdata->num_events; i++)
1610 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1611 
1612 	/* All channels have priority 0 */
1613 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1614 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1615 
1616 	ret = sdma_request_channel(&sdma->channel[0]);
1617 	if (ret)
1618 		goto err_dma_alloc;
1619 
1620 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1621 
1622 	/* Set Command Channel (Channel Zero) */
1623 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1624 
1625 	/* Set bits of CONFIG register but with static context switching */
1626 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1627 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1628 
1629 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1630 
1631 	/* Initializes channel's priorities */
1632 	sdma_set_channel_priority(&sdma->channel[0], 7);
1633 
1634 	clk_disable(sdma->clk_ipg);
1635 	clk_disable(sdma->clk_ahb);
1636 
1637 	return 0;
1638 
1639 err_dma_alloc:
1640 	clk_disable(sdma->clk_ahb);
1641 disable_clk_ipg:
1642 	clk_disable(sdma->clk_ipg);
1643 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1644 	return ret;
1645 }
1646 
1647 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1648 {
1649 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1650 	struct imx_dma_data *data = fn_param;
1651 
1652 	if (!imx_dma_is_general_purpose(chan))
1653 		return false;
1654 
1655 	sdmac->data = *data;
1656 	chan->private = &sdmac->data;
1657 
1658 	return true;
1659 }
1660 
1661 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1662 				   struct of_dma *ofdma)
1663 {
1664 	struct sdma_engine *sdma = ofdma->of_dma_data;
1665 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1666 	struct imx_dma_data data;
1667 
1668 	if (dma_spec->args_count != 3)
1669 		return NULL;
1670 
1671 	data.dma_request = dma_spec->args[0];
1672 	data.peripheral_type = dma_spec->args[1];
1673 	data.priority = dma_spec->args[2];
1674 	/*
1675 	 * init dma_request2 to zero, which is not used by the dts.
1676 	 * For P2P, dma_request2 is init from dma_request_channel(),
1677 	 * chan->private will point to the imx_dma_data, and in
1678 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1679 	 * be set to sdmac->event_id1.
1680 	 */
1681 	data.dma_request2 = 0;
1682 
1683 	return dma_request_channel(mask, sdma_filter_fn, &data);
1684 }
1685 
1686 static int sdma_probe(struct platform_device *pdev)
1687 {
1688 	const struct of_device_id *of_id =
1689 			of_match_device(sdma_dt_ids, &pdev->dev);
1690 	struct device_node *np = pdev->dev.of_node;
1691 	struct device_node *spba_bus;
1692 	const char *fw_name;
1693 	int ret;
1694 	int irq;
1695 	struct resource *iores;
1696 	struct resource spba_res;
1697 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1698 	int i;
1699 	struct sdma_engine *sdma;
1700 	s32 *saddr_arr;
1701 	const struct sdma_driver_data *drvdata = NULL;
1702 
1703 	if (of_id)
1704 		drvdata = of_id->data;
1705 	else if (pdev->id_entry)
1706 		drvdata = (void *)pdev->id_entry->driver_data;
1707 
1708 	if (!drvdata) {
1709 		dev_err(&pdev->dev, "unable to find driver data\n");
1710 		return -EINVAL;
1711 	}
1712 
1713 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1714 	if (ret)
1715 		return ret;
1716 
1717 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1718 	if (!sdma)
1719 		return -ENOMEM;
1720 
1721 	spin_lock_init(&sdma->channel_0_lock);
1722 
1723 	sdma->dev = &pdev->dev;
1724 	sdma->drvdata = drvdata;
1725 
1726 	irq = platform_get_irq(pdev, 0);
1727 	if (irq < 0)
1728 		return irq;
1729 
1730 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1731 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1732 	if (IS_ERR(sdma->regs))
1733 		return PTR_ERR(sdma->regs);
1734 
1735 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1736 	if (IS_ERR(sdma->clk_ipg))
1737 		return PTR_ERR(sdma->clk_ipg);
1738 
1739 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1740 	if (IS_ERR(sdma->clk_ahb))
1741 		return PTR_ERR(sdma->clk_ahb);
1742 
1743 	clk_prepare(sdma->clk_ipg);
1744 	clk_prepare(sdma->clk_ahb);
1745 
1746 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1747 			       sdma);
1748 	if (ret)
1749 		return ret;
1750 
1751 	sdma->irq = irq;
1752 
1753 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1754 	if (!sdma->script_addrs)
1755 		return -ENOMEM;
1756 
1757 	/* initially no scripts available */
1758 	saddr_arr = (s32 *)sdma->script_addrs;
1759 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1760 		saddr_arr[i] = -EINVAL;
1761 
1762 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1763 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1764 
1765 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1766 	/* Initialize channel parameters */
1767 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1768 		struct sdma_channel *sdmac = &sdma->channel[i];
1769 
1770 		sdmac->sdma = sdma;
1771 		spin_lock_init(&sdmac->lock);
1772 
1773 		sdmac->chan.device = &sdma->dma_device;
1774 		dma_cookie_init(&sdmac->chan);
1775 		sdmac->channel = i;
1776 
1777 		tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1778 			     (unsigned long) sdmac);
1779 		/*
1780 		 * Add the channel to the DMAC list. Do not add channel 0 though
1781 		 * because we need it internally in the SDMA driver. This also means
1782 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1783 		 */
1784 		if (i)
1785 			list_add_tail(&sdmac->chan.device_node,
1786 					&sdma->dma_device.channels);
1787 	}
1788 
1789 	ret = sdma_init(sdma);
1790 	if (ret)
1791 		goto err_init;
1792 
1793 	ret = sdma_event_remap(sdma);
1794 	if (ret)
1795 		goto err_init;
1796 
1797 	if (sdma->drvdata->script_addrs)
1798 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1799 	if (pdata && pdata->script_addrs)
1800 		sdma_add_scripts(sdma, pdata->script_addrs);
1801 
1802 	if (pdata) {
1803 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1804 		if (ret)
1805 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1806 	} else {
1807 		/*
1808 		 * Because that device tree does not encode ROM script address,
1809 		 * the RAM script in firmware is mandatory for device tree
1810 		 * probe, otherwise it fails.
1811 		 */
1812 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1813 					      &fw_name);
1814 		if (ret)
1815 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1816 		else {
1817 			ret = sdma_get_firmware(sdma, fw_name);
1818 			if (ret)
1819 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1820 		}
1821 	}
1822 
1823 	sdma->dma_device.dev = &pdev->dev;
1824 
1825 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1826 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1827 	sdma->dma_device.device_tx_status = sdma_tx_status;
1828 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1829 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1830 	sdma->dma_device.device_config = sdma_config;
1831 	sdma->dma_device.device_terminate_all = sdma_disable_channel;
1832 	sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1833 	sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1834 	sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1835 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1836 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1837 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1838 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1839 
1840 	platform_set_drvdata(pdev, sdma);
1841 
1842 	ret = dma_async_device_register(&sdma->dma_device);
1843 	if (ret) {
1844 		dev_err(&pdev->dev, "unable to register\n");
1845 		goto err_init;
1846 	}
1847 
1848 	if (np) {
1849 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
1850 		if (ret) {
1851 			dev_err(&pdev->dev, "failed to register controller\n");
1852 			goto err_register;
1853 		}
1854 
1855 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1856 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
1857 		if (!ret) {
1858 			sdma->spba_start_addr = spba_res.start;
1859 			sdma->spba_end_addr = spba_res.end;
1860 		}
1861 		of_node_put(spba_bus);
1862 	}
1863 
1864 	return 0;
1865 
1866 err_register:
1867 	dma_async_device_unregister(&sdma->dma_device);
1868 err_init:
1869 	kfree(sdma->script_addrs);
1870 	return ret;
1871 }
1872 
1873 static int sdma_remove(struct platform_device *pdev)
1874 {
1875 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
1876 	int i;
1877 
1878 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
1879 	dma_async_device_unregister(&sdma->dma_device);
1880 	kfree(sdma->script_addrs);
1881 	/* Kill the tasklet */
1882 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1883 		struct sdma_channel *sdmac = &sdma->channel[i];
1884 
1885 		tasklet_kill(&sdmac->tasklet);
1886 	}
1887 
1888 	platform_set_drvdata(pdev, NULL);
1889 	return 0;
1890 }
1891 
1892 static struct platform_driver sdma_driver = {
1893 	.driver		= {
1894 		.name	= "imx-sdma",
1895 		.of_match_table = sdma_dt_ids,
1896 	},
1897 	.id_table	= sdma_devtypes,
1898 	.remove		= sdma_remove,
1899 	.probe		= sdma_probe,
1900 };
1901 
1902 module_platform_driver(sdma_driver);
1903 
1904 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1905 MODULE_DESCRIPTION("i.MX SDMA driver");
1906 MODULE_LICENSE("GPL");
1907