1 /* 2 * drivers/dma/imx-sdma.c 3 * 4 * This file contains a driver for the Freescale Smart DMA engine 5 * 6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de> 7 * 8 * Based on code from Freescale: 9 * 10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. 11 * 12 * The code contained herein is licensed under the GNU General Public 13 * License. You may obtain a copy of the GNU General Public License 14 * Version 2 or later at the following locations: 15 * 16 * http://www.opensource.org/licenses/gpl-license.html 17 * http://www.gnu.org/copyleft/gpl.html 18 */ 19 20 #include <linux/init.h> 21 #include <linux/module.h> 22 #include <linux/types.h> 23 #include <linux/bitops.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/clk.h> 27 #include <linux/delay.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 #include <linux/spinlock.h> 31 #include <linux/device.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/slab.h> 35 #include <linux/platform_device.h> 36 #include <linux/dmaengine.h> 37 #include <linux/of.h> 38 #include <linux/of_device.h> 39 #include <linux/of_dma.h> 40 41 #include <asm/irq.h> 42 #include <linux/platform_data/dma-imx-sdma.h> 43 #include <linux/platform_data/dma-imx.h> 44 45 #include "dmaengine.h" 46 47 /* SDMA registers */ 48 #define SDMA_H_C0PTR 0x000 49 #define SDMA_H_INTR 0x004 50 #define SDMA_H_STATSTOP 0x008 51 #define SDMA_H_START 0x00c 52 #define SDMA_H_EVTOVR 0x010 53 #define SDMA_H_DSPOVR 0x014 54 #define SDMA_H_HOSTOVR 0x018 55 #define SDMA_H_EVTPEND 0x01c 56 #define SDMA_H_DSPENBL 0x020 57 #define SDMA_H_RESET 0x024 58 #define SDMA_H_EVTERR 0x028 59 #define SDMA_H_INTRMSK 0x02c 60 #define SDMA_H_PSW 0x030 61 #define SDMA_H_EVTERRDBG 0x034 62 #define SDMA_H_CONFIG 0x038 63 #define SDMA_ONCE_ENB 0x040 64 #define SDMA_ONCE_DATA 0x044 65 #define SDMA_ONCE_INSTR 0x048 66 #define SDMA_ONCE_STAT 0x04c 67 #define SDMA_ONCE_CMD 0x050 68 #define SDMA_EVT_MIRROR 0x054 69 #define SDMA_ILLINSTADDR 0x058 70 #define SDMA_CHN0ADDR 0x05c 71 #define SDMA_ONCE_RTB 0x060 72 #define SDMA_XTRIG_CONF1 0x070 73 #define SDMA_XTRIG_CONF2 0x074 74 #define SDMA_CHNENBL0_IMX35 0x200 75 #define SDMA_CHNENBL0_IMX31 0x080 76 #define SDMA_CHNPRI_0 0x100 77 78 /* 79 * Buffer descriptor status values. 80 */ 81 #define BD_DONE 0x01 82 #define BD_WRAP 0x02 83 #define BD_CONT 0x04 84 #define BD_INTR 0x08 85 #define BD_RROR 0x10 86 #define BD_LAST 0x20 87 #define BD_EXTD 0x80 88 89 /* 90 * Data Node descriptor status values. 91 */ 92 #define DND_END_OF_FRAME 0x80 93 #define DND_END_OF_XFER 0x40 94 #define DND_DONE 0x20 95 #define DND_UNUSED 0x01 96 97 /* 98 * IPCV2 descriptor status values. 99 */ 100 #define BD_IPCV2_END_OF_FRAME 0x40 101 102 #define IPCV2_MAX_NODES 50 103 /* 104 * Error bit set in the CCB status field by the SDMA, 105 * in setbd routine, in case of a transfer error 106 */ 107 #define DATA_ERROR 0x10000000 108 109 /* 110 * Buffer descriptor commands. 111 */ 112 #define C0_ADDR 0x01 113 #define C0_LOAD 0x02 114 #define C0_DUMP 0x03 115 #define C0_SETCTX 0x07 116 #define C0_GETCTX 0x03 117 #define C0_SETDM 0x01 118 #define C0_SETPM 0x04 119 #define C0_GETDM 0x02 120 #define C0_GETPM 0x08 121 /* 122 * Change endianness indicator in the BD command field 123 */ 124 #define CHANGE_ENDIANNESS 0x80 125 126 /* 127 * Mode/Count of data node descriptors - IPCv2 128 */ 129 struct sdma_mode_count { 130 u32 count : 16; /* size of the buffer pointed by this BD */ 131 u32 status : 8; /* E,R,I,C,W,D status bits stored here */ 132 u32 command : 8; /* command mostlky used for channel 0 */ 133 }; 134 135 /* 136 * Buffer descriptor 137 */ 138 struct sdma_buffer_descriptor { 139 struct sdma_mode_count mode; 140 u32 buffer_addr; /* address of the buffer described */ 141 u32 ext_buffer_addr; /* extended buffer address */ 142 } __attribute__ ((packed)); 143 144 /** 145 * struct sdma_channel_control - Channel control Block 146 * 147 * @current_bd_ptr current buffer descriptor processed 148 * @base_bd_ptr first element of buffer descriptor array 149 * @unused padding. The SDMA engine expects an array of 128 byte 150 * control blocks 151 */ 152 struct sdma_channel_control { 153 u32 current_bd_ptr; 154 u32 base_bd_ptr; 155 u32 unused[2]; 156 } __attribute__ ((packed)); 157 158 /** 159 * struct sdma_state_registers - SDMA context for a channel 160 * 161 * @pc: program counter 162 * @t: test bit: status of arithmetic & test instruction 163 * @rpc: return program counter 164 * @sf: source fault while loading data 165 * @spc: loop start program counter 166 * @df: destination fault while storing data 167 * @epc: loop end program counter 168 * @lm: loop mode 169 */ 170 struct sdma_state_registers { 171 u32 pc :14; 172 u32 unused1: 1; 173 u32 t : 1; 174 u32 rpc :14; 175 u32 unused0: 1; 176 u32 sf : 1; 177 u32 spc :14; 178 u32 unused2: 1; 179 u32 df : 1; 180 u32 epc :14; 181 u32 lm : 2; 182 } __attribute__ ((packed)); 183 184 /** 185 * struct sdma_context_data - sdma context specific to a channel 186 * 187 * @channel_state: channel state bits 188 * @gReg: general registers 189 * @mda: burst dma destination address register 190 * @msa: burst dma source address register 191 * @ms: burst dma status register 192 * @md: burst dma data register 193 * @pda: peripheral dma destination address register 194 * @psa: peripheral dma source address register 195 * @ps: peripheral dma status register 196 * @pd: peripheral dma data register 197 * @ca: CRC polynomial register 198 * @cs: CRC accumulator register 199 * @dda: dedicated core destination address register 200 * @dsa: dedicated core source address register 201 * @ds: dedicated core status register 202 * @dd: dedicated core data register 203 */ 204 struct sdma_context_data { 205 struct sdma_state_registers channel_state; 206 u32 gReg[8]; 207 u32 mda; 208 u32 msa; 209 u32 ms; 210 u32 md; 211 u32 pda; 212 u32 psa; 213 u32 ps; 214 u32 pd; 215 u32 ca; 216 u32 cs; 217 u32 dda; 218 u32 dsa; 219 u32 ds; 220 u32 dd; 221 u32 scratch0; 222 u32 scratch1; 223 u32 scratch2; 224 u32 scratch3; 225 u32 scratch4; 226 u32 scratch5; 227 u32 scratch6; 228 u32 scratch7; 229 } __attribute__ ((packed)); 230 231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor)) 232 233 struct sdma_engine; 234 235 /** 236 * struct sdma_channel - housekeeping for a SDMA channel 237 * 238 * @sdma pointer to the SDMA engine for this channel 239 * @channel the channel number, matches dmaengine chan_id + 1 240 * @direction transfer type. Needed for setting SDMA script 241 * @peripheral_type Peripheral type. Needed for setting SDMA script 242 * @event_id0 aka dma request line 243 * @event_id1 for channels that use 2 events 244 * @word_size peripheral access size 245 * @buf_tail ID of the buffer that was processed 246 * @num_bd max NUM_BD. number of descriptors currently handling 247 */ 248 struct sdma_channel { 249 struct sdma_engine *sdma; 250 unsigned int channel; 251 enum dma_transfer_direction direction; 252 enum sdma_peripheral_type peripheral_type; 253 unsigned int event_id0; 254 unsigned int event_id1; 255 enum dma_slave_buswidth word_size; 256 unsigned int buf_tail; 257 unsigned int num_bd; 258 unsigned int period_len; 259 struct sdma_buffer_descriptor *bd; 260 dma_addr_t bd_phys; 261 unsigned int pc_from_device, pc_to_device; 262 unsigned long flags; 263 dma_addr_t per_address; 264 unsigned long event_mask[2]; 265 unsigned long watermark_level; 266 u32 shp_addr, per_addr; 267 struct dma_chan chan; 268 spinlock_t lock; 269 struct dma_async_tx_descriptor desc; 270 enum dma_status status; 271 unsigned int chn_count; 272 unsigned int chn_real_count; 273 struct tasklet_struct tasklet; 274 struct imx_dma_data data; 275 }; 276 277 #define IMX_DMA_SG_LOOP BIT(0) 278 279 #define MAX_DMA_CHANNELS 32 280 #define MXC_SDMA_DEFAULT_PRIORITY 1 281 #define MXC_SDMA_MIN_PRIORITY 1 282 #define MXC_SDMA_MAX_PRIORITY 7 283 284 #define SDMA_FIRMWARE_MAGIC 0x414d4453 285 286 /** 287 * struct sdma_firmware_header - Layout of the firmware image 288 * 289 * @magic "SDMA" 290 * @version_major increased whenever layout of struct sdma_script_start_addrs 291 * changes. 292 * @version_minor firmware minor version (for binary compatible changes) 293 * @script_addrs_start offset of struct sdma_script_start_addrs in this image 294 * @num_script_addrs Number of script addresses in this image 295 * @ram_code_start offset of SDMA ram image in this firmware image 296 * @ram_code_size size of SDMA ram image 297 * @script_addrs Stores the start address of the SDMA scripts 298 * (in SDMA memory space) 299 */ 300 struct sdma_firmware_header { 301 u32 magic; 302 u32 version_major; 303 u32 version_minor; 304 u32 script_addrs_start; 305 u32 num_script_addrs; 306 u32 ram_code_start; 307 u32 ram_code_size; 308 }; 309 310 struct sdma_driver_data { 311 int chnenbl0; 312 int num_events; 313 struct sdma_script_start_addrs *script_addrs; 314 }; 315 316 struct sdma_engine { 317 struct device *dev; 318 struct device_dma_parameters dma_parms; 319 struct sdma_channel channel[MAX_DMA_CHANNELS]; 320 struct sdma_channel_control *channel_control; 321 void __iomem *regs; 322 struct sdma_context_data *context; 323 dma_addr_t context_phys; 324 struct dma_device dma_device; 325 struct clk *clk_ipg; 326 struct clk *clk_ahb; 327 spinlock_t channel_0_lock; 328 u32 script_number; 329 struct sdma_script_start_addrs *script_addrs; 330 const struct sdma_driver_data *drvdata; 331 }; 332 333 static struct sdma_driver_data sdma_imx31 = { 334 .chnenbl0 = SDMA_CHNENBL0_IMX31, 335 .num_events = 32, 336 }; 337 338 static struct sdma_script_start_addrs sdma_script_imx25 = { 339 .ap_2_ap_addr = 729, 340 .uart_2_mcu_addr = 904, 341 .per_2_app_addr = 1255, 342 .mcu_2_app_addr = 834, 343 .uartsh_2_mcu_addr = 1120, 344 .per_2_shp_addr = 1329, 345 .mcu_2_shp_addr = 1048, 346 .ata_2_mcu_addr = 1560, 347 .mcu_2_ata_addr = 1479, 348 .app_2_per_addr = 1189, 349 .app_2_mcu_addr = 770, 350 .shp_2_per_addr = 1407, 351 .shp_2_mcu_addr = 979, 352 }; 353 354 static struct sdma_driver_data sdma_imx25 = { 355 .chnenbl0 = SDMA_CHNENBL0_IMX35, 356 .num_events = 48, 357 .script_addrs = &sdma_script_imx25, 358 }; 359 360 static struct sdma_driver_data sdma_imx35 = { 361 .chnenbl0 = SDMA_CHNENBL0_IMX35, 362 .num_events = 48, 363 }; 364 365 static struct sdma_script_start_addrs sdma_script_imx51 = { 366 .ap_2_ap_addr = 642, 367 .uart_2_mcu_addr = 817, 368 .mcu_2_app_addr = 747, 369 .mcu_2_shp_addr = 961, 370 .ata_2_mcu_addr = 1473, 371 .mcu_2_ata_addr = 1392, 372 .app_2_per_addr = 1033, 373 .app_2_mcu_addr = 683, 374 .shp_2_per_addr = 1251, 375 .shp_2_mcu_addr = 892, 376 }; 377 378 static struct sdma_driver_data sdma_imx51 = { 379 .chnenbl0 = SDMA_CHNENBL0_IMX35, 380 .num_events = 48, 381 .script_addrs = &sdma_script_imx51, 382 }; 383 384 static struct sdma_script_start_addrs sdma_script_imx53 = { 385 .ap_2_ap_addr = 642, 386 .app_2_mcu_addr = 683, 387 .mcu_2_app_addr = 747, 388 .uart_2_mcu_addr = 817, 389 .shp_2_mcu_addr = 891, 390 .mcu_2_shp_addr = 960, 391 .uartsh_2_mcu_addr = 1032, 392 .spdif_2_mcu_addr = 1100, 393 .mcu_2_spdif_addr = 1134, 394 .firi_2_mcu_addr = 1193, 395 .mcu_2_firi_addr = 1290, 396 }; 397 398 static struct sdma_driver_data sdma_imx53 = { 399 .chnenbl0 = SDMA_CHNENBL0_IMX35, 400 .num_events = 48, 401 .script_addrs = &sdma_script_imx53, 402 }; 403 404 static struct sdma_script_start_addrs sdma_script_imx6q = { 405 .ap_2_ap_addr = 642, 406 .uart_2_mcu_addr = 817, 407 .mcu_2_app_addr = 747, 408 .per_2_per_addr = 6331, 409 .uartsh_2_mcu_addr = 1032, 410 .mcu_2_shp_addr = 960, 411 .app_2_mcu_addr = 683, 412 .shp_2_mcu_addr = 891, 413 .spdif_2_mcu_addr = 1100, 414 .mcu_2_spdif_addr = 1134, 415 }; 416 417 static struct sdma_driver_data sdma_imx6q = { 418 .chnenbl0 = SDMA_CHNENBL0_IMX35, 419 .num_events = 48, 420 .script_addrs = &sdma_script_imx6q, 421 }; 422 423 static struct platform_device_id sdma_devtypes[] = { 424 { 425 .name = "imx25-sdma", 426 .driver_data = (unsigned long)&sdma_imx25, 427 }, { 428 .name = "imx31-sdma", 429 .driver_data = (unsigned long)&sdma_imx31, 430 }, { 431 .name = "imx35-sdma", 432 .driver_data = (unsigned long)&sdma_imx35, 433 }, { 434 .name = "imx51-sdma", 435 .driver_data = (unsigned long)&sdma_imx51, 436 }, { 437 .name = "imx53-sdma", 438 .driver_data = (unsigned long)&sdma_imx53, 439 }, { 440 .name = "imx6q-sdma", 441 .driver_data = (unsigned long)&sdma_imx6q, 442 }, { 443 /* sentinel */ 444 } 445 }; 446 MODULE_DEVICE_TABLE(platform, sdma_devtypes); 447 448 static const struct of_device_id sdma_dt_ids[] = { 449 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, }, 450 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, }, 451 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, }, 452 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, }, 453 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, }, 454 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, }, 455 { /* sentinel */ } 456 }; 457 MODULE_DEVICE_TABLE(of, sdma_dt_ids); 458 459 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ 460 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ 461 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ 462 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ 463 464 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) 465 { 466 u32 chnenbl0 = sdma->drvdata->chnenbl0; 467 return chnenbl0 + event * 4; 468 } 469 470 static int sdma_config_ownership(struct sdma_channel *sdmac, 471 bool event_override, bool mcu_override, bool dsp_override) 472 { 473 struct sdma_engine *sdma = sdmac->sdma; 474 int channel = sdmac->channel; 475 unsigned long evt, mcu, dsp; 476 477 if (event_override && mcu_override && dsp_override) 478 return -EINVAL; 479 480 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); 481 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); 482 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); 483 484 if (dsp_override) 485 __clear_bit(channel, &dsp); 486 else 487 __set_bit(channel, &dsp); 488 489 if (event_override) 490 __clear_bit(channel, &evt); 491 else 492 __set_bit(channel, &evt); 493 494 if (mcu_override) 495 __clear_bit(channel, &mcu); 496 else 497 __set_bit(channel, &mcu); 498 499 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); 500 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); 501 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); 502 503 return 0; 504 } 505 506 static void sdma_enable_channel(struct sdma_engine *sdma, int channel) 507 { 508 writel(BIT(channel), sdma->regs + SDMA_H_START); 509 } 510 511 /* 512 * sdma_run_channel0 - run a channel and wait till it's done 513 */ 514 static int sdma_run_channel0(struct sdma_engine *sdma) 515 { 516 int ret; 517 unsigned long timeout = 500; 518 519 sdma_enable_channel(sdma, 0); 520 521 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) { 522 if (timeout-- <= 0) 523 break; 524 udelay(1); 525 } 526 527 if (ret) { 528 /* Clear the interrupt status */ 529 writel_relaxed(ret, sdma->regs + SDMA_H_INTR); 530 } else { 531 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n"); 532 } 533 534 return ret ? 0 : -ETIMEDOUT; 535 } 536 537 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, 538 u32 address) 539 { 540 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; 541 void *buf_virt; 542 dma_addr_t buf_phys; 543 int ret; 544 unsigned long flags; 545 546 buf_virt = dma_alloc_coherent(NULL, 547 size, 548 &buf_phys, GFP_KERNEL); 549 if (!buf_virt) { 550 return -ENOMEM; 551 } 552 553 spin_lock_irqsave(&sdma->channel_0_lock, flags); 554 555 bd0->mode.command = C0_SETPM; 556 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 557 bd0->mode.count = size / 2; 558 bd0->buffer_addr = buf_phys; 559 bd0->ext_buffer_addr = address; 560 561 memcpy(buf_virt, buf, size); 562 563 ret = sdma_run_channel0(sdma); 564 565 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 566 567 dma_free_coherent(NULL, size, buf_virt, buf_phys); 568 569 return ret; 570 } 571 572 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) 573 { 574 struct sdma_engine *sdma = sdmac->sdma; 575 int channel = sdmac->channel; 576 unsigned long val; 577 u32 chnenbl = chnenbl_ofs(sdma, event); 578 579 val = readl_relaxed(sdma->regs + chnenbl); 580 __set_bit(channel, &val); 581 writel_relaxed(val, sdma->regs + chnenbl); 582 } 583 584 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) 585 { 586 struct sdma_engine *sdma = sdmac->sdma; 587 int channel = sdmac->channel; 588 u32 chnenbl = chnenbl_ofs(sdma, event); 589 unsigned long val; 590 591 val = readl_relaxed(sdma->regs + chnenbl); 592 __clear_bit(channel, &val); 593 writel_relaxed(val, sdma->regs + chnenbl); 594 } 595 596 static void sdma_handle_channel_loop(struct sdma_channel *sdmac) 597 { 598 if (sdmac->desc.callback) 599 sdmac->desc.callback(sdmac->desc.callback_param); 600 } 601 602 static void sdma_update_channel_loop(struct sdma_channel *sdmac) 603 { 604 struct sdma_buffer_descriptor *bd; 605 606 /* 607 * loop mode. Iterate over descriptors, re-setup them and 608 * call callback function. 609 */ 610 while (1) { 611 bd = &sdmac->bd[sdmac->buf_tail]; 612 613 if (bd->mode.status & BD_DONE) 614 break; 615 616 if (bd->mode.status & BD_RROR) 617 sdmac->status = DMA_ERROR; 618 619 bd->mode.status |= BD_DONE; 620 sdmac->buf_tail++; 621 sdmac->buf_tail %= sdmac->num_bd; 622 } 623 } 624 625 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac) 626 { 627 struct sdma_buffer_descriptor *bd; 628 int i, error = 0; 629 630 sdmac->chn_real_count = 0; 631 /* 632 * non loop mode. Iterate over all descriptors, collect 633 * errors and call callback function 634 */ 635 for (i = 0; i < sdmac->num_bd; i++) { 636 bd = &sdmac->bd[i]; 637 638 if (bd->mode.status & (BD_DONE | BD_RROR)) 639 error = -EIO; 640 sdmac->chn_real_count += bd->mode.count; 641 } 642 643 if (error) 644 sdmac->status = DMA_ERROR; 645 else 646 sdmac->status = DMA_COMPLETE; 647 648 dma_cookie_complete(&sdmac->desc); 649 if (sdmac->desc.callback) 650 sdmac->desc.callback(sdmac->desc.callback_param); 651 } 652 653 static void sdma_tasklet(unsigned long data) 654 { 655 struct sdma_channel *sdmac = (struct sdma_channel *) data; 656 657 if (sdmac->flags & IMX_DMA_SG_LOOP) 658 sdma_handle_channel_loop(sdmac); 659 else 660 mxc_sdma_handle_channel_normal(sdmac); 661 } 662 663 static irqreturn_t sdma_int_handler(int irq, void *dev_id) 664 { 665 struct sdma_engine *sdma = dev_id; 666 unsigned long stat; 667 668 stat = readl_relaxed(sdma->regs + SDMA_H_INTR); 669 /* not interested in channel 0 interrupts */ 670 stat &= ~1; 671 writel_relaxed(stat, sdma->regs + SDMA_H_INTR); 672 673 while (stat) { 674 int channel = fls(stat) - 1; 675 struct sdma_channel *sdmac = &sdma->channel[channel]; 676 677 if (sdmac->flags & IMX_DMA_SG_LOOP) 678 sdma_update_channel_loop(sdmac); 679 680 tasklet_schedule(&sdmac->tasklet); 681 682 __clear_bit(channel, &stat); 683 } 684 685 return IRQ_HANDLED; 686 } 687 688 /* 689 * sets the pc of SDMA script according to the peripheral type 690 */ 691 static void sdma_get_pc(struct sdma_channel *sdmac, 692 enum sdma_peripheral_type peripheral_type) 693 { 694 struct sdma_engine *sdma = sdmac->sdma; 695 int per_2_emi = 0, emi_2_per = 0; 696 /* 697 * These are needed once we start to support transfers between 698 * two peripherals or memory-to-memory transfers 699 */ 700 int per_2_per = 0, emi_2_emi = 0; 701 702 sdmac->pc_from_device = 0; 703 sdmac->pc_to_device = 0; 704 705 switch (peripheral_type) { 706 case IMX_DMATYPE_MEMORY: 707 emi_2_emi = sdma->script_addrs->ap_2_ap_addr; 708 break; 709 case IMX_DMATYPE_DSP: 710 emi_2_per = sdma->script_addrs->bp_2_ap_addr; 711 per_2_emi = sdma->script_addrs->ap_2_bp_addr; 712 break; 713 case IMX_DMATYPE_FIRI: 714 per_2_emi = sdma->script_addrs->firi_2_mcu_addr; 715 emi_2_per = sdma->script_addrs->mcu_2_firi_addr; 716 break; 717 case IMX_DMATYPE_UART: 718 per_2_emi = sdma->script_addrs->uart_2_mcu_addr; 719 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 720 break; 721 case IMX_DMATYPE_UART_SP: 722 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; 723 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 724 break; 725 case IMX_DMATYPE_ATA: 726 per_2_emi = sdma->script_addrs->ata_2_mcu_addr; 727 emi_2_per = sdma->script_addrs->mcu_2_ata_addr; 728 break; 729 case IMX_DMATYPE_CSPI: 730 case IMX_DMATYPE_EXT: 731 case IMX_DMATYPE_SSI: 732 per_2_emi = sdma->script_addrs->app_2_mcu_addr; 733 emi_2_per = sdma->script_addrs->mcu_2_app_addr; 734 break; 735 case IMX_DMATYPE_SSI_DUAL: 736 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr; 737 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr; 738 break; 739 case IMX_DMATYPE_SSI_SP: 740 case IMX_DMATYPE_MMC: 741 case IMX_DMATYPE_SDHC: 742 case IMX_DMATYPE_CSPI_SP: 743 case IMX_DMATYPE_ESAI: 744 case IMX_DMATYPE_MSHC_SP: 745 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 746 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 747 break; 748 case IMX_DMATYPE_ASRC: 749 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; 750 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; 751 per_2_per = sdma->script_addrs->per_2_per_addr; 752 break; 753 case IMX_DMATYPE_ASRC_SP: 754 per_2_emi = sdma->script_addrs->shp_2_mcu_addr; 755 emi_2_per = sdma->script_addrs->mcu_2_shp_addr; 756 per_2_per = sdma->script_addrs->per_2_per_addr; 757 break; 758 case IMX_DMATYPE_MSHC: 759 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; 760 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; 761 break; 762 case IMX_DMATYPE_CCM: 763 per_2_emi = sdma->script_addrs->dptc_dvfs_addr; 764 break; 765 case IMX_DMATYPE_SPDIF: 766 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; 767 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; 768 break; 769 case IMX_DMATYPE_IPU_MEMORY: 770 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; 771 break; 772 default: 773 break; 774 } 775 776 sdmac->pc_from_device = per_2_emi; 777 sdmac->pc_to_device = emi_2_per; 778 } 779 780 static int sdma_load_context(struct sdma_channel *sdmac) 781 { 782 struct sdma_engine *sdma = sdmac->sdma; 783 int channel = sdmac->channel; 784 int load_address; 785 struct sdma_context_data *context = sdma->context; 786 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; 787 int ret; 788 unsigned long flags; 789 790 if (sdmac->direction == DMA_DEV_TO_MEM) { 791 load_address = sdmac->pc_from_device; 792 } else { 793 load_address = sdmac->pc_to_device; 794 } 795 796 if (load_address < 0) 797 return load_address; 798 799 dev_dbg(sdma->dev, "load_address = %d\n", load_address); 800 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); 801 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); 802 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); 803 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); 804 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); 805 806 spin_lock_irqsave(&sdma->channel_0_lock, flags); 807 808 memset(context, 0, sizeof(*context)); 809 context->channel_state.pc = load_address; 810 811 /* Send by context the event mask,base address for peripheral 812 * and watermark level 813 */ 814 context->gReg[0] = sdmac->event_mask[1]; 815 context->gReg[1] = sdmac->event_mask[0]; 816 context->gReg[2] = sdmac->per_addr; 817 context->gReg[6] = sdmac->shp_addr; 818 context->gReg[7] = sdmac->watermark_level; 819 820 bd0->mode.command = C0_SETDM; 821 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; 822 bd0->mode.count = sizeof(*context) / 4; 823 bd0->buffer_addr = sdma->context_phys; 824 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; 825 ret = sdma_run_channel0(sdma); 826 827 spin_unlock_irqrestore(&sdma->channel_0_lock, flags); 828 829 return ret; 830 } 831 832 static void sdma_disable_channel(struct sdma_channel *sdmac) 833 { 834 struct sdma_engine *sdma = sdmac->sdma; 835 int channel = sdmac->channel; 836 837 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); 838 sdmac->status = DMA_ERROR; 839 } 840 841 static int sdma_config_channel(struct sdma_channel *sdmac) 842 { 843 int ret; 844 845 sdma_disable_channel(sdmac); 846 847 sdmac->event_mask[0] = 0; 848 sdmac->event_mask[1] = 0; 849 sdmac->shp_addr = 0; 850 sdmac->per_addr = 0; 851 852 if (sdmac->event_id0) { 853 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events) 854 return -EINVAL; 855 sdma_event_enable(sdmac, sdmac->event_id0); 856 } 857 858 switch (sdmac->peripheral_type) { 859 case IMX_DMATYPE_DSP: 860 sdma_config_ownership(sdmac, false, true, true); 861 break; 862 case IMX_DMATYPE_MEMORY: 863 sdma_config_ownership(sdmac, false, true, false); 864 break; 865 default: 866 sdma_config_ownership(sdmac, true, true, false); 867 break; 868 } 869 870 sdma_get_pc(sdmac, sdmac->peripheral_type); 871 872 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && 873 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { 874 /* Handle multiple event channels differently */ 875 if (sdmac->event_id1) { 876 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32); 877 if (sdmac->event_id1 > 31) 878 __set_bit(31, &sdmac->watermark_level); 879 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32); 880 if (sdmac->event_id0 > 31) 881 __set_bit(30, &sdmac->watermark_level); 882 } else { 883 __set_bit(sdmac->event_id0, sdmac->event_mask); 884 } 885 /* Watermark Level */ 886 sdmac->watermark_level |= sdmac->watermark_level; 887 /* Address */ 888 sdmac->shp_addr = sdmac->per_address; 889 } else { 890 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ 891 } 892 893 ret = sdma_load_context(sdmac); 894 895 return ret; 896 } 897 898 static int sdma_set_channel_priority(struct sdma_channel *sdmac, 899 unsigned int priority) 900 { 901 struct sdma_engine *sdma = sdmac->sdma; 902 int channel = sdmac->channel; 903 904 if (priority < MXC_SDMA_MIN_PRIORITY 905 || priority > MXC_SDMA_MAX_PRIORITY) { 906 return -EINVAL; 907 } 908 909 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); 910 911 return 0; 912 } 913 914 static int sdma_request_channel(struct sdma_channel *sdmac) 915 { 916 struct sdma_engine *sdma = sdmac->sdma; 917 int channel = sdmac->channel; 918 int ret = -EBUSY; 919 920 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, 921 GFP_KERNEL); 922 if (!sdmac->bd) { 923 ret = -ENOMEM; 924 goto out; 925 } 926 927 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys; 928 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 929 930 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY); 931 return 0; 932 out: 933 934 return ret; 935 } 936 937 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) 938 { 939 return container_of(chan, struct sdma_channel, chan); 940 } 941 942 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx) 943 { 944 unsigned long flags; 945 struct sdma_channel *sdmac = to_sdma_chan(tx->chan); 946 dma_cookie_t cookie; 947 948 spin_lock_irqsave(&sdmac->lock, flags); 949 950 cookie = dma_cookie_assign(tx); 951 952 spin_unlock_irqrestore(&sdmac->lock, flags); 953 954 return cookie; 955 } 956 957 static int sdma_alloc_chan_resources(struct dma_chan *chan) 958 { 959 struct sdma_channel *sdmac = to_sdma_chan(chan); 960 struct imx_dma_data *data = chan->private; 961 int prio, ret; 962 963 if (!data) 964 return -EINVAL; 965 966 switch (data->priority) { 967 case DMA_PRIO_HIGH: 968 prio = 3; 969 break; 970 case DMA_PRIO_MEDIUM: 971 prio = 2; 972 break; 973 case DMA_PRIO_LOW: 974 default: 975 prio = 1; 976 break; 977 } 978 979 sdmac->peripheral_type = data->peripheral_type; 980 sdmac->event_id0 = data->dma_request; 981 982 clk_enable(sdmac->sdma->clk_ipg); 983 clk_enable(sdmac->sdma->clk_ahb); 984 985 ret = sdma_request_channel(sdmac); 986 if (ret) 987 return ret; 988 989 ret = sdma_set_channel_priority(sdmac, prio); 990 if (ret) 991 return ret; 992 993 dma_async_tx_descriptor_init(&sdmac->desc, chan); 994 sdmac->desc.tx_submit = sdma_tx_submit; 995 /* txd.flags will be overwritten in prep funcs */ 996 sdmac->desc.flags = DMA_CTRL_ACK; 997 998 return 0; 999 } 1000 1001 static void sdma_free_chan_resources(struct dma_chan *chan) 1002 { 1003 struct sdma_channel *sdmac = to_sdma_chan(chan); 1004 struct sdma_engine *sdma = sdmac->sdma; 1005 1006 sdma_disable_channel(sdmac); 1007 1008 if (sdmac->event_id0) 1009 sdma_event_disable(sdmac, sdmac->event_id0); 1010 if (sdmac->event_id1) 1011 sdma_event_disable(sdmac, sdmac->event_id1); 1012 1013 sdmac->event_id0 = 0; 1014 sdmac->event_id1 = 0; 1015 1016 sdma_set_channel_priority(sdmac, 0); 1017 1018 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys); 1019 1020 clk_disable(sdma->clk_ipg); 1021 clk_disable(sdma->clk_ahb); 1022 } 1023 1024 static struct dma_async_tx_descriptor *sdma_prep_slave_sg( 1025 struct dma_chan *chan, struct scatterlist *sgl, 1026 unsigned int sg_len, enum dma_transfer_direction direction, 1027 unsigned long flags, void *context) 1028 { 1029 struct sdma_channel *sdmac = to_sdma_chan(chan); 1030 struct sdma_engine *sdma = sdmac->sdma; 1031 int ret, i, count; 1032 int channel = sdmac->channel; 1033 struct scatterlist *sg; 1034 1035 if (sdmac->status == DMA_IN_PROGRESS) 1036 return NULL; 1037 sdmac->status = DMA_IN_PROGRESS; 1038 1039 sdmac->flags = 0; 1040 1041 sdmac->buf_tail = 0; 1042 1043 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", 1044 sg_len, channel); 1045 1046 sdmac->direction = direction; 1047 ret = sdma_load_context(sdmac); 1048 if (ret) 1049 goto err_out; 1050 1051 if (sg_len > NUM_BD) { 1052 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", 1053 channel, sg_len, NUM_BD); 1054 ret = -EINVAL; 1055 goto err_out; 1056 } 1057 1058 sdmac->chn_count = 0; 1059 for_each_sg(sgl, sg, sg_len, i) { 1060 struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; 1061 int param; 1062 1063 bd->buffer_addr = sg->dma_address; 1064 1065 count = sg_dma_len(sg); 1066 1067 if (count > 0xffff) { 1068 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", 1069 channel, count, 0xffff); 1070 ret = -EINVAL; 1071 goto err_out; 1072 } 1073 1074 bd->mode.count = count; 1075 sdmac->chn_count += count; 1076 1077 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) { 1078 ret = -EINVAL; 1079 goto err_out; 1080 } 1081 1082 switch (sdmac->word_size) { 1083 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1084 bd->mode.command = 0; 1085 if (count & 3 || sg->dma_address & 3) 1086 return NULL; 1087 break; 1088 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1089 bd->mode.command = 2; 1090 if (count & 1 || sg->dma_address & 1) 1091 return NULL; 1092 break; 1093 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1094 bd->mode.command = 1; 1095 break; 1096 default: 1097 return NULL; 1098 } 1099 1100 param = BD_DONE | BD_EXTD | BD_CONT; 1101 1102 if (i + 1 == sg_len) { 1103 param |= BD_INTR; 1104 param |= BD_LAST; 1105 param &= ~BD_CONT; 1106 } 1107 1108 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1109 i, count, (u64)sg->dma_address, 1110 param & BD_WRAP ? "wrap" : "", 1111 param & BD_INTR ? " intr" : ""); 1112 1113 bd->mode.status = param; 1114 } 1115 1116 sdmac->num_bd = sg_len; 1117 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 1118 1119 return &sdmac->desc; 1120 err_out: 1121 sdmac->status = DMA_ERROR; 1122 return NULL; 1123 } 1124 1125 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( 1126 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, 1127 size_t period_len, enum dma_transfer_direction direction, 1128 unsigned long flags) 1129 { 1130 struct sdma_channel *sdmac = to_sdma_chan(chan); 1131 struct sdma_engine *sdma = sdmac->sdma; 1132 int num_periods = buf_len / period_len; 1133 int channel = sdmac->channel; 1134 int ret, i = 0, buf = 0; 1135 1136 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); 1137 1138 if (sdmac->status == DMA_IN_PROGRESS) 1139 return NULL; 1140 1141 sdmac->status = DMA_IN_PROGRESS; 1142 1143 sdmac->buf_tail = 0; 1144 sdmac->period_len = period_len; 1145 1146 sdmac->flags |= IMX_DMA_SG_LOOP; 1147 sdmac->direction = direction; 1148 ret = sdma_load_context(sdmac); 1149 if (ret) 1150 goto err_out; 1151 1152 if (num_periods > NUM_BD) { 1153 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", 1154 channel, num_periods, NUM_BD); 1155 goto err_out; 1156 } 1157 1158 if (period_len > 0xffff) { 1159 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n", 1160 channel, period_len, 0xffff); 1161 goto err_out; 1162 } 1163 1164 while (buf < buf_len) { 1165 struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; 1166 int param; 1167 1168 bd->buffer_addr = dma_addr; 1169 1170 bd->mode.count = period_len; 1171 1172 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) 1173 goto err_out; 1174 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) 1175 bd->mode.command = 0; 1176 else 1177 bd->mode.command = sdmac->word_size; 1178 1179 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; 1180 if (i + 1 == num_periods) 1181 param |= BD_WRAP; 1182 1183 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n", 1184 i, period_len, (u64)dma_addr, 1185 param & BD_WRAP ? "wrap" : "", 1186 param & BD_INTR ? " intr" : ""); 1187 1188 bd->mode.status = param; 1189 1190 dma_addr += period_len; 1191 buf += period_len; 1192 1193 i++; 1194 } 1195 1196 sdmac->num_bd = num_periods; 1197 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; 1198 1199 return &sdmac->desc; 1200 err_out: 1201 sdmac->status = DMA_ERROR; 1202 return NULL; 1203 } 1204 1205 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 1206 unsigned long arg) 1207 { 1208 struct sdma_channel *sdmac = to_sdma_chan(chan); 1209 struct dma_slave_config *dmaengine_cfg = (void *)arg; 1210 1211 switch (cmd) { 1212 case DMA_TERMINATE_ALL: 1213 sdma_disable_channel(sdmac); 1214 return 0; 1215 case DMA_SLAVE_CONFIG: 1216 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) { 1217 sdmac->per_address = dmaengine_cfg->src_addr; 1218 sdmac->watermark_level = dmaengine_cfg->src_maxburst * 1219 dmaengine_cfg->src_addr_width; 1220 sdmac->word_size = dmaengine_cfg->src_addr_width; 1221 } else { 1222 sdmac->per_address = dmaengine_cfg->dst_addr; 1223 sdmac->watermark_level = dmaengine_cfg->dst_maxburst * 1224 dmaengine_cfg->dst_addr_width; 1225 sdmac->word_size = dmaengine_cfg->dst_addr_width; 1226 } 1227 sdmac->direction = dmaengine_cfg->direction; 1228 return sdma_config_channel(sdmac); 1229 default: 1230 return -ENOSYS; 1231 } 1232 1233 return -EINVAL; 1234 } 1235 1236 static enum dma_status sdma_tx_status(struct dma_chan *chan, 1237 dma_cookie_t cookie, 1238 struct dma_tx_state *txstate) 1239 { 1240 struct sdma_channel *sdmac = to_sdma_chan(chan); 1241 u32 residue; 1242 1243 if (sdmac->flags & IMX_DMA_SG_LOOP) 1244 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len; 1245 else 1246 residue = sdmac->chn_count - sdmac->chn_real_count; 1247 1248 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie, 1249 residue); 1250 1251 return sdmac->status; 1252 } 1253 1254 static void sdma_issue_pending(struct dma_chan *chan) 1255 { 1256 struct sdma_channel *sdmac = to_sdma_chan(chan); 1257 struct sdma_engine *sdma = sdmac->sdma; 1258 1259 if (sdmac->status == DMA_IN_PROGRESS) 1260 sdma_enable_channel(sdma, sdmac->channel); 1261 } 1262 1263 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 1264 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38 1265 1266 static void sdma_add_scripts(struct sdma_engine *sdma, 1267 const struct sdma_script_start_addrs *addr) 1268 { 1269 s32 *addr_arr = (u32 *)addr; 1270 s32 *saddr_arr = (u32 *)sdma->script_addrs; 1271 int i; 1272 1273 /* use the default firmware in ROM if missing external firmware */ 1274 if (!sdma->script_number) 1275 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1276 1277 for (i = 0; i < sdma->script_number; i++) 1278 if (addr_arr[i] > 0) 1279 saddr_arr[i] = addr_arr[i]; 1280 } 1281 1282 static void sdma_load_firmware(const struct firmware *fw, void *context) 1283 { 1284 struct sdma_engine *sdma = context; 1285 const struct sdma_firmware_header *header; 1286 const struct sdma_script_start_addrs *addr; 1287 unsigned short *ram_code; 1288 1289 if (!fw) { 1290 dev_err(sdma->dev, "firmware not found\n"); 1291 return; 1292 } 1293 1294 if (fw->size < sizeof(*header)) 1295 goto err_firmware; 1296 1297 header = (struct sdma_firmware_header *)fw->data; 1298 1299 if (header->magic != SDMA_FIRMWARE_MAGIC) 1300 goto err_firmware; 1301 if (header->ram_code_start + header->ram_code_size > fw->size) 1302 goto err_firmware; 1303 switch (header->version_major) { 1304 case 1: 1305 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; 1306 break; 1307 case 2: 1308 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2; 1309 break; 1310 default: 1311 dev_err(sdma->dev, "unknown firmware version\n"); 1312 goto err_firmware; 1313 } 1314 1315 addr = (void *)header + header->script_addrs_start; 1316 ram_code = (void *)header + header->ram_code_start; 1317 1318 clk_enable(sdma->clk_ipg); 1319 clk_enable(sdma->clk_ahb); 1320 /* download the RAM image for SDMA */ 1321 sdma_load_script(sdma, ram_code, 1322 header->ram_code_size, 1323 addr->ram_code_start_addr); 1324 clk_disable(sdma->clk_ipg); 1325 clk_disable(sdma->clk_ahb); 1326 1327 sdma_add_scripts(sdma, addr); 1328 1329 dev_info(sdma->dev, "loaded firmware %d.%d\n", 1330 header->version_major, 1331 header->version_minor); 1332 1333 err_firmware: 1334 release_firmware(fw); 1335 } 1336 1337 static int __init sdma_get_firmware(struct sdma_engine *sdma, 1338 const char *fw_name) 1339 { 1340 int ret; 1341 1342 ret = request_firmware_nowait(THIS_MODULE, 1343 FW_ACTION_HOTPLUG, fw_name, sdma->dev, 1344 GFP_KERNEL, sdma, sdma_load_firmware); 1345 1346 return ret; 1347 } 1348 1349 static int __init sdma_init(struct sdma_engine *sdma) 1350 { 1351 int i, ret; 1352 dma_addr_t ccb_phys; 1353 1354 clk_enable(sdma->clk_ipg); 1355 clk_enable(sdma->clk_ahb); 1356 1357 /* Be sure SDMA has not started yet */ 1358 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); 1359 1360 sdma->channel_control = dma_alloc_coherent(NULL, 1361 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + 1362 sizeof(struct sdma_context_data), 1363 &ccb_phys, GFP_KERNEL); 1364 1365 if (!sdma->channel_control) { 1366 ret = -ENOMEM; 1367 goto err_dma_alloc; 1368 } 1369 1370 sdma->context = (void *)sdma->channel_control + 1371 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1372 sdma->context_phys = ccb_phys + 1373 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); 1374 1375 /* Zero-out the CCB structures array just allocated */ 1376 memset(sdma->channel_control, 0, 1377 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control)); 1378 1379 /* disable all channels */ 1380 for (i = 0; i < sdma->drvdata->num_events; i++) 1381 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); 1382 1383 /* All channels have priority 0 */ 1384 for (i = 0; i < MAX_DMA_CHANNELS; i++) 1385 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); 1386 1387 ret = sdma_request_channel(&sdma->channel[0]); 1388 if (ret) 1389 goto err_dma_alloc; 1390 1391 sdma_config_ownership(&sdma->channel[0], false, true, false); 1392 1393 /* Set Command Channel (Channel Zero) */ 1394 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); 1395 1396 /* Set bits of CONFIG register but with static context switching */ 1397 /* FIXME: Check whether to set ACR bit depending on clock ratios */ 1398 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); 1399 1400 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); 1401 1402 /* Set bits of CONFIG register with given context switching mode */ 1403 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); 1404 1405 /* Initializes channel's priorities */ 1406 sdma_set_channel_priority(&sdma->channel[0], 7); 1407 1408 clk_disable(sdma->clk_ipg); 1409 clk_disable(sdma->clk_ahb); 1410 1411 return 0; 1412 1413 err_dma_alloc: 1414 clk_disable(sdma->clk_ipg); 1415 clk_disable(sdma->clk_ahb); 1416 dev_err(sdma->dev, "initialisation failed with %d\n", ret); 1417 return ret; 1418 } 1419 1420 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param) 1421 { 1422 struct sdma_channel *sdmac = to_sdma_chan(chan); 1423 struct imx_dma_data *data = fn_param; 1424 1425 if (!imx_dma_is_general_purpose(chan)) 1426 return false; 1427 1428 sdmac->data = *data; 1429 chan->private = &sdmac->data; 1430 1431 return true; 1432 } 1433 1434 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec, 1435 struct of_dma *ofdma) 1436 { 1437 struct sdma_engine *sdma = ofdma->of_dma_data; 1438 dma_cap_mask_t mask = sdma->dma_device.cap_mask; 1439 struct imx_dma_data data; 1440 1441 if (dma_spec->args_count != 3) 1442 return NULL; 1443 1444 data.dma_request = dma_spec->args[0]; 1445 data.peripheral_type = dma_spec->args[1]; 1446 data.priority = dma_spec->args[2]; 1447 1448 return dma_request_channel(mask, sdma_filter_fn, &data); 1449 } 1450 1451 static int __init sdma_probe(struct platform_device *pdev) 1452 { 1453 const struct of_device_id *of_id = 1454 of_match_device(sdma_dt_ids, &pdev->dev); 1455 struct device_node *np = pdev->dev.of_node; 1456 const char *fw_name; 1457 int ret; 1458 int irq; 1459 struct resource *iores; 1460 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev); 1461 int i; 1462 struct sdma_engine *sdma; 1463 s32 *saddr_arr; 1464 const struct sdma_driver_data *drvdata = NULL; 1465 1466 if (of_id) 1467 drvdata = of_id->data; 1468 else if (pdev->id_entry) 1469 drvdata = (void *)pdev->id_entry->driver_data; 1470 1471 if (!drvdata) { 1472 dev_err(&pdev->dev, "unable to find driver data\n"); 1473 return -EINVAL; 1474 } 1475 1476 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1477 if (ret) 1478 return ret; 1479 1480 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL); 1481 if (!sdma) 1482 return -ENOMEM; 1483 1484 spin_lock_init(&sdma->channel_0_lock); 1485 1486 sdma->dev = &pdev->dev; 1487 sdma->drvdata = drvdata; 1488 1489 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1490 irq = platform_get_irq(pdev, 0); 1491 if (!iores || irq < 0) { 1492 ret = -EINVAL; 1493 goto err_irq; 1494 } 1495 1496 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) { 1497 ret = -EBUSY; 1498 goto err_request_region; 1499 } 1500 1501 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 1502 if (IS_ERR(sdma->clk_ipg)) { 1503 ret = PTR_ERR(sdma->clk_ipg); 1504 goto err_clk; 1505 } 1506 1507 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 1508 if (IS_ERR(sdma->clk_ahb)) { 1509 ret = PTR_ERR(sdma->clk_ahb); 1510 goto err_clk; 1511 } 1512 1513 clk_prepare(sdma->clk_ipg); 1514 clk_prepare(sdma->clk_ahb); 1515 1516 sdma->regs = ioremap(iores->start, resource_size(iores)); 1517 if (!sdma->regs) { 1518 ret = -ENOMEM; 1519 goto err_ioremap; 1520 } 1521 1522 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma); 1523 if (ret) 1524 goto err_request_irq; 1525 1526 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); 1527 if (!sdma->script_addrs) { 1528 ret = -ENOMEM; 1529 goto err_alloc; 1530 } 1531 1532 /* initially no scripts available */ 1533 saddr_arr = (s32 *)sdma->script_addrs; 1534 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) 1535 saddr_arr[i] = -EINVAL; 1536 1537 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); 1538 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); 1539 1540 INIT_LIST_HEAD(&sdma->dma_device.channels); 1541 /* Initialize channel parameters */ 1542 for (i = 0; i < MAX_DMA_CHANNELS; i++) { 1543 struct sdma_channel *sdmac = &sdma->channel[i]; 1544 1545 sdmac->sdma = sdma; 1546 spin_lock_init(&sdmac->lock); 1547 1548 sdmac->chan.device = &sdma->dma_device; 1549 dma_cookie_init(&sdmac->chan); 1550 sdmac->channel = i; 1551 1552 tasklet_init(&sdmac->tasklet, sdma_tasklet, 1553 (unsigned long) sdmac); 1554 /* 1555 * Add the channel to the DMAC list. Do not add channel 0 though 1556 * because we need it internally in the SDMA driver. This also means 1557 * that channel 0 in dmaengine counting matches sdma channel 1. 1558 */ 1559 if (i) 1560 list_add_tail(&sdmac->chan.device_node, 1561 &sdma->dma_device.channels); 1562 } 1563 1564 ret = sdma_init(sdma); 1565 if (ret) 1566 goto err_init; 1567 1568 if (sdma->drvdata->script_addrs) 1569 sdma_add_scripts(sdma, sdma->drvdata->script_addrs); 1570 if (pdata && pdata->script_addrs) 1571 sdma_add_scripts(sdma, pdata->script_addrs); 1572 1573 if (pdata) { 1574 ret = sdma_get_firmware(sdma, pdata->fw_name); 1575 if (ret) 1576 dev_warn(&pdev->dev, "failed to get firmware from platform data\n"); 1577 } else { 1578 /* 1579 * Because that device tree does not encode ROM script address, 1580 * the RAM script in firmware is mandatory for device tree 1581 * probe, otherwise it fails. 1582 */ 1583 ret = of_property_read_string(np, "fsl,sdma-ram-script-name", 1584 &fw_name); 1585 if (ret) 1586 dev_warn(&pdev->dev, "failed to get firmware name\n"); 1587 else { 1588 ret = sdma_get_firmware(sdma, fw_name); 1589 if (ret) 1590 dev_warn(&pdev->dev, "failed to get firmware from device tree\n"); 1591 } 1592 } 1593 1594 sdma->dma_device.dev = &pdev->dev; 1595 1596 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; 1597 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; 1598 sdma->dma_device.device_tx_status = sdma_tx_status; 1599 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; 1600 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; 1601 sdma->dma_device.device_control = sdma_control; 1602 sdma->dma_device.device_issue_pending = sdma_issue_pending; 1603 sdma->dma_device.dev->dma_parms = &sdma->dma_parms; 1604 dma_set_max_seg_size(sdma->dma_device.dev, 65535); 1605 1606 ret = dma_async_device_register(&sdma->dma_device); 1607 if (ret) { 1608 dev_err(&pdev->dev, "unable to register\n"); 1609 goto err_init; 1610 } 1611 1612 if (np) { 1613 ret = of_dma_controller_register(np, sdma_xlate, sdma); 1614 if (ret) { 1615 dev_err(&pdev->dev, "failed to register controller\n"); 1616 goto err_register; 1617 } 1618 } 1619 1620 dev_info(sdma->dev, "initialized\n"); 1621 1622 return 0; 1623 1624 err_register: 1625 dma_async_device_unregister(&sdma->dma_device); 1626 err_init: 1627 kfree(sdma->script_addrs); 1628 err_alloc: 1629 free_irq(irq, sdma); 1630 err_request_irq: 1631 iounmap(sdma->regs); 1632 err_ioremap: 1633 err_clk: 1634 release_mem_region(iores->start, resource_size(iores)); 1635 err_request_region: 1636 err_irq: 1637 kfree(sdma); 1638 return ret; 1639 } 1640 1641 static int sdma_remove(struct platform_device *pdev) 1642 { 1643 return -EBUSY; 1644 } 1645 1646 static struct platform_driver sdma_driver = { 1647 .driver = { 1648 .name = "imx-sdma", 1649 .of_match_table = sdma_dt_ids, 1650 }, 1651 .id_table = sdma_devtypes, 1652 .remove = sdma_remove, 1653 }; 1654 1655 static int __init sdma_module_init(void) 1656 { 1657 return platform_driver_probe(&sdma_driver, sdma_probe); 1658 } 1659 module_init(sdma_module_init); 1660 1661 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>"); 1662 MODULE_DESCRIPTION("i.MX SDMA driver"); 1663 MODULE_LICENSE("GPL"); 1664